Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

(PDF updated November 21, 2011.)
Supplementary Appendix

Contents

1. Figures 1A-1C: Impedance Threshold Device: Function and Application...Page 2
2. Explanation of Relationship with Analyze Early versus Analyze Later Trial...Page 6
3. Figure 2: Patient Flow Chart...Page 7
4. Figure 3: Forest Plot of Primary Outcome (Survival to Hospital Discharge with mRS ≤ 3) in A Priori Subgroups and Post Hoc Exploratory Subgroups...Page 8
5. The Resuscitation Outcomes Consortium (ROC) Investigators...Page 9
Impedance Threshold Device: Function and Application

Figure 1A: Impedance Threshold Device Features

Figure 1B: Impedance Threshold Device Application with a Facemask
Figure 1C: Air flow through the inspiratory impedance threshold device (ITD) during the phases of cardiopulmonary resuscitation (CPR). During manual ventilation, respiratory gas bypasses the occlusion valve (silicone diaphragm) and flows into the lungs unimpeded. During chest compression or exhalation, expiration is not impeded by the valve and gas flows freely out of the lungs. During chest decompression the intrathoracic pressure within the chest falls below atmospheric pressure, causing the silicone membrane to occlude air flow through the valve. If the patient begins to breathe spontaneously, the safety valve opens, allowing inspiration. Reproduced from Lurie, KG, Barnes, TA, Zielinski TM, and McKnite SH. Evaluation of a Prototypic Inspiratory Impedance Threshold Valve Designed to Enhance the Efficiency of Cardiopulmonary Resuscitation. Respir Care 2003;48(1):52–57. (Figure 2, page 54) with permission from RESPIRATORY CARE and The American Association for Respiratory Care.

Impedance Threshold Device Function

The Impedance Threshold device (ITD; Figure 1A) is a small, 35mL device attached between any airway adjunct (e.g. facemask, supra-glottic airway, such as a Combitube®, laryngeal mask airway, or King LT, or endotracheal tube) and ventilation bag during CPR. (Figure 1B) When placed in the airway circuit, the ITD works as follows. (Figure 1C) During the compression phase of CPR, exhalation is unimpeded, and gas flows freely out of the lungs. During the decompression (or upstroke) phase of CPR, the intrathoracic pressure within the chest falls below atmospheric pressure, causing a silicone diaphragm in the device to occlude air entry into the lungs. This creates a vacuum within the thorax (approximately -3 to -10 mmHg) during the decompression phase of CPR, which has been demonstrated to have two primary physiologic effects.

1. First, the vacuum within the chest enhances venous return to the thorax, which increases systolic blood pressure and circulation, priming the heart for the next compression. 1 Second, use of the ITD reduces intracranial pressures at a faster rate (compared with no ITD use) providing a greater duration of time when intracranial pressures are at their lowest. Because intracranial pressure is a major determinant of resistance to forward blood flow to the brain, the more rapid reduction in intracranial pressure by the ITD further enhances cerebral circulation. 2 In this manner, with each chest compression and decompression, the chest serves as a bellows during CPR, creating a vacuum within the thorax during the upstroke of CPR, enhancing circulation to the heart and brain. 1, 2

With the ITD, the rescuer can ventilate the patient without encountering inspiratory resistance. The silicone diaphragm in the device does not block positive pressure ventilation or exhalation. Thus, rescue breathing is unimpeded. When the patient has been successfully resuscitated, the ITD should be removed from the respiratory circuit to allow the patient to breathe without inspiratory resistance. If the rescuer should fail to remove the device once the resuscitated patient begins to breathe, a built-in safety check valve opens, allowing spontaneous inspiration and exhalation. (Figure 1C) The ITD used in this trial had a safety check valve designed to open when airway pressures become <-16 cm H2O.
Impedance Threshold Device Application

Achieving the desired physiologic effects of the Impedance Threshold Device (lower mean intrathoracic pressure and resulting improvement in coronary and cerebral perfusion) is dependent on the circumstances of the cardiac arrest and rescuer CPR. Better outcome is associated with earlier CPR and device application. In one study using the ITD with active compression decompression CPR in humans, no patient survived cardiac arrest if CPR was initiated later than 10 minutes following the emergency call.\(^3\) When using the ITD with a facemask, the rescuer must keep a continuously tight seal during compressions and ventilations. Breaking the facemask seal during the chest compression/decompression cycle extinguishes the vacuum within the thorax.\(^4\) Animal studies have shown that excessive ventilation rates or excessive ventilation duration are associated with high mean intrathoracic pressure, decreased blood flow and decreased survival.\(^5\) Incomplete chest recoil results in continuously positive intrathoracic pressure, resulting in reduced blood flow and cerebral perfusion.\(^6\) In general, the better the quality of CPR delivered (e.g. chest compression rate, depth, complete chest recoil, chest compression fraction, and ventilation rate/duration) the greater achievement of the desired physiologic effect of the device.

For these reasons, the ROC consortium significantly invested in EMS training, retraining, and monitoring throughout the study. EMS personnel were trained in ITD physiology and all aspects of protocol implementation, emphasizing optimal CPR performance according to local guidelines. Training included the importance of early ITD placement, use of ventilation timing-assist lights (on both sham and active devices) with advanced airways and, when using the ITD with a facemask, a continuously tight seal using the “E-C” hand technique (one airway rescuer) or two-handed technique (two airway rescuers). (Figure 1C) To avoid impeding inspiration in patients with unrecognized spontaneous breathing, providers were instructed to remove the ITD immediately on return of spontaneous circulation, but re-apply it for recurrent cardiac arrest. Generating even a small amount of negative intrathoracic pressure carries with it the theoretical risk of generating or exacerbating pulmonary edema. For these reasons, if the device filled with fluid, it was removed and cleared, the patient was suctioned, and the device was re-applied. If the device filled with fluid again, use was discontinued. Use of the ITD was terminated on arrival at the hospital. Retraining occurred at periodic intervals throughout the trial. CPR process data were electronically recorded. An internal Study Monitoring Committee monitored the quality of CPR provided during the run-in phase (requiring demonstration of acceptable performance to advance to the main trial) and throughout the study.

Explanation of Relationship with Analyze Early versus Analyze Later Trial

The ROC PRIMED Impedance Threshold Device (ITD) trial was conducted simultaneously with the ROC PRIMED Analyze Early versus Later (AEvsAL) trial, thus halving the cost and time required to conduct these two trials. Furthermore, although no substantial interactive effect between the two interventions was anticipated, simultaneous implementation allowed assessment of the ITD under the early and later strategies for rhythm analysis, both of which were in common use. Potential difficulties caused by simultaneous implementation of two protocols were mitigated by not requiring EMS and fire personnel to actively perform randomization, which was accomplished by pre-determined cluster randomization or pre-randomized ITD kits. A full factorial design was not possible because not all agencies participated in both trials (Seattle Medic One did not participate in the AEvsAL trial and Multnomah county in Oregon did not participate in the ITD trial) and inclusion criteria for the two trials differed. In particular, EMS-witnessed cases were not eligible for the ALvsAE trial whereas enrolment in the ITD trial required opening the ITD kit which was not done in approximately 28% of cases (e.g., due to adverse scene conditions or early ROSC).

Of the 12,090 patients enrolled in at least one trial, 7283 (60%) were enrolled in both trials, 2870 (24%) were enrolled only in the AEvsAL trial, and 1937 (16%) were enrolled only in the ITD trial.

It is unlikely that co-implementation of the two trials influenced the outcome of the ITD trial. The estimated treatment effect of the active ITD within the Analyze Early group, Analyze Later group, and those not entered in the Analyze Early versus Analyze Later study was consistent with the overall study result, and the test for interaction was not significant (P=0.74).
Figure 2: Patient Flow Chart

Screened: includes treated cardiac arrests and cases with ITD opened; DNR: do not resuscitate orders; Non-ROC: treatment by non-Resuscitation Outcomes Consortium agency; DSE: drowning, strangulation, electrocution
<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Sham</th>
<th>Active ITD</th>
<th>Difference and 95% CI</th>
<th>Interaction p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mITT Population</td>
<td>260/4345 (6.0%)</td>
<td>254/4373 (5.8%)</td>
<td>-0.1 (-1.1, 0.8)</td>
<td>0.0 (-0.9, 1.0)</td>
</tr>
<tr>
<td>ITT Population*</td>
<td>283/4776 (5.9%)</td>
<td>283/4766 (5.9%)</td>
<td>-0.0 (-0.9, 1.0)</td>
<td>0.0 (-0.9, 1.0)</td>
</tr>
</tbody>
</table>

A Priori Subgroups

First Rhythm	VT/VF	200/1096 (18.2%)	199/1040 (19.1%)	0.9 (-2.4, 4.2)	0.76
PEA	40/1007 (4.0%)	35/1080 (3.2%)	-0.7 (-2.3, 0.9)	0.0 (-0.5, 0.4)	
Asystole	10/1946 (0.5%)	9/1903 (0.5%)	0.0 (-0.9, 1.0)	0.0 (-0.9, 1.0)	
Other	7/290 (2.4%)	10/345 (2.9%)	0.5 (-2.0, 3.0)	0.5 (-2.0, 3.0)	

Witnessed Status	EMS witnessed	24/331 (7.3%)	31/367 (8.4%)	1.2 (-2.8, 5.2)	0.77
Bystander witnessed	177/1794 (9.9%)	174/1754 (9.9%)	0.1 (-1.9, 2.0)	0.1 (-1.9, 2.0)	
Unwitnessed	51/2115 (2.4%)	46/2122 (2.2%)	-0.2 (-1.1, 0.7)	-0.2 (-1.1, 0.7)	

ALvE Study	Analyze later	90/1634 (5.5%)	91/1632 (5.6%)	0.1 (-1.5, 1.6)	0.71
Analyze early	98/1860 (5.3%)	83/1815 (4.6%)	-0.7 (-2.1, 0.7)	-0.7 (-2.1, 0.7)	
Not in ALvE	72/825 (8.7%)	80/889 (9.0%)	0.3 (-2.4, 3.0)	0.3 (-2.4, 3.0)	

Exploratory Subgroups

Time to ITD Application	<5 minutes	188/2589 (7.3%)	176/2539 (6.9%)	-0.3 (-1.7, 1.1)	0.74
≥5 minutes	61/1525 (4.0%)	63/1588 (4.0%)	0.0 (-1.4, 1.3)	0.0 (-1.4, 1.3)	
Missing	11/231 (4.8%)	15/246 (6.1%)	1.3 (-2.7, 5.4)	1.3 (-2.7, 5.4)	

Average CPR Fraction	≤59.8%	62/702 (8.8%)	46/682 (6.7%)	-2.1 (-4.9, 0.7)	0.006
59.9-71.0%	30/698 (4.3%)	58/674 (8.6%)	4.3 (1.7, 6.9)	4.3 (1.7, 6.9)	
71.1-82.0%	49/698 (7.0%)	40/710 (5.6%)	-1.4 (-3.9, 1.2)	-1.4 (-3.9, 1.2)	
>82.0%	35/693 (5.1%)	33/710 (4.9%)	-0.2 (-2.5, 2.1)	-0.2 (-2.5, 2.1)	
Missing	84/1554 (5.4%)	77/1630 (4.7%)	-0.7 (-2.2, 0.8)	-0.7 (-2.2, 0.8)	

| Epinephrine Dose | >3 mg | 30/1712 (1.8%) | 28/1735 (1.6%) | -0.1 (-1.0, 0.7) | 0.97 |
| ≤3 mg | 229/2622 (8.7%) | 226/2621 (8.6%) | -0.1 (-1.6, 1.4) | -0.1 (-1.6, 1.4) |

Airway Management	Intubation	197/3312 (5.9%)	209/3332 (6.3%)	0.3 (-0.8, 1.5)	0.17
Supraglottic	14/465 (3.0%)	12/470 (2.6%)	-0.5 (-2.6, 1.7)	-0.5 (-2.6, 1.7)	
Facemask only	48/562 (8.5%)	33/569 (5.8%)	-2.7 (-5.7, 0.3)	-2.7 (-5.7, 0.3)	

Figure 3: Forest Plot of Primary Outcome (Survival to Hospital Discharge with mRS ≤ 3) in A Priori Subgroups and Post Hoc Exploratory Subgroups

ITD: impedance threshold device, mITT: modified intent to treat, ITT: Intent to treat, VT/VF: ventricular tachycardia or ventricular fibrillation, PEA: pulseless electrical activity, EMS: emergency medical services, ALvE: analyze later versus early trial.

*The ITT population (a total of 9542 subjects with an ITD package opened during the main trial) included 8718 subjects in the mITT population and an additional 824 subjects who were excluded from the primary analysis because they did not have an ITD applied; met study exclusion criteria; experienced cardiac arrest secondary to hanging, drowning, electrocution, or strangulation; or who had a response time of more than 15 minutes.
The Resuscitation Outcomes Consortium (ROC) Investigators

Alabama Resuscitation Center, University of Alabama at Birmingham, Birmingham, AL: Jeffrey D. Kerby, MD, PhD, Principal Investigator
Core Investigators: Henry E. Wang, MD, Todd B. Brown, MD, MSPH, Thomas E. Terndrup, MD
Coordinators: Shannon W. Stephens, EMTP, Carolyn R. Williams BSN, BSME, Sandra Caldwell, MA, Katherine R. Lai, BS, Randal Gray, NREMT, MA Ed
EMS Investigators/Collaborators: Joe E. Acker, EMTP, MPH, Michael L. Minor, EMTP, John Reed, BSN, EMTP
Hospital Investigators/Collaborators: Jason Buge, MD, Willie Gilford, MD
Participating EMS Agencies: Bessemer Fire Dept, Birmingham Fire and Rescue, Center Point Fire District, Pelham Fire Dept, Regional Paramedical Services, Rocky Ridge Fire District, Vestavia Hills Fire Dept, Hoover Fire Dept

Dallas Center for Resuscitation Research, University of Texas Southwestern Medical Center at Dallas, Dallas, TX: Ahamed H. Idris, MD, Principal Investigator
Core Investigators: Raymond Fowler, MD, Ronna Miller, MD, Joseph Minei, MD, Paul Pepe, MD, Michael Ramsay, MD, Robert Simonson, MD, Jane Wigginton, MD
Coordinators: Sarah Beadle, MD, Dixie Climer, RN, Melinda Moffat, RN, Pamela Owens, EMTP, David Gallegos, Sandra O’Neill, MS, MA, LP, Ron Smith, MBA
EMS Investigators/Collaborators: Fernando Benitez, MD, Billy Craft, EMTP, Lucy Detamble, RN, Steven Deutsch, EMTP, Tod Gillam, EMTP, Tony Harvey, EMTP, Suzanne Hewitt, RN, Marshal Isaacs, MD, Tami Kayea, EMTP, Richard LaChance, EMTP, Thomas Lehman, Dorothy Lemecha, MD, Chris Malvik, EMTP, Paul Mayer, MD, Jeffrey Metzger, MD, Danny Miller, EMTP, Bobby Muse, EMTP, Karen Pickard, RN, Bobby Ross, EMTP, Chris Vinson, EMTP
Hospital Investigators/Collaborators: Steven Arze, MD, Sean Black, MD, Matthew Bush, MD, Ralph Kelly, DO, Edward Thornton, MD, William Elder, MD, John Marcucci, MD, Lawrence Hum, MD, Mark Gamber, MD
Participating EMS Agencies: Carrollton Fire Dept, Dallas Fire Rescue, Irving Fire Dept, Mesquite Fire Dept

Milwaukee Resuscitation Research Center, Medical College of Wisconsin, Milwaukee, WI: Tom P. Aufderheide, MD, Principal Investigator
Core Investigators: Ronald G. Pirralla, MD, MHSA, Karen J. Brasel, MD, MPH, Andrea L. Winthrop, MD, John P. Klein, PhD
Coordinators: Joseph Brandt, BS, NREMT, Walter Bialkowski, MS, Benjamin Hermanson, BS, Kelly McCormick, BS, MBA, Christopher Sandoval, BS, Kate Burpee, BA, Geri Price, BS, Kevin Morrow, MFA, Jennifer Noldin, BS, David J. Kitscha, BS, MS, Barbara J. Burja, BA, EMT, Chris von Briesen, BA, CCRC, Christopher W. Sparks, EMT, Pamela Walsh, EMT
EMS Investigators/Collaborators: John Chianelli, MS, Rosemarie Forster, MSOLQ, RHIA, EMTP, Michael Milbrath, EMTP, Lauryl Pukansky, BS, RHIA, Kenneth Sternig, MSEHS, BSN, EMTP, Eugene Chin, RN, EMTP, Nancy Frieberg, RN, EMTP, Kim Krueger, RN, EMTP, Del Szewczuga, RN, EMTP, Thomas Duerr, Rebecca Funk, BS, RHIA, EMTB, Gail Jacobsen, BS, Janis Spitzer, Richard Demien, James Martins, John Cohn, Russell R. Spahn, MA, EMT, Mike Jankowski, BA, EMT, Timothy James, William E. Wentlandt Jr, MBA, EFO, David Berousek, Brian M. Satula, BA, NREMT, Jay B. Behling, BS, EMTB, Dean K. Redman, BA, EFO, Steven Hook, BS, CFOD, Andrew Neargarder, Jim Singer, RN
Hospital Investigators/Collaborators: Thomas Reminga, MD, Dennis Shepherd, MD, Peter Holzhauer, MD, Jonathan Rubin, MD, Craig Skold, MD, Orlando Alvarez, MD, Heidi Harkins, MD, Edward Barthell,
MD, William Haselow, MD, Albert Yee, MD, John Whitcomb, MD, Eduardo E. Castro, MD, Steven Motarjeme, MD, Paul Coogan, MD, Keith Rader, MD, Jeff Glaspy, MD, Gary Gerschke, MD, Howie Croft, MD, Mike Brin, MD, Cory Wilson, MD, Anne Johnson, MD, William Kumprey, MD

Participating EMS Agencies: Cudahy Fire Dept, Franklin Fire Dept, Greendale Fire Dept, Greenfield Fire Dept, Hales Corners Fire Dept, General Mitchell International Airport Fire Dept, Milwaukee Fire Dept, North Shore Fire Dept, Oak Creek Fire Dept, South Milwaukee Fire Dept, Wauwatosa Fire Dept, West Allis Fire Dept

Ottawa/OPALS/British Columbia RCC, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario: Ian Stiell, MD, Principal Investigator

Core Investigator: Christian Vaillancourt, MD

Coordinators: Cathy Clement, RN, Tammy Beauclair, CCHRA, Marc-Andre Da Ponti, A-EMCA, ACP, Julie Cummins, A-EMCA, RN, MSc, Stanley Morrow, A-EMCA, ACP, Christine Tym, CHIM, Ghislaine Lepage, CHIM, Jane Banek, CHIM

EMS Investigators/Collaborators: Jonathan Dreyer, MD, Douglas Munkley, MD, Jason Prpic, MD, Justin Maloney, MD, Paul Colella, MD, Andrew Affleck, MD, David Waldbillig, MD, Paul Bradford, MD, Kenneth Boyle, EMCA, RRT, CMA, Lorraine Luinstra-Toohey, BScN, MHA, John Trickett, BScN, Nicole Sykes, BScN, RN, Elaine Graham, ACP, Kieran Ballah, EMCA, Cathy Hedges, A-EMCA, ACP, Renee MacPhee, PhD, Bob DeRaad, Laura McCleary, ACP

British Columbia RCC, St. Paul's Hospital, University of British Columbia, British Columbia, Canada: Jim Christenson, MD, Principal Investigator

Core Investigators: Douglas Andrusiek, MSc, Rardi vanHeest MD, Dave Evans MD, Morad Hameed MD

Coordinators: Sarah Pennington, RN, Helen Connolly, RN

Research Assistants: Daniela Todorova, Carrie Christenson, Cristina Aguirre

EMS Investigators/Collaborators: Dan Bishop, ACP, Ron Straight, ACP, Brian Twaites, ACP, Stuart Donn, PhD, Ross Keetley, Neil Schafer, Sidney Brannan, George Moffat, ACP, Carl Glinsbockel, ACP, Gerry Anderson, ACP, Karen Wanger, MD, Nick Balfour, MD, Jim Goulding, MD.

Pittsburgh Resuscitation Network, the University of Pittsburgh, Pittsburgh, PA: Clifton Callaway, MD, PhD, Principal Investigator

Core Investigators: Samuel Tisherman, MD, Jon Rittenberger, MD, David Hostler, PhD

Coordinators: Joseph Condle, Mitch Kampsmeier, Timothy Markham, Maureen Morgan, Melissa Repine McMichael

EMS Investigators/Collaborators: Paul Sabol, Gina Sicchitano, Anthony Shrader, Greg Stull, William Groft, Robert McCaughan, Rodney Rohrer, David Fuchs, MD, Francis Guyette, MD, MS, William Jenkins, MD, Ronald Roth, MD, Heather Walker, MD

Hospital Investigators: Thomas Campbell, MD, Ankur Doshi, MD, Bruce MacLeod, MD

Participating EMS Agencies: Ambulance and Chair, City of Pittsburgh EMS, City of Pittsburgh Fire, Mutual Aid Ambulance

Portland Resuscitation Outcomes Consortium, Oregon Health and Science University, Portland, OR: Mohamud R. Daya MD, MS, Principal Investigator

Core Investigators: Terri A. Schmidt MD, MS, Craig D. Newgard, MD, MPH, Jerris R. Hedges, MD, MS

Coordinators: Denise E. Griffiths, BS, CCRP, Dana M. Zive, MPH, Aaron W. Monnig, EMT-P, Abdolaziz Yekrang, MPA, MA, Brett Tomlin, BS, Michael Kampp, BS, Jenny Cook, BS, Joan Burns, RN, Maria Nelson, MD, Yoko Nakamura, MD

Hospital Investigators/Coordinators: Lynn Wittwer, MD, Michael Albrich, MD, Tony Carnevale MD, Piroska Schlesinger, BS, Kristen Schmiedeskamp, BS, Amy Reiter, RN, Kathy Arnold, RN, Phyllis Ramey, RN, Roger McDonald, RN, Helen Walsh, RN

Participating EMS Agencies: American Medical Response - Clackamas, Clark, and Multnomah Counties, Camas Fire Department, Clackamas County Fire District #1, Clark County Fire District #6, Gresham Fire and Emergency Services, Hillsboro Fire Department, Lake Oswego Fire Department, Metro West Ambulance, North Country Ambulance, Portland Fire and Rescue, Portland International Airport Fire Department, Tualatin Valley Fire and Rescue, Vancouver Fire Department

UCSD-San Diego Resuscitation Research Center, University of California at San Diego, San Diego, CA: Daniel Davis, MD, Principal Investigator

Core Investigators: Gary Vilke, MD, James V. Dunford, MD

Coordinators: Donna Kelly Aker, RN, Thea Barsalou, RN

EMS Investigators/Collaborators: Bruce Haynes, MD, Brad Schwartz, MD

Hospital Investigators: Don Mebust MD, Robert Bei MD, Graydon Skeoch MD, Michele Grad MD, Ian Grover MD, Jerrold Glassman MD, Steven R. Andree MD, Lisa Morikado MD, Mark Kramer MD, Thomas Calkins MD, Mark Tamsen MD, William Linnik MD, Judd Glasser MD

Participating EMS Agencies: El Cajon Fire Department, Julian-Cuyamaca Fire Department, North County Fire Department, Poway Fire Department, San Marcos Fire Department, Santee Fire Department, Viejas Fire Department, San Diego Fire-Rescue Department, San Diego Medical Services, Vista Fire Department
Seattle–King County Center for Resuscitation Research at the University of Washington, University of Washington, Seattle, WA: Peter J. Kudenchuk, MD, Principal Investigator

Core Investigators: Tom D. Rea, MD; Michael Copass, MD; Mickey S. Eisenberg, MD

Coordinator: Michele Olsufka, RN; Debi Solberg, RN, MN; Sally Ragsdale, ARNP

EMS Investigators/Collaborators: Jonathan Larsen, Mike Helbock

Participating EMS Agencies: King County Medic One, Bellevue Fire Dept, Bothell Fire Dept, Burien Fire KCFD 2, Kirkland Fire KCFD 41, Renton Fire and Emergency Services, Snoqualmie Fire, Duvall Fire KCFPD 45, Eastside Fire & Rescue, Enumclaw Fire KCFPD 28, Fall City Fire KCFPD 27, Kent Fire Dept, Maple Valley Fire and Life Safety KCFPD 43, Mercer Island Fire Dept, KCFD 44 Mountainview, North Highline Fire KCFD 11, Northshore/ Kenmore Fire KCFD 16, Port of Seattle Fire Dept, KCFPD 47 Ravensdale/Palmer, Redmond Fire Dept, SeaTac Fire Dept, Seattle Fire Dept, Shoreline Fire KCFD 4, Skykomish Fire KCFD 50, KCFD 20 Skyway, Snoqualmie Pass Fire 51, South King County Medic 1, South King Fire & Rescue, Tukwila Fire Dept, Valley Regional Fire Authority, Vashon Island Fire KCFD 13, Woodinville Fire KCFD 36.

Toronto Regional Resuscitation Research Out of Hospital Network (Toronto Regional RescuNet), University of Toronto, Toronto, Ontario, Canada: Arthur Slutsky, MD, MASc- Principal Investigator

Core Investigators: Laurie J Morrison, MD, MSc; Paul Dorian, MD, MSc; Alan Craig, MScPl; Andrew Baker, MD; James Hutchison, MD; Ori Rotstein, MD, MSc; P. Richard Verbeek, MD; Russell MacDonald, MD, MPH; Sandra Black, MD; Sandro Rizoli, MD, PhD; Sheldon Cheskes, MD; Steven Brooks, MD, MHSc

Coordinators: Adam Byers, Ahmed Taher, Anuar Turgulov, Blair Bigham, Bruce Cameron, Caitlin Wenkstern, Cathy Zhan, Christopher Foerster, Craig Beers, Jaime Beecroft, Jamie Frank, Malcolm Mercer, Markus Kernen, Michael Grife, Mohammad Qovaizi, Patrick Van Rooyen, Pete DeMaio, Rishab Chadha, Suzanne Chung, Tyrone Perreira, Welson Ryan

Hospital Investigators/Coordinators: Don Redelmeier, Jamie Hutchison, Julie Spence, Mediha Kadic, Steve Driscoll, Roman Nowicky, Shawn Hogan, Jacob Simonini, Grace Burgess, Dina Braga, Lesley Ann Molyneaux, Mark McLennan, Jennifer Walker, Amy Back, Donna Chen, Evelina Kadic, Hannelore Mueller, Jessica Tyrwhitt, Carolyn Vardy, Judith Renton, Margaret McGrath-Chong, Katherine Allan, Kerri Bath, Laura Steeves, Lauren Lewarne, Mariecar Pagulayan, Melanie Piette, Nida Shahid, Raj Gobin, Selamawit Tessema

Participating EMS Agencies: Ajax Fire and Emergency Services, Brampton Fire and Emergency Services, Clarington Fire Services, Central East Prehospital Care Program, Durham Region Emergency Medical Services, Mississauga Fire and Emergency Services, Muskoka Ambulance Service, Muskoka Emergency Medical Services, Muskoka Ambulance Communication Center, District of Muskoka, Medavie Emergency Medical Services, Pickering Fire Services, Peel Regional Paramedic Services, Toronto Emergency Medical Services, Toronto Fire Services, Uxbridge Fire Services, Whitby Fire and Emergency Services, Sunnybrook Osler Center for Prehospital Care, Halton Region Emergency Medical Services

Steering Committee: Chair: Myron Weisfeldt, MD, Johns Hopkins University School of Medicine, Baltimore, MD

Co-Chair–Cardiac: Joseph P. Ornato, MD, Virginia Commonwealth University Health System, Richmond, VA
National Heart, Lung, and Blood Institute, Bethesda, MD: George Sopko, MD, MPH, Debra Egan, MPH, David Lathrop, PhD, Alice Mascette, MD, Patrice Desvigne Nickens, MD, Colin Wu, PhD, Phyllis Mitchell, PhD, Tracey Hoke, MD

Clinical Trial Center, University of Washington, Department of Biostatistics, Seattle, WA: Gerald van Belle, PhD, Scott Emerson, MD, PhD, Graham Nichol, MD, MPH, Brian Leroux, PhD, Judy Powell, BSN, Lois Van Ottingham, BSN, Gena Sears, BSN, Siobhan Brown, PhD, Robert Schmicker, MS, Andrea Cook, PhD, Kyle Rudser, PhD, Robert B. Ledingham, MS, Ben Bergsten-Buret, Richard Moore, BS, Amy Gest, MPA, Colleen Sitlani, MS, Kent Koprowicz, MS, Liz Thomas, MS, Erin Gabriel, MS, Ken Wu, MS, Danielle Schroeder, BS, Chi Shen, MS, Winnie Kirdpoo, BS, Jackie Berhorst, Anna Leonen, MS, Yang Wang, PhD, Al Hallstrom, PhD