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We propose an improved scheme for low-power writing of binary bits in non-volatile (multiferroic)

magnetic memory with electrically generated mechanical stress. Compared to an earlier idea [N.

Tiercelin et al., J. Appl. Phys. 109, 07D726 (2011)], our scheme improves distinguishability between

the stored bits when the latter are read with magneto-tunneling junctions. More importantly, the write

energy dissipation and write error rate are reduced significantly if the writing speed is kept the

same. Such a scheme could be one of the most energy-efficient approaches to writing bits in

magnetic non-volatile memory. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882276]

There is an ongoing quest to find energy-efficient strat-

egies for writing binary bits in non-volatile magnetic mem-

ory. Writing requires rotating the magnetization of a

shape-anisotropic nanomagnet between its two stable orien-

tations that encode the bits “0” and “1.” This can be achieved

with either a magnetic field generated by an electrical cur-

rent,1 or a spin transfer torque (STT) arising from a spin-

polarized current,2 or domain wall motion induced by a

spin-polarized current.3 However, a much more energy-

efficient approach is to rotate the magnetization of a two-

phase multiferroic elliptical nanomagnet, comprising a

magnetostrictive layer in elastic contact with a piezoelectric

layer, with uniaxial mechanical stress generated by applying

an electrical voltage across the piezoelectric layer.4–6

Normally, the maximum rotation possible with such a

magneto-elastic scheme is 90�, unless the stress (or voltage)

is withdrawn at precisely the right juncture to allow the mag-

netization to rotate further to 180�.7 Such precise withdrawal

is a challenge, which is why complete bit flips are difficult to

achieve. As a result, magneto-elastic switching has not been

the preferred method to write bits in non-volatile memory,

despite its vastly superior energy-efficiency.

Recently, this impasse was overcome with a clever

scheme.8–10 A small in-plane magnetic field is applied along

the minor axis of the elliptical magnetostrictive nanomagnet

to move the stable magnetization directions away from the

major axis to two mutually perpendicular in-plane directions

that lie between the major and minor axes. They encode the

bits “0” and “1.” Uniaxial stress is applied along (or close to)

one of these stable directions (say, the one representing bit

“0”) by applying an in-plane electric field between two elec-

trodes delineated on the piezoelectric layer (see Fig. 1 of

Ref. 9). This field generates strain in the piezoelectric layer

via the d33 coupling, a part of which is transferred to the

magnetostrictive magnet. If the magnet has a positive mag-

netostriction coefficient, then tensile stress will rotate the

magnetization close to the direction of applied stress (or

electric field) since that orientation will be the global energy

minimum. Compressive stress will rotate it nearly perpendic-

ular to the direction of applied stress, i.e., close to the other

stable direction, since that will become the global energy

minimum. The situation will be the opposite if the magneto-

striction coefficient is negative, but that case is completely

equivalent to the first and hence is not discussed separately.

When stress is finally withdrawn, the rotated magnetization

will move to the stable direction closer to the stress-axis,

with �100% probability, and remain there in perpetuity,

since that will be energetically favored. Therefore, tensile

stress (voltage of one polarity) can be used to write the bit

“0” and compressive stress (voltage of the other polarity)

can write the bit “1.” This allows nearly error-free determin-

istic writing of bits, irrespective of what the originally stored

bit was. A similar idea utilizing 4-state magnets was dis-

cussed earlier by Pertsev and Kohlstedt.11

The disadvantage of this scheme is that it restricts the

angle between the two stable magnetization orientations to

�90�. The stored bit is usually read with a magneto-

tunneling junction (MTJ) that is vertically integrated above

or below the magnet. The MTJ will use the magnetostrictive

magnet as the soft magnetic layer (or free layer) and a syn-

thetic anti-ferromagnet (SAF) as the hard magnetic layer (or

fixed layer) with a tunneling layer in between. Let us assume

that the magnetization of the fixed layer is along the direc-

tion that encodes bit “1.” Then the MTJ resistances with the

soft layer’s magnetization encoding bit “0” and bit “1” will

bear a ratio r ¼ 1þg1g2

1þg1g2cosðHÞ, where the g-s are the spin injec-

tion/detection efficiencies of the two magnet interfaces of

the MTJ and H is the angular separation between the two sta-

ble magnetization directions in the MTJ’s free layer encod-

ing the two bits. The maximum value of this ratio (assuming

g1 ¼ g2 ¼ 1) is 2:1 since H � 90�. Such a low ratio may

impair the ability to distinguish between bits “0” and “1” in

a noisy environment when the bits are read by measuring the

MTJ resistance.

We show that the ratio r can be improved without sacri-

ficing any other metric if we introduce two pairs of electro-

des (instead of just one) to generate stresses along two

different directions in the magnet. We will still use a static

magnetic field along the minor axis of the ellipse to displace

the stable states from the major axis, but this field will be

smaller in strength so that the displacement from the major

axis is smaller. Consequently, the angular separation

0003-6951/2014/104(23)/232403/5/$30.00 VC 2014 AIP Publishing LLC104, 232403-1

APPLIED PHYSICS LETTERS 104, 232403 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.172.48.58 On: Fri, 27 Mar 2015 19:05:30

http://dx.doi.org/10.1063/1.4882276
http://dx.doi.org/10.1063/1.4882276
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4882276&domain=pdf&date_stamp=2014-06-10


between the stable magnetization orientations will be larger
(H> 90�), resulting in a larger value of r.

Figure 1 shows the schematic of our proposed device. The

lead zirconate titanate (PZT) film has a thickness of �100 nm

and is deposited on a conducting nþ-Si substrate. The elliptical

nanomagnet has a major axis a¼ 110 nm, minor axis

b¼ 90 nm, and thickness d¼ 9 nm. These dimensions ensure

that the nanomagnet has a single magnetic domain.12 One pair

of electrode pads has edge dimension of 170 nm and the other

has edge dimension of 70 nm. As explained in the supplemen-

tary material,17 these dimensions are needed to ensure the fol-

lowing: (1) the line joining the centers of each pair of pads lies

close to one of the stable magnetization orientations, (2) the

spacing between the facing edges of the pads in either pair is

comparable to the pad’s edge dimension and also the PZT film

thickness, and (3) no two pads overlap. A small magnetic field

(B¼ 8.5 mT) is applied along the in-plane hard axis of the

magnet, which brings the magnetization stable states out of the

major axis, but retain them in the plane of the magnet

ð/ ¼ 690�Þ. The new stable states (the two degenerate energy

minima) are WI at h ¼ 24:09� and WII at h ¼ 155:9�, where h
is the angle subtended by the magnetization vector with the

z-axis (or major axis of the elliptical magnet). Therefore, the

angular separation between these states is �132�. The electro-

des are delineated such that the line joining one pair subtends

an angle f ¼ 15� with the z-axis and the line joining the other

pair subtends an angle f ¼ 165�. Therefore, the axis joining

one pair lies close to one stable magnetization direction and

the other lies close to the other stable magnetization direction.

An electrode pair is activated by applying an electrostatic

potential between both members of that pair and the grounded

substrate. Since the electrode in-plane dimensions are compa-

rable to the piezoelectric film thickness, the out-of-plane (d33)

expansion/contraction and the in-plane (d31) contraction/ex-

pansion of the piezoelectric regions underneath the electrodes

produce a highly localized strain field under the electrodes.13

Furthermore, since the electrodes are separated by a distance

1–2 times the PZT film thickness, the interaction between the

local strain fields below the electrodes will lead to a biaxial

strain in the PZT layer underneath the magnet.13 This biaxial

strain (compression/tension along the line joining the electro-

des and tension/compression along the perpendicular axis) is

transferred to the magnet, thus rotating its magnetization. This

happens despite any substrate clamping and despite the fact

that the electric field in the PZT layer just below the magnet is

approximately zero since the metallic magnet shorts out the

field.13 Activating one pair of electrodes in this fashion moves

the magnet’s magnetization by �90� away from the axis join-

ing this pair. Upon deactivation (withdrawal of the voltage),

the magnetization migrates to the closer stable state with

�99.9998% probability at room temperature and remains

there in perpetuity. This writes one bit (say, “0”) in the mem-

ory. If we wish to write the other bit (say, “1”), we will acti-

vate the other pair of electrodes. Similar to the scheme of

Refs. 8–10, this mechanism writes the desired bit with very

high reliability (�99.9998% probability) irrespective of the

bit that was stored earlier in the nanomagnet. In the rest of this

Letter, we compare our modified scheme with that original

scheme of Refs. 8–10 for devices with identical thermal stabil-

ity factor,14 static error probability and data retention time at

room temperature, and switching time. We show that our

scheme not only produces a higher ratio r but is also more

energy-efficient and more resilient against dynamic write

errors.

We define our coordinate system such that the mag-

net’s easy (major) axis lies along the z-axis and the in-

plane hard (minor) axis lies along the y-axis. Uniaxial

stress is applied in-plane at an angle f from the easy axis

because of the disposition of the electrodes. To derive gen-

eral expressions for the instantaneous potential energies of

the nanomagnet due to shape-anisotropy, stress-anisotropy,

and the static magnetic field, we rotate our coordinate sys-

tem such that the z0-axis in the rotated frame coincides

with the direction of applied stress. In the following, quan-

tities with a prime are measured in the rotated frame of

reference.

Using the rotated coordinate system (see Fig. 1), the

shape anisotropy energy of the nanomagnet Esh(t) can be

written as

EshðtÞ ¼ Es1ðtÞsin2h0ðtÞ þ Es2ðtÞsin 2h0ðtÞ þ l0

2
XM2

s ðNd�yysin2fþ Nd�zzcos2fÞ;

Es1ðtÞ ¼
l0

2

� �
XM2

s fNd�xxcos2/0ðtÞ þ Nd�yysin2/0ðtÞcos2f� Nd�yysin2fþ Nd�zzsin2/0ðtÞsin2f� Nd�zzcos2fg;

Es2ðtÞ ¼
l0

4

� �
XM2

s Nd�zz � Nd�yyð Þsin /0ðtÞsin2f;

(1)

FIG. 1. Schematic illustration of the system with two pairs of electrodes

(AA0 and BB0) and the Terfenol-D nanomagnet delineated on top of a PZT

piezoelectric layer. If the magnetization of the Terfenol-D nanomagnet was

initially in the stable state WI (bit “0”), a voltage applied between the elec-

trode pair AA0 and ground will switch its direction to the other stable state

WII (writing the new bit “1”), while a voltage applied between the pair BB0

and ground will keep it in the original stable state WI (re-writing the old bit

“0”). Thus, either bit can be written by activating the correct electrode pair,

irrespective of what the initially stored bit was.
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where h0ðtÞ and /0ðtÞ are, respectively, the instantaneous po-

lar and azimuthal angles of the magnetization vector in the

rotated frame, Ms is the saturation magnetization of the mag-

net, Nd–xx, Nd–yy, and Nd–zz are the demagnetization factors

that can be evaluated from the nanomagnet’s dimensions,15

l0 is the permeability of free space, and X ¼ ðp=4Þabd is the

nanomagnet’s volume. The potential energy due to the static

magnetic flux density B applied along the in-plane hard axis

is given by

EmðtÞ ¼ MsXBðcos h0ðtÞsin f� sin h0ðtÞsin /0ðtÞcos fÞ: (2)

When a positive voltage is imposed between the electrode

pair AA0, it generates either compressive or tensile uniaxial

stress in the magnetostrictive nanomagnet depending on the

sign of the magnet’s magnetostriction coefficient. The stress

anisotropy energy is given by

EstrðtÞ ¼ �
3

2
ks�ðtÞYXcos2h0ðtÞ; (3)

where ks is the magnetostriction coefficient, Y is the Young’s

modulus, and �(t) is the strain generated by the applied volt-

age at the instant of time t. The total potential energy of the

nanomagnet at any instant t is

EðtÞ ¼ EshðtÞ þ EmðtÞ þ EstrðtÞ: (4)

Figure 2 shows the potential energy profile of the nanomagnet

in the magnet’s plane (/ ¼ 90�) as a function of the angle h
subtended by the magnetization vector with the major axis of

the ellipse (z-axis). When no stress is applied and the static

magnetic field is absent (curve I), the energy minima and the

stable magnetization states lie along the major axis of the

ellipse (h¼ 0�, 180�) and the in-plane energy barrier separat-

ing them is �145 kT at room temperature. Application of the

static magnetic field along the minor axis (curve II) moves the

energy minima and stable magnetization states out of the

major axis to h¼ 24.09� and 155.9�, while reducing the in-

plane energy barrier separating the stable states to 49.2 kT.

Therefore, the probability of spontaneous magnetization flip-

ping between the two stable states due to thermal noise (static

error probability) is �e�49:2 per attempt,14 leading to memory

retention time ð1=foÞe�49:2 ¼ 73 yr, assuming the attempt fre-

quency fo is 1 THz.16 The new stable states are designated as

WI (which encodes the binary bit “0”) and WII (which encodes

the binary bit “1”).

Application of sufficient compressive stress along the

line joining the electrode pair AA0 makes the potential pro-

file monostable (instead of bistable; see curve III) and shifts

the minimum energy position to W0, so that the system will

go to this state, regardless of whether it was originally at

state WI or WII. After stress removal, the magnetization will

end up in the stable state WII (with very high probability at

room temperature) since it is the energy minimum closer to

W0 and getting to WI from W0 would have required transcend-

ing the energy barrier between W0 and WI. Thus, activating

the pair AA0 deterministically writes the bit “1,” regardless

of the initially stored bit. Similarly, activating the other pair

BB0 would have written the bit “0” (curve IV of Fig. 2).

In order to calculate the energy dissipated in writing a

bit, as well as the probability with which the bit is written

correctly in the presence of thermal noise, we have to solve

the stochastic Landau-Lifshitz-Gilbert equation. For this, we

derive equations for the time evolution of the polar and azi-

muthal angles of the magnetization vector in the rotated

coordinate system (see the accompanying supplementary

material17 for the derivation)

dh0ðtÞ
dt
¼ � jcj
ð1þ a2Þl0MsX

fE/1ðtÞsin h0ðtÞ þ E/2ðtÞcos h0ðtÞ

�MsXB cos f cos /0ðtÞ � l0MsXh/ðtÞ
þ afEs1ðtÞsin 2h0ðtÞ � l0MsXhhðtÞ
þ 2Es2ðtÞcos 2h0ðtÞ þ ð3=2Þks�ðtÞYX sin 2h0ðtÞ
�MsXBðcos f sin /0ðtÞcos h0ðtÞ þ sin h0ðtÞsin fÞgg;

(5)

d/0ðtÞ
dt
¼ jcj

sin h0ðtÞð1þ a2Þl0MsX
Es1ðtÞsin 2h0ðtÞ
�

þ 2Es2ðtÞcos 2h0ðtÞ þ ð3=2Þks�ðtÞYX sin 2h0ðtÞ
�MsXBðcos f sin /0ðtÞcos h0ðtÞ þ sin f sin h0ðtÞÞ
� l0MsXhhðtÞ � aðE/1ðtÞsin h0ðtÞ þ E/2ðtÞcos h0ðtÞ
�MsXB cos f cos /0ðtÞ � l0MsXh/ðtÞÞg:

(6)

Solutions of these two equations yield the magnetization ori-

entation h0ðtÞ;/0ðtÞ
� �

at any instant of time t.
In order to generate the stress-induced magnetodynam-

ics in the presence of thermal noise from the last two equa-

tions, we need to pick (with appropriate statistical

weighting) the initial magnetization state from the thermal

distributions around the two stable states WI and WII in the

absence of stress. We determine the thermal distribution

around, say, WI by starting with the initial state h¼ 24.09�

and / ¼ 90� and solving Eqs. (5) and (6) to obtain the final

FIG. 2. In-plane potential energy profile (azimuthal angle / ¼ 90�) of the

nanomagnet in different conditions. Curve I shows the profile in the absence

of any stress and the static magnetic field, where the energy minima are at

h¼ 0�, 180�. Curve II shows the profile in the presence of an in-plane mag-

netic field of 8.5 mT along the nanomagnet’s minor axis where the energy

minima have moved to h ¼ 24:09� and at h ¼ 155:9�. Curves III and IV

show the profile when a compressive stress of 9.2 MPa is generated by

imposing a potential between the electrodes AA0 and the electrodes BB0,
respectively. Note that stress makes the potential profile monostable, instead

of bistable.
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values of h and / by running the simulation for 1 ns while

using a time step of Dt¼ 0.1 ps (the distributions are verified

to be independent of Dt and simulation duration). This proce-

dure is then repeated 106 times to obtain the thermal distribu-

tion of h and / around WI. The same method is employed to

find the thermal distribution around WII.

Let us say that we wish to study the (thermally per-

turbed) stress-induced magnetodynamics associated with

writing the bit “1” when the initial stored bit was “0.” We

apply a voltage between the electrode pair AA0 and the

grounded substrate to produce stress in the magnet and gen-

erate a switching trajectory by solving Eqs. (5) and (6) after

picking (with appropriate statistical weight) the initial orien-

tation from the thermal distribution around WI ðh ¼ 24:09�

and / ¼ 90�), which represents the initial bit “0.” After the

stress duration is over, the stress is turned off and we con-

tinue to simulate the switching trajectory from Eqs. (5) and

(6) until the value of h approaches within 4� of either

h¼ 155.9� (correct switching) or h¼ 24.09� (failed switch-

ing). The switching time is the minimum time needed for

nearly all of the trajectories to switch correctly. It is larger

than the stress duration (which is 0.8 ns) and is about 1.5 ns

if 99.9998% of the trajectories were to switch correctly. One

million switching trajectories are generated and the fraction

of them that fail is the dynamic write error probability. If no

failure occurs, we conclude that the dynamic error probabil-

ity is less than 10�6.

We assume the following material parameters for the mag-

net (Terfenol-D): saturation magnetization Ms¼ 8� 105 A/m,

magnetostriction coefficient ð3=2Þks ¼ 90� 10�5, Young’s

modulus Y¼ 80 GPa, and Gilbert damping coefficient

a¼ 0.1.18–20 We also assume: strain �ðtÞ ¼ 1:15� 10�4

(stress¼ 9.2 MPa) and f ¼ 15�.
In Ref. 13, the electric field needed to generate a local

strain of �10�3 in the magnet was 3 MV/m. Using a linear

interpolation, the electric field needed to generate a strain of

1.15� 10�4 would be 0.345 MV/m. Therefore, the potential

that needs to be applied to the electrodes is 0.345

MV/m� 100 nm¼ 34.5 mV.

The energy dissipated in writing the bit has two compo-

nents: (1) the internal dissipation in the nanomagnet due to

Gilbert damping, which is calculated in the manner of Ref.

21 for each trajectory (the mean dissipation is the dissipation

averaged over all trajectories that result in correct switch-

ing); and (2) the external (1/2) CV2 dissipation associated

with applying the voltage between the electrodes and the

grounded substrate which act as a capacitor. The larger elec-

trode has a lateral dimension of 170 nm and the PZT film

thickness is 100 nm. Therefore, the associated capacitance is

C¼ 2.5 fF, if we assume that the relative dielectric constant

of PZT is 1000. Since the two electrodes of a pair are always

activated together, the external energy dissipation will be

twice (1/2) CV2 dissipation and that value is 718 kT at room

temperature (V¼ 34.5 mV). The smaller electrode pair will

have a smaller capacitance and hence dissipate less energy.

The mean internal dissipation could depend on whether the

initial stored bit was “0” or “1,” and we will take the higher

value. In this case, the higher value was 132 kT.

We found that when the initial stored bit is “0,” the bit

“1” is written with less than 10�6 error probability (not a

single failure among the one million trajectories simulated),

while when the initial stored bit is “1,” the bit “1” is written

with an error probability of 2� 10�6 (only two failures

among one million trajectories simulated).

Finally, we compare our scheme with that of Refs. 8–10

where compressive or tensile stress is applied at an angle f ¼
45� with the major axis of the elliptical nanomagnet to write a

bit. In this case, the two stable in-plane magnetization directions

must correspond to h¼�45� and �135� (Ref. 9) since they

must be close to the stress direction. This would require a higher

in-plane static magnetic field since the stable states are to be dis-

placed by a larger angle from the major axis. We would also

want the in-plane barrier height separating the two stable states

to be the same 49.2 kT at room temperature. We found that these

requirements are satisfied if we choose an elliptical nanomagnet

of dimensions 150 nm� 63 nm� 11 nm and a static magnetic

field (B¼ 57.3 mT) along the in-plane hard axis. In this case, the

stable states are at h ¼ 46� ðWIÞ and h ¼ 134:5� ðWIIÞ. The

angular separation between the two stable directions is 88.5�. In

order to get the lowest dynamic error probability in writing a bit,

we need to generate a slightly larger strain of 2.4� 10�4

(stress¼ 19.5 MPa) by applying a slightly larger voltage

(73 mV). We also need to keep the strain on for a slightly longer

duration (1.5 ns) to complete writing the bit with least dynamic

error probability. With these parameters, we found that the

dynamic error probability in writing the bit “1” is 2.1� 10�5

when the initial bit is “1” (21 failures in 1� 106 trajectories) and

5� 10�6 when the initial bit is “0” (5 failures in 1� 106 trajec-

tories). The switching time is still about 1.5 ns. The average in-

ternal dissipation is 295 kT (the dissipation is larger because of

the larger stress, larger magnetic field, and longer stress duration

needed to achieve the same dynamic error probability) and the

external dissipation is 1132 kT if we assume the electrode’s

edge dimension to be 100 nm (the dissipation is larger because

of the larger voltage needed to generate the larger stress). The

magnet and other parameters used in Refs. 8–10 were different,

but resulted in a much higher energy dissipation of �23 000

kT.10 We have therefore re-designed their magnet to reduce the

energy dissipation significantly. We have also re-designed their

electrical scheme to mirror ours because if one applies a poten-

tial between the two electrodes of a pair, the resulting electric

field will be shorted out directly underneath the magnet, result-

ing in considerably reduced stress in the magnet.

Table I presents a comparison between the two schemes

where we have assumed that the spin injection and detection

efficiencies ðg1; g2Þ are �70% at room temperature.22

Clearly, the present scheme is better in all respects.

TABLE I. Comparison between the 2-electrode and 4-electrode schemes.

2-electrode 4-electrode

Angular separation between stable states (H) 88.5� 132�

Static error probability at room temperature 4.29� 10�22 4.29� 10�22

Dynamic error probability at room temperature 2.1� 10�5 2� 10�6

Mean switching time (ns) 1.5 1.5

Mean internal energy dissipation (kT) 295 132

External energy dissipation (kT) 1132 718

Mean total energy dissipation (kT) 1427 850

Resistance ratio r 1.47 2.21
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In conclusion, we have shown that modifying the

scheme of Refs. 8–10 to replace the single pair of electrodes

with two pairs imposes a slight additional lithographic bur-

den, but the payoff in terms of energy dissipation, dynamic

error rate and resistance ratio more than justifies it. Since the

total energy needed to write a bit in the modified scheme is

�850 kT, it could be one of the most energy-efficient strat-

egies to write bits in non-volatile magnetic memory. This

energy is at least five orders of magnitude lower than what

has been predicted for spin-transfer-torque memory.23 Any

degradation in the d33 coefficient of PZT in a 100-nm thin

film24 will of course require a higher writing voltage and

hence a higher amount of energy dissipation, but since the

dissipation is so low, some degradation will be tolerable.
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