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In Vivo Regulation of Brain-Derived Neurotrophic Factor
in Dorsal Root Ganglia Is Mediated by Nerve Growth
Factor-Triggered Akt Activation during Cystitis
Li-Ya Qiao*, Sharon J. Yu, Jarren C. Kay, Chun-Mei Xia

Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America

Abstract

The role of brain-derived neurotrophic factor (BDNF) in sensory hypersensitivity has been suggested; however the
molecular mechanisms and signal transduction that regulate BDNF expression in primary afferent neurons during
visceral inflammation are not clear. Here we used a rat model of cystitis and found that the mRNA and protein levels
of BDNF were increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. BDNF up-
regulation in the L6 DRG was triggered by endogenous nerve growth factor (NGF) because neutralization of NGF
with a specific NGF antibody reduced BDNF levels during cystitis. The neutralizing NGF antibody also subsequently
reduced cystitis-induced up-regulation of the serine/threonine kinase Akt activity in L6 DRG. To examine whether the
NGF-induced Akt activation led to BDNF up-regulation in DRG in cystitis, we found that in cystitis the phospho-Akt
immunoreactivity was co-localized with BDNF in L6 DRG, and prevention of the endogenous Akt activity in the L6
DRG by inhibition of phosphoinositide 3-kinase (PI3K) with a potent inhibitor LY294002 reversed cystitis-induced
BDNF up-regulation. Further study showed that application of NGF to the nerve terminals of the ganglion-nerve two-
compartmented preparation enhanced BDNF expression in the DRG neuronal soma; which was reduced by pre-
treatment of the ganglia with the PI3K inhibitor LY294002 and wortmannin. These in vivo and in vitro experiments
indicated that NGF played an important role in the activation of Akt and subsequent up-regulation of BDNF in the
sensory neurons in visceral inflammation such as cystitis.
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Introduction

Irritation/inflammation of the visceral organs often alters the
properties of primary afferent pathways, causing visceral
hypersensitivity demonstrated as a reduction in pain threshold
and/or an amplification of painful sensation. A number of
mediators including cytokines, chemokines, and growth factors
that are identified in visceral organs during disease states can
act on the local sensory nerve terminals, leading to an increase
in the excitability of the axonal terminal and sensory
hypersensitivity [1,2,3]; the increase in the axonal terminal
excitability, in turn, promotes neuropeptide expression in and
release from primary afferent neurons at the peripheral
terminals and increases local blood flow exacerbating the
inflammatory process [4,5]. Specific to sensory neurons that
innervate the urinary bladder, inflammation of the viscera in
pathological states such as cystitis results in considerable
plasticity of the neuronal cell bodies demonstrated as

significant changes in the level of neuropeptides, ion channels,
and receptors [6,7,8,9,10].

Among many neuropeptides expressed by sensory neurons,
brain-derived neurotrophic factor (BDNF) generated by the
neuronal somata influences synaptic efficacy in the spinal cord
via anterograde transport and regulates spinal central
sensitization [11,12,13,14]. Our recent study shows that
blockade of BDNF action in the primary sensory pathway via
intrathecal instillation of BDNF neutralizing antibody attenuates
bladder hyperactivity in a model of colonic inflammation [15],
suggesting a role of BDNF in the regulation of bladder sensory
responses. The role of BDNF in mediating sensory
sensitization is also observed in other systems including colitis-
induced visceral hypersensitivity in response to colonic
distention [16], peripheral inflammation-induced somatic pain
[17,18], cancer-induced bone pain [19], and a variety of other
systems [20,21,22,23].
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Interstitial cystitis/bladder pain syndrome (IC/BPS) affects
millions of people characterized by an abacterial infection of
the urinary bladder. Biopsy analysis reveals that nerve growth
factor (NGF) is elevated in the inflamed bladder and secreted
into the urine [24,25,26,27], and is considered as a biomarker
for IC [28,29]. BDNF is also found in the urine of patients with
bladder disease [29,30]. In cyclophosphamide (CYP)-induced
cystitis, intrathecal injection of either a general Trk receptor
antagonist or a BDNF scavenger reduces bladder hyperactivity
and also reduces spinal extracellular signal-regulated kinase
(ERK) phosphorylation [31]. BDNF enriched in the sensory
neuronal cell body in the DRG is able to undergo anterograde
transport to the nerve terminals to either the peripheral organs
or the spinal dorsal horn where its release can modulate the
local physiology.

The transcriptional and posttranslational regulation of BDNF
is controlled by complex mechanisms. Several signaling
pathways have been predicated to have a role in BDNF
expression in culture. These pathways include Ca2+-dependent
signaling [32,33,34] and mitogen-activated protein kinase
pathway (MAPK) [35]. The PKA and CaMKIV pathways are
also involved in the conditional regulation of BDNF expression
examined in the amygdala [36]. In terms of BDNF expression in
primary afferent neurons, we hypothesize that factors
expressed in the peripheral organs may regulate BDNF
expression through retrograde transport. NGF may play a role
in regulating BDNF in sensory neurons in cystitis. This
hypothesis is generated based on several measures: a) NGF is
elevated in the urinary bladder in cystitis [24,37,38]; b) NGF
possesses the property of retrograde transport by activating
neuronal cell bodies through activation of MAPK and Akt
pathways [39,40,41,42]; and c) in cultured DRG explants
retrograde NGF is able to increase BDNF expression in the
DRG neuronal soma [43]. Akt is traditionally considered as a
survival factor targeting Bcl proteins, pro-caspase and
Forkhead [44,45]. A recent new concept reveals that Akt also
participates in the modulation of sensory activity by regulating
TRPV1 activity [46]. In cystitis, inhibition of the Akt pathway
reverses cystitis-induced bladder hyperactivity suggesting a
prominent role of Akt in regulating bladder sensory activity [47].

Taken together, the present study is undertaken to
investigate the endogenous pathways that mediate sensory
activity involving NGF-triggered Akt activation in the DRG
where it leads to BDNF up-regulation. The primary sensory
projection of the urinary bladder in rat lies in the lower lumbar
segment thus this study specifically addresses changes in the
L6 DRG during cystitis and mainly focuses on mechanistic
regulation of BDNF in L6 DRG in vivo.

Materials and Methods

Experimental animals and ethics statement
Adult male rats (150-200 g) from Harlan Sprague Dawley,

Inc. (Indianapolis, IN) were used. All experimental protocols
involving animal use were approved by the Institutional Animal
Care and Use Committee at the Virginia Commonwealth
University (IACUC # AM10315). Animal care was in
accordance with the Association for Assessment and

Accreditation of Laboratory Animal Care (AAALAC) and
National Institutes of Health guidelines. All efforts were made to
minimize the potential for animal pain, stress or distress as well
as to reduce the number of animals used.

Cyclophosphamide-induced cystitis
CYP (Sigma-Aldrich, St. Louis, MO) cystitis was induced in

rats using the technique previously described [48]. Briefly,
cystitis was induced in rats by injecting CYP intraperitoneally at
a single dose of 150 mg/kg. Control rats received volume-
matched injections of saline. All injections were performed
under isoflurane (2 %) anesthesia.

Immunohistochemistry
Animals were deeply anesthetized with isoflurane (2–3%)

and then underwent euthanasia via intracardiac perfusion with
oxygenated Krebs buffer (pH 7.4; 95% O2, 5% CO2) followed
by 4% paraformaldehyde. The L6 DRGs were identified and
sectioned parasagitally at a thickness of 20 µm. DRG sections
from control and experimental animals were processed with
primary antibodies rabbit anti-BDNF (1:500, Santa Cruz
Biotechnology, Inc., CA) or rabbit anti-phospho-Akt (1:500, Cell
Signaling Technology Inc. Danvers, MA). In double
immunostaining, we used mouse anti-phospho-Akt (1:400, Cell
Signaling Technology Inc. Danvers, MA) co-staining with rabbit
anti-BDNF, or rabbit anti-TrkA (1:750, Santa Cruz
Biotechnology, Inc., CA) co-staining with sheep anti-BDNF
(1:500, Millipore, Billerica, MA). These antibodies were used in
our previous studies and their specificity had been evaluated
[12,15,48,49]. Tissues from all groups of animals (control and
experimental) treated at the same time block were processed
simultaneously.

DRG cells with visible nuclei were counted with a Zeiss
fluorescent photomicroscope. BDNF and phospho-Akt cell
profiles were counted in 6 to 10 sections randomly chosen from
each L6 DRG. The area of section containing cells (excluding
the area containing fibers) was selected using free-line tools
integrated with the AxioVision measurement software (Carl
Zeiss, Inc.) and was measured as mm2. The number of
positively stained cells was normalized against the measured
area and expressed as number of cells per mm2. To avoid
double counting, we chose every third section for one specific
antibody stained.

Western blot
Freshly dissected L6 DRGs were homogenized in

solubilization buffer containing 50 mM Tris-HCl, 150 mM NaCl,
1 mM EDTA, 1 % Triton X-100, 100 mM NaF supplemented
with protease inhibitor cocktail (P8340, 1:100, Sigma-Aldrich)
and phosphatase inhibitor cocktail 1 (P2850, 1:100, Sigma-
Aldrich). The homogenate was centrifuged at 20,200 g for 10
min at 4 °C, and the protein concentration in the supernatant
was determined using Bio-Rad DC protein assay kit. Protein
extracts were then separated on a 10 % SDS-PAGE gel and
transferred to a nitrocellulose membrane. The membrane was
blocked with 5 % milk in Tris-buffered saline for 1 hour and
then incubated with phospho-Akt (1:1000, Cell Signaling
Technology Inc. Danvers, MA) antibody followed by
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horseradish peroxidase-conjugated secondary antibody. The
bands were identified by ECL. For internal loading control, the
same membrane was stripped and re-probed with antibody

against the non-phosphorylation form of Akt (1:1000, Cell
Signaling Technology Inc. Danvers, MA). The ECL-exposed
films were digitized, and densitometric quantification of

Figure 1.  Cystitis increased BDNF mRNA and protein levels in L6 DRG.  After CYP treatment for 48 h, the BDNF expression
was examined in L6 DRG by immunohistochemistry (A-C) and real-time PCR (D). BDNF was expressed in small and medium sized
sensory neurons (A, B). The average number of DRG neurons per unit area expressing BDNF was significantly increased post CYP
treatment (C). The relative level of BDNF mRNA was also increased in L6 DRG during cystitis (D). Bar=80 µm. *, p<0.05 vs control.
n=5-6 animals for each group.
doi: 10.1371/journal.pone.0081547.g001

Figure 2.  Co-localization of BDNF with TrkA in L6 DRG during cystitis.  Double immunostaining showed that BDNF
immunoreactivity (A, green staining) was co-localized with TrkA (B: red staining). Most of the BDNF positive neurons expressed
TrkA (C: white arrows). A small number of BDNF positive cells did not express TrkA (C, red arrow). Bar = 60 µm. Three L6 DRGs
from animals with cystitis were analyzed and consistent results were achieved.
doi: 10.1371/journal.pone.0081547.g002

NGF-Triggers BDNF Expression through Akt In Vivo
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immunoreactive bands was performed using the software
FluorChem 8800 (Alpha Innotech, San Leabdro, CA). The level
of the phospho-bands was normalized with the level of non-
phospho-bands obtained using the same membrane.

Quantitative real-time PCR
Total RNA was extracted using a RNA extraction kit

RNAqueous (Ambion, TX). RNA concentration was determined
spectrophotometrically. cDNA was synthesized using Cloned
AMV First-Strand Synthesis Kit (Invitrogen) with random
hexamers. Following reverse transcription, quantitative real-
time PCR was performed for type I collagen with a Taqman

probe mixed with PCR Master-Mix for 40 cycles (95 °C for 15
sec, 60 °C for 1 min) on a 7300 real-time PCR system (Applied
Biosystems). Quantitative real-time PCR of the same sample
was performed for β-actin expression as internal control. The
level of BDNF mRNA was normalized against β-actin
expression in the same sample that was calculated with ΔCt
method. The expression level of BDNF in control group from
each independent experiment was considered as 1, and the
relative expression level of BDNF mRNA in experimental
animals was adjusted as a ratio to its control in each
independent experiment and expressed as fold changes (2-ΔΔCt-
fold).

Figure 3.  NGF immuno-neutralization attenuated cystitis-induced BDNF expression in L6 DRG.  The number of BDNF
immunoreactive neurons was significantly higher in L6 DRG from animals treated with CYP and control IgG (A, C) when compared
to those from animals treated with NGF neutralizing antibody and CYP (B, C). Blockade of NGF activity in cystitis animals also
reduced BDNF transcription in the L6 DRG (D). *, p < 0.05 vs CYP+IgG. n=5 animals for each group. Bar=80 µm.
doi: 10.1371/journal.pone.0081547.g003
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DRG-spinal nerve two-compartmented culture
We used a Campenot chamber and a modification of the

method of Delcroix et al [42] to study the DRG-spinal nerve
complex. The Campenot chamber has two large compartments
on both sides and a narrow one in the middle. After the
chamber was sealed onto the bottom of a cell culture plate, the
middle compartment was filled with 1 % agarose serving as a
divider and the two large compartments containing Dulbecco's
Modified Eagle Medium (DMEM) were used for separation of
the ganglion and nerve terminals of the isolated L6 DRG-spinal
nerve complex. To test whether there was a leak between

compartments, we initially filled one of the compartments with
DMEM and watched for pass-through of the DMEM to the other
compartments. When no sign of leakage was present, DMEM
was added to the other compartment and tissue was then
placed into the chamber. 2-3 layers of small filter paper soaked
with DMEM were lightly placed on top of the nerve segment
that crossed over the center compartment (“bridge”). The
culture plate was then placed into cell culture incubator at
37°C. After 3 h of quiescent time, the nerve terminals were
treated with NGF.

Figure 4.  Cystitis-induced Akt activation in L6 DRG was blocked by NGF neutralization.  Following CYP treatment, the Akt
phosphorylation level (p-Akt) was significantly increased in the L6 DRG when examined by western blot (A, B). The result was
confirmed with immunohistochemistry showing that the number of L6 DRG neurons expressing p-Akt was increased at 48 h post
CYP treatment (C-E). NGF neutralization reduced cystitis-induced increases in the number of L6 DRG neurons expressing p-Akt (F-
H). *, p < 0.05 vs control. n=5 animals for each group. Bar=80 µm.
doi: 10.1371/journal.pone.0081547.g004
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Drug treatment
To block the PI3K/Akt pathway in vivo, an intraperitoneal

injection of a PI3K inhibitor LY294002 (Calbiochem, dissolved
in DMSO as stock and diluted in saline for injection) at a single
dose of 50 µg/kg body weight was made immediately after CYP
injection. The same amount and concentration of DMSO was
used as vehicle control. To block NGF action in vivo, a NGF
antibody or control IgG (Santa Cruz Biotechnology, Inc. Santa
Cruz, CA) was injected intraperitoneally at a dose of 30 µg/kg
body weight according to previously published protocol [48]. A
single dose of NGF antibody or control IgG was made
immediately after the CYP injection. Both LY294002 (1 µM)
and Wortmannin (0.5 µM, Calbiochem) were used in culture to
block the PI3K/Akt pathway.

Statistical analysis
The results from each study were presented as mean ± SE.

Comparison between control and multiple experimental groups
was made by using a one-way ANOVA followed by Dunnett’s
test. When two groups were compared, a t-test was used.
GraphPad Prism 5 was used for analysis. Differences between
means at a level of p≤0.05 were considered to be significant.

Results

Cystitis-increased BDNF mRNA and protein levels in L6
DRG is regulated by endogenous NGF

At 48 h following intraperitoneal injection of CYP, BDNF
expression was significantly increased in L6 DRG (Figure 1).
BDNF immunoreactivity was expressed in small- to medium-
sized DRG neurons with a number of 85.01 ± 10.75 cells per
mm2 area in control animals (Figure 1A) and a number of
171.00 ± 21.27 cells per mm2 area in animals treated with CYP
(Figure 1B), resulting in a 2-fold increase in cystitis when

compared to control (Figure 1C, p<0.05). Real-time PCR
examination showed that cystitis also caused an increase in
BDNF mRNA level in the L6 DRG (Figure 1D).

It was reported that BDNF immunoreactivity was expressed
in TrkA-positive neurons in DRG [50,51], and BDNF expression
was able to be induced by exogenous NGF in vivo and in
culture [43,51]. This was also true with cystitis. At 48 h post
CYP treatment, NGF was increased in the urinary bladder [37],
and BDNF immunoreactivity (Figure 2A, green cells) was
largely expressed in TrkA-positive neurons (Figure 2B, red
cells) in L6 DRG (Figure 2, white arrows indicate neurons co-
expressing BDNF and TrkA). To examine whether cystitis-
induced BDNF up-regulation in L6 DRG was triggered by
endogenous NGF in vivo, we administered a NGF neutralizing
antibody to rats with cystitis to block NGF action. Cystitic
animals receiving the same amount of control IgG served as
comparison. After 48 h post drug treatment, we found that the
number of L6 DRG neurons expressing BDNF
immunoreactivity was significantly decreased in animals
receiving NGF neutralizing antibody when compared to animals
receiving control IgG treatment (Figure 3A-C). Treatment with
NGF neutralizing antibody also decreased the BDNF mRNA
level in CYP-treated animals when compared to CYP+IgG
treatment (Figure 3D), suggesting that endogenous NGF
elicited BDNF transcription in the L6 DRG during cystitis.

Cystitis increased Akt activation in L6 DRG which was
blocked by NGF neutralization

Akt is one of the major downstream signaling components in
NGF-initiated pathways. Western blot showed that the
phosphorylation (activation) level of Akt (p-Akt) was increased
in L6 DRG at 48 h post CYP injection (Figure 4A and B).
Immunostaining showed that the number of neurons
expressing p-Akt was also increased in L6 DRG examined at

Figure 5.  Co-localization of BDNF with p-Akt in L6 DRG during cystitis.  Double immunostaining showed that a subpopulation
of BDNF immunoreactive cells in L6 DRG during cystitis (A, green staining, white arrows) was co-localized with p-Akt (B: red
staining). A number of BDNF positive cells (C, green arrows) did not express p-Akt. Bar = 60 µm. Five L6 DRGs from animals with
cystitis were analyzed and consistent results were achieved.
doi: 10.1371/journal.pone.0081547.g005

NGF-Triggers BDNF Expression through Akt In Vivo
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48 h post CYP injection (Figure 4C-E). NGF neutralization in
cystitis animals reduced Akt activity (Figure 4F-H) suggesting
that activation of the Akt pathway was regulated by NGF in
vivo.

PI3K-dependent Akt activation regulated BDNF
expression in L6 DRG during cystitis

We showed above that endogenous NGF increased BDNF
expression in L6 DRG during cystitis (Figures 1 and 3), and
NGF also activated Akt in L6 DRG (Figure 4). To examine
whether NGF-induced Akt pathway had a role in NGF-induced
BDNF expression during cystitis, we first compared the
expression pattern of BDNF and p-Akt. We found that BDNF
immunoreactivity (Figure 5A, green cells) was co-localized with
p-Akt (Figure 5B, red cells) in L6 DRG in cystitis. Note that not
all BDNF cells expressed p-Akt (Figure 5C, green arrows); this
may be due to activation of other pathways such as the ERK
pathway that also regulates BDNF expression upon NGF
treatment [43].

Akt can be activated in a PI3K-dependent or independent
fashion [52,53,54]. In this study, we found that cystitis-induced

Figure 6.  Cystitis-induced p-Akt was blocked by PI3K
inhibitor LY294002.  In vehicle (DMSO) treated animals,
cystitis increased p-Akt levels in L6 DRG at 48 h post CYP
treatment. In LY294002 treated animals, cystitis failed to
induce Akt activation in the DRG. n= 3 for each experimental
group. *, p < 0.05 vs control.
doi: 10.1371/journal.pone.0081547.g006

Akt activation was blocked by the PI3K inhibitor LY294002
(Figure 6). In this treatment regimen, we found that prevention
of endogenous Akt activity by LY294002 also blocked cystitis-
induced BDNF protein (Figure 7A-C) and mRNA (Figure 7D)
up-regulation in L6 DRG.

PI3K/Akt pathway mediated NGF-induced BDNF
expression in DRG

So far we have found that BDNF expression was regulated
by endogenous NGF (Figures 1 and 3) and also by PI3K-
dependent Akt activation in L6 DRG during cystitis (Figures 6
and 7). Endogenous NGF also regulated Akt activation in L6
DRG (Figure 4). To examine whether NGF-induced BDNF up-
regulation was mediated by the PI3K/Akt pathway, we utilized
an ex vivo culture system by applying exogenous NGF (50
ng/mL) to the nerve terminals of the DRG neurons in a two-
compartmented L6 DRG-nerve preparation and examined the
effect of retrograde NGF and the inhibition of Akt activity on
BDNF expression in the DRG. This system was chosen based
on previous findings by us and others that NGF was elevated in
the inflamed urinary bladder [37,38] and its retrograde signal
had a crucial role in mediating the target tissue-neuron
interaction [55]. In this system, we found that NGF was able to
enhance BDNF expression in the DRG neurons (Figure 8,
compare B to A), which was blocked by the PI3K inhibitors
LY294002 (compare Figure 8C to B) and Wortmannin
(compare Figure 8D to B).

Discussion

BDNF is synthesized in the primary afferent neurons and
plays a significant role in inflammation-induced afferent
sensitization. To investigate the underlying mechanisms and
pathways that regulate BDNF expression in the sensory
neurons, we utilized a visceral inflammatory model with cystitis
that was induced by intraperitoneal injection of CYP. We found
that activation of the PI3K/Akt pathway led to BDNF up-
regulation in the DRG in cystitis. The PI3K-Akt-BDNF axis was
regulated by endogenous NGF in cystitis and also by
retrograde NGF signaling in culture. In vivo, neutralization of
NGF blocked the activity of Akt as well as the expression level
of BDNF in DRG neurons, and the PI3K inhibition abrogated
the Akt activity and also reduced BDNF level in the DRG. In an
ex vivo ganglia-nerve two-compartmented preparation,
application of NGF to the nerve terminals enhanced BDNF
expression in the neuronal cell body, which was blocked by the
PI3K inhibitors LY294002 and Wortmannin. These results
suggested that up-regulation of BDNF in the primary afferent
neurons during cystitis was regulated by NGF-induced
PI3K/Akt activation in the DRG.

BDNF is well recognized for its role in modulating central
neuroplasticity and long-term memory [56]. Recent studies
have revealed that BDNF also acts as a pain neuromodulator
in inflammation- and injury-induced sensory hypersensitivity
[31,57,58]. BDNF level is found to increase in primary afferent
neurons in several models of inflammatory and neuropathic
pain such as formalin and carrageenan-induced peripheral pain
models or colitis-induced visceral pain [12,57,58]. In the

NGF-Triggers BDNF Expression through Akt In Vivo
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present study, we show that BDNF mRNA and protein levels
are also increased in cystitis, a painful inflammatory condition
of the urinary bladder. In L6 DRG that receives sensory input
from the urinary bladder, BDNF is mainly expressed in small- to
medium-sized DRG neurons; this BDNF expression pattern is
in agreement with those in other pain model systems [12,59].
Our recent study in a colitis-induced visceral pain model shows
that BDNF is largely co-expressed with the transient receptor
potential cation channel TRPV1 [15], suggesting a role of
BDNF in nociception. In terms of bladder hyperactivity, we
recently showed that intrathecal sequestration of BDNF action
reduced colitis-induced bladder hyperactivity suggesting the
role of BDNF in the regulation of bladder function [15]. Studies
in other pain models also show a modulatory role of the BDNF
system [16,57,60]. In a recent study in CYP-induced cystitis,
Frias et al. show that blockade of BDNF action with TrkB-IgG
reverses cystitis-induced bladder hyperactivity providing direct
evidence that BDNF participates in bladder sensory
hyperactivity during cystitis [31].

To better understand the regulatory mechanism of BDNF in
the DRG, several experiments have been performed in vivo
and in vitro. Apfel et al. [51] have characterized that 12 h after
subcutaneous injection of recombinant human (rh) NGF to rat
elicits BDNF mRNA level in the cervical DRG. Direct injection

of NGF into the L4/5 nerve roots also increases BDNF
expression in the DRG and produces mechanical allodynia
[61]. In cultured DRG, exogenous NGF is able to induce BDNF
transcript and sequestration of NGF blocks prostaglandin E2
(PGE2)-induced BDNF expression [62,63]. In the present study
we show that sequestration of endogenous NGF in a cystitis rat
model also blocks BDNF mRNA and protein levels in the DRG
supporting a role of NGF in regulating BDNF expression in
vivo. During cystitis or other visceral/peripheral inflammation,
NGF is produced in the inflamed organ [25,37,55]. This will
require retrograde transport of NGF signaling in order to
regulate BDNF expression in the DRG. In our previous study
[43] as well as in the current study, we show that application of
NGF to the DRG nerve terminals facilitates BDNF expression
in the DRG. Thus it is likely that in cystitis the elevated level of
NGF in the inflamed urinary bladder can increase BDNF
expression in the DRG through retrograde transport. The
retrograde NGF action on affecting bladder sensory activity has
been demonstrated by injection of exogenous NGF into the
normal rat bladder which results in bladder hyperactivity [64].
Retrograde TrkA transport from visceral organs to the primary
afferent neurons has also been seen in rats [55]. During
cystitis, the expression level of TrkA is increased in bladder
afferent neurons [49]. Increases in the TrkA level in these DRG

Figure 7.  Effects of LY294002 on BDNF expression in L6 DRG during cystitis.  At 48 h post drug treatment, the number of
BDNF-positive cells in L6 DRG was significantly lower in CYP+LY294002 group than those from CYP+vehicle treated animals (A-
C). LY294002 treatment also reduced BDNF transcriptional level when compared to vehicle control (D). *, p<0.05 vs control. Bar =
80 µm.
doi: 10.1371/journal.pone.0081547.g007
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neurons can enhance the responsiveness of these neurons to
NGF thereby increasing NGF-initiated signal transduction,
promoting BDNF expression in these neurons. In DRG, BDNF
mRNA is expressed by numerous TrkA cells but by few TrkB or
TrkC cells [50,65]. This suggests that BDNF is mainly
synthesized in the sensory neurons that are responsive to NGF
but not to other neurotrophins.

Two major pathways are involved in NGF retrograde
signaling and are activated in the neuronal cell bodies upon
NGF retrograde stimulation. The ERK5 activation in the DRG
by retrograde NGF has been demonstrated to have a role in
BDNF expression [43]. The other major elements downstream
of NGF retrograde signaling are the PI3K/Akt pathways. In this
study, we show that the activity of Akt is increased in the L6
DRG during cystitis in a PI3K-dependent manner. Activation of

Figure 8.  Retrograde NGF increased BDNF expression in sensory neurons, which was mediated by the PI3K/Akt
pathway.  In two-compartmented DRG-nerve culture, NGF (50 ng/mL) was added to the chamber containing the sensory axonal
terminals. The ganglia were pre-treated with specific PI3K inhibitors LY294002 and Wortmannin, or vehicle. At 12 h after treatment,
NGF increased the number of DRG neurons expressing BDNF (compare B to A) which was reversed by LY294002 treatment
(compare C to B), and also by Wortmannin treatment (compare D to B). Histogram (E) showed summary results from 4 independent
experiments. Bar= 40 µm. *, p<0.05 vs DMSO treatment.
doi: 10.1371/journal.pone.0081547.g008
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Akt in the DRG also has an essential role in pain behavior
induced by capsaicin [66]. Once Akt is activated, it can regulate
BDNF expression in the DRG; in turn, anterograde transport of
BDNF to the sensory terminals in spinal dorsal horn facilitates
pain sensation [17,31,57]. In cystitis, BDNF action in the spinal
cord induces ERK activation [31]; the latter has been
demonstrated to increase in the spinal cord and has roles in
cystitis-induced bladder hyperactivity [67,68]. BDNF may also
modulate central sensitization through other mechanisms such
as activation of the NMDA system [58] through activation of
PKC [69]. The other pathway that is likely involved in BDNF up-
regulation in the DRG during cystitis is the ERK5 pathway.
ERK5 is essential in NGF retrograde transport and is activated
in the neuronal somata [39]. After CYP treatment, ERK5 but
not ERK1/2 is activated in the DRG suggesting a possibility
that NGF retrograde signaling plays a role in primary afferent
neuronal activation during cystitis [68]. Our recent study with
DRG explants-nerve two-compartmented culture also shows
that NGF-induced BDNF up-regulation in DRG neurons is
reduced by a specific ERK5 inhibitor BIX02188 [43]. In DRG a
subpopulation of BDNF expressing cells also express phospho-
Akt, suggesting that BDNF expression is regulated by
convergence of multiple pathways including Akt and ERK5. It is
not clear whether ERK5 and Akt participate in BDNF up-
regulation in a parallel or inter-dependent fashion. Our previous
studies suggest that ERK5 and Akt are unlikely expressed in
the same neurons in DRG [43].

Cystitis is accompanied with increased urinary urgency,
frequency and suprapubic and pelvic pain. Emerging evidence
shows that inflammatory mediators generated in the urinary
bladder triggers bladder sensory activation, thereby
contributing to bladder hyperactivity [1]. Following CYP
treatment, a number of inflammatory mediators are produced
and released into the lamina propria where they sensitize the
sensory nerve terminals and cause sensory hypersensitivity.
The present study along with previous publications
demonstrates that NGF is a critical endogenous mediator in
regulating sensory plasticity by activating a series of signal
transduction pathways and production of neuropeptides. BDNF
produced by the sensory neurons that is regulated by the NGF
signaling further facilitates spinal plasticity by reinforcing the
activity of excitatory neuronal pathways in the primary sensory
reflex. Considering the fact that NGF is also seen in IC
patients, targeting of the neurotrophin system is essential in
treatment of this painful disease.
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