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RESEARCH ARTICLE

The Validity of Conscientiousness Is
Overestimated in the Prediction of Job
Performance
Sven Kepes*☯, Michael A. McDaniel☯

Department of Management, School of Business, Virginia Commonwealth University, Richmond, Virginia,
United States of America

☯ These authors contributed equally to this work.
* skepes@vcu.edu

Abstract

Introduction

Sensitivity analyses refer to investigations of the degree to which the results of a meta-anal-

ysis remain stable when conditions of the data or the analysis change. To the extent that

results remain stable, one can refer to them as robust. Sensitivity analyses are rarely con-

ducted in the organizational science literature. Despite conscientiousness being a valued

predictor in employment selection, sensitivity analyses have not been conducted with

respect to meta-analytic estimates of the correlation (i.e., validity) between conscientious-

ness and job performance.

Methods

To address this deficiency, we reanalyzed the largest collection of conscientiousness valid-

ity data in the personnel selection literature and conducted a variety of sensitivity analyses.

Results

Publication bias analyses demonstrated that the validity of conscientiousness is moderately

overestimated (by around 30%; a correlation difference of about .06). The misestimation of

the validity appears to be due primarily to suppression of small effects sizes in the journal

literature. These inflated validity estimates result in an overestimate of the dollar utility of

personnel selection by millions of dollars and should be of considerable concern for

organizations.

Conclusion

The fields of management and applied psychology seldom conduct sensitivity analyses.

Through the use of sensitivity analyses, this paper documents that the existing literature over-

estimates the validity of conscientiousness in the prediction of job performance. Our data

show that effect sizes from journal articles are largely responsible for this overestimation.
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Introduction
Meta-analytic findings are viewed as a primary means for generating cumulative knowledge
and bridging the often lamented gap between research and practice [1–4]. However, concerns
regarding meta-analytic results and our cumulative knowledge remain [5–10]. Sensitivity anal-
yses address the degree to which the results of a meta-analysis remain stable when conditions
of the data or the analysis change [11]. To the extent that results remain stable, they can be con-
sidered robust. Unfortunately, the vast majority of meta-analyses in the organizational sciences
fail to conduct sensitivity analyses and do not report the robustness of the meta-analytic find-
ings [12] despite the fact that scientific organizations such as the American Psychological Asso-
ciation [13, 14] and the Cochrane Collaboration [15] require or recommend such analyses.

Sensitivity analyses in meta-analytic studies include publication bias and outliers analyses.
Publication bias occurs to the extent that research findings on a particular relation that are
available are not representative of all research findings on that relation of interest [6, 16].
Although publication bias analyses are rare in the organizational sciences, such analyses are
much more common in other disciplines. For example, van Lent, Overbeke, and Out examined
the role of review processes in the publication of drug trials in medical journals [17]. Kicinski
examined publication bias in several meta-analyses in four major medical journals [18]. Publi-
cation bias has also been addressed in animal research [19, 20]. In both the medical sciences
[21–23] and the social sciences [24], publication bias appears to be primarily driven by authors
who do not submit null or otherwise undesirable findings [16, 25]. These authors are likely
responding to journal policies that discourage the publication of research with non-significant
findings as well as replications that can enable the evaluation of the credibility of previous
research findings [10, 26]. In addition to publication bias, outliers can have a noticeable effect
on meta-analytic results [27, 28]. Unfortunately, although outlier analyses are a type of sensi-
tivity analysis [11], only around 3% of all meta-analyses in the organizational sciences report
assessments of outliers [29].

Our analysis addresses the personality trait, conscientiousness. It is considered one of the
“Big 5,” a term that refers to five broad dimensions that succinctly describe human personality
[30]. Shaffer and Postlethwaite [31] conducted the most comprehensive meta-analysis to date
in which they assessed the correlation (i.e., validity) between conscientiousness and job perfor-
mance (k = 113). Of the Big 5, conscientiousness was found to have the largest magnitude
validity (the observed validity range for conscientiousness was .13 to .20 [31]). The authors
found that the other Big 5 personality traits had observed mean validities that were less mean-
ingful from a practical perspective in a selection context (i.e., where job performance is the cri-
terion). A concern with the Shaffer and Postlethwaite study is that they concluded that the
validity estimates for conscientiousness are not affected by publication bias [31]. However,
they did not perform any sensitivity analysis. This paper applies sensitivity analyses, specifically
publication bias and outlier analyses, to evaluate the robustness of their conclusions. To facili-
tate this task, we replicated their approach and crossed the frame-of-reference variable with all
other moderators, which allowed us to reduce moderator-induced heterogeneity and to assess
whether the influence of outliers and/or publication bias varied across sub-distributions.

Methods

Data source
We used data from Shaffer and Postlethwaite that included 113 correlation coefficients [31].
Unless otherwise noted, our sensitivity analyses were conducted using Comprehensive Meta-
Analysis (CMA, version 2.0 [32]) and follow the recommendations of Greenhouse and Iyengar
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[11] and Kepes et al. [33]. Given that CMA is based on the Hedges and Olkin [34] tradition of
meta-analysis, our results differed slightly from the psychometric meta-analysis method [35]
used by Shaffer and Postlethwaite [36]. We note that the reliability coefficients of the personal-
ity scales in this data set are between .79 and .87 (based on the coefficients from the data set for
measures that reported at least three reliability coefficients).

Analysis approach
To facilitate understanding of our analysis for those in varying disciplines, we use the term
“distribution” to refer to a set of effect sizes. When the effect sizes are sub-divided into smaller
groups based on their values on one or more moderator variables, we refer to the subsets of
effect sizes as “sub-distributions.” Consistent with the personnel selection literature, we use the
term “validity” to describe the correlation between one measure, in this case a self-report
assessment of conscientiousness, and a measure of job performance.

First, we derived random-effects (RE) meta-analytic estimates. Second, we conducted one-
sample removed analyses to examine the influence of each individual sample on the meta-ana-
lytic results [37]. Next, we performed publication bias analyses using multiple methods to tri-
angulate the effect size estimate [38] and to identify the possible range of point estimates (i.e.,
mean correlations) rather than relying on a single estimate [33]. We used contour-enhanced
funnel plots [39], the trim and fill analysis with the L estimator [40], selection models [41], and
cumulative meta-analysis by precision [37] to perform our publication bias analyses. A modi-
fied confunnel command in Stata was used to create the contour-enhanced funnel plots [33]. A
priori selection models were conducted in R [42] with the p-value cut-points to model moder-
ate and severe instances of publication bias suggested by Vevea andWoods [41]. In addition,
using R, we also ran tests of excess significance (P-TES; [43, 44]), PET-PEESE (precision-effect
test, precision effect estimate with standard error) analyses [45], whereby PET is Stanley and
Doucouliagos’ (formula 6 [45]) modified version of Egger’s test of the intercept [46], and p-
uniform analyses [47]. P-TES estimates the probability of the obtained results given the statisti-
cal power of the primary studies. Thus, contrary to the other analyses, P-TES does not provide
an effect size estimate that is adjusted for publication bias. When estimating power for the pri-
mary studies, we used the random-effects mean from the distribution as the estimate of the
population correlation (ρ) and set the significance level at .05. A set of effects with a probability
of less than .1 is typically considered to lack credibility [44]. Finally, we used Viechtbauer and
Cheung’s outlier and influence diagnostics to identify potential outliers [48]. This procedure
was conducted in R; it includes seven ‘leave-one-out’ diagnostic measures specifically adapted
or developed for the meta-analytic context that examine the influence of each individual study.
Viechtbauer [49] included descriptions of these diagnostics and the criteria for determining
which study may be considered to be an outlier. We ran all of our analyses with and without
the identified outlier(s). As recommended, our results are presented with and without outliers,
and we only assess the presence of bias in distributions consisting of at least 10 samples because
conclusions from smaller distributions are questionable due to the lack of statistical power and
second-order sampling error [33, 35, 50].

Each sensitivity analysis has some limitations, which is why we ran multiple analyses and
sought convergence across methods. Next, we address strengths and weakness of trim and fill
due to issues raised by reviewers. A PubMed search of the words “trim and fill” (or “trim &
fill”) from 1999, the date of the dissertation that introduced the method, through 2014 yielded
142 citations. A search of ProQuest dissertations yielded 187 citations. We offer that this indi-
cates that the method has many adherents. The primary weakness of the method is that the
results can be inaccurate in the presence of heterogeneity (i.e., variance not due to random
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sampling error) [40, 51, 52]. Thus, in our analyses, the credibility of the trim and fill results is
strongest in those sub-distributions in which we control for moderators (and thus control to
some degree for heterogeneity) [33]. Regarding the influence of heterogeneity on PET-PEESE,
Moreno et al. conducted a comprehensive simulation study that included variants of Egger’s
test of the intercept [53]. Two of these variants (fixed-effects model and fixed-effects variance
model) correspond to the two components of PET-PEESE. They concluded that these variants
can be inappropriate in very heterogeneous settings [53]. Similarly, as noted in the description
of p-uniform [47], this method overestimates the mean effect as heterogeneity increases. To the
extent that our data set has heterogeneity, p-uniform, and maybe also PET-PEESE, could be
inappropriate. However, because both methods are relatively new, we argue that it is informa-
tive to apply them to our data set to see the extent to which their results converge with the
results of the other, more established methods.

Finally, we note that some analyses use Fisher’s z transformed Pearson’s correlation coeffi-
cients (i.e., r). The transformation is used in some statistical methods, in part, because it makes
the sampling distribution symmetrical. Given the relatively small magnitude of our correla-
tions, the Fisher z coefficients and the untransformed correlation coefficients were nearly iden-
tical. Still, in the interest of making our analyses clear and our results fully replicable, we detail
which statistical methods transformed correlation coefficients into Fisher z. The issue is
whether the statistical method uses Fisher z transformed correlation coefficients in calcula-
tions. All methods that did use Fisher z coefficients in calculation used a back transformation
of the results into untransformed correlation coefficients. The meta-analyses that yielded the
random effect mean, the confidence interval for the mean, the Q test, the I2 statistic, and the
tau estimate were conducted with CMA, which uses Fisher z coefficients in calculations.
Although CMA did not provide the prediction interval, we calculated it using output from
CMA, which again does calculations using Fisher z correlations. Likewise, the one sample
removed analyses, and the trim and fill analyses, were conducted using CMA and were thus
based on Fisher z coefficients. The selection models use Fisher z transformed correlations as
well. P-uniform was also conducted on Fisher z coefficients. The PET-PEESE and outlier analy-
ses were conducted using untransformed correlation coefficients. We emphasize that for all
results, the coefficients are in the metric of untransformed correlation coefficients and thus can
be compared.

Decision rules for determining the range of the mean estimates and the
magnitude of bias
We relied on decision rules offered in Kepes et al. in determining the range of mean validity
estimates and the magnitude of publication bias [33]. These decision rules are summarized
here. First, we estimated the highest validity defined as the RE meta-analytic mean (�roRE ). Next,

we performed several sensitivity analyses, including the one sample removed analysis (osr), the
trim and fill analysis (t&f �ro), and selection models with moderate (smm �ro) and severe (sms �roÞ
assumptions of publication bias to derive additional mean validity estimates. We also con-
ducted P-TES, PET-PEESE, and p-uniform analyses. We defined the highest validity estimate
as the highest value from any analysis that provided an adjusted effect size estimate (�roRE , osr,

�roFE , t&f �ro, smm �ro, sms �ro, and PET-PEESE) [33]. We excluded the results from p-uniform due

to their lack of convergence with the results from the other, more established methods. We
note that this is likely due to the heterogeneity of our data [47].

We defined the lowest validity estimate as the smallest value from any of these seven analy-
ses (i.e., �roRE , osr, �roFE , t&f �ro, smm �ro, sms �ro, and PET-PEESE). We defined the baseline range

estimate (BRE) as the absolute difference between �roRE and the validity estimate farthest away
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(either the lowest or highest value). We defined the maximum range estimate (MRE) as the
absolute difference between the lowest and the highest value. When calculating the relative dif-
ference of the range estimates, we used �roRE , the potentially best mean estimate, as the base (i.e.,

as 100%). Consistent with Kepes et al., we characterized the magnitude of publication bias as
negligible if the relative range (BRE or MRE) was smaller than 20%, as moderate if the relative
range (BRE or MRE) was between 20% and 40%, and as large if the relative range (BRE or
MRE) was larger than 40%. For the P-TES estimates, we used the decision rules from Francis
[44] to determine whether the data were suspect (i.e., a probability of .1 or less is consistent
with an inference that the data should be viewed with skepticism). We find the decision rules
from Kepes and colleagues reasonable, and note that other researchers have used them [54],
and, to date, no critiques of them have been offered. However, readers may choose to adopt
other decision rules. We provide the data and results needed to assist the reader in such an
effort.

Results
Using the approach detailed by Viechtbauer and Cheung [48] and the diagnostics and criteria
for determining whether a particular study is an outlier described by Viechtbauer [49], we
identified one outlier (the correlation coefficient from Lao [55]). We verified that the study was
correctly coded (see [55], p. 32, Table 1). The sample is composed of police officers (“State
Troopers”). Other research has found lower than typical prediction of law enforcement job per-
formance from measures of general cognitive ability and employment interviews [33, 56].
Hirsh and colleagues speculated that the lower magnitude correlations may be due to the
supervisor having limited opportunity to observe the work of the police officer [56]. Police offi-
cers typically patrol alone in their police car out of the view of their supervisor. Our results by
sub-distributions are presented in Table 1 for all primary samples and in S1 Table contains the
results without the one identified outlier.

Table 1 contains the results of the conscientiousness analyses conducted for the full distribu-
tion and publication bias results are offered for all sub-distributions with at least 10 correla-
tions. The first two columns in Table 1 show the distribution analyzed and the number of
samples (k) in the distribution. Columns three through nine display the results from the meta-
analytic RE model: the mean observed correlation (�roRE ), the associated 95% confidence interval

(95% CI), the associated 90% prediction interval (90% PI), the Q statistic, I2, τ, and the one-
sample removed analysis (minimum, maximum, and median mean validity estimates). The
next four columns (10 through 13) contain the results from the trim and fill analysis, including
the side of the funnel plot where the samples were imputed (FPS; a left-hand side imputation is
consistent with an inference of publication resulting from the suppression of small magnitude
effect sizes; [33, 40]), the number of imputed samples (ik), the trim and fill adjusted observed
mean correlation (t&f �ro), and the trim and fill adjusted 95% confidence interval (t&f 95% CI).
Columns 14 and 15 display the results from the moderate and severe selection models, includ-
ing their respective adjusted observed estimates for instances of moderate and severe publica-
tion bias (smm �ro and sms �ro) and their respective variance component. Column 16 provides
the probability for the test of excess significance (P-TES). We report the probability of the chi-
square test as the P-TES value and note that this is a probability of excess significance and is
not an effect size. The next two columns, column 17 and 18, display the PET (precision-effect
test) and PEESE (precision effect estimate with standard error) adjusted observed mean esti-
mates (i.e., PET �ro and PEESE �ro, respectively; the PET �ro column also includes its associated
one-tailed p-value, which is used to determine whether the PET �ro or the PEESE �ro is the
adjusted observed mean for the meta-analytic distribution [45]). The final column contains the
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Table 1. Meta-analytic and publication bias results.

Distribution Meta-analysis Publication bias analyses

Trim and fill Selection
models

Ex.
sig.

PET-PEESE p-uniform

k �roRE 95% CI 90% PI Q I2 τ osr FPS ik t&f �ro t&f
95% CI

smm �ro sms �ro P-TES PET �ro PEESE �ro (95% CI)

Conscientiousness 113 .16 .14,
.18

.03,
.29

236.52 52.65 .081 .16, .16;
.16

L 22 .13 .10, .15 .14
(.01)

.12
(.01)

.24 .09
(.00)

.13 .19 (.16,
.22)

Frame of reference

- Non-contextualized 91 .15 .13,
.18

.00,
.29

210.06 57.15 .088 .15, .16;
.15

L 15 .12 .09, .15 .13
(.01)

.09
(.01)

.30 .09
(.01)

.13 .20 (.17,
.23)

- Contextualized 22 .19 .16,
.22

.16,
.22

19.01 .00 .000 .19, .20;
.19

L 5 .17 .14, .20 .18
(.01)

.18
(.01)

.30 .13
(.03)

.17 .16 (.10,
.22)

Source

- Journal articles 67 .19 .16,
.21

.06,
.31

130.89 49.58 .076 .18, .19;
.19

L 18 .14 .12, .17 .17
(.00)

.16
(.00)

.39 .07
(.07)

.07 .16 (.10,
.22)

- Non-
contextualized

52 .19 .15,
.22

.04,
.32

113.67 55.13 .085 .18, .19;
.19

L 14 .14 .11, .17 .17
(.01)

.15
(.01)

.62 .06
(.10)

.06 .21 (.17,
.25)

- Contextualized 15 .19 .14,
.23

.12,
.25

16.61 15.71 .033 .18, .20;
.19

L 2 .17 .13, .21 .18
(.00)

.17
(.00)

.36 .07
(.26)

.07 .17 (.10,
.24)

- Non-journal articles 46 .12 .09,
.15

-.02,
.25

91.68 50.92 .080 .11, .13;
.12

L 3 .11 .08, .14 .10
(.01)

n/a .53 .11
(.02)

.11 .18 (.13,
.23)

- Non-
contextualized

39 .11 .07,
.14

-.04,
.24

81.35 53.29 .081 .10, .11;
.11

0 .11 .07, .14 .08
(.01)

n/a .65 .12
(.02)

.11 .19 (.13,
.25)

- Contextualized 7 .22 .15,
.28

.14,
.29

1.71 .00 .000 .21, .23;
.21

Purpose

- General purpose 76 .14 .12,
.17

-.01,
.28

175.89 57.36 .089 .14, .15;
.14

L 14 .10 .08, .13 .12
(.01)

.08
(.01)

.32 .08
(.03)

.12 .20 (.16,
.24)

- Non-
contextualized

69 .14 .11,
.17

-.02,
.29

170.03 60.01 .093 .14, .15;
.14

L 9 .11 .08, .14 .11
(.01)

n/a .63 .09
(.03)

.12 .21 (.17,
.25)

- Contextualized 7 .17 .11,
.23

.11,
.23

4.08 .00 .000 .15, .20;
.17

- Workplace purpose 37 .19 .17,
.22

.12,
.26

45.77 21.35 .041 .19, .20;
.19

L 9 .17 .14, .20 .18
(.00)

.18
(.00)

.20 .12
(.01)

.16 .18 (.14,
.23)

- Non-
contextualized

22 .19 .15,
.23

.09,
.29

31.10 32.48 .054 .18, .20;
.19

L 5 .17 .13, .21 .18
(.00)

.17
(.00)

.31 .09
(.08)

.09 .18 (.13,
.24)

- Contextualized 15 .20 .16,
.24

.16,
.24

14.15 1.06 .008 .19, .21;
.20

L 2 .19 .15, .23 .19
(.00)

.19
(.00)

.64 .19
(.03)

.20 .18 (.12,
.25)

Sample

- Incumbents 109 .16 .14,
.18

.02,
.29

230.04 53.05 .082 .16, .16;
.16

L 22 .12 .10, .14 .14
(.01)

.11
(.01)

.40 .09
(.01)

.13 .19 (.16,
.22)

- Non-
contextualized

88 .15 .12,
.17

.00,
.29

204.61 57.48 .088 .15, .15;
.15

L 13 .12 .09, .15 .13
(.00)

.09
(.01)

.49 .09
(.01)

.12 .20 (.17,
.24)

- Contextualized 21 .19 .15,
.22

.16,
.22

18.54 .00 .000 .18, .20;
.19

L 5 .16 .13, .20 .18
(.00)

.17
(.00)

.32 .11
(.06)

.11 .16 (.09,
.22)

- Applicants 4 .24 .17,
.31

.13,
.34

.48 .00 .000 .20, .27;
.25

- Non-
contextualized

3 .24 .15,
.33

-.06,
.50

.45 .00 .000 .20, .27;
.26

- Contextualized 1 .23 .11,
.34

n/a n/a n/a n/a n/a

Design

- Concurrent design 105 .15 .13,
.18

.02,
.28

221.60 53.07 .082 .15, .16;
.16

L 21 .12 .10, .14 .13
(.00)

.11
(.01)

.12 .09
(.01)

.13 .19 (.16,
.22)

- Non-
contextualized

86 .15 .12,
.17

.00,
.29

199.03 57.29 .088 .15, .15;
.15

L 13 .12 .09, .15 .13
(.01)

.09
(.01)

.47 .09
(.01)

.12 .20 (.17,
.24)

- Contextualized 19 .18 .15,
.22

.15,
.21

17.27 .00 .000 .17, .19;
.18

L 3 .17 .13, .21 .17
(.00)

.17
(.00)

.29 .11
(.07)

.11 .15 (.08,
.22)

(Continued)
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p-uniform adjusted estimate of the mean effect size and its 95% confidence interval (p-uniform
[95% CI]).

We note that the P-TES values changed substantially in a few distributions when the sole out-
lier was dropped, suggesting that the outlier substantially influenced the P-TES value. These dif-
ferences can be examined by comparing Table 1 with the S1 Table. For example, for the non-
journal article sub-distribution of effect sizes, the P-TES value including the outlier was .53, but
.95 with the outlier dropped. For the non-journal articles which used a non-contextualized mea-
sure, the P-TES was .65 when including the outlier and .76 without the outlier. When the pur-
pose of the measure was classified as general purpose, P-TES was .32 with the outlier and .84
without it. When the research design was concurrent, the P-TES value including the outlier was
.12 and thus approached a value (.10) in which one might draw an inference of a non-credible
data set. However, the P-TES rose to .49 when the outlier was removed from the data set. Based
on these results, when P-TES is used as a sensitivity analysis in a meta-analysis, we recommend
that it be conducted with and without outliers to determine the robustness of the results. Using
the typical criterion .10 or less [44], neither the full distribution nor the sub-distributions were
judged to be non-credible sets of data. Concerning the results reported in Table 1, we found

Table 1. (Continued)

Distribution Meta-analysis Publication bias analyses

Trim and fill Selection
models

Ex.
sig.

PET-PEESE p-uniform

k �roRE 95% CI 90% PI Q I2 τ osr FPS ik t&f �ro t&f
95% CI

smm �ro sms �ro P-TES PET �ro PEESE �ro (95% CI)

- Predictive design 6 .25 .19,
.31

.18,
.32

1.18 .00 .000 .24, .26;
.25

- Non-
contextualized

4 .26 .18,
.33

.15,
.36

.79 .00 .000 .24, .28;
.26

- Contextualized 2 .24 .13,
.34

n/a n/a n/a n/a .21, .27;
.24

Scale a

- NEO 42 .14 .10,
.17

-.01,
.28

96.28 57.42 .086 .13, .14;
.14

L 9 .09 .06, .13 .12
(.01)

.08
(.01)

.53 .08
(.07)

.08 .19 (.14,
.25)

- PCI 13 .24 .19,
.28

.20,
.28

8.71 .00 .000 .22, .25;
.23

L 5 .20 .17, .24 .23
(.00)

.22
(.00)

.28 .21
(.14)

.21 .20 (.14,
.27)

- PSI 11 .22 .17,
.26

.17,
.26

4.32 .00 .000 .21, .22;
.22

0 .22 .17, .26 .21
(.00)

.21
(.00)

.89 .24
(.00)

.22 .18 (.10,
.25)

Note: k = number of correlation coefficients in the analyzed distribution. Publication bias analyses were not conducted for distributions with less than

k = 10; �r oRE = random-effects weighted mean observed correlation; 95% CI = 95% confidence interval; 90% PI = 90% prediction interval; Q = weighted

sum of squared deviations from the mean; I2 = ratio of true heterogeneity to total variation; τ = between-sample standard deviation; osr = one-sample

removed, including the minimum and maximum effect size and the median weighted mean observed correlation; Trim and fill = trim and fill analysis;

FPS = funnel plot side (i.e., side of the funnel plot where samples were imputed; L = left, R = right); ik = number of trim and fill imputed samples; t&f �r o =

trim and fill adjusted observed mean (the weighted mean of the distribution of the combined observed and the imputed samples); t&f 95% CI = trim and fill

adjusted 95% confidence interval; smm �r o = one-tailed moderate selection model’s adjusted observed mean (and its variance); sms �r o = one-tailed severe

selection model’s adjusted observed mean (and its variance); Ex. sig. = excess significance; PET-PEESE = precision-effect test-precision effect estimate

with standard error; PET �r o = PET adjusted observed mean (and its one-tailed p-value; PEESE �r o is the adjusted observed mean if PET �r o is significant,

the PET �r o is the adjusted observed mean if the p-value is not significant [45]); PEESE �r o = PEESE adjusted observed mean; P-TES = the probability of

the chi-square test of excess significance; p-uniform (95% CI) = the p-uniform estimate and its 95% confidence interval; n/a = not applicable (because k

was too small to conduct these analyses or because the variance component for the selection models indicated that the estimate was nonsensical [33]).
a We only analyzed three scale distributions (i.e., NEO = NEO Personality Inventory, PCI = Personal Characteristics Inventory, and PSI = Personal Style

Inventory) because the other distributions were too small to reach definite conclusions regarding the robustness of the meta-analytic mean estimate.

doi:10.1371/journal.pone.0141468.t001
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varying degrees of robustness in the meta-analytic mean (i.e., validity) estimates for conscien-
tiousness. For the entire distribution (k = 113), the RE meta-analytic mean estimate (.16) was
robust to the one sample removed analyses (e.g., the mean estimate did not change). However,
the 90% prediction interval, which indicates the likely range of “true” effect sizes, is relatively
wide (.03, .29). Furthermore, the RE meta-analytic mean estimate was not robust to all publica-
tion bias analyses. Specifically, the trim and fill estimate of .13 and the severe selection model
estimate of .12 were noticeably smaller in magnitude than the RE estimate. Confirming these
results, the PET-PEESE estimate was .13 (because PET was significant, the PEESE adjusted
mean estimate was selected [45]). The PET test (.09, p< .001) supports the results from the
trim and fill analysis by indicating that the effect size distribution is asymmetric; that small mag-
nitude effect sizes are likely to be missing from the meta-analytic distribution.

The contour-enhanced funnel plot (see Fig 1a) shows that all but one of the 23 imputed
samples were in the area of statistical insignificance, which is consistent with an inference of
publication bias stemming from the suppression of small magnitude correlations [33, 50]. The
forest plot for the cumulative meta-analysis by precision shown in Fig 2a suggests that as sam-
ple sizes decrease, there is a noticeable drift toward higher validities. The cumulative point esti-
mate starts at .07 (Ncum [cumulative sample size] = 2,717; kcum [cumulative number of
samples] = 4) with relatively large samples and increases to .13 (Ncum = 9,250; kcum = 28) with
the addition of smaller samples. Finally the validity estimate increases to .16 (Ncum = 19,625;
kcum = 113) with the addition of even smaller samples. This is consistent with an inference of
publication bias resulting from the suppression of small magnitude correlations (from small
samples). These patterns, especially the one from the contour-enhanced funnel plot, are also
inconsistent with the notion that the small sample bias (i.e., small sample studies show system-
atic differences from larger sample studies due to assessing different populations or having
measures of different sensitivity) is the cause for the observed results [33, 50]. We conclude
that publication bias has likely affected the observed mean validity of conscientiousness for
predicting job performance such that it is likely to be smaller in magnitude than the RE meta-
analytic mean of .16. We note that most of the bias stems from journal articles (see Table 1 as
well as Figs 1 and 2), which is consistent with an inference of the suppression of statistically
non-significant results. Thus, it is the literature published in journals that is largely responsible
for distorting the research on the validity of conscientiousness.

The results from the analyses without the outlier were similar. Therefore, we do not discuss
the analyses or results without the one outlier. However, the results for all analyses without the
outlier are provided in the supplementary materials (see S1 Table).

Our findings, including the range estimates (BRE andMRE) and conclusions, are summa-
rized in Table 2 (S2 Table contains the conclusions for the sub-distributions without the sole out-
lier). We note that the range estimates are not necessarily perfectly comparable if the severe
selection model did not provide a sensible solution (indicated by n/a in Table 1; see [41]). For
these distributions, the observed range estimates may be smaller when compared to distributions
where the full range of estimates is available. In addition, the results of the p-uniform analyses
did not converge well with the results from the other, more established methods. Most likely, this
is largely due to the heterogeneity in the data. The article that introduced p-uniform [47] pro-
vided simulation evidence that it noticeably overestimates the effect size as heterogeneity
increases. We note that our I2 values are typically near about 50, indicating non-trivial heteroge-
neity, which adversely affects the performance of p-uniform [47]. Correspondence with one of
the authors of the article introducing the p-uniform method, while informative, did not result in
a decision rule concerning the magnitude of I2 values at which p-uniform should not be used
[57]. Because of the nonconvergence with the results from the other, more established methods
and our substantial uncertainty about the appropriateness of the p-uniform approach for these
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Fig 1. Three contoured funnel plots for the validity of conscientiousness by data source. (A)
Conscientiousness data from all data sources. (B) Conscientiousness data from journal articles. (C)
Conscientiousness data from non-journal sources. Correlations are graphed as circles with an X-axis of
correlation magnitude and a Y-axis of the inverse standard error of the correlation. The filled black circles
represent the observed correlations and the clear circles represent the trim-and-fill imputed correlations. The
clear area contains correlations that are not statistically significant (p > .05). The darkest gray area contains
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data (e.g., van Assen et al. [47] noted that this method performs poorly with heterogeneous data,
which may explain why the p-uniform results generally did not converge with the other results),
we excluded the results from our conclusions and Table 2 (and S4 Table; for conclusions of the
results with the sole outlier that includes the results from the p-uniform analysis, see S3 Table).

Based on the sum of evidence, we conclude that the conscientiousness data are not mean-
ingfully influenced by a sole outlier. We also found that, in general, the data on conscientious-
ness are noticeably affected by publication bias. Thus, the apparent suppression of small
magnitude effect sizes, which the contour-enhanced funnel plots indicated to lie predomi-
nantly in the area of statistical insignificance, likely has led to the overestimation of the validity
of conscientiousness. The results for the sub-group distributions of samples from journal arti-
cles (k = 67) and non-journal sources (k = 46) support this notion because samples published
in journal articles reported larger average effect size estimates (�roRE = .19) than samples from

non-journal sources (�roRE = .12; see Table 1). Distributions involving journal articles tended to

be the most non-robust as well, typically with differences of at least .10 and overestimations of
more than 60% (see Table 2). For illustrative purposes, we also provide the contour-enhanced
funnel plots for both of these distributions as well as the forest plots from the respective cumu-
lative meta-analysis by precision (see Fig 1b and 1c as well asFig 2b and 2c). The contour-
enhanced funnel plots and the cumulative meta-analyses by precision support an inference of
publication bias and an overestimation of the mean validity for data from journal articles as
well [33]. By contrast, the data from non-journal sources seems to be relatively robust to publi-
cation bias (see Table 2). Thus, it is the data from journal articles that are largely responsible
for distorting the research on the validity of conscientiousness.

In addition, we found that the RE mean validity estimates for distributions involving con-
textualized measures of conscientiousness were sometimes more robust than the mean esti-
mates for distributions involving non-contextualized measures. For the distribution of all non-
contextualized measures of conscientiousness (k = 91), the 90% prediction interval ranged
from .00 to .29. By contrast, the prediction interval for the distribution of contextualized mea-
sures (k = 22) ranged only from .16 to .22. However, for many other distributions, the contex-
tualization of conscientiousness measures did not matter. Often contextualized and non-
contextualized sub-distributions were non-robust to a similar degree (non-robust to a moder-
ate or even large degree [see Table 2]).

Although one may argue that the absolute difference between the RE meta-analytic mean
estimates and the publication bias adjusted mean estimates tend to be rather small in magni-
tude (i.e., approximately .06 for most distributions), the relative differences tend to be notice-
able (i.e., typically greater than 30%) and may be interpreted as moderate in size [6, 33].
Furthermore, for data from journal articles, the overestimation appears to be large, for contex-
tualized as well as non-contextualized measures of conscientiousness (see Tables 1 and 2).

Based on a reviewer request, statistical significance tests are provided in Table 3 for the
moderator subgroups analyzed in Table 1. Results in S4 Table are for the data set with the sole
outlier removed.

correlations that may be described as marginally significant (p-values ranging from .05 to .10). The lighter
gray area contains correlations that are statistically significant (p < .05). Note that most of the imputed
correlations are found in the data distribution drawn from studies published in journals; relatively few of the
imputed correlations are found in the data distribution drawn from unpublished studies. This fact is consistent
with an inference that publication bias in the full data distribution is largely due to the suppression of
statistically insignificant correlations in journal published articles. Thus, it is the journal articles that are largely
responsible for distorting the research on the validity of conscientiousness.

doi:10.1371/journal.pone.0141468.g001
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Discussion
Publication bias and outliers can distort meta-analytic results and conclusions [3, 16, 27, 28,
33]. Unfortunately, most meta-analyses in the organizational sciences fail to conduct sensitivity
analyses to assess the effect of these phenomena and do not report results regarding the

Fig 2. Three forest plots for the validity of conscientiousness by data source. (A) Conscientiousness data from all data sources. (B) Conscientiousness
data from journal articles. (C) Conscientiousness data from non-journal sources. Forest plots for the cumulative meta-analyses by precision for the validity of
conscientiousness (i.e., the correlation between conscientiousness and job performance) are displayed. To obtain the plots, validities were sorted from
largest sample size to smallest sample size and entered into the meta-analysis one at a time in an iterative manner. The lines around the plotted means are
the 95% confidence intervals for the meta-analytic means. For panels A and B, the mean validities drift from smaller to larger as correlations from smaller and
smaller sample size studies are added the to the distribution being analyzed. For Panel C, no noticeable drift is observed. The drifts from smaller to larger
meta-analytic means are consistent with an inference of statistically insignificant correlations from smaller sample size studies being suppressed (i.e.,
publication bias). The lack of meaningful drift in panel C suggests that the data suppression is largely in the journal published articles (see panel B). Thus, it is
the data published in journal articles that are largely responsible for distorting the research on the validity of conscientiousness.

doi:10.1371/journal.pone.0141468.g002
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Table 2. Robustness of results and conclusions of the analyses.

Distribution Lowest value �roRE Highest value BRE Practical difference MRE Practical difference Conclusion a

Conscientiousness .12 f .16 .16 b, c .04 (25%) moderate .04 (25%) moderate Moderate difference

Frame of reference

- Non-contextualized .09 f .15 .16 c .06 (40%) large .07 (47%) large Large difference

- Contextualized .17 d, g .19 .20 c .02 (11%) negligible .03 (16%) negligible Negligible difference

Source

- Journal articles .07 g .19 .19 b, c .12 (63%) large .12 (63%) large Large difference

- Non-contextualized .07 g .19 .19 b, c .12 (63%) large .12 (63%) large Large difference

- Contextualized .07 g .19 .20 c .12 (63%) large .13 (68%) large Large difference

- Non-journal articles .10 e .12 .13 c .02 (17%) negligible .03 (25%) moderate Negligible to moderate difference

- Non-contextualized .08 e .11 .11 b, c, d, g .03 (27%) moderate .03 (27%) moderate Moderate difference

- Contextualized Distribution is too small to reach definite conclusions regarding the robustness of the meta-analytic mean estimate

Purpose

- General purpose .08 f .14 .15 c .06 (43%) large .07 (50%) large Large difference

- Non-contextualized .11 d, e .14 .15 c .03 (21%) moderate .04 (29%) moderate Moderate difference

- Contextualized Distribution is too small to reach definite conclusions regarding the robustness of the meta-analytic mean estimate

- Workplace purpose .16 g .19 .20 c .03 (16%) negligible .04 (21%) moderate Negligible to moderate difference

- Non-contextualized .09 g .19 .20 c .10 (53%) large .11 (58%) large Large difference

- Contextualized .19 c, d, e, f .20 .21 c .01 (5%) negligible .02 (10%) negligible Negligible difference

Sample

- Incumbents .11 f .16 .16 b, c .05 (31%) moderate .05 (31%) moderate Moderate difference

- Non-contextualized .09 f .15 .15 b, c .06 (40%) large .06 (40%) large Large difference

- Contextualized .11 g .19 .20 c .08 (42%) large .09 (47%) large Large difference

- Applicants Distribution is too small to reach definite conclusions regarding the robustness of the meta-analytic mean estimate

- Non-contextualized Distribution is too small to reach definite conclusions regarding the robustness of the meta-analytic mean estimate

- Contextualized Distribution is too small to reach definite conclusions regarding the robustness of the meta-analytic mean estimate

Design

- Concurrent design .11 f .15 .16 c .04 (27%) moderate .05 (31%) moderate Moderate difference

- Non-contextualized .09 f .15 .15 b, c .06 (40%) large .06 (40%) large Large difference

- Contextualized .11 g .18 .19 c .07 (39%) moderate .08 (44%) large Moderate to large difference

- Predictive design Distribution is too small to reach definite conclusions regarding the robustness of the meta-analytic mean estimate

- Non-contextualized Distribution is too small to reach definite conclusions regarding the robustness of the meta-analytic mean estimate

- Contextualized Distribution is too small to reach definite conclusions regarding the robustness of the meta-analytic mean estimate

Scale

- NEO .08 f, g .14 .14 b, c .06 (43%) large .06 (43%) large Large difference

- PCI .20 d .24 .25 c .04 (17%) negligible .05 (21%) moderate Negligible to moderate difference

- PSI .21 e, f .22 .22 b, c, d .01 (5%) negligible .01 (5%) negligible Negligible difference

Note: Lowest value = lowest mean estimate from all analyses (�r oRE ; osr, �r oFE , t&f �r o, smm �r o, sms �r o, and PET-PEESE; we did not include the p-uniform

values due to the lack of convergence with the results of the other, more established methods; likely due to the poor performance of this method with

heterogeneous data [47]); �r oRE = random-effects weighted mean observed correlation (the potentially best mean estimate); Highest value = highest mean

estimate from all analyses (�r oRE ; osr, �r oFE , t&f �r o, smm �r o, sms �r o, PET-PEESE); BRE = Baseline range estimate: the absolute range between �r oRE and the

estimate farthest away (either the lowest or highest value); MRE = Maximum range estimate: the absolute range between the lowest or highest value.

When calculating the relative difference of the range estimates, we used �r oRE , the potentially best mean estimate, as the base (i.e., as 100%). Ideally, BRE

and MRE should be identical. If not, outliers or other artifacts may have caused such differences. Practical difference: negligible = if the relative range

(BRE or MRE) is smaller than 20%; moderate = if the relative range (BRE or MRE) is larger than 20%; large = if the relative range (BRE or MRE) is larger

than 40% [33]. We note that, in a few instances, the range estimates are not necessarily comparable when the severe selection model did not provide a

sensible solution (indicated by n/a in Table 1). For these distributions, the range estimates may be smaller in their magnitude when compared to

distributions where the full range of estimates is available.
a Conclusions of a negligible difference indicate that the meta-analytic mean estimate (i.e., �r oRE ) is likely to be robust. Conclusions of a moderate,

moderate to large, or large difference indicates that the meta-analytic mean estimate (i.e., �r oRE ) is likely to be non-robust and could be misestimated (i.e.,

�r oRE could be under- or overestimated; typically overestimated in our analyses).
b = value from �r oRE ;
c = value from osr, �r oFE ;
d = value from t&f �r o;
e = value from smm �r o;
f = value from sms �r o;
g = value from PET-PEESE (value from PEESE if the PET value was significant, value from PET if it was not significant).

doi:10.1371/journal.pone.0141468.t002
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robustness of meta-analytic findings [12, 33] even though the American Psychological Associa-
tion [13, 14] and other scientific organizations (e.g., the Cochrane Collaboration [15]) recom-
mend such analyses [36]. We note that even a journal published by the American Psychological
Association (i.e., the Journal of Applied Psychology) seldom reports sensitivity analyses in their
meta-analytic studies despite the recommendation of the organization that owns the journal.
In this study, we used a variety of sensitivity analyses to assess the robustness of claims regard-
ing the validity of conscientiousness for predicting job performance.

Overall, we conclude that the observed validity for conscientiousness is overestimated in the
literature. This overestimation is primarily due to the influence of publication bias and not out-
liers. However, the lack of a distorting effect due to outliers may not be true for other literature
areas and, in accordance with best meta-analytic practices [36], we encourage the use of outlier
analyses in all meta-analytic reviews. We note that some sub-distributions were less robust
than others (see Table 2). The non-contextualized sub-distribution (k = 91) misestimated the
validity of conscientiousness to a large degree (40% to 47%; see Table 2). By contrast, effect
sizes drawn from studies with contextualized conscientiousness measures (k = 22) seemed to
be relatively robust and free of publication bias. However, such differences in the degree of
robustness between non-contextualized and contextualized measures of conscientiousness
were not always evident. Data from journals (k = 67) misestimated the validity of conscien-
tiousness by a large degree (63%). Data from non-journal sources (k = 46) typically showed
negligible to moderate degrees of publication bias, indicating that most of the apparent data
suppression is associated with journal articles.

In addition to these findings, misestimation was evident with general purpose measures
(k = 76) and was judged relatively large (43% to 50%). On the other hand, data drawn from
studies that used a workplace purpose measure of conscientiousness were only negligibly or
moderately affected by publication bias (k = 37; 16% to 21% misestimation), particularly if they
involved contextualized measures (5% to 10%) as opposed to non-contextualized measures
(53% to 58%). Misestimation was moderate for incumbent samples (k = 109; 31%). The degree
of contextualization did not matter as both incumbents’ sub-distributions (incumbents and

Table 3. Moderator statistical tests using the between-groupQ test.

Distribution Between-group Q p-value

Frame of Reference: Non-contextualized vs. Contextualized 3.54 .06

Source: Journal articles vs. non-journal articles 9.73 .00

-Journal articles: Non-contextualized vs. Contextualized 0.00 1.00

-Non-Journal articles: Non-contextualized vs. Contextualized 7.65 .01

Purpose: General vs Workplace 6.88 .01

-Purpose: General: Non-contextualized vs. Contextualized .89 .35

-Purpose: Workplace: Non-contextualized vs. Contextualized .10 .75

Sample: Incumbents vs. Applicants 4.51 .03

-Sample: Incumbents: Non-contextualized vs. Contextualized 3.33 .07

-Sample: Applicants: Non-contextualized vs. Contextualized .03 .86

Design: Concurrent vs. Predictive 8.50 .00

-Design: Concurrent: Non-contextualized vs. Contextualized 2.43 .12

-Design: Predictive: Non-contextualized vs. Contextualized .08 .77

Scale: NEO vs. PCI vs. PSI 14.77 .00

-NEO vs. PCI 12.54 .00

-NEO vs. PSI 7.20 .01

-PCI vs. PSI .42 .52

doi:10.1371/journal.pone.0141468.t003
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non-contextualized measures; incumbents and contextualized measures) were non-robust to a
large degree (e.g., their meta-analytic means were misestimated by up to potentially over 40%;
see Table 2).

The misestimation of concurrent designs (k = 105) was judged moderate (27% to 31%). As
with the incumbent samples, the degree of contextualization did not matter as the meta-ana-
lytic means of both distributions were overestimated by up to a large degree (misestimation for
concurrent designs and non-contextualized samples [k = 86]: .06 [40%]; misestimation for con-
current designs and contextualized samples [k = 19]: .07 [39%] to .08 [44%]). Finally, there
were sufficient data for three specific measures. Validities based on the NEO Personality Inven-
tory [58] showed large misestimation (43%) whereas there was negligible to moderate (17% to
21%) publication bias in validities drawn from the Personal Characteristics Inventory (PCI
[59]) and negligible bias (5%) involving the Personal Style Inventory (PSI [60]).

Based on our findings, we conclude that the validity estimates from non-journal sources are
likely to be more robust than estimates from journal articles. Although the goal of our paper
was not a critique of Shaffer and Postlethwaite’s study [31], the presence of potentially severe
publication bias in samples from journal articles indicates that Shaffer and Postlethwaite over-
estimated the validity of conscientiousness measures, especially for non-contextualized mea-
sures of conscientiousness but also for contextualized ones. With regard to particular
measures, it appears that the mean validity estimate for the NEO was comparatively low (e.g.,
�roRE = .14 vs. .24 and .22 for PCI and PSI measures, respectively) and non-robust (e.g., the esti-

mate from the severe selection model is .08, suggesting that the RE mean estimate for NEO
measure, already lower in magnitude than the estimate from the PCI and PSI (.14, .24, and .22,
respectively), was overestimated by 43%). By contrast, the PCI and PSI measures seem to have
validity estimates that are relatively robust and larger in magnitude.

It is possible that the NEO shows more publication bias than other measures because the
NEO is a commercial employment test product while at least some of the other measures in the
analysis are not commercially sold. McDaniel, Rothstein, and Whetzel drew inferences consis-
tent with a conclusion of publication bias when examining several commercially sold employ-
ment tests [61]. They speculated that results that may damage the marketing of commercial
products might be suppressed. The validity distribution of “Test Vendor A” had evaluated
potential publication bias in the PCI, and consistent with the current paper’s results, found no
compelling evidence of publication bias.

Recommendations and limitations
There are several possible critiques of this research, two of which are described below. First, we
note that some might argue that differences expressed in percentages might be better expressed
as differences in correlation magnitude. Our tables present both. Second, some might argue
that a correlation inflation of some magnitude (e.g., .05) due to publication bias (and/or outli-
ers) is a small difference and not likely to be meaningful. In the context of predicting job per-
formance, one approach to assess the meaningfulness is to calculate the dollar value of
differences in validity.

Using the mean validity estimate for data from journal articles (r = .19) compared to the
trim and fill adjusted estimate (r = .14), we compute the dollar value on assuming one value
over the other. For these calculations, we used 40% of salary as the estimate of the standard
deviation of job performance in dollars following Hunter and Schmidt [62] and $44,888 as the
average salary in the United States [63]. We estimated the standard deviation of job perfor-
mance in dollars as .4 � 44,888 = $17,955.20. We assumed that the average test performance of
those hired is the score at the 85th percentile of those completing a conscientiousness measure.
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Using a common utility formula (formula 1 in [64]) and assuming 100 employees were hired
who work for 20 years, the utility value for a validity of .19 is about $1,800,000 larger than the
utility value of a validity of .14. Thus, the use of incorrectly inflated validity coefficients due to
publication bias or other phenomena sharply overestimates the dollar utility of personnel selec-
tion by millions of dollars. This should be of considerable concern for organizations. We
acknowledge that different assumed values yield different results. For example, in more recent
cohorts of employees, one may observe that few employees stay in an organization or job for 20
years. Thus, our estimates could be modified by considering repeated costs per hire. Yet, any
reasonable values will show sharp overestimates of the utility in dollars when validity estimates
are overestimated due to publication bias. Furthermore, we note that more sophisticated utility
analyses (e.g., analyses with multiple predictors) could be conducted. Our simple utility analy-
sis is offered to show that effect size differences of around .05 are not necessarily trivial in
magnitude.

We have drawn inferences about publication bias in part from small sample studies having
relatively large magnitude effect sizes when compared to large sample studies, on average. The
assertion of publication bias is also supported by the contour-enhanced funnel plot and the
cumulative meta-analyses by precision (see Figs 1 and 2). Here, we consider the alternative
explanation that the mean effect size differences between small and large sample studies is due
to “true” differences between such studies and thus not due to publication bias. One example
scenario concerning “true” differences in small vs. large studies is from the medical literature, in
which small sample studies may be drawn from a different population than larger sample stud-
ies. In medical interventions, small samples might be drawn from a population of very ill
patients and result in larger effects sizes than larger samples, which may be drawn from a popu-
lation of less ill patients. However, we have no theoretical or empirical evidence that the samples
for the conscientiousness-job performance relation are drawn from such different populations.

A second scenario for “true” differences in small and large samples concerns the sensitivity
of the measures. Consider a study assessing stress effects on humans. In smaller studies, it may
be financially feasible to collect physiological measures of relevance to stress. However, such
measures are likely more costly than self-reports of the effects of stress. In large sample studies,
self-report survey data may be more common because the potentially more sensitive physiolog-
ical measures are financially infeasible to collect in large samples. This may result in larger
effects for the smaller studies than for the larger studies. However, in our study, the self-report
measures used for smaller and larger studies are not distinguishable. Based on this reasoning,
the evidence from the contour-enhanced funnel plot, and the fact that our results indicate that
virtually all of the sample suppression is evident in data drawn from journal articles as opposed
to non-journal sources, we conclude that “true” differences between the smaller and larger
studies, other than sample size, are unlikely to be credible. Thus, we are confident that the dif-
ference in mean effects between small and large studies is best attributed to publication bias.

We suggest that meta-analytic researchers present a range of parameter estimates rather
than a single point estimate [38, 65, 66]. In the context of meta-analytic reviews, triangulation
means the use of multiple meta-analytic estimates, outlier identification, and publication bias
detection methods to estimate the range of results rather than relying on a single point estimate
[33]. According to Orlitzky [38], the use of multiple estimates permits the triangulation of
results, which is important in advancing the methodological rigor in the organizational sci-
ences and in obtaining more accurate and trustworthy results [10]. This approach is aligned
with customer-centric reporting as researchers and practitioners benefit from understanding
the robustness of a meta-analytic estimate [36, 67]. This recommendation is also supported by
the Meta-analysis Reporting Standards of the American Psychological Association [13, 14, 36]
and other scientific organizations, such as the Cochrane Collaboration [15].
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If space considerations in journals prohibit detailed reporting of results, they should be
made available on journal websites as supplementary information, a practice that is common
in the medical sciences [68] and cross-disciplinary journals such as PLoS ONE. We suggest
that such practices should become more common in psychology and management journals.
Robust and non-robust estimates are equally informative about meta-analytic results and the
associated conclusions. In the former case, the findings provide assurance regarding the accu-
racy of the meta-analytic estimates. In the latter case, non-robust results aid in the re-evalua-
tion and revision of previously made conclusions, thereby directing new research efforts.

With regard to specific methodological recommendations for the detection of outliers, we sug-
gest the use of the one-sample removed analysis to empirically assess the influence of each individ-
ual sample on meta-analytic results [37]. This analysis provides a range of results. We also
recommend outlier analyses and the reporting of results with and without outliers. We reported
the results using Viechtbauer and Cheung’s approach for outlier detection [48] with the diagnostic
measures and criteria for determining whether a study is an outlier described by Viechtbauer [49].
In addition, we used Beal and colleagues SAMD statistic to identify outliers [69], which yielded
very similar results and essentially identical conclusions (we conducted the SAMD analyses at the
sub-distribution level of analysis). However, due to potential problems with the SAMD approach
when the data are heterogeneous (the approach does not take [residual] heterogeneity into account;
we thank an anonymous reviewer for highlighting this issue), we did not report the results.

Regarding the publication bias assessment methods, it is important to note that funnel plot-
based methods (e.g., contour-enhanced funnel plot and trim and fill) are based on the degree
of asymmetry in the funnel plot. Publication bias is one possible cause for the observed distri-
bution asymmetry. Outliers and heterogeneity, either due to moderators or “true” differences
between small and large samples (i.e., the small sample bias; [33, 50]), are other possible causes.
We accounted for the possible heterogeneous effects of outliers by running all analyses with
and without the sole outlier. We used the contour-enhanced funnel plot to distinguish publica-
tion bias from other causes of funnel plot asymmetry [39, 50]. As noted previously, we used the
originally identified moderators by Shaffer and Postlethwaite and formed sub-distributions to
reduce the degree of between-sample heterogeneity [51, 70], minimizing the possibility that
funnel plot asymmetry resulted from this type of heterogeneity [33, 70, 71]. Also, our results
were relatively consistent: the distributions with data from journal articles displayed noticeable
publication bias while the distributions with data from non-journal sources showed negligible
bias. Furthermore, all distributions involving non-contextualized measures of conscientious-
ness were affected by publication bias; their meta-analytic mean estimates were always non-
robust. Thus, it seems unlikely that heterogeneity caused our results.

In addition, results of selection models, which are less affected by heterogeneity [33, 41, 42],
provided supporting results and should receive considerable weight when estimating the effect
of publication bias on meta-analytic results [33]. For virtually all distributions, the varying pub-
lication bias methods yielded similar results. A key exception were the results from the p-uni-
form analyses. They did not converge well with the results of any of the other, more established
methods. The p-uniform method may have been inappropriate for our data set given the degree
of heterogeneity [47]. Given that the degree of heterogeneity tends to be similar in other areas
in applied psychology and management, it may be that p-uniform is not appropriate for most
data sets in these research areas. Future research should investigate this issue. Similar caveats
may apply to the PET-PEESE analysis [53], although our results tended to converge relatively
well, especially when compared to the p-uniform results. Finally, as discussed previously, we
are not aware of any empirical evidence or theoretical rationale to suggest that the small sample
bias has caused our results. This conclusion is also supported by the patterns of the contour-
enhanced funnel plots [33, 50].
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Our findings are aligned with previous warnings regarding the influence of phenomena
such as publication bias and outliers in meta-analytic reviews [6, 15, 27, 28, 61, 72–75]. Given
our results, we argue that suggestions regarding the irrelevance of sensitivity analyses, particu-
larly publication bias analyses [76], are clearly incorrect for the conscientiousness literature.
We thus advocate comprehensive sensitivity analyses in all meta-analytic reviews to determine
the degree of potential misestimation in meta-analytic results [11, 13, 14, 36]. We note that out-
liers and/or publication bias may not be present in all meta-analytic reviews. For example, the
sole outlier did not affect our results and publication bias did affect the data from journal arti-
cles noticeably more than data from non-journal sources. Even when outliers and/or publica-
tion bias are present, they may not substantially affect the results and conclusions of all meta-
analytic distributions and results. However, these phenomena may have a substantial effect on
some meta-analytic findings. Thus, we recommend that sensitivity assessments always be
reported in journal articles or the articles’ supplementary materials, regardless of whether or
not outliers and publication and related biases affect meta-analytic results.

Currently, we do not know the degree to which phenomena such as outliers and publication
bias have affected our cumulative knowledge. To provide such information and more accurate
meta-analytic results, we support calls for comprehensive sensitivity analyses in all meta-ana-
lytic reviews, which is aligned with recommendations from the Meta-analysis Reporting Stan-
dards of the American Psychological Association [13, 14] and previous research efforts [3, 11,
33, 36, 75].

Researchers in applied psychology and the organizational sciences typically know the extent
of measurement error in their data and sometimes have information on range variation on var-
iables of interest. With such information, researchers can use psychometric meta-analysis
methods [35] to obtain mean estimates of effects that would be obtained in the absence of mea-
surement error and range restriction (or range enhancement). Such estimates are useful for
studying relations among variables at the construct or latent level, contribute to theory clarifi-
cations, and are valuable in practical applications (e.g., comparisons of the value of various
employment screening procedures). Unfortunately, current publication bias methods have not
been designed with psychometrically-adjusted effect sizes in mind. Nor are the publication bias
methods accommodating to psychometric meta-analytic perspectives on study weighting
(sample size vs. inverse variance weighting), effect size transformations (i.e., Fisher z), and sam-
pling error estimation (i.e., estimate of rho in sampling error estimates). Psychometric meta-
analysis methods that correct individual effect sizes for measurement error and range variation
issues yield effect sizes that could be used in current publication bias methods if the standard
errors are appropriately adjusted (and the methods do not estimate sampling error from sam-
ple size and the observed effect size). Still, there is no current research assessing the accuracy of
publication bias methods using the psychometric approach. Also, to our knowledge, there are
no publication bias methods that are adaptable to psychometric meta-analysis approaches
using artifact distributions. We encourage efforts to evaluate current methods of publication
bias for psychometric meta-analysis applications.

Conclusions
Sensitivity analyses are rarely performed in the organizational sciences [12, 29, 72]. Despite
suggestions to the contrary [76], we found that publication bias can have noticeable effects on
meta-analytic results. Our findings illustrate the need for a rigorous quantitative assessment of
the robustness of meta-analytic results. Errors in primary studies are problematic, but those
affecting the conclusions of a meta-analytic review can mislead future research directions and
misinform evidence-based practice [3, 4, 33]. We encourage the use of methods for the
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detection of outliers and publication bias in all meta-analytic reviews, and, aligned with the
approach of triangulation [38, 65, 66] and customer-centric science [67], the reporting of the
range of results. Journals, which should provide the best estimates of effect sizes, are, ironically,
providing the most biased estimates. Clearly, journal polices and the behavior of authors
responding to journal policies, are in need of substantial revision [10].

Supporting Information
S1 Table. Meta-analytic and publication bias results (outlier excluded). k = number of corre-
lation coefficients in the analyzed distribution. Publication bias analyses were not conducted
for distributions with less than k = 10; �r oRE = random-effects weighted mean observed correla-

tion; 95% CI = 95% confidence interval; 90% PI = 90% prediction interval; Q = weighted sum
of squared deviations from the mean; I2 = ratio of true heterogeneity to total variation; τ =
between-sample standard deviation; osr = one-sample removed, including the minimum and
maximum effect size and the median weighted mean observed correlation; Trim and fill = trim
and fill analysis; FPS = funnel plot side (i.e., side of the funnel plot where samples were
imputed; L = left, R = right); ik = number of trim and fill imputed samples; t&f �r o = trim and
fill adjusted observed mean (the weighted mean of the distribution of the combined observed
and the imputed samples); t&f 95% CI = trim and fill adjusted 95% confidence interval; smm �r o
= one-tailed moderate selection model’s adjusted observed mean (and its variance); sms �r o =
one-tailed severe selection model’s adjusted observed mean (and its variance); Ex. sig. = excess
significance; PET-PEESE = precision-effect test-precision effect estimate with standard error;
PET = PET adjusted observed mean (and its one-tailed p-value; the value from PEESE is the
adjusted observed mean if the PET value is significant, the value from PET is the adjusted
observed mean if the p-value is not significant [45]); PEESE = PEESE adjusted observed mean;
P-TES = the probability of the chi-square test of excess significance; p-uniform (95% CI) = the
p-uniform estimate and its 95% confidence interval; n/a = not applicable (because k was too
small to conduct these analyses or because the variance component for the selection models
indicated that the estimate was nonsensical [33]).
(DOCX)

S2 Table. Robustness of results and conclusions of the analyses (outlier excluded). Lowest
value = lowest mean estimate from all analyses (�r oRE ; osr, �r oFE , t&f �r o, smm �r o, sms �r o, and
PET-PEESE; we did not include the p-uniform values due to the lack of convergence with the
results of the other, more established methods; likely due to the poor performance of this
method with heterogeneous data [van Assen et al., in press]); �r oRE = random-effects weighted

mean observed correlation (the potentially best mean estimate); Highest value = highest mean
estimate from all analyses (�r oRE ; osr, �r oFE , t&f �r o, smm �r o, sms �r o, PET-PEESE); BRE = Baseline

range estimate: the absolute range between �r oRE and the estimate farthest away (either the low-

est or highest value); MRE = Maximum range estimate: the absolute range between the lowest
or highest value. When calculating the relative difference of the range estimates, we used �r oRE ,
the potentially best mean estimate, as the base (i.e., as 100%). Ideally, BRE and MRE should be
identical. If not, outliers or other artifacts may have caused such differences. Practical differ-
ence: negligible = if the relative range (BRE or MRE) is smaller than 20%; moderate = if the rel-
ative range (BRE or MRE) is larger than 20%; large = if the relative range (BRE or MRE) is
larger than 40% [33].
(DOCX)

S3 Table. Robustness of results and conclusions of the analyses (including p-uniform esti-
mates). Lowest value = lowest mean estimate from all analyses (�r oRE ; osr, �r oFE , t&f �r o, smm �r o,
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sms �r o, PET-PEESE, and p-uniform); �r oRE = random-effects weighted mean observed correla-

tion (the potentially best mean estimate); Highest value = highest mean estimate from all analy-
ses (�r oRE ; osr, �r oFE , t&f �r o, smm �r o, sms �r o, PET-PEESE, and p-uniform); BRE = Baseline range

estimate: the absolute range between �r oRE and the estimate farthest away (either the lowest or

highest value); MRE = Maximum range estimate: the absolute range between the lowest or
highest value. When calculating the relative difference of the range estimates, we used �r oRE , the
potentially best mean estimate, as the base (i.e., as 100%). Ideally, BRE and MRE should be
identical. If not, outliers or other artifacts may have caused such differences. Practical differ-
ence: negligible = if the relative range (BRE or MRE) is smaller than 20%; moderate = if the rel-
ative range (BRE or MRE) is larger than 20%; large = if the relative range (BRE or MRE) is
larger than 40% [Kepes et al., 2012].
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