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DYNAMICS OF COUPLED NOISY NEURAL OSCILLATORS WITH

HETEROGENEOUS PHASE RESETTING CURVES ∗

CHENG LY†

Abstract. Pulse-coupled phase oscillators have been utilized in a variety of contexts. Motivated
by neuroscience, we study a network of pulse-coupled phase oscillators receiving independent and
correlated noise. An additional physiological attribute, heterogeneity, is incorporated in the phase
resetting curve (PRC), which is a vital entity for modeling the biophysical dynamics of oscillators.
An accurate probability density or mean field description is large dimensional, requiring reduction
methods for tractability. We present a reduction method to capture the pairwise synchrony via the
probability density of the phase differences, and explore the robustness of the method. We find the
reduced methods can capture some of the synchronous dynamics in these networks. The variance
of the noisy period (or spike times) in this network is also considered. In particular, we find phase
oscillators with predominately positive PRCs (type 1) have larger variance with inhibitory pulse-
coupling than PRCs with a larger negative regions (type 2), but with excitatory pulse-coupling the
opposite happens – type 1 oscillators have lower variability than type 2. Analysis of this phenomena is
provided via an asymptotic approximation with weak noise and weak coupling, where we demonstrate
how the individual PRC alters variability with pulse-coupling. We make comparisons of the phase
oscillators to full oscillator networks and discuss the utility and shortcomings.

Key words. Neural oscillators, phase resetting curve (PRC), heterogeneity, Fokker-Planck
equation, weak pulse-coupling, weak noise

AMS subject classifications. 37N25, 92C20

1. Introduction. Heterogeneity is a realistic feature that is often neglected in
stochastic networks because the dynamics of such homogeneous systems are already
complicated. Tractable analysis of stochastic systems often involve exploiting homo-
geneity and focusing on average quantities that can be captured by various methods.
However, an undeniable feature of biological systems is the large amount of hetero-
geneity in the intrinsic dynamics [37]. In recent years, intrinsic heterogeneity in model
neural networks has gained increasing attention but such models are still understud-
ied.

Two important signatures of neural activity are the level of synchrony and vari-
ability. Synchrony (i.e., correlation) and variability have implications on neural cod-
ing, as well pathologies, thus acquiring a mechanistic understanding of their dy-
namics is crucial. Various studies have shown that synchrony/correlation can arise
from direct coupling [57, 28, 39, 24], external forcing [27, 13], common noisy input
[53, 47, 18, 42, 38, 7], among other features. The dynamics of how these entities
modulate is confounded by neural network attributes [45, 44, 33, 51]. Spiking activity
is known to be variable or noisy, and understanding how this feature is altered, even
in specific regimes, is a central focus in computational neuroscience. The models con-
sidered here are oscillators, where each cell is assumed to receive enough drive to fire
action potentials repetitively. Despite these assumptions, these class of models have
been successfully applied in neuroscience [48] and beyond [58, 4, 30].

Neural oscillators have an associated phase-resetting curve (PRC). The PRC is
an experimentally measurable quantity that specifies how perturbations change the
time until the next spike for neural oscillators. Since the PRC is known to depend
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on biophysical parameters, ionic currents, firing rate, etc. [17, 48], one would expect
PRCs to be heterogeneous. There has been recent experimental work that shows
the large degree of intrinsic heterogeneity of mitral cells in the olfactory bulb [9].
They found that the PRCs of these cells varied greatly. Zhou et al. [61] recently
considered two heterogeneous uncoupled oscillators with different PRCs and intrinsic
frequencies subject to independent and common noise. The noise they considered had
temporal correlations (i.e., Ornstein-Uhlenbeck processes). These authors found that
in the low input correlation limit, that heterogeneity can lead to more synchronous
behavior – the synchrony comes from the common noise drive. Along with correlated
noisy background inputs and heterogeneity, coupling can have a significant effect
on synchrony and variability. To this end, we study a network of heterogeneous
noisy neural oscillators that are pulse-coupled, where each neuron is subject to noisy
background inputs with independent and common parts. We incorporate intrinsic
heterogeneity by allowing all of the PRCs to vary, but assume the intrinsic frequencies
are all the same because the network is already large dimensional. A dimension
reduction method is proposed and tested on a large phase oscillator network. We
find the theory can qualitatively capture the pairwise synchronous dynamics of this
network, compared to computationally intensive Monte Carlo simulations. The results
are compared to a heterogeneous coupled Morris-Lecar network, and the same trend
is qualitatively observed.

We also study how coupling alters the variability of this neural oscillator network
and find that this crucially depends on PRC type. In particular, if the PRCs are
normalized to have L2-norm of 1, then with inhibitory pulse-coupling we find that
neurons with large positive regions in their PRC (i.e., type I) have larger variance in
their spike times (or periods) than neurons with larger negative regions (i.e., type II);
with excitatory pulse-coupling, the opposite happens where neurons with type II PRCs
have larger variability than type I neurons. An asymptotic formula is presented to
clearly explain these observations. The results are tested on full oscillator systems, and
we find surprisingly that the same phenomena are not observed. Further examination
of the theory for the reduced phase oscillators elucidates why the results are not
robust; the asymptotic analysis demonstrates that the conditions of the PRC are
stringent to observe the phenomena with type II PRCs. In total, this work provides
further insights into the study of coupled heterogeneous noisy oscillators.

2. Heterogeneous noisy neural oscillators. Consider a population of N dis-
tinct coupled neural oscillators receiving independent and correlated white noise. Let
Xj ∈ Rn denote the variables of the jth ∈ {1, 2, . . . , N} oscillator type. The equation
describing the evolution of Xj is:

dXj

dt
= F (Xj) + α̃

1

N − 1

∑

l

G(Xj , Xl) + σ̃~ξj(t) =: F (Xj) + ǫj(2.1)

where σ̃ ≪ 1 is the power of the noise, α̃ ≪ 1 is the coupling strength, and ~ξj(t)
are stationary correlated white noise processes with zero mean and unit variance. We
assume that the noise and coupling only affects the voltage (first) component, which
holds for a wide class of neuron models (i.e., ǫj has 0 in all components except the
first). To obtain a tractable phase model where a phase reduction can be applied,

we assume that the uncoupled and unperturbed system
dXj

dt
= F (Xj) (i.e., setting

σ̃ = α̃ = 0) has an asymptotically stable limit cycle, X0(t) = X0(t+ T ). We further
assume that the coupling is uniform (all-to-all), and that the intrinsic frequencies
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without perturbations are all the same. Although there are several assumptions made
about the underlying network, the probability density description below (equation
(2.4)) is still complicated and high dimensional.

A phase reduction is applied to the model above (equation 2.1) to obtain a network
of phase oscillator models [28]. The phase reduction we evoke here is standard and
has been described previously by many authors [42, 2, 6] (for further details, see
[33, 34, 36] in particular). Note that there are other phase reductions with that can
be utilized (see [60]); we focus on the case where the oscillators return to the limit
cycle fast with weak perturbations as described in Teramae et al. [54]. Recent work
has addressed the case of strong perturbations [56, 10, 29] requiring more variables
than just the phase, which can lead to different dynamics [43].

The result of applying the phase reduction are the following system of Itô stochas-
tic differential equations:

dΘj

dt
= 1 + α∆j(Θj)

1

N − 1

∑

k 6=j

P (Θk) +
σ2

2
∆j(Θj)∆

′
j(Θj) + σ∆j(Θj)ξj(t)(2.2)

where the noise has zero mean 〈ξj(t)〉 = 0 and can be correlated: 〈ξj(t)ξk(t)〉 =
cδ(t−t′) when j 6= k, c ∈ [0, 1), and 〈ξj(t)ξj(t′)〉 = δ(t−t′). Without loss of generality,
the phase variables Θj take on values in [0,1). The dynamics of the oscillator depend
crucially on ∆j , the Phase Resetting Curve or PRC of the neuron. The PRC ∆j

vanishes at the end points 0 and 1 because in neurons, perturbations have no (or
negligible) effect on the dynamics at the moment of a spike. Finally, the function
P (Θ) represents the pulse-coupling, which has larger values when Θ is near 0 or 1
(spiking) to mimic the effect of presynaptic neurons.

Stochastic systems are often characterized by a probability density equation, or
Fokker-Planck [50, 19]. Let

Pr
(

~Θ(t) ∈ (~θ, ~θ + d~θ)
)

= ̺(~θ, t) d~θ.(2.3)

where the phase variables ~Θ ∈ [0, 1)N represent the N distinct oscillators. The corre-
sponding Fokker-Planck equation of the entire network is:

∂̺

∂t
= −

N
∑

j=1

∂

∂θj









1 + α
∆j(θj)

N − 1

∑

k 6=j

P (θk) +
σ2

2
∆j(θj)∆

′
j(θj)



 ̺− σ2

2

∂

∂θj

{

∆2
j (θj)̺

}







+cσ2
∑

j<k

∂2

∂θj∂θk

{

∆j(θj)∆k(θk)̺
}

(2.4)

with periodic boundary condition in all coordinates θj: ̺(. . . , θj = 0, . . .) = ̺(. . . , θj =

1, . . .) and normalization
∫ 1

0
̺(~θ, t) d~θ = 1.

3. Pairwise synchrony of noisy heterogeneous neural oscillators. An
important signature of neural networks is the level of synchrony of their activity.
Quantifying synchrony of the entire network is difficult because the probability density
of all N phases (equation (2.4)) is generally large dimensional (when N ≥ 3). We
thus focus on pairwise synchrony of the network because 2-dimensional probability

density equations can be solved numerically. The statistics of all N(N−1)
2 distinct
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pairs of neurons collectively provides a reasonable measure of synchrony of the entire
network.

Let us integrate out all of the variables in equation (2.4) in the steady-state, except
the distinguished two variables of interest (θ1 and θ2 without loss of generality). The
result is:

0 = −
2

∑

j=1

∂

∂θj







[

1 +
σ2

2
∆j(θj)∆

′
j(θj)

]

ρ− σ2

2

∂

∂θj

{

∆2
j(θj)ρ

}

+ α
∆j(θj)

N − 1

∑

k 6=j

∫

P (θk)̺ dθ̃







+c
σ2

2

∂2

∂θ1∂θ2

{

∆1(θ1)∆2(θ2)ρ
}

+ c
σ2

2

∑

l,k 6=1,2

∫

∂2

∂θl∂θk

{

∆l(θl)∆k(θk)̺
}

dθ̃

(3.1)

where

ρ(θ1, θ2) =

∫

̺(~θ) dθ̃ :=

∫

̺(~θ) dθ3 . . . dθN .(3.2)

This equation is not closed because there are still terms with the full density ̺.
Fortuitously, all of the cross diffusion terms with the other N−2 phase variables (2nd
term on the 2nd line of equation (3.1)) vanish because integrating both θl and θk
results in evaluating ∆l∆k̺ at the endpoints θl,k = 0, 1, where the PRC ∆ vanishes.
Therefore, we focus on

1

N − 1

∑

k 6=j

∫

P (θk)̺ dθ̃

to close the system. A term in this sum amounts to integrating P (θk) against the
marginal density of (θ1, θ2, θk), except when k = 1, 2 where there is no issue of closure.
The following approximation is made:

ρ(θ1, θ2, θk) = ρ(θ1, θ2)ρ(θk|θ1, θ2) ≈ ρ(θ1, θ2)f(θk)(3.3)

where the conditional density of θk given (θ1, θ2) is approximated by the marginal
density of θk: f(θk). This approximation is questionable when the coupling strength
is large or when the background correlation level c is relatively large because Θk will
be highly dependent on (Θ1,Θ2). Various measurements of background correlation
in neural networks suggest that although c varies, it is generally not ’large’ [12].

With this approximation, the resulting equation is:

0 = −
2

∑

j=1

∂

∂θj

{[

1 +
σ2

2
∆j(θj)∆

′
j(θj) + α∆j(θj) 〈〈P (θj)〉〉

]

ρ− σ2

2

∂

∂θj

{

∆2
j(θj)ρ

}

}

+c
σ2

2

∂2

∂θ1∂θ2

{

∆1(θ1)∆2(θ2)ρ
}

(3.4)

where the two angular brackets around P denote averaging over the distribution of
Θk and arithmetically averaging over all k phase variables:

〈〈P (θj)〉〉 :=
1

N − 1

∑

k 6=j

∫

P (θk) dΘk.(3.5)



Coupled Noisy Oscillators with Heterogeneous PRCs 5

The marginal density f(θk) still needs to be calculated in order to use equation
(3.4). Integrating out all N − 1 variables and making a similar approximation results
in the following equation for f(θk):

σ2

2

d2

dθ2

{

∆2
k(θ)f(θ)

}

=
d

dθ

{[

1 +
σ2

2
∆k(θ)∆

′
k(θ) + α∆k(θ) 〈〈P 〉〉

]

f(θ)

}

(3.6)
f(0) = f(1)

∫ 1

0

f(θ) dθ = 1.

To close the system, we assume α = 0 in equation (3.6) (otherwise the PDEs are
nonlinear and may not be solvable) and utilize the weak noise and weak coupling
assumption to derive an analytic formula for f(θk). Briefly, this involves expanding
f(θ) = f0(θ) + εf1(θ) + O(ε2), collecting terms of the same order and imposing
solvability conditions via the Fredholm Alternative to get:

f(θ) ≈ 1 +
σ2

2
∆k∆

′
k.(3.7)

A similar derivation is described in greater detail in [34] for a related noisy oscillator
equation (also see [36]). Since there are a large number (N) of different marginal
densities to be calculated, the analytic solution (3.7) is advantageous over a numerical
1-d PDE solution because it is faster to compute.

We now have a closed system of equations that approximates the probability
density function of any desired pair of oscillators. The crucial quantity that measures
the synchrony of a pair of neural oscillators is the density of the phase difference:

p(φ = θk − θj) =

∫ 1

0

ρ(θj , φ+ θj) dθj , φ ∈ (−1/2, 1/2).(3.8)

Assuming the system is well-behaved and ergodic, p(φ) is a measure of the proportion
of time that the pair of neurons have a particular phase difference. If p(φ) is sharply
peaked at 0, then the neurons are synchronous; if there is a sharp peak at φ 6= 0, then
the pair are phase-lagged by that amount, etc.

3.1. Comparison of simulations with reduction method. The reduction
for ρ(θj , θk) is implemented and compared on a network of N = 1000 phase oscillators,
where the PRCs are of the form (see Figure 3.1A):

∆j(θ) = kj

[

− sin(2πθ + γj) + sin(γj)
]

, γj ∈ [0, π/2].(3.9)

Although PRCs can be vastly different than these, the canonical type I (γj = π/2,∆ =
1+ cos(2πθ)) and type II (γj = 0,∆ = − sin(2πθ)) PRCs are of this form [49, 21, 15].
This dichotomy has deep implications for the onset of repetitive firing with increased
current injection [15]. The values γj are chosen from a specified distribution, which we
set to be a uniform distribution. The normalizing constant kj = 1√

sin2(γj)+1
ensures

the L2-norm of all ∆j are equal to 1. The L2-norm of ∆ appears in an asymptotic
formula for the density of the phase difference of two identical uncoupled neural
oscillators receiving correlated noise [38], and is also the lowest order approximation
term of the variance of the random spike times (or interspike interval). Thus, this is
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Fig. 3.1. PRCs and Pulse of phase oscillator network

A network of N = 1000 phase oscillators is considered, where the PRC ∆j(θ) =
kj [− sin(2πθ+γj)+sin(γj)], for γj ∈ [0, π

2 ]. The normalization factor kj =
1√

sin2(γj)+1

insures that they all have the same L2-norm:
∫ 1

0
∆2

j(θ) dθ = 1. The parameter aj is
randomly chosen from a uniform distribution. (A) The distinct PRCs: red is canonical
type I (γ = π

2 ) and blue is purely sinusoidal type II (γ = 0). (B) The pulse coupling

function P (θ) = e−β(1−cos(2πθ)) can either be fast (β = 50) or slower decaying (β = 5).

a reasonable way to normalize and fairly compare heterogeneous PRCs. The pulse
coupling is of the form:

P (θ) = e−β(1−cos(2πθ))(3.10)

to model synaptic communication the occurs only around spiking (see Figure 3.1B).
With relatively fast pulses (β = 50), modest correlation c = 0.25, and inhibitory

pulse-coupling α = −2, the reduction method captures the wide variety of density of
phase differences p(φ) in the same coupled network (same parameters) of particular
pairs where the behavior ranges from synchronous (Figure 3.2B), partially phase-
locked (Figure 3.2D), or asynchronous (Figure 3.2A). The Monte Carlo simulations
(500,000 points in each histogram) are the red-dashed lines that measure the average
time that pairs have a particular phase difference, and the black curves are solutions
to closed two dimensional Fokker-Planck equations. The theory holds for excitatory
pulse-coupling α = 2 (Figure 3.2E–H), although by eye one could argue the match is
not as good. However, note that even the skew and multiple humps in some of the
plots are accounted for in the theory. The magnitude of the coupling strength being
2 is relatively large because the PRCs have norm 1 and the phases vary from [0,1),
and despite this, the fine details of the phase difference density are captured. There
are a large number possible pairs to consider with N = 1000, but this small subset
illustrates the vast range of synchronous behavior within the same network.

When the pulses decay slower (β = 5), the reduction theory still holds but the
coupling strength α cannot be as large. In Figure 3.3, we consider α = −1 and 1 to
illustrate that the value of the theory. When the coupling strength |α| > 1, there are
significant differences compared to the Monte Carlo simulations (not shown) that will
be apparent in subsequent figures (Figure 3.4). For inhibitory coupling, the theory
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Fig. 3.2. Density of phase difference varies dramatically.

With fast decaying pulses, there are a large variety of phase differences within the
same network that are captured by the reduction method. Monte-Carlo simulations
(red-dashed; 500,000 points) that capture the average time at various phase differences
are plotted with the reduction method (black), equation (3.4), for particular pairs in
the network. (A)–(D) with inhibitory coupling α = −2 and (E)–(H) with excitatory
coupling α = 2. The other parameters are: σ = 0.3, c = 0.25.
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matches the Monte Carlo simulations well even with higher correlation and slower
decaying pulses (Figure 3.3A–D). However, for large enough excitatory coupling α = 1
(Figure 3.3E–F, there are deviations with the theory and the simulations. We only
show two plots with excitatory coupling because almost all of the pairs considered had
similar plots as shown; the system is in a regime of synchronous behavior (see Figure
3.4 and text surrounding this for more details). Notice the values of the vertical axes
in Figure 3.3E–F; the pairs are pretty synchronous and the theory fails to capture the
value of the peaks. In these cases, the net synchronous behavior is large because it is
induced by coupling, correlated noise, and similar PRCs. Although this is alarming,
the results are still good when 0 < |α| ≪ 1 (not shown). In Figure 3.3 (in particular
E, F), the correlation is higher than in Figure 3.2, and with slower decaying pulses
the hypotheses of the theory are really being challenged because the noisy phases are
likely more correlated and the conditional density cannot be well approximated by the
unconditioned density. In this case, the total effect of coupling with slower decaying
pulses is much larger on average, which goes against the weak coupling assumptions
in the theory.

As coupling varies from inhibitory to excitatory (α ∈ [−2, 2]), the same pair of
neurons can exhibit rich behavior that is also captured by the method (not shown).
Along these lines, we next study how the entire network dynamics change as coupling
changes. With such numerous pairs, it is not feasible to consider the entire set of
density of phase differences of all pairs. Another useful measure is the order parameter
(O.P.) [28]:

O.P. =

∫

p(φ)e−2πφ dφ ∈ C(3.11)

which has the advantage of assigning a complex number to an entire phase difference
density function p(φ). The O.P. has both a magnitude and an angle O.P. = ‖O.P.‖eiϕ;
the magnitude is a measure of how locked the pair is and the angle is an approximation
of the phase lag (first Fourier mode) with values ϕ ∈ [−π, π]. For a given set of
parameters, the entire range of pairwise dynamics is measured by the set of O.P. angles
and O.P. magnitudes. Figure 3.4 shows the extreme values of the O.P. for all N(N −
1)/2 pairs, where panels A–B is for the fast pulses and corresponding parameters in
Figure 3.2 and panels C–D is for slower pulse parameters in Figure 3.3. The two red
curves in each plot are the maximal and minimal values of the O.P.; all of the pairs
in the network have O.P. values between these two curves. The previously described
reduction method (black) is used to approximate the extremal values. Determining
the actual pairs of neurons (PRCs) that correspond to the maximum and minimal
O.P. angle and O.P. magnitude is a very interesting and complicated problem beyond
the scope of this paper. The black curves were calculated by using the results of the
Monte Carlo simulations; the specific pairs that corresponded to the maximum and
minimum were used in the reduction method. This depends on coupling, among other
parameters, and is different depending on whether the angle or magnitude of O.P. are
considered.

The two regimes considered (β = 50 or 5) with the specific noise σ and input
correlation c have different amounts of synchrony depending on coupling. Specifically,
|O.P.| is larger on average, which is not surprising considering c is higher and the effect
of a pulse is longer lasting. Here, a global picture of the reduction method shows that it
is inaccurate for the magnitude of O.P. (Figure 3.4D). The range of O.P. angles change
similarly as coupling increases, they both have a narrower range around 0 indicating
that the best estimation of the peak(s) is around a 0 phase difference. Interestingly, the
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Fig. 3.3. Density of the phase difference with slower decaying pulses.

Similar format as Figure 3.2 but with β = 5. Monte-Carlo simulations (red-dashed;
500,000 points) that capture the average time at various phase differences are plotted
with the reduction method (black), equation (3.4), for particular pairs in the network.
(A)–(D) with inhibitory coupling α = −1 and (E)–(F) with excitatory coupling α = 1.
The other parameters are σ = 0.22, c = 0.35.

|O.P.| range tends to increase with coupling. Although this type of coupling generally
leads to more synchrony overall, the range of |O.P.| can increase while the range of
possible O.P. angles decreases. It is strange that coupling can increase synchrony or
phase-locking, but at the same time the range of |O.P.| increases. Further analysis
reveals that pairs with vastly different ∆’s have non-monotonic |O.P.| because they
tend to be phase lagged with sharp peaks at φ ≈ ±0.5 when α < 0, but as coupling
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Fig. 3.4. Order parameter of all phase differences varies with coupling.

(A)–(B) Fast pulses (β = 50) with σ = 0.3, c = 0.25: the O.P. angle and magnitude
take on a range of values. The red dashed curves are the maximal and minimal values
of these quantities from Monte Carlo simulations, and the black curves are similarly
computed using the reduction method. For a given α, the pairs that correspond to
the maximum and minimum values are complicated (see main text), and thus, the
Monte Carlo simulation results are used to specify the pair of PRCs used in reduction
method. (C)–(D) same as (A)–(B) but with slower pulses and σ = 0.22, c = 0.35.
The blue arrows indicate a common trend that the range of O.P. angles decreases and
range of O.P. magnitudes increase as α increases.

increases the pairs tend to be almost asynchronous (smaller |O.P.|) until finally they
are locked at smaller phase differences (with larger |O.P.|). Also contributing to the
increased range are the pairs that are sharply peaked at φ ≈ 0, who’s |O.P.| values
increase appreciably with coupling.

3.2. Comparison with a Morris-Lecar network model. This section makes
a qualitative connection to a realistic neural oscillator network that satisfies some of
the hypotheses of the previously described phase reduction and dimension reduction
method in section 3. The network of Morris-Lecar oscillators [40] consists of 6 different
types with different PRCs (see Appendix B for equations). We did not consider
more distinct oscillators because ensuring they each had approximately the same
intrinsic period and similar L2-norms was extremely tedious. Another issue is that
we want the effect of coupling and noisy inputs to be similar across the distinct
types, which does not hold if the parameters vary greatly. To increase the size of



Coupled Noisy Oscillators with Heterogeneous PRCs 11

0

0.5

1
S

(t
)

40 80
TimeΔ

A B

0 20 40 60 80

0

1

2

3

Time

 

 

−60 −40 −20 0 20 40

0.1

0.2

0.3

0.4

v
w

 

C D

−20 −10 0 10 20

−2

0

2

α  Coupling Strength

O
.P

. 
a

n
g

le

−20 −10 0 10 20
0

0.4

0.8

|O
.P

.|

~ α  Coupling Strength
~

Fig. 3.5. Morris-Lecar network.

(A) The 6 distinct PRCs, with synapses (black, inset) for an all-to-all coupled network.
(B) Unperturbed limit cycles, the thin black line is the threshold wth = 0.4 for spiking
as the w variable crosses from below. (C) Range of O.P. angles as coupling varies. (D)
Range of |O.P.| as coupling varies. For (C)–(D), σ̃ = 0.01 and c = 0.3 (see Appendix
B for equations and parameter values).

network, there are 4 copies of each of the 6 distinct oscillator types, for a total network
size of 24. The reason for doing is that a smaller network have different dynamics,
and the random phases can be highly correlated with the other phases, especially
with increased coupling strength. Figure 3.5 shows the distinct oscillators’ PRCs
(calculated via XPP [16]), synaptic dynamics in an unperturbed period (A, inset),
and unperturbed limit cycles (B).

To resemble the phase oscillator network in a more direct way, the coupling is
all-to-all and the synapses are current-based rather than conductance-based. With
conductance-based synapses, the effects of coupling would depend on the chosen re-
versal potentials and have overall more complex dynamics. Figure 3.5C–D only shows
the statistically distinct pairs of phase differences, with 6 different PRCs there are 15
unique pairs. The possible O.P. angles and |O.P.| as coupling α̃ varies is complicated.
Not surprisingly, the exact range of O.P. values in the Morris-Lecar network and the
reduced phase oscillators do not exactly match because the phase oscillators are a
simplification and the noise and coupling parameters were chosen arbitrarily. Never-
theless, there are some qualitative features that are shared between these networks.
As coupling increases from inhibitory to excitatory, the range of O.P. angles decreases
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and is centered around 0 (Figure 3.5C). Also, the range of values of |O.P.| tends to
increase as coupling changes from inhibitory to excitatory, even though the network
is more synchronous on average. These results were observed in the reduced phase
oscillators (Figure 3.4). The coupling parameter α̃ having absolute value up to 20 is
not too large because the synapses are current-based, where sj(t) ∈ [0, 1] is not mul-
tiplied by voltage. The coefficient of variation of time between spikes is around 0.1,
indicating that the coupling and noise values are small enough to keep the neurons in
the oscillator regime.

4. Variability of individual oscillators. In a stochastic neural network, the
variability of the spike times of the distinct individual oscillators are important for a
clearer picture of the dynamics of the network. Although the collective activity of the
network is prominent in many systems, there are cases where a select sub-population
plays a significant role. This section focusses on how pulse-coupling changes the vari-
ability of spiking, and in particular how variability depends on intrinsic heterogeneity
(i.e., PRC type) in a coupled network.

Figure 4.1 shows the variance of the spike times as a function of coupling for the
same phase oscillator networks described previously in section 2, with various values
of β (duration of pulse), σ, and c. Interestingly, type I PRCs have larger V ar(T ) with
inhibitory pulse-coupling than type II PRCs, but with excitatory pulse-coupling type
II PRCs have larger V ar(T ) than Type I. This effect is robust to parameter changes
so long as the overall coupling and noise are weak. Since this phenomena holds for
c = 0 (Figure 4.1C and D), we focus on this case because it is still telling and the
model is amenable to analysis.

Assuming c = 0 and the same assumptions as in section 3 where the effect of pulse-
coupling is approximated by 〈〈P 〉〉, the individual neural obeys a simpler stochastic
differential equation (equation (A.1)). The distribution of the time between spikes is
governed by a modified Fokker-Planck equation [50], and the relevant statistics can be
calculated with other methods (see [55] for some techniques). However, these meth-
ods are generally numerical and may not be as insightful as an asymptotic formula.
Thus, the weak noise and weak coupling assumption are evoked to derive an analytic
asymptotic formula for the V ar(T ) in Appendix A. V ar(T ) is approximated to fourth
order by:

V ar(T ) ≈ σ2 + σ4E[T 2
3 ] + (ασ)2E[T 2

5 ] + 2ασ2E[T1T5].(4.1)

The various terms are defined in equation (A.16) for an arbitrary ∆ and P . The
formulas are generally complicated, but when γ = 0 (Type II) and γ = π/2 (Type
I), the formula provides an analytic explanation of the observed phenomena. The
formula for these two canonical PRCs are:

E[T 2
3 ] =

{

π2 : Type II
π2/3 : Type I

(4.2)

E[T 2
5 ] =

{

89/12
16π2

27 + 1295
324

≈
{

7.42 : Type II
9.85 : Type I

(4.3)

E[T1T5] =

{

1
2 − 11

√
2

12π
1
2 − 11

√
6

18

≈
{

0.087 : γ = 0,Type II
−1 : γ = π/2,Type I

(4.4)

These terms have varying effects on the variance: the top term E[T 2
3 ] increases the

variance independent of α with type II being 3 times larger than type I, although
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Fig. 4.1. Simulations of phase oscillator networks robustly show differences in variability for
Type I and Type II PRCs

(A) β = 50, σ = 0.2, c = 0.25. (B) β = 5, σ = 0.2, c = 0.35. (C) β = 50, σ = 0.2,
c = 0. (D) β = 5, σ = 0.3, c = 0. With all of these parameter sets, even when c = 0,
type I has larger variability with inhibitory coupling but type II has larger variability
with excitatory coupling.

this is a fourth order term. The middle fourth order term E[T 2
5 ] increases V ar(T )

equally for excitatory and inhibitory coupling (α2) with type II being slightly smaller
than type I. Finally, the signs (+/−) of the cross term E[T1T5] explains the difference
between excitatory (α > 0) and inhibitory (α < 0) coupling: for type II, inhibitory
coupling decreases the variance while it increases it for type I. Analogously, excitatory
coupling can increase the variance for type II but decreases it for type I. Note that
this is the next order term beyond σ2, which in general is σ2‖∆‖22 – recall that the
L2-norm of the PRC was set to 1.

4.1. Comparison to full oscillator models. The variance of the individual
spikes in the same Morris-Lecar network considered in section 3.2 were analyzed to
see if these quantities exhibited the same qualitative behavior as the reduced phase
models in Figure 4.1. The results are in Figure 4.2A, and it obviously does not follow
the same trend in the phase models (Figure 4.1). There seems to be a general decrease
in the variance as coupling strength increases, but this does not hold for the orange
curve which has a PRC with a large positive region (the red curve also shows a slight
increase for some coupling values).

There could be several reasons for the discrepancy between the reduced phase
models and Morris-Lecar model with regards to variability of spike times. There
are many hypotheses that need to be satisfied, ranging from the phase reduction
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Fig. 4.2. Discrepancies of phase model results with the Morris-Lecar network

(A) How the variability changes as a function of coupling is complicated in the Morris-
Lecar network. Although there seems to be general trend of decreasing variability as
coupling increases from inhibitory to excitatory, this is not always the case. Color-code
and parameters are the same as in Figure 3.5. (B) Analysis of the phase oscillator
network shows that the cross term E[T1T5] as a function of a has to have almost
sinusoidal PRC for the variance to increase with coupling, otherwise the variance
decreases with coupling. The critical point γ∗ where E[T1T5] = 0 is the threshold
that whenever γ ∈ (γ∗, π/2), the asymptotic theory suggests variability decreases
with α.

hypotheses to the setup of the coupled network. A notable hypothesis is that the
effect of coupling is approximated by average pulses that does not take into account
correlation, and that the intrinsic dynamics (i.e., PRC) are the predominate factor for
the differences in V ar(T ). The asymptotic approximation of V ar(T ) has many terms
that each vary depending on the PRCs in the Morris-Lecar system, so that there
is not an orderly categorization of the variance of T . We argue that observing the
phenomena described in Figure 4.1 where the cross term E[T1T5] is the main driver in
differences for Type I and Type II, actually poses strict conditions on the PRC. The
benefit of the analysis in equation (4.4) is that we can determine the critical value γ∗

where E[T1T5] vanishes, and it turns out that it is small γ∗ ≈ 0.016 (Figure 4.2B).
Thus, the PRC has to be almost purely sinusoidal in order to observe an increase in
the variability as coupling increases with type II like PRCs. The lower panel in Figure
4.2B shows the corresponding PRC to γ∗ is almost indistinguishable with the purely
sinusoidal PRC by visual inspection. This analysis shows in a clear way how only very
specialized PRCs (in the phase oscillator network, not the Morris-Lecar system) leads
to the observed phenomena of increased variability as α increases. Indeed, further
inspection of Figure 4.1 shows that although many neurons have the described effect,
they all have PRCs that are nearly sinusoidal (i.e., blue curves and uniform in color).
Furthermore, there is a remarkable difference in the absolute values of the cross terms
in equation (4.4); they defer by an order of magnitude suggesting non-robustness with
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type II PRCs.

Other simulations of full oscillator models did not exhibit the orderly variability
depending on PRC type that was observed in the phase oscillators. Many networks
were considered, including a large population of just two distinct Morris-Lecar oscil-
lators with type I and type II PRCs with the same frequencies, various noise levels
σ̃ and background correlation c, and various synaptic dynamics (results not shown).
A variety of type II PRCs were considered in these networks and still the effect was
not observed; type II PRCs where there was bistability between oscillations and a
stable rest state were naturally excluded because the high variability there is due to
other reasons. Moreover, even in a Hodgkin Huxley neuron receiving noisy and ar-
tificial pulse inputs 〈〈P 〉〉, where the PRC has a relatively large negative region, the
effect was not observed. We conclude that although reduced phase models have been
successfully used in many situations to describe larger models and even real neurons,
resulting analysis of phase oscillators can be misleading if not interpreted correctly.
Specifically, we found purely sinusoidal PRCs to be misleading. We remark that the
phase oscillator models are telling because they do show a lack of robustness of the
phenomena upon closer examination.

5. Discussion. We studied a network of heterogeneous coupled noisy phase os-
cillators receiving correlated and independent noise. In any reasonable sized network
(N ≥ 3), characterizing the random behavior is intractable with probability density
or Fokker-Planck equations. We have developed and presented a pragmatic reduc-
tion method to study the pairwise synchrony of distinct pairs of neural oscillators,
assuming the conditional density of the phases is equal to the unconditional probabil-
ity density. The method utilized our previous asymptotic results of noisy oscillators
[34, 36]. The regimes where the method performed well and when it did not naturally
depends on parameters. We have demonstrated the strengths and weaknesses in two
different networks for exposition with explanations of how the underlying hypotheses
might be violated. Specifically, when the pulse slowly decayed and when the back-
ground correlation was relatively large, the method only worked well with smaller
coupling and noise values. We also studied the variability of the spike times in this
network, and found a robust ordering of this statistic that depended on PRC type,
where type I had larger variance with inhibitory pulse-coupling and type II had larger
variance with excitatory pulse-coupling. These observations were explained with an
insightful asymptotic formula.

The dynamics of coupled noisy phase oscillators are a deep an interesting area of
study in their own right. Nevertheless, we attempted to make some connections to full
oscillator models with varying levels of success. The qualitative behavior of the order
parameters of distinct pairs as coupling varied generally matched a coupled Morris-
Lecar system; namely, the range of the order parameter angles showed a stereotyped
decrease centered around 0, and the range of the magnitude increases with coupling.
The variability of the Morris-Lecar and other networks did not have the same behavior
as observed in the phase oscillators. Asymptotic analysis revealed that the conditions
on the PRC were stringent. Note that our analysis was only feasible with particular
hypotheses that may not be satisfied in a full larger dimensional oscillator model.
Recently, several authors have re-examined the phase reduction to a scalar model and
have proposed alternatives with more variables and equations when the stimuli are
not weak [56, 10, 29]. The work here does not address the case of strong stimuli, but
a proper description of the analogous neural network with moderate to strong stimuli
would be even more complicated and higher dimensional. However, such approaches
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might be better at capturing the dynamics of the full oscillator models.

There are limitations to the work presented here and potential future directions.
One avenue is to derive a better approximation for the 2-d Fokker-Planck equation for
the density of the phase differences by taking into account dependence of the phases.
There are certainly finite size effects that are not captured by a Fokker-Planck descrip-
tion [14, 8, 22] that remain to be addressed, especially in the Morris-Lecar network
we have considered. The analysis of the variance of spike times, like the reduction
method, assumes the effect of pulse coupling is well-approximated by averaging, and
in particular the intrinsic PRCs is the main explanation of the phase oscillator results.
Although not specifically addressed here, network effects can be just as important,
especially when the all-to-all coupling assumption is relaxed. We have focused on
pairwise synchrony, an instantaneous measure of co-varability. Other authors have
considered correlation of oscillators for different window sizes of observation [6, 3, 5],
a potential avenue of future work with correlated noise, coupling and heterogeneity.

Another realistic attribute that we did not consider is heterogeneous intrinsic
frequencies. This would certainly lead to augmentations of the theory developed
here. Simulations of networks with all of the previously described features and het-
erogeneous intrinsic frequencies show that the pairwise synchrony measured by or-
der parameter (O.P.) changes in complicated ways (not shown). For the parameters
we considered, the magnitude of O.P. does not vary much with frequency distribu-
tions compared to when all frequencies are identical. The O.P. angle has a wider
range when there is more disorder in the intrinsic frequencies, as one might expect.
For some distributions of frequency, the range of possible O.P. angle decreases with
coupling as when the frequencies are identical. However, for other distributions of
frequencies (more disorder), the range of possible angles can actually increase with
coupling. Thus, these preliminary results may merit further investigation. The re-
sults for the reduced phase models for the variance of the period hold in a similar way
with heterogeneous intrinsic frequencies. Simulations show that only a small subset
of nearly type II PRCs show non-monotonic behavior as coupling strength increases
(not shown). Similar analyses for this class of networks might be feasible, for example
by allowing the intrinsic frequency 1 to be randomly drawn from a distribution yet
be quenched. The effect of the pulse coupling would then have to account for random
intrinsic frequencies as well. Since this randomness is quenched, one could average
over this distribution after the calculations to access the utility of such an approach.

The interplay of heterogeneity in neural networks has been addressed by several
authors [52, 11, 46, 9, 61, 59, 32]. Work most closely related to ours is Zhou et al.
[61], who analyzed two heterogeneous uncoupled oscillators subject to correlated noise
drive. They were able to derive asymptotic formulas for the steady-state probability
density of the phase difference. Primarily based on simulations, Yim et al. [59] has
considered uncoupled heterogeneous networks receiving external noisy inputs, and
found heterogeneity can lead to de-correlation. In the context of neural coding, various
authors have proposed that heterogeneity can decrease synchrony/correlation and
generally increase information capacity [11, 46, 52] (however, see [1]). Thus, a deeper
mechanistic understanding of heterogeneity in coupled stochastic neural networks in
important and could impact other areas of computational neuroscience.

There is a large body of work concerning noisy oscillators in many areas. Many
have studied them with coupling and uncorrelated noise in different contexts ([23, 20,
25, 26], to name a few). Noisy oscillators without coupling and correlated noise have
been analyzed by [53, 42, 38], where correlated noise could lead to synchrony. Coupling
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with correlated noise can lead to a range of synchronous or asynchronous behaviors
[33, 62]. Here, we have considered a network with three combined attributes: intrinsic
heterogeneity via PRC, correlated noise, and coupling. Lai & Porter [31] similarly
had these three attributes in a Kuramoto type model with diffusive coupling where
heterogeneity was in the intrinsic frequencies. They showed how coupling or noise (see
[41] for a similar finding) could synchronize this network under suitable conditions.
The study of noisy oscillator networks is a rich area with diverse applications ranging
from neuroscience, ecology, etc.

Appendix A. Asymptotic expansion of the random spike time.

The following calculations are similar to the calculations in the appendix of [35],
except that the theory has been applied to a heterogenous pulse-coupled network.
With the same assumptions as in section 3, we approximate the effect of pulse-coupling
〈〈P 〉〉. We also assume no background correlation c = 0 to streamline the analysis (see
Section 4), so that an individual oscillator starting from Θj(0) = 0 has the following
equation:

Θj(t) = t+
σ2

2

∫ t

0

∆j(Θj(s))∆
′
j(Θj(s)) ds+α 〈〈P 〉〉

∫ t

0

∆j(Θj(s)) ds+σ

∫ t

0

∆j(Θj(s)) dW (s)

(A.1)
where dW (s) denotes integrating against white noise (i.e., stochastic integral). As-
sume σ = O(ε) and α = O(ε), and expand the last 3 terms above to get:

σ2

2

∫ t

0

∆j(Θj(s))∆
′
j(Θj(s)) ds =

σ2

2

∆2
j (t)

2
+O(ε3)

(A.2)

α 〈〈P 〉〉
∫ t

0

∆j(Θj(s)) ds = α 〈〈P 〉〉
∫ t

0

∆j(s) ds

+ασ 〈〈P 〉〉
∫ t

0

∆′
j(s)

∫ s

0

∆j(r) dW (r) ds

+α2 〈〈P 〉〉2
∫ t

0

∆′
j(s)

∫ s

0

∆j(r) dr ds+O(ε3)(A.3)

σ

∫ t

0

∆j(Θj(s)) dW (s) = σ

∫ t

0

∆j(s) dW (s)

+σ2

∫ t

0

∆′
j(s)

∫ s

0

∆j(r) dW (r) dW (s)

+ασ 〈〈P 〉〉
∫ t

0

∆′
j(s)

∫ s

0

∆j(r) dr dW (s) +O(ε3)(A.4)

Using this expansion, we collect the terms with the same coupling and/or noise coef-
ficients in equation (A.1):

Θj(t) = t+ σZ1(t) + αZ2(t) + σ2Z3(t) + α2Z4(t) + ασZ5(t) +O(ε3)(A.5)

where the random variables Zj(t) are:

Z1(t) =

∫ t

0

∆j(s) dW (s)(A.6)

Z2(t) = 〈〈P 〉〉 ∆̃j(t)(A.7)
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Z3(t) =
1

4
∆2

j +

∫ t

0

∆′
j(s)

∫ s

0

∆j(r) dW (r) dW (s)(A.8)

Z4(t) = 〈〈P 〉〉2
∫ t

0

∆′
j(s)

∫ s

0

∆j(r) dr ds(A.9)

Z5(t) = 〈〈P 〉〉
∫ t

0

∆′
j(s)

∫ s

0

∆j(r) dW (r) ds

+ 〈〈P 〉〉
∫ t

0

∆′
j(s)

∫ s

0

∆j(r) dr dW (s);(A.10)

Here, we have denoted the integral of the PRC by ∆̃j :

∆̃j(t) :=

∫ t

0

∆j(s) ds.

We want the statistics of the random period T , where Θj(T ) = 1. We thus asymp-
totically expand around T :

T = 1 + σT1 + αT2 + σ2T3 + α2T4 + ασT5 +O(ε3);(A.11)

substitute this formula into Θj(T ) = 1 and use equation (A.5) to get:

1 =
(

1+σT1+αT2+σ2T3+α2T4+ασT5

)

+σZ1(T )+αZ2(T )+σ2Z3(T )+α2Z4(T )+ασZ5(T )

(A.12)
Solving for the Tk’s entails expanding the Zk’s around 1, collecting terms with the
same coefficients while ignoring the O(ε3) terms, and solving the equation term by
term (set each term to 0 since the 1’s cancel). Each of the five coefficients in α/σ give
the following five equations:

T1 = −Z1(1)

T2 = −Z2(1)

T3 = −Z3(1)− Z ′
1(1)T1

T4 = −Z4(1)− Z ′
2(1)T2

T5 = −Z5(1)− Z ′
1(1)T2 − Z ′

2(1)T1

The mean of T , µ(T ), to second order is obtained by averaging equation (A.11)

µ(T ) = 1− α 〈〈P 〉〉
∫ 1

0

∆j(s) ds− (α 〈〈P 〉〉)2
∫ 1

0

∆2
j(s) ds+O(ε3)(A.13)

and the variance of T is

V ar(T ) = E
[

(T − µ(T ))2
]

= E
[

(

σT1 + σ2T3 + ασT5

)2
]

+O(ε5)

= σ2E[T 2
1 ] + σ4E[T 2

3 ] + (ασ)2E[T 2
5 ] + 2ασ2E[T1T5] +O(ε5)(A.14)

The terms 2σ3E[T1T3] and 2ασ3E[T3T5] vanish because odd powers of noise in the
stochastic integrals vanish: E[dW 2n−1] = 0. The only left to calculate are the ex-
pected values in equation (A.14). By Itô isometry,

E[T 2
1 ] = E

[

(
∫ 1

0

∆j(s) dW (s)

)2
]

=

∫ 1

0

(∆j(s))
2 ds = 1(A.15)
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Recall that L2-norm of the PRC is set to 1. The subsequent terms of interest are
all calculated with properties of white noise (i.e., E[dW (s)dW (r)] = δ(r − s) drds),
Fubini’s theorem, and integration by parts. The results are:

E[T 2
3 ] =

1

2

∫ 1

0

(∆′
j(s))

2

∫ s

0

(∆j(r))
2 dr ds

E[T 2
5 ] = 〈〈P 〉〉2

[

∫ 1

0

[∆′
j(s)∆̃j(s)]

2 ds− 2

∫ 1

0

∆j(s)
2∆′

j(s)∆̃j(s) ds

+2

∫ 1

0

(1− s)
[

∆′
j(s)

]2
∆j(s)∆̃j(s) ds+

∫ 1

0

∆4
j(s) ds

]

E[T1T5] = 〈〈P 〉〉
[

∫ 1

0

(1− s)
[

∆′
j(s)∆j(s)∆̃j(s) + ∆2

j(s)
]

ds

+

∫ 1

0

∆j(s)

∫ s

0

∆′
j(r)∆̃j(r) dr ds−

∫ 1

0

∆3
j (s) ds

]

(A.16)

Equations (A.14)–(A.16) are used to describe how the variance of spike time
changes with coupling.

Appendix B. Morris-Lecar Equations.

The network of N Morris-Lecar oscillators [40] with shared and unshared noise
and all-to-all synaptic (current-based) coupling have the follow equations:

C
dvj
dt

= Iapp,j − gl(vj − εl)− gkwj(vj)(vj − εk)− gcam∞(vj)(vj − εca)

+α̃
∑

k 6=j

sk(vk) + σ̃ξj(t)(B.1)

dwj

dt
= ϕj

w∞(vj)− wj(vj)

τw(vj)
(B.2)

dsj
dt

= s∞(vj)− sj(B.3)

with 〈ξj(t)〉 = 0, and 〈ξj(t)ξi(t′)〉 = δijcδ(t− t′). The auxiliary functions are:

m∞(v) = 0.5 · (1 + tanh ((v − va)/vb))

w∞(v) = 0.5 · (1 + tanh ((v − vc)/vd))

τw(v) =
1

cosh ((v − vc)/(2vd))

s∞(v) = 0.5 · (1 + tanh ((v − vs1)/vs2))

The parameter values in Figure 3.5 are: C = 20 µF
cm2 , gl = 2 mS

cm2 , εl = −60mV,

gk = 8 mS
cm2 , εk = −84mV, gca = 4 mS

cm2 , εca = 120mV. For the auxiliary functions:
va = −1.2mV, vb = 18mV, vs1 = 20mV, vs2 = 1mV.

The variables Iapp, ϕ, vc, vd were different for each of the six types of oscillators,
and had the following values (Figure 3.5: i is red, vi is blue):

Appendix C. Acknowledgments. We thank Bard Ermentrout for useful con-
versations.
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