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Abstract The support vector machine (SVM) is a flexible classification method that accommo-
dates a kernel trick to learn nonlinear decision rules. The traditional formulation as
an optimization problem is a quadratic program. In efforts to reduce computational
complexity, some have proposed using an L1-norm regularization to create a linear
program (LP). In other efforts aimed at increasing the robustness to outliers, investi-
gators have proposed using the ramp loss which results in what may be expressed as a
quadratic integer programming problem (QIP). In this paper, we consider combining
these ideas for ramp loss SVM with L1-norm regularization. The result is four formula-
tions for SVM that each may be expressed as a mixed integer linear program (MILP).
We observe that ramp loss SVM with L1-norm regularization provides robustness to
outliers with the linear kernel. We investigate the time required to find good solutions
to the various formulations using a branch and bound solver.

Keywords support vector machine, ramp loss, L1-norm regularization, mixed integer program-
ming

1. Introduction

Classification, the task of assigning objects to one of several predefined categories, is a perva-
sive problem that encompasses many diverse applications [20]. The support vector machine
(SVM) has become increasingly popular due to the ease of implementation and ability to
apply of nonlinear discriminant functions. SVM is a binary classification method that seeks
to find a hyperplane that balances the sometimes-competing objectives of minimizing error
while maximizing the distance between correctly classified observations [4]. Traditional SVM
with the linear kernel is often used but performance is diminished with the presence of
outliers.

Carrizosa and Romero Morales [7] provide an extensive review of the relationship between
mathematical optimization and classification, including many approaches for SVM. Below
we review some results relating to ramp loss SVM and L1-norm regularization.

Ramp loss SVM [1, 18, 19, 22, 6] presents a solution to the outlier problem with formu-
lations of SVM that give less weight to problematic training points and therefore better
generalizability as compared to traditional SVM. Although performance is greatly improved,
these formulations are computationally complex and therefore many classification tasks may
be computationally intractable with this approach. To date, computational studies of the
robustness of ramp loss SVM are limited. Error measurement for SVM with ramp loss differs
from traditional SVM in that all misclassified observations falling outside of the margin add
a loss of 2 to the objective function, while the error for observations falling in the margin
is between 0 and 2, and depends on the distance to the margin boundary [6]. Shen et al.
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[19], Wang et al. [22], and Collobert et al. [9] suggest algorithms for ramp loss SVM that
converge to locally optimal solutions. Wu and Liu [23] use difference of convex functions
(DC) programming to solve a nonconvex formulation of SVM with the ramp loss and lin-
ear kernel. Brooks [6] presents an MIQP formulation that accommodates the kernel trick,
describes some facets for ramp loss SVM with the linear kernel, and introduces heuristics
for deriving feasible solutions from fractional ones at nodes in the branch and bound tree.
Carrizosa et al. [8] describe additional heuristic approaches for solving MIQP formulations
of ramp loss SVM. Wang and Slobodan [22] describe a fast online algorithm OnlineSVMR

for estimating ramp loss SVM. Online learning involves learning as data is presented to the
algorithm, rather than having a single static training set.

Related efforts to increase robustness to outlier observations include discrete SVM
(DSVM) [15, 17, 16] that implements SVM with the hard margin loss and the linear kernel.
The hard margin loss assigns an error of one to observations between the margin bound-
aries and those outside the margin boundaries and misclassified, and zero otherwise. DSVM
is formulated as a mixed integer linear program (MILP). Ustun et al. [21] formulate an
optimization-based linear classification method that penalizes the number of misclassifica-
tions and both the L0 and L1 norm of the coefficients of the discriminant via MILP.

Traditional SVM uses regularization to avoid overfitting noise by introducing a quadratic
term in the objective function of the corresponding optimization formulation. Finding an
optimal SVM hyperplane for a given training dataset requires the solution of a quadratic pro-
gram. By linearizing the regularization term, the training problem becomes a linear program
(LP). Robust LP formulations for finding optimal hyperplanes for discrimination of linearly
inseparable sets were studied in the early 1990s prior to papers on SVM being published in
English. Bennett and Mangasarian [3] proposed a single LP formulation which generates a
plane that minimizes the average errors of misclassified points belonging to two disjoint sets
of observations in n-dimensional real space. Mangasarian [14] introduced a generalized SVM
formulation that could be used for both quadratic and LP formulations. Hadzic [10] and
Kecman [12] provide a formulation that utilizes the L1 norm of the separating hyperplane
for maximizing the margin that performed well in several empirical tests. Zhou et al. [24]
introduce an LP SVM formulation in which the margin is defined as the right hand side of
the constraint, yi (w ·xi + b)≥ 1, with an unknown in place of 1. This is unique because the
right hand side of these constraints is representative of the margin width of the separating
hyperplanes.

This paper proposes several formulations for SVM with ramp loss trained via MILP. The
new formulations discussed herein minimize the L1-norm of some measure of the primal
variables, w, or dual variables, α by modifying the SVM formulations with linear regular-
ization due to Mangasarian[13], Hadzic and Kecman [10], and Zhou et al. [24]. Branch and
bound can be used to solve these problems with subproblems that are LPs. The benefits of
using the L1-norm regularization with the ramp loss include a reduction in computational
complexity from the MIQP models for ramp loss and an increase in robustness to outliers
from traditional SVM (with L1-norm or L2-norm regularization).

The remainder of the paper is organized as follows. In the next section, we describe the
previously-proposed QIP formulations for ramp loss SVM. In Section 3, we propose four
new formulations for ramp loss SVM and L1-norm regularization. In Section 4, we present
computational results that explore whether the new formulations are less computationally
intensive than previous ramp loss SVM formulations and provide better robustness to out-
liers than traditional SVM.

2. Ramp Loss SVM as a Quadratic Integer Program

We assume training data are given consisting of observations xi ∈Rd, i= 1, . . . , n each having
an associated class label yi ∈ {−1,1}. It is typically assumed that there is a probability
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distribution P (x, y) from which these data are drawn, and we try to estimate the true
misclassification rates of rules by observing empirical error. A hyperplane w · x+ b= 0 for
discrimination purposes is the result of applying linear SVM.

To produce a ramp loss function the errors are weighted as follows.

R (xif (yi, f(xi)) =

 0, yif (xi)> 1,
1− yif (xi) , −1≤ yi (xi)≤ 1,
2, yif (xi)≤ 1.

(1)

Brooks [6] presents MIQP formulations for SVM with ramp loss error terms. The formulation
that we will call SVMIP1-RL can be used to find a hyperplane that maximizes the margin
while minimizing the ramp loss.

(SVMIP1-RL) min
w,b,ξ,z

{
1

2
||w||2 +C

n∑
i=1

(ξi + 2zi)

}
,

subject to yi
(
w ·xi + b

)
= 1− ξi if zi = 0, i= 1,2, ..., n,

0≤ ξi ≤ 2, i= 1,2, ..., n,

zi ∈ {0,1}, i= 1,2, . . . , n.

(2)

Just like traditional SVM, this ramp loss model can generate nonlinear discriminants by
subsituting primal variables with dual variables; i.e., w =

∑n
i=1 yixiαi, and replacing xi

with Φ (xi). Replacement of these variables, as well as application of the kernel trick, i.e.
xi ·xj 7→Φ (xi) ·Φ (xj) =K (xi,xj) gives us the following.

(SVMIP2-RL) min
α,b,ξ,z

{
1

2

n∑
i=1

n∑
j=1

yiyjK (xi,xj)αiαj +C

n∑
i=1

(ξi + 2zi)

}
,

subject to yi

( n∑
j=1

αjyjK(xi,xi) + b

)
= 1− ξi if zi = 0, i= 1,2, ..., n,

0≤ αi ≤C, i= 1,2, ..., n,

0≤ ξi ≤ 2, i= 1,2, ..., n,

zi ∈ {0,1}, i= 1,2, . . . , n.

(3)

The conditional constraints can be used in a branch and bound solver directly via “indicator
constraints” [11]. Alternatively, one can linearize the conditional constraints by replacing the
right hand side with 1− ξi−Mzi for all training vectors. The choice of the parameter M is
important because making it too small may bias the resulting discriminant towards outliers.
On the other hand making M too large may lead to numerical instability. An option for
controlling the size of M may be to solve the linear problem for the magnitudes of the ξs,
and adjusting M as necessary.

3. New Formulations for Ramp Loss SVM with L1-Norm
Regularization

In this section, we combine ideas for L1-norm regularization with ramp loss SVM to produce
four new formulations that may be solved as MILPs. For each formulation for L1-norm
regularization, incorporating the ramp loss amounts to either using conditional “indicator”
constraints [11] or adding a binary integer variable to each soft margin constraint.

Mangasarian [13] introduced a generalized SVM formulation that considers functions for
regularization that lead to quadratic programming and LP formulations for SVM and also
allows for weighting the misclassification of observations. Two different options for an LP
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SVM are given. The first is the L1 norm of the dual variables, α. This formulation can
incorporate the ramp loss as follows.

(GSVM1-RL) min
α,s,b,ξ,µ

{ n∑
i=1

si +C

n∑
i=1

(ξi + 2zi)

}
,

subject to yi

( n∑
j=1

yjK (xi,xj)αj + b

)
≥ 1− ξi +Mzi, i= 1,2, . . . , n,

si ≥ αi ≥−si, i= 1,2, . . . , n,

ξi ≥ 0, i= 1,2, . . . , n,

zi ∈ {0,1} , i= 1,2, . . . , n.

(4)

The variable si is the absolute value of αi.
The second LP SVM uses absolute value of

∑n
j=1 (yjK (xi,xj)αj). The extension to

incorporate the ramp loss is given in the following formulation.

(GSVM2-RL) min
α,s,b,ξ,µ

{ n∑
i=1

si +C

n∑
i=1

(ξi + 2zi)

}
,

subject to yi

(j=n∑
j=1

yjK (xi,xj)αj + b

)
≥ 1− ξi +Mzi, i= 1,2, . . . , n,

si ≥
n∑
j=1

yjK (xi, xj)αj ≥−si, i= 1,2, . . . , n,

ξi ≥ 0, i= 1,2, . . . , n,

zi ∈ {0,1} , i= 1,2, . . . , n.

(5)

In examining (5), the first set of constraints can be seen as generalizing the soft margin
constraints on each training observation in traditional SVM. The second set of constraints
ensures that each si is the absolute value of the each regularization term. If the kernel
is linear then it is interesting to note that the regularization term we are minimizing is∑n
i=1 | (w ·xi) |. In this way, the function that we are minimizing is perhaps more similar to

traditional SVM than (4).
Hadzic and Kecman [10] and Kecman [12] provide a formulation that utilizes the L1

norm of the separating hyperplane for maximizing the margin. The first formulation is
derived from classical SVM with the only exception being that the L1 norm is used as a
regularization term instead of the L2 norm of the discriminant coefficients. Kecman and
Hadzic’s LP classifier can be modified to accommodate the ramp loss as follows.

(MILPSVM-RL) min
w+,w−,b,ξ

{ n∑
i=1

(
w+
i +w−i

)
+

n∑
i=1

(ξi + 2zi)

}
,

subject to yi (xi ·w+−xi ·w−+ b)≥ 1− ξi−Mzi, i= 1,2, . . . , n,

w+,w− ≥ 0,

z∈ {0,1}.

(6)

In this SVM formulation, the attribute vector w is split into positive w+ and negative
w− parts so that the generalization terms in the objective function are linear instead of
quadratic. This new measure is the L1 norm because the sum of w+ and w− equates to the
sum of the absolute value of all parts of the vector w. This formulation is the closest literal
transition from the traditional L2-norm regularization of SVM to L1-norm with ramp loss
error terms. However, it is not clear how the formulation can be used with the kernel trick,
and so only linear discriminants can be learned.
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The fourth and last formulation for ramp loss SVM with L1 regularization is an extension
of an LP formulation due to Zhou et al.[24]. They introduce an LP SVM formulation by
considering the L∞ norm for regularization. Their formulation replaces the metric repre-
senting the magnitude of the classifier margin in the objective function with a variable r in
the equation for the margin, d= 2r/||w||∞. By replacing the right hand side of the bounding
constraints in traditional SVM with r (in place of 1), we allow for the substitution of terms
in the objective function.

(rSVM-RL) min
α,b,r,ξ

{
−r+C

n∑
i=1

(ξi + 2zi)

}
,

subject to yi

( n∑
j=1

αjyjK (xj ,xi) + b

)
≥ r− ξi−Mzi, i= 1,2, . . . , n,

−1≤ αi ≤ 1, i= 1,2, . . . , n,

r≥ 0,

0≤ ξi ≤ 2, i= 1,2, . . . , n,

zi ∈ {0,1}, i= 1,2, . . . , n.

(7)

Bounds are placed on α so that the absolute value of each variable is at most 1. Even
with these constraints, however, the original LP formulation is unbounded when C <
max{1/n+,1/n−}, where n+ and n− represent the number of observations in each class.
Also, setting all variables to zero always provides a feasible solution. Therefore, non-trivial
solutions occur only when a feasible solution exists where the objective function value is
negative. Therefore, C must be large enough to avoid an unbounded problem but small
enough to avoid a rule that places all observations in one class. With the incorporation of
the ramp loss, (7) is no longer unbounded. However, setting all variables to zero remains
feasible with a zero objective function value.

4. Computational Results

We hypothesized that incorporating the ramp loss in each of the methods for LP SVM
would provide an increased robustness to outliers when compared to traditional SVM and
would not result in formulations requiring as much computation as the QIP formulations
SVMIP1-RL and SVMIP2-RL. We used simulated data sampled from normal distributions
with the covariance matrix set to the identity matrix, which is taken from [6]. The origin
is the mean for group 1 and (2/

√
d,2/
√
d, . . . ,2/

√
d) is the mean for group 2, such that the

Mahalanobis distance between the two groups is 2, a classic “twonorm” benchmark model
due to Breiman [5]. The Bayes rule, the classification rule that minimizes the probability
of misclassification, assigns group labels based on which mean is the nearest. Therefore,
the minimum misclassification error/Bayes error is P (z > 1) ≈ 15.9%, where z follows a
standard normal distribution. Outliers are intentionally added to create a problem set that
could alter the performance of the decision linear boundary found using a traditional SVM
model. Outlier observations created by sampling a Gaussian distribution with a mean of
(10/
√
d,10/

√
d, . . . ,10/

√
d) and covariance matrix that is 0.001 times the identity matrix

and, so that 10 is the Mahalanobis distance between the outlier and non-outlier distributions.
Ten percent of the observations in each training set are outliers. Outliers are not present in
the test data set. The test sets are comprised of combinations of sizes in terms of observations
and variables. For each data set type we have made training and validation data set for
every combination of n= 60, 100, 200, 500 observations and d= 2, 5, 10 variables.

The corresponding LP SVM formulations due to Mangasarian [13] are hereafter called
GSVM1 and GSVM2. The LP SVM formulation due to Hadzic and Kecman [10] is called
LPSVM. The LP SVM formulation due to Zhou et al. [24] is called rSVM. The corresponding
ramp loss versions are named as labelled in this paper.
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All instances were created and solved using Gurobi 5.0 C API on a machine with an Intel
Core 2 Duo CPU E8400 3.00 GHz with 4 GB RAM. Nested cross validation was used to
train models. Five-fold cross validation was employed to tune the tradeoff parameter C.
The values tested were 0.01, 0.1, 1, 10, 100, 1000. Training instances were each allowed 20
seconds to find the best solution within the branch and bound tree with no cuts allowed. In
the validation phase, the best parameter settings were used with a time limit of 600 seconds
(10 minutes) on the entire training dataset. The test set used for accuracy consists of 50,000
samples from each group distribution and no outliers. The validation instances are available
at http://scholarscompass.vcu.edu/ssor_data/1/.

The user parameter M was set to 10 for each instance to create an environment in which
most or all possible solutions are feasible. A larger value for M is usually recommended
but under the Gurobi parameter settings utilized, a large M can produce small non-integer
solutions for some of these discrete variables zi. Any time ξi is nonzero then zi should be
zero and visa versa. These small fractional solutions for zi break this rule therefore making
the model invalid. It is recommended to test for these types of constraint errors during the
test phase of classification.

Table 1 contains the gap remaining after 600 seconds for the validation models for the
SVM formulations with binary integer variables. Let z be the incumbent objective value
and let zLB be the best lower bound after 600 seconds. The gap remaining is defined as
(z−zLB)/z. The gap remaining is not precisely comparable across formulations, but we take
it as a proxy for computational demands for the formulations. For five instances of rSVM-RL,
the solution setting all variables to zero is provably optimal. For the other seven instances,
the solver found provably optimal solutions with strictly negative objective function values.

Table 1. Gap remaining (%) after 600 seconds for validation models for SVM formulations with
binary integer variables for different numbers of observations (n) and attributes (d)

n d SVMIP1 SVMIP2 GSVM1-RL GSVM2-RL MILPSVM-RL rSVM-RL

60 2 21.8 0.0 0.0 12.5 0.0 0.0
100 2 69.8 60.7 77.7 51.4 64.5 0.0
200 2 73.9 79.8 86.9 81.5 77.7 0.0
500 2 90.5 92.8 95.3 93.7 89.8 0.0
60 5 21.0 26.8 44.2 38.2 0.0 0.0

100 5 71.1 64.2 78.0 61.1 69.6 0.0
200 5 76.2 80.4 82.9 82.2 79.9 0.0
500 5 88.2 96.7 95.3 95.6 90.1 0.0
60 10 0.0 0.0 61.3 23.9 39.9 0.0

100 10 51.7 56.5 58.0 60.5 38.8 0.0
200 10 85.9 84.2 91.0 85.5 82.9 0.0
500 10 92.8 96.9 97.6 95.0 91.4 0.0

Of the other 60 instances derived from 12 datasets and the other five formulations, only six
were solved to provable optimality. For half of the datasets, MILPSVM-RL has the smallest
gap remaining and for another four instances SVMIP1-RL has the smallest gap remaining.
Comparing the results for SVMIP2-RL and the MILP-based ramp loss formulations, there
does not appear to be a dramatic difference in computational requirements.

To further investigate the time required to generate feasible solutions, we plot the gap
remaining as a function of time for the instance with n= 100 and d= 10 in Figure 1. The
gap remaining changes each time a new incumbent solution is found. With the exception
of GSVM1-RL and GSVM2-RL, the best known solution is found within 25 seconds. For
rSVM-RL, an optimal solution is found within 0.04 seconds and so is not included in the
plot.

http://scholarscompass.vcu.edu/ssor_data/1/
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Figure 1. Gap remaining as a function of time for ramp loss SVM formulations for n= 100 obser-
vations and d= 10 attributes.

If good feasible solutions are easy to find for a formulation, but good lower bounds are not,
then the gap remaining is not a good measure of the quality of solutions found within the
time limit. Table 2 contains the accuracy of the validation models produced by the various
formulations on test data. Accuracy can reflect the quality of solutions at the time limit.

As expected, traditional SVM performs poorly in the presence of outliers. The accuracy
is as bad as a random guess on 10 of 12 datasets, and is never better than 65%. SVMIP1-RL
generates rules that have accuracy of at least 82% on all of the datasets. SVMIP2-RL has
accuracy of at least 82% on all but one dataset, where the accuracy is 77.7%.

Incorporating the ramp loss into three of the LP SVM formulations provides an improve-
ment in accuracy. Accuracy increased for eight of 12 datasets for GSVM1, 10 of 12 datasets
for GSVM2, and 11 of 12 datsets for LPSVM. For rSVM, accuracy increases for only four
of 12 datasets. Unbounded instances and solutions where setting variables to zero are opti-
mal plague both rSVM and rSVM-RL. For rSVM, accuracy is below 65% on seven of 12
datasets, and for rSVM-RL, accuracy is below 65% on 11 of 12 datasets. Because the accu-
racy increased for these ramp loss formulations, we infer that issues with setting the M
parameter in the formulations did not cause numerical instability.

Overall, SVMIP1-RL and GSVM2-RL appear to have the highest accuracy on the outlier-
contaminated datasets. The rules generated by these methods are near the Bayes optimal
accuracy of 84.1%.
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Table 2. Accuracy (%) of SVM formulations for different numbers of observations (n) and
attributes (d)

n d S
V

M

S
V

M
IP

1

S
V

M
IP

2

G
S
V

M
1

G
S
V

M
1
-R

L

G
S
V

M
2

G
S
V

M
2
-R

L

L
P

S
V

M

M
IL

P
S
V

M
-R

L

rS
V

M

rS
V

M
-R

L

60 2 50.0 82.1 77.7 80.6 80.0 84.2 82.7 80.6 80.0 36.1 53.0
100 2 50.0 83.3 82.5 73.8 50.0 82.4 84.0 76.1 80.7 82.7 59.5
200 2 50.0 83.8 83.3 64.2 83.0 77.9 83.9 76.9 84.0 72.6 69.9
500 2 50.0 84.2 84.1 51.0 83.5 80.8 84.1 73.9 83.9 44.5 60.8
60 5 48.8 82.6 82.6 47.5 80.1 47.1 84.3 47.5 80.3 32.6 35.5

100 5 48.3 83.6 83.1 46.1 50.0 50.0 82.6 61.5 79.0 77.5 64.8
200 5 50.0 83.2 83.2 74.5 83.2 84.3 83.4 74.9 82.9 48.9 53.4
500 5 50.0 83.6 84.0 77.4 84.2 82.6 84.0 79.4 83.7 72.9 48.1
60 10 64.4 82.0 82.0 50.0 50.0 83.5 84.1 66.3 78.2 64.2 51.5

100 10 57.3 82.9 82.9 50.0 81.1 84.0 84.1 50.0 78.9 82.7 56.0
200 10 47.0 82.5 82.3 46.0 50.0 64.4 82.5 42.4 81.1 51.1 46.6
500 10 50.0 83.6 82.5 68.7 50.0 76.4 83.0 71.0 83.2 57.1 54.0

Examples of the decision rules generated by the various methods is given in Figure 2. The
figure is for n= 500 and d= 2. For this dataset, traditional SVM places all observations in
one group and therefore cannot be plotted. In Figure 2(a)-(c), the ramp loss versions of the
SVM formulations provide better decision rules than the QIP SVM formulation SVMIP1-
RL. In Figure 2(a) and (c), we can see that GSVM1 and LPSVM provide some robustness to
outliers and unlike traditional SVM, produce a decision rule. When the ramp loss is added,
GSVM1-RL and MILPSVM-RL provide better robustness and a rule that is similar to
SVMIP1-RL. In Figure 2(b), GSVM2 produces a decision rule but is dramatically affected by
the outlier observations. The addition of the ramp loss with GSVM2-RL provides robustness
to outliers. In Figure 2(d) both rSVM and rSVM-LP produce poor classifiers for this data
set. The margins for both are extremely large and do not fit into the scale of the plot.

5. Conclusions

In this paper, we presented four new MILP formulations for SVM. The formulations are for
ramp loss SVM with L1-norm regularization. When the norm for the SVM regularization
term is changed, incorporating the kernel trick is non trivial which is why several possible
L1-norm SVMs are possible.

This paper represents to our knowledge the first time that the LP-based SVM versions
have been compared head-to-head the same datasets. Further, we explore the benefits of
modifying these formulations to increase robustness.

Ramp loss SVM is used to provide robustness. We observed that some LP-based SVM
formulations can exhibit some robustness to outliers without the ramp loss on some datasets.
However, adding the ramp loss provided increased accuracy for most datasets.

In this paper, we only compared the new SVM versions using outlier-contaminated data
with the linear kernel. As demonstrated in [6], it is not clear if additional robustness is
needed when using nonlinear discriminant such as SVM with the Gaussian kernel. Because
of the bias-variance tradeoff, robust methods for SVM with the linear kernel remain valuable
tools when the ratio of the number of observations to the number of attributes is small. In
such cases, simpler models tend to provide better generalization.

Software for solving MILPs is more readily available and the technology is more mature
than for MIQPs. Though we anticipated computational improvements when switching from
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Figure 2. Plots of L1-norm SVM decision rules and margin boundaries with (red, dashed) and
without (blue, dotted) ramp loss for a dataset with n= 500 observations and d= 2 attributes. For
each plot, the rule generated by SVMIP1-RL is plotted as solid black lines.

(a) GSVM1 and GSVM1-RL (b) GSVM2 and GSVM2-RL

(c) LPSVM and MILPSVM-RL (d) rSVM and rSVM-RL

MIQP formulations to MILP formulations for SVM, we did not see a dramatic effect. Perhaps
tailored cutting planes and other enhancements for the formulations presented here can
reduce the computation time for the MILP instances.

After the initial submission of this article, the authors became aware of recent work in
handling indicator constraints in MILP; namely, the work of Belotti et al. [2]. With these
advances, the formulations proposed here may prove to be more computationally tractable
than the big-M formulations that we used in our experiment.
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