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Si-doped GaN layers grown by metal organic vapor phase epitaxy on m-plane GaN substrates were

investigated by low-temperature cathodoluminescence (CL). We have observed stacking fault (SF)

related emission in the range of 3.29–3.42 eV for samples with moderate doping, while for the layers

with high concentration of dopants, no CL lines related to SFs have been noted. Perturbation of the

SF potential profile by neighboring impurity atoms can explain localization of excitons at SFs, while

this effect would vanish at high doping levels due to screening. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4828820]

Homoepitaxial III-nitride based light emitting diodes

(LEDs) and laser diodes show much better performance

characteristics as well as a longer operational lifetime.1

LEDs utilizing non-polar orientations of GaN are of high in-

terest for further development of modern optoelectronics

because in this geometry the device efficiency can be further

improved due to reduction of the quantum-confined Stark

effect.2,3 However, the main obstacles in this case are those

caused by lack of suitable native substrates; thus, the growth

is usually performed on foreign substrate materials, which

leads to a poor structural quality especially for highly doped

layers. Today, Ge is considered as a promising dopant for n-

type GaN. Ge occupies the Ga lattice sites causing only an

insignificant stress in the lattice, which results in less crack-

ing even for very high Ge concentrations in comparison with

Si-doping.4 It can be utilized for growth of non-polar and

semi-polar GaN epilayers on silicon substrates, since such

heteroepitaxial layers exhibit a high dislocation density and

a high probability to form cracks. Even homoepitaxial

growth of GaN on non-polar surfaces (a- or m-plane)

requires additional process optimization to reduce a high

density of structural defects such as basal plane stacking

faults (SFs), known for limiting the output power of GaN

LEDs grown along the a-axis.5 Semi-polar orientations in

III-nitride heterostructures have been shown to be more

promising than polar orientations with respect to radiative

properties of excitons because the dislocation density is

lower in these directions.6 From this point of view, homoepi-

taxial Si-doped GaN layers grown on semi-polar planes can

be more favorable assuming lower density of structural

defects, in particular, SFs. SFs of different geometries can

sometimes be optically active and may lead to several fea-

tures in the luminescence spectra in the region of

3.29–3.41 eV as was reported for the heteroepitaxial undoped

GaN grown in a- and m-directions.7–10 In mature undoped or

n-type doped polar GaN layers, the SF density is low and

can hardly be considered as a problem for electronic and

optoelectronic devices. Correspondingly, in such samples,

usually no SF-associated emission is present in the

luminescence spectra. On the other hand, SF-related lines

have been detected in hetero- and homoepitaxially fabricated

c-plane GaN doped with Mg.11,12 However, no convincing

cathodoluminescence (CL) lines related to the SF emissions

have been found in most Mg-doped m-plane GaN, although

electron microscopy analysis has confirmed a high density of

both prismatic SFs (PSFs) and basal plane SFs (BSFs).13

This points to a lack of clear understanding as to when and

why SFs can be optically active in GaN. Since we have al-

ready reported results concerning luminescence of SFs in po-

lar and non-polar homoepitaxial GaN doped by Mg, it is

deemed natural to extend investigations to nonpolar homoe-

pitaxial GaN layers with other types of dopants. Thus, in this

Letter, we report on the correlation between impurity levels

and optical activation of SFs in Si-doped GaN layers grown

on m-plane GaN substrates.

GaN layers of thickness �1 lm were grown by metal or-

ganic vapor phase epitaxy (MOVPE). Samples were doped by

Si with varying concentrations in the range of 2� 1017 and

5� 1018 cm�3 as determined by secondary ion mass spec-

trometry (SIMS). The growth was done on m-plane GaN sub-

strates starting with an undoped 1 lm GaN buffer layer.

Freestanding GaN substrates with threading dislocation den-

sity of �5� 106 cm�2 were provided by Kyma Technologies.

Substrates were grown by halide vapor phase epitaxy (HVPE)

in the c-direction and then cut and polished along the m-plane.

Cross-sectional TEM analysis was done with a high resolution

FEI Tecnai G2 200 keV FEG instrument. CL spectra were

measured using a MonoCL4 system integrated with a LEO

1550 Gemini scanning electron microscope (SEM) and

equipped with a liquid-He-cooled stage for low-temperature

experiments performed at 5 K. The typical acceleration volt-

age for this study was 10 kV. A fast CCD detection system

and a Peltier cooled photomultiplier tube were used for spec-

tral acquisition and imaging.

A cross-sectional TEM micrograph shown in Fig. 1(a)

reveals that the studied m-plane GaN samples suffer from a

rather high density of BSFs (�2� 104 cm�1) propagating the

entire layer towards the surface even for samples with rela-

tively low doping levels. Besides BSFs, PSFs have also been

observed as illustrated in Fig. 1(b). Most of the defects werea)galia@ifm.liu.se
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likely formed during the nucleation and coalescence stages

at the interface region between the buffer and the nonpolar

GaN substrate.

Samples with morphology influenced by structural

defects can be investigated by CL in-situ SEM. CL measure-

ments taken over a typical area �100� 100 lm reveal a clear

dependence of the near band gap emission on Si concentration

in GaN layers as depicted in Fig. 2. Although the evolution of

the luminescence at doping concentrations around the Mott

transition (at carrier concentrations of �2-3� 1018 cm�3, Ref.

14) is a subject of separate work, it is worthwhile to point out

here that below the Mott limit we observe excitonic rather

than electron-hole plasma related transitions. For our samples,

it means that the CL peak at �3.47 eV is due to the donor

bound exciton (DBE) emission except for the layer with Si

concentration of �5� 1018 cm�3, where a high energy tail

shows a small deviation in its shape explained by a competi-

tion of two effects: (i) the band-gap renormalization causing a

red shift and (ii) the reduction of the exciton binding energy

due to screening resulting in a blue shift. In the latter case, the

position of the A exciton is at �3.48 eV, i.e., very close to the

DBE peak in the lower doped samples. As seen in Fig. 2, we

have not observed any additional lines related to the defect lu-

minescence (i.e., SFs) in the region 3.29–3.42 eV for GaN

samples doped with Si above �1018 cm�3 despite that SFs

influence the sample morphology. Such luminescence spectra

dominated mainly by the DBE line are typical for most n-type

GaN of relatively high quality (undoped or Mg-doped with

concentrations below 2� 1018 cm�3) grown in the c-direc-

tion.12,15 In contrast, CL spectra are different for the GaN

layers having lower Si concentrations in the range of

2-5� 1017 cm�3. Unexpectedly, besides the DBE line, a

well-resolved emission of the acceptor bound exciton (ABE)

at �3.46 eV and a strong donor-acceptor pair (DAP) recombi-

nation line at �3.26 eV with two phonon replicas have been

detected. Additionally, three rather narrow emission lines with

relative intensities depending on samples and positions have

been found in the region of defect luminescence: at �3.42

(SF1), at �3.39 (SF2), and at �3.37 eV (SF3). The emission

within the range of 3.39–3.42 eV was previously identified as

being related to BSF,7–10,16 while the 3.37 eV peak is close to

the feature at 3.34 eV related to PSFs in heteroepitaxial

a-plane GaN.7 The origin of these lines is in accordance with

these identifications as it is confirmed by spatially resolved

CL data presented in Fig. 3. However, as already mentioned

above, we have not found the SF-related luminescence in the

samples with Si doping exceeding 1018 cm�3 In spite of this,

we can observe SFs in SEM images and also in CL images,

albeit as non-radiative regions in this case and in the layers.

To illustrate our observations, an SEM image together with

panchromatic CL (PCL) mapping for the layer doped with Si

concentration of 2.4� 1018 cm�3 is shown in Figs. 3(a) and

3(b), respectively. Despite that, the PCL is very inhomogene-

ous reflecting the presence of structural defects, a correspond-

ing CL spectrum revealed no SF-related lines as seen in Fig.

2. The same observation was noted for all the other GaN

layers with high doping level. In contrast, for samples with

FIG. 1. Cross-sectional TEM images of m-plane GaN samples doped by Si

with concentration (a) 5� 1017 cm�3 and (b) 2� 1017 cm�3. The interface

region between substrate and buffer is shown in (b). Arrows show the crys-

tallographic directions.

FIG. 2. Low-temperature CL spectra measured for samples with different Si

concentration.

FIG. 3. SEM (a) and PCL (b) images of the GaN layer doped with Si at

�2.4 � 1018 cm�3, (c) SEM images for the sample with Si concentration of

5 � 1017 cm�3 with corresponding monochromatic CL images taken at dif-

ferent photon energies of 3.47 eV (d), 3.42 eV (e), and 3.37 eV (f).
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lower Si concentrations, SFs are found to be optically active.

Figs. 3(c) and 3(d) show a SEM image together with CL map

measured at the DBE energy of 3.47 eV for the GaN layer

with Si level of 5� 1017 cm�3. It is clear from the figure that

at this energy the SFs are revealed as dark features. However,

two examples of CL mapping taken at photon energies related

to SF1 (3.42 eV) and SF3 (3.37 eV) show a bright contrast

(i.e., higher CL intensities) in the areas where the SFs are

localized, as seen in Figs 3(e) and 3(f), respectively. The elon-

gated shape of the CL contrast at 3.42 eV confirms that this

emission is related to a BSF. The identification of the 3.37 eV

line as related to PSFs can also be validated, since the bright

contrast in CL is non-uniform along the BSFs (for example, it

is stronger at some edges of the BSFs) reflecting the PSFs

geometry to be likely of the connecting intrinsic I1-BSFs in

nature.17

Before we discuss the reason behind the optical activa-

tion of the SFs, we would like to present details of the selec-

tive CL analysis for the GaN layer with Si concentration of

2� 1017 cm�3 shown in Fig. 4. At the chosen area with

clearly observed SFs (SEM image, Fig. 4(a)), the electron

beam was focused at three different points numbered 1, 2,

and 3. Although the focusing area is only over several nm,

the excitation volume is about �1 lm in diameter, thus, the

signal is not perfectly selective. However, the data unequivo-

cally show an enhanced contribution of the SFs related emis-

sions in CL spectra when the detection is localized to SFs

(point 1 and 2). An additional feature at �3.3 eV (PD)

known as being related to partial dislocation terminating

BSFs7 was recently assigned to extrinsic BSFs.18 The inten-

sity of the SF related lines (SF2 and PD) is significantly

smaller for point 3, where no visible defects have been

observed in SEM.

The main conclusion of our present investigation is as

follows: a SF-related luminescence has been observed in CL

spectra only for such concentrations of donors and acceptors

in GaN, when the typical ABE lines together with the DAP

recombination were also observed. This suggests that for the

studied Si-doped m-plane GaN samples the background re-

sidual acceptor concentration is likely higher than in c-plane

GaN, which is reasonable since the incorporation of Mg in

m-plane (10-10) is more favorable.19 The unintentional Mg-

doping of �1016 cm�3 (according to SIMS, which is, how-

ever, close to the detection limit) is presumably related to the

well-known Mg memory effect in MOVPE growth of

GaN.20

Now the data can be consistently explained:

(i) SFs, especially BSFs, can be described as three mono-

layers of cubic GaN, surrounded by wurtzite GaN,

thus, forming a QW without any well-width fluctua-

tions and, consequently, without any in-plane localiza-

tion for electrons.21 There is also no confinement

for holes due to a small valence band offset of

�0.07 eV.22 In the presence of a nearby impurity (do-

nor and/or acceptor), there is a perturbation of the

band potential in such a way that carrier confinement

can be realized. That means that free excitons can now

be trapped by such SFs in the vicinity of impurities

and the exciton binding energy will depend on the dis-

tance from the impurity to the BSF plane.21

(ii) For n-type samples with moderate donor concentra-

tions, free excitons are bound to the most abundant

impurities (Si and also O donor), and thus, the lumi-

nescence spectra are dominated by typical DBE lines

and also by excitons bound to the impurity-BSF com-

plex (here, likely to the donor-BSF system). The bind-

ing energy can vary due to different distances to BSF

and/or different impurities, which may account for the

observation of several luminescence lines related to

BSF.

(iii) In highly doped GaN with carrier concentrations above

the Mott limit, the Coulomb interaction is screened

thus annihilating the exciton localization to the donor-

BSF complexes. In this case, BSFs will no more be

optically active.

In summary, m-plane Si-doped GaN layers grown

by MOCVD on GaN substrates were studied by low-

temperature CL in-situ SEM to understand any correlation

between doping level and/or dopant specie and the SF-

related emission. We have found that SFs are optically active

in GaN samples with moderate doping concentrations while

for highly doped GaN layers no luminescence related to

extended structural defects was observed. The effect is

explained by a perturbation of the BSF potential profile in

the vicinity of impurity atoms in such a way that exciton

localization can be realized. On the other hand, screening of

the charge carrier interaction at high doping results in

FIG. 4. SEM image (a) together with PCL map (b) for the GaN layer with Si

concentration of 2.4 � 1017 cm�3. (c) CL spectra at 5 K detected at localized

spots indicated in (b) with points 1, 2, and 3, respectively.
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vanishing of the localization and thus no SF-related CL is

present.
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21P. Corfdir, P. Lefebvre, J. Ristić, J.-D. Ganière, and B. Deveaud-Pl�edran,

Phys. Rev. B 80, 153309 (2009).
22C. Stampfl and C. G. Van de Walle, Phys. Rev. B 57, R15052 (1998).

192101-4 Khromov et al. Appl. Phys. Lett. 103, 192101 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.172.48.58 On: Mon, 30 Mar 2015 17:44:43

http://dx.doi.org/10.1016/j.jcrysgro.2006.10.259
http://dx.doi.org/10.1557/mrs2009.91
http://dx.doi.org/10.1016/j.jcrysgro.2004.03.024
http://dx.doi.org/10.1016/j.jcrysgro.2004.03.024
http://dx.doi.org/10.1109/LPT.2010.2042950
http://dx.doi.org/10.1103/PhysRevB.88.125437
http://dx.doi.org/10.1063/1.1852085
http://dx.doi.org/10.1063/1.2193352
http://dx.doi.org/10.1016/j.jcrysgro.2010.11.155
http://dx.doi.org/10.1103/PhysRevB.83.035314
http://dx.doi.org/10.1063/1.2809407
http://dx.doi.org/10.1103/PhysRevB.84.075324
http://dx.doi.org/10.1063/1.4706258
http://dx.doi.org/10.1103/PhysRevB.60.4715
http://dx.doi.org/10.1016/S0921-5107(02)00006-5
http://dx.doi.org/10.1016/S0921-5107(02)00006-5
http://dx.doi.org/10.1063/1.3075596
http://dx.doi.org/10.1016/j.jcrysgro.2011.05.018
http://dx.doi.org/10.1103/PhysRevB.86.081302
http://dx.doi.org/10.1103/PhysRevB.86.081302
http://dx.doi.org/10.1103/PhysRevB.77.045313
http://dx.doi.org/10.1143/JJAP.42.50
http://dx.doi.org/10.1103/PhysRevB.80.153309
http://dx.doi.org/10.1103/PhysRevB.57.R15052

	Virginia Commonwealth University
	VCU Scholars Compass
	2013

	Correlation between Si doping and stacking fault related luminescence in homoepitaxial m-plane GaN
	S. Khromov
	B. Monemar
	Vitaliy Avrutin
	See next page for additional authors
	Downloaded from
	Authors



