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Abstract

Spag16 is the murine orthologue of Chlamydomonas reinhardtii PF20, a protein known to be essential to the structure and
function of the ‘‘9+2’’ axoneme. In Chlamydomonas, the PF20 gene encodes a single protein present in the central pair of the
axoneme. Loss of PF20 prevents central pair assembly/integrity and results in flagellar paralysis. Here we demonstrate that
the murine Spag16 gene encodes two proteins: 71 kDa SPAG16L, which is found in all murine cells with motile cilia or
flagella, and 35 kDa SPAG16S, representing the C terminus of SPAG16L, which is expressed only in male germ cells, and is
predominantly found in specific regions within the nucleus that also contain SC35, a known marker of nuclear speckles
enriched in pre-mRNA splicing factors. SPAG16S expression precedes expression of SPAG16L. Mice homozygous for a
knockout of SPAG16L alone are infertile, but show no abnormalities in spermatogenesis. Mice chimeric for a mutation
deleting the transcripts for both SPAG16L and SPAG16S have a profound defect in spermatogenesis. We show here that
transduction of SPAG16S into cultured dispersed mouse male germ cells and BEAS-2B human bronchial epithelial cells
increases SPAG16L expression, but has no effect on the expression of several other axoneme components. We also
demonstrate that the Spag16L promoter shows increased activity in the presence of SPAG16S. The distinct nuclear
localization of SPAG16S and its ability to modulate Spag16L mRNA expression suggest that SPAG16S plays an important role
in the gene expression machinery of male germ cells. This is a unique example of a highly conserved axonemal protein gene
that encodes two protein products with different functions.
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Introduction

The ‘‘9+2’’ axoneme, a cytoskeletal structure found in motile

cilia and flagella, is composed of nine outer doublet microtubules

linked to a central microtubule pair via dynein arms to form a

motor complex allowing coordinated force generation [1,2]. The

central pair of microtubules is critical to the integrity and the

motility of this structure. One essential element of the central

apparatus, PF20, was first identified in Chlamydomonas rheinhardtii

[3,4], and has since been shown to exhibit strong conservation

amongst a wide variety of organisms and ciliated cell types [5,6].

We have reported that the murine orthologue of PF20, Spag16,

encodes two distinct proteins: SPAG16L, which is a component of

the axoneme central apparatus [7], and SPAG16S, a smaller

protein representing the WD repeat region of SPAG16L,

identified only in male germ cells [8]. Chimeric mice carrying a

mutation that disrupted the Spag16 gene at a locus shared by

transcripts encoding both SPAG16L and SPAG16S displayed a

phenotype of haploinsufficiency; the mutant allele was never

transmitted to offspring by chimeric males [8]. Furthermore, these

mice exhibited significant germ cell loss at the round spermatid

stage. In contrast, transgenic mice homozygous for a deleterious

mutation in the SPAG16L-specific region of the gene were

infertile, with normal spermatogenesis but resulting in sperm

showing marked motility defects despite an axonemal structure

devoid of significant ultrastructural defects [9]. The deficits

observed with ablation of both SPAG16 isoforms, not accounted

for by loss of SPAG16L alone, suggest that SPAG16S may play a

critical and previously un-described role in spermatogenesis.

We show here that SPAG16S is localized to nuclear subdomains

called nuclear speckles. Nuclear speckles are non-nucleolar

domains within the nucleus that contain splicing factors as well

as transcription factors, RNA processing units, and structural

scaffold proteins (reviewed by Lamond and Spector [10]). Though
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not generally believed to be centers of active transcription, speckles

have been implicated as compartments that can provide splicing

factor contents to active transcription sites [11,12]. Speckles are

enriched in SC35, which is used as a marker for these distinct

domains. SC35 domains have been linked to the development of a

cell-type specific genomic organization and to the mapping of

distinct ‘‘euchromatic neighborhoods’’ [13]. Though nuclear

speckles have been shown to play central roles in management

of gene expression, their role in male germ cell differentiation has

not been previously reported.

Results

Identification of the 59 UTR of mouse SPAG16S
To identify the 59 UTR of Spag16S mRNA, 59 RACE was

performed with a primer located close to the 39 end of mouse

Spag16L mRNA (Fig. 1A). Two PCR products were amplified

(Fig. 1B), and each one was cloned into the pCR2.1 Topo TA vector

(Invitrogen). 10 clones of each PCR product were sequenced after

vector insertion, demonstrating that Spag16S sequence is identical to

that of Spag16L exons 11–17, with the addition of a 59 untranslated

exon, not found in Spag16L, named exon 10a (Fig. 1C). This exon

10a is located in the middle of intron 10 of the Spag16 gene,

approximately 50 kb from Spag16L exon 10 and 50 kb from

Spag16L exon 11. Sequencing results demonstrated multiple

potential transcription start sites for Spag16S transcription; the

exon is situated in a TC-rich locus that lacks a standard TATA

box (Figure S1).

Spag16S message is expressed only in the testis and male
germ cells

SPAG16L is present not only in testis, but also in other murine

tissues containing cells with a ‘‘9+2’’ axoneme structure [9,14].

Primer sets were designed to specifically amplify Spag16L (exons 2–

4) or Spag16S (exons 10a–12) (Fig. 1C). In adult mice, Spag16L

mRNA was detected in testis, brain, lung, and oviduct; however,

Spag16L mRNA was not detected in heart tissue (Fig. 1D), which

does not contain cells with motile cilia. Spag16S mRNA was

detected only in testis (Fig. 1D), and in further testing was not

detected in kidney, liver, or spleen (data not shown). Spag16S

expression also appears to be exclusive to males, rather than being

a general germ cell factor, as Spag16S mRNA was never detected

by PCR using up to 10 oocyte equivalents (data not shown).

Figure 1. The murine Spag16 gene encodes two transcripts. Spag16L is expressed in all tissues with ciliated cells, while Spag16S is expressed
only in testis. (A) 59 RACE was performed with a primer as indicated. (B) Products of 59 RACE separated on 1% agarose gel. (C) Exon map of Spag16
transcripts, unfilled box indicating untranslated exon 10a present only in Spag16S. Arrows indicate primers used to amplify specifically Spag16L or
Spag16S message. (D) Specific primer sets were used as indicated for PCR amplification of cDNA from adult mouse tissues: Testis (T), Brain (B), Lungs
(Lu), Oviduct (Ov), Heart (H).
doi:10.1371/journal.pone.0020625.g001
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Expression pattern of SPAG16S during the first wave of
spermatogenesis

RNA and protein were isolated from mouse testis at 6, 8, 12, 16,

20, 30, and 42 days after birth. cDNA was generated by RT-PCR,

and testis extracts were probed by PCR for Spag16 isoform

expression using specific primers. Spag16S mRNA was detected at

day 16, whereas Spag16L mRNA was detected later, at day 20

(Fig. 2B). Western blotting was performed as well, using a polyclonal

antibody that recognizes both isoforms of SPAG16 [8]. Consistent

with PCR results, SPAG16S protein was detected at day 16, while

SPAG16L was detected at day 20 (Fig. 2C). Additionally, both

isoforms appeared to be up-regulated at days 30 and 42, consistent

with the end of the first wave of spermatogenesis. The immuno-

reactive bands other than 71 kDa SPAG16L and 35 kDA

SPAG16S seen on days 20, 30 and 42 may represent post-

translational processing of SPAG16, including proteolytic cleavage

of SPAG16L and phosphorylation or other modifications [15].

Sub-cellular localization of SPAG16 isoforms
Cytoplasmic and nuclear fractions of adult mouse testis were

isolated, and equivalent amounts of protein from each were

probed by Western blot using the C-terminal SPAG16 antibody

that recognizes both isoforms. SPAG16L was detected abundantly

in the cytoplasm, while SPAG16S was detected in both cytoplasm

and nucleus (Fig. 3A). The cytoplasmic localization of SPAG16L is

consistent with its identified role as a structural component of the

‘‘9+2’’ axoneme [6,16,17]. In order to further characterize the

sub-cellular localization of SPAG16S, immunohistochemistry was

performed on tissue slices from adult mouse testis. Using the C-

terminal SPAG16 antibody, the strongest signal was detected from

discrete structures within the nucleus (Fig. 3B, see arrows). Protein

expression was most clearly visualized approximately halfway

through spermatogenesis, at the round spermatid stage.

A mixed population of mouse male germ cells was prepared

from adult mouse testis, and immunocytochemistry performed to

allow for single-cell imaging to compare with immunohistochem-

istry results. Consistent with previous data, the C-terminal

SPAG16 antibody produced the strongest fluorescence in discrete

sub-nuclear, non-nucleolar structures, approximately 2–6 per cell

(Fig. 4). The N-terminal SPAG16 antibody, recognizing SPAG16L

only, produced an exclusively cytoplasmic signal. Germ cells from

SPAG16L-KO mice [9] were isolated and immunolabeled as well,

demonstrating the specificity of the antibodies (Fig. 4). As in wild-

Figure 2. SPAG16 isoforms have identical conserved domains. SPAG16S appears before SPAG16L during the first wave of mouse
spermatogenesis. (A) Alignment and conserved domain analysis of SPAG16L and SPAG16S proteins. RNA (B) and protein (C) were isolated from
mouse testis at the indicated day (bottom row) after birth. (B) Specific primer sets were used to probe gene expression by PCR of cDNA. (C) Protein
samples were separated by SDS-PAGE and probed by Western blotting with a C-terminal SPAG16 antibody that recognizes both SPAG16L (71 kDa
band) and SPAG16S (35 kDa band). Additional bands are not specific.
doi:10.1371/journal.pone.0020625.g002

An Axoneme Gene Encodes a Nuclear Speckle Protein
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type germ cells, the C-terminal SPAG16 antibody produced sub-

nuclear immunolabelling, which we interpret to represent

SPAG16S, while the N-terminal antibody produced no signal, as

expected following the deletion of SPAG16L.

SPAG16S co-localizes with nuclear speckles
In order to characterize the discrete nuclear structures iden-

tified by immunohistochemical analysis of SPAG16S localization,

wild-type germ cells were co-immunolabeled with both the

C-terminal SPAG16 antibody and a monoclonal antibody

directed against SC35, a marker for nuclear speckles. SC35

and SPAG16S signals strongly overlapped (Fig. 5A). They were

determined to have a significant co-localization (Fig. 5B –

Pearson’s coefficient = 0.40). Analysis demonstrated that 79% of

SC35 signal co-localized with SPAG16S, while 44% of SPAG16S

signal co-localized with SC35; in other words, most SC35-

containing domains also contained SPAG16S, but SPAG16S had

a wider distribution as well.

Role of SPAG16S in SPAG16L expression
Given the timing of SPAG16S expression (Fig. 2B–C) and its

specific nuclear localization (Fig. 3–5), it was hypothesized that

SPAG16S might play a role in regulation of gene expression.

Mixed mouse male germ cells were isolated from testis and

cultured, with exposure to a SPAG16S-transducing adenovirus or

a control adenovirus. Following 48 hour culture, RNA was

isolated for analysis of gene expression, and several highly

conserved axoneme genes were assessed for mRNA levels. While

Spag6, Spag17, and Akap4 were unaffected, Spag16L message level

was significantly increased (Fig. 6).

SPAG16S was also shown to induce SPAG16L expression in

BEAS-2B human bronchial epithelial cells. Thiscell line does not

express SPAG16L at levels detectable by qPCR or Western

blotting (data not shown). Expression of SPAG16S was induced in

cultured BEAS-2B cells by plasmid (Fig. 7A) or adenovirus

(Fig. 7B), and primers specific for human SPAG16L were used to

measure transcript levels, which were normalized to 18S rRNA.

Figure 3. SPAG16L is in the cytoplasm of male germ cells, SPAG16S is in both the nucleus and the cytoplasm. (A) Cytoplasmic and
nuclear fractions of adult mouse testis probed by Western blot for SPAG16 (C-terminal antibody recognizing both isoforms) or markers of cytoplasm
(a-tubulin) or nucleus (Lamin B). (B) Sections of adult mouse testis immunolabeled with SPAG16 C-terminal antibody or pre-immune serum (negative
control). Arrows indicate sample nuclear regions of heightened SPAG16 antibody immunoreactivity.
doi:10.1371/journal.pone.0020625.g003

An Axoneme Gene Encodes a Nuclear Speckle Protein
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Immunocytochemistry performed with the C-terminal SPAG16

antibody confirms that SPAG16 proteins are expressed in the

transduced cells, but not in cells exposed to a control adenovirus

(Fig. 7C). Following adenoviral transduction, protein was also

isolated from cultured BEAS-2B cells, and SPAG16L was demon-

strated by Western blot to be present in cells transduced with

SPAG16S adenovirus, but not cells transduced with a control

adenovirus (Fig. 7D).

Following the observation that SPAG16L protein and mRNA

levels were increased in the presence of SPAG16S, Spag16L

promoter activity was tested as well. While other axoneme gene

promoters (Spag17, Spag6) did not show significantly altered

activity, SPAG16L promoter activity was significantly higher in

the presence of plasmid-induced SPAG16S when compared to

co-transfection with a control empty vector plasmid (Fig. 8).

In order to identify a specific region within the SPAG16L

promoter showing increased activity with SPAG16S expression,

luciferase plasmid constructs were made with progressively shorter

sequences of the SPAG16L proximal promoter, ranging from 2 kb

to 100 bp upstream of the transcription start site. Promoters

ranging from 2 kb to 200 bp upstream of the transcription start

site demonstrated significantly higher activity when co-transfected

with a SPAG16S plasmid, but a 100 bp upstream SPAG16L

promoter did not show increased activity in the presence of

SPAG16S plasmid (Fig. 9).

Discussion

Flagella and cilia are strongly conserved structures, having

maintained a highly specific structure and function throughout

eukaryotic life, from unicellular protists to mammals [18,19]. It has

been suggested that molecular structures of each component in the

axoneme are not always conserved, but protein domains within

axoneme structures are preferably conserved, allowing for overall

morphological and functional conservation [20,21]. Although the

Chlamydomonas PF20 gene encodes only one transcript, its mouse

orthologue encodes two mRNAs for two proteins, SPAG16L and

SPAG16S, each of which have conserved WD-repeat domains. To

study the expression pattern of the two mRNAs and proteins,

testicular total RNAs and proteins were isolated from mice at

different ages. Given that Spag16S harbors an untranslated exon

10a – which is not present in Spag16L – a Spag16S-specific forward

primer was designed to selectively amplify the Spag16S transcript.

Both SPAG16S mRNA and protein are expressed earlier than

Figure 4. SPAG16S shows enriched nuclear sub-localization. Mixed male germ cells from wild-type or transgenic SPAG16L-KO mice
immunolabeled with SPAG16 antibodies (red; N-terminal = SPAG16L only, C-terminal = both isoforms) and nuclear-stained with DAPI (blue).
Pre-immune serum for each antibody is included as a negative control.
doi:10.1371/journal.pone.0020625.g004
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SPAG16L message and SPAG16L protein. For both SPAG16L and

SPAG16S, mRNAs and proteins appear simultaneously

(SPAG16S at day 16, followed by SPAG16L at day 20), suggesting

that there is no translation delay [22,23]. Furthermore, Spag16L is

expressed in other tissues, such as brain and lung, all of which

contain motile cilia [16], but Spag16S is expressed only in the

mouse testis, indicating that Spag16S is a testis-specific gene

product. Moreover, Spag16S sequences identified in GenBank in a

variety of mammalian species (Mouse: NM_025728.3; Rat:

BC158602.1; Human: EF591776.1) have each been detected

from testis samples.

Testis-specific genes can be grouped into three clusters.

Homologous genes are those which are expressed only in

spermatogenic cells, but which are closely related to genes

expressed in somatic cells, and are often members of gene families.

Unique genes are those without significant similarity to any other

genes in the genome. Variant transcripts are transcribed from

genes also expressed in somatic cells but are often smaller or larger

than their somatic cell counterparts. They are the result of the

utilization of one or more alternate transcriptional start sites, splice

sites, or polyadenylation signals. Since spermatogenesis is a highly

coordinated process, different genes are expressed during the three

different stages of spermatogenesis, and gene expression can be

used as a tool to assess progression through the stages of

spermatogenesis [24–26]. There are genes that have been shown

to be expressed solely in the mitotic phase (spermatogonia) [27].

Some are expressed during the meiotic phase (spermatocyte) [28]

and others during the post-meiotic phase in spermatids [29]. Some

of these genes are expressed solely in germ cells, while others are

also expressed in somatic cells as well.

It appears that the Spag16S transcript is unique, as no related

transcripts were identified in somatic cells. It is unlikely to be a

spliced isoform of the Spag16L transcript, since it is detected in

testis of mice homozygous for a mutation that ablates the Spag16L

mRNA [9]. Similarly, evidence suggests that the SPAG16S protein

is not a processed form of SPAG16L, since the SPAG16S protein

is present in SPAG16L-deficient mice, and the expression of

SPAG16S occurs earlier than SPAG16L (Figure 2).

The mouse Spag16S 59-UTR and upstream putative promoter

region are highly conserved in rat (see Figure S1). It is worth

noting that only a single Spag16 transcript has been identified in rat

(BC158602.1), and its coding sequence corresponds to the region

Figure 5. SPAG16S co-localizes with SC35 in nuclear speckles of mouse male germ cells. (A) Mixed male germ cells immunolabeled for
SC35 (green) or SPAG16 (red), with DAPI as a nuclear marker. (B) Co-localization analysis of SC35 + SPAG16, n = 43.
doi:10.1371/journal.pone.0020625.g005

An Axoneme Gene Encodes a Nuclear Speckle Protein
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shared by both mouse Spag16 isoforms. However, the rat Spag16

mRNA includes a 410 bp 59-UTR that is nearly identical to the

mouse exon 10a plus its immediate upstream genomic sequence

[30]. Moreover the rat Spag16 transcript was identified specifically

in testis, leaving open the possibility that a Spag16L-like transcript

may be likely to exist in testis and other tissues.

Different subcellular localization of SPAG16L and SPAG16S

suggests that the two proteins play different roles. This was

subsequently confirmed by two knockout models generated

previously in our laboratory. SPAG16L regulates ciliary motility

[9], while SPAG16S controls spermatogenesis [8]. Loss of both

SPAG16 isoforms produced a non-transmitted allele and led to

significant arrest and cell death at the round spermatid stage in

chimeric male mice carrying the mutant gene. While homozygos-

ity for a SPAG16L-deletion mutation produced male infertility,

the mutant allele was transmitted in the chimeric and heterozy-

gous states, and the perturbation of spermatogenesis observed with

total SPAG16 knockout was not seen. It has been observed that

genetic mutations contributing to male infertility are often

discovered to take effect through unexpected or unexplored

cellular pathways. Thus, while Spag16 is known to be important to

the axoneme through SPAG16L, the existence of an additional

protein of unknown – and potentially more essential – function is

consistent with published findings [31].

Both SPAG16L and SPAG16S contain 7 WD-repeat domains,

semi-conserved 40 amino acid-regions ending with tryptophan-

aspartate (W-D). These regions are known to mediate protein-

protein interactions by giving rise to a ß–propeller tertiary

structure. By interacting with effector partners, WD repeat

proteins have been shown to play important roles in an extensive

variety of cellular activities, including cell division, gene transcrip-

tion, mRNA modification, and transmembrane signalling

(reviewed in [32,33]). More recently, it has been reported that

WD domains may also mediate specific processing of small RNAs

[34] and direct binding of RNAs [35], further diversifying the

range of potential roles these structures can play in eukaryotic

cells. Because SPAG16S contains no obvious nuclear localization

signals, its importation into the nucleus may be effected by it

association with other proteins including transcription factors or

nuclear speckle components.

We have demonstrated that while SPAG16L is exclusively in the

cytoplasm of male germ cells – consistent with its structural role in

the axoneme – SPAG16S is present in both nucleus and

cytoplasm, and exhibits enhanced sub-localization within the

nucleus. A monoclonal antibody directed against SC35, a

canonical marker for nuclear speckles [36,37], maps to the same

nuclear regions that show enhanced SPAG16S signal, suggesting

that SPAG16S is located in nuclear speckles of male germ cells,

Figure 6. Transduction of SPAG16S induces SPAG16L expression in cultured mouse male germ cells. Isolated adult mouse male germ
cells were infected with an adenovirus causing SPAG16S transduction or a control adenovirus. Following 48 hours in culture, RNA was isolated and
relative expression levels of indicated transcripts were measured. (* p,0.05 compared with Ad/Control).
doi:10.1371/journal.pone.0020625.g006

An Axoneme Gene Encodes a Nuclear Speckle Protein
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specifically at the round spermatid stage. Nuclear speckles are

enriched in splicing-related factors, and though they are not active

centers of transcription [10], they have been shown to associate

with active alleles [38–41].

The role of nuclear speckles has yet to be described in

mammalian spermatogenesis. Though somatic cells nuclei contain

30–50 nuclear speckles, these structures are known to condense

following inhibition of transcription [42]; thus, the presence of

only a few, larger speckles at the round spermatid stage is

consistent with the down-regulation of transcription during sperm

development. The unique nature of transcript and protein

packaging during nuclear condensation in spermatogenesis

Figure 7. SPAG16S stimulates Spag16L mRNA and SPAG16L protein expression in BEAS-2B cells. Analysis of Spag16L mRNA expression
by real-time PCR in BEAS-2B cells stably expressing SPAG16S (A) or transduced with Ad/SPAG16S (B). (C) Adenovirus-transduced BEAS-2B cells
immunolabeled with a C-terminal SPAG16 antibody. (D) Analysis of SPAG16L protein expression by Western blotting in BEAS-2B cells infected by Ad/
SPAG16S. This panel demonstrates two independent experiments. (E) Relative intensity of SPAG16L signal in panel D, normalized to Actin loading
control for each sample (relative Actin signal for Ad/Control = 47.5%, for Ad/SPAG16S = 52.5%) (* p,0.05 compared with pTarget or Ad/Control).
doi:10.1371/journal.pone.0020625.g007
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suggests the intriguing possibility that nuclear speckles may play a

distinct role in this process, and that SPAG16S may be a germ

cell-specific factor necessary to guide this process.

SPAG16L mRNA and SPAG16L protein are up-regulated in vitro

in the presence of SPAG16S, suggesting that one role of SPAG16S

involves regulation of the SPAG16L isoform. These data are

consistent with the observation that SPAG16L appears after

SPAG16S. We have also shown that the Spag16L promoter dis-

plays significantly enhanced activity in the presence of SPAG16S.

While we cannot rule out the possibility that SPAG16S is

involved in SPAG16L regulation through transcript processing

events in nuclear speckles, these data strongly suggest that a

primary responsibility of SPAG16S is activation of SPAG16L

transcription. Since SPAG16S does not have an identified DNA-

binding domain, it is unlikely to directly bind the Spag16L

promoter, but rather to effect this interaction by binding with one

or several protein partners. WD-repeat proteins are known to

interact dynamically and reversibly with multi-protein complexes,

thus identification of SPAG16S-associating structures presents a

challenging but enticing area for future study.

In summary, SPAG16S is a testis-specific protein found in

nuclear speckles that appears to regulate spermatogenesis by

controlling testis-specific target gene expression, one of the target

genes being Spag16L. Thus, the murine Spag16 gene has dual

functions. It encodes a structural protein at the axoneme, which is

essential for sperm motility, and a nuclear speckle-associated factor

that regulates Spag16L gene expression. To the best of our

knowledge, this is the first example of a gene’s evolution conferring

the ability to regulate its own, conserved products.

Materials and Methods

Ethics Statement
No human or primate subjects were used in this work. All rodent

work was approved by Virginia Commonwealth University’s

Institutional Animal Care & Use Committee (protocol permit

#AM10297) in concordance with all federal and local regulations

regarding the use of non-primate vertebrates in scientific research.

Research animals were humanely housed and care was taken to

prevent undue distress.

59 Rapid amplification of cDNA ends (59 RACE)
59 RACE was carried out to define the 59 non-translated region

sequence and transcriptional start site of the mouse Spag16S

mRNA using mouse Marathon cDNA amplication kit (Clontech)

according to the manufacturer’ instructions. Briefly, a reverse

primer was designed within the coding region of Spag16 (59-

AGAAGCCACGAAGTCACCACAGGAGT-39) and used togeth-

er with the Marathon cDNA adaptor primer to generate 59-RACE

products. The smaller product was cloned into the pCR2.1-TOPO

TA vector and subjected to DNA sequence analysis.

Figure 8. SPAG16S stimulates Spag16L promoter activity.
Relative luciferase activity, normalized to PGL3 control promoter
plasmid co-transfected with pTarget control vector plasmid. Beas-2B
cells were co-transfected with indicated promoter/PGL3 constructs
(Spag16L, Spag17, and Spag6) and either pTarget or a SPAG16S/pTarget
plasmid. Luciferase activity was measured after 48 hours to assess
promoter function. (* p,0.05 compared with pTarget control vector
co-transfection).
doi:10.1371/journal.pone.0020625.g008

Figure 9. Identification of a Spag16L promoter region activated in the presence of SPAG16S. Relative luciferase activity, normalized to
PGL3 control promoter plasmid co-transfected with pTarget control vector plasmid. Beas-2B cells were co-transfected with human Spag16L promoter
plasmids (corresponding to the indicated regions upstream of the transcription start site) and either pTarget control or SPAG16S/pTarget. All
promoter constructs except the 2100 bp promoter demonstrated significantly increased activity in the presence of SPAG16S co-transfection.
(* p,0.05 compared with pTarget co-transfection for a given promoter).
doi:10.1371/journal.pone.0020625.g009
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Conserved domain analysis
Mouse SPAG16S (NP_080004.1) and SPAG16L (NP_083436.2)

protein sequences were analyzed using NCBI Conserved Domains

tool [43,44].

Antibodies
SPAG16-specific antibodies directed against the common

C-terminus (SPAG16L amino acids 330–639) and the

SPAG16L-specific N-terminus (amino acids 1–212) have been

previously described [7,8]. a-tubulin (cytoplasmic marker) and

Lamin B (nuclear marker) were from Santa Cruz Biotechnology.

SC35 was purchased from Sigma-Aldrich.

Microscopy and colocalization analysis
Confocal laser scanning microscopy was performed using a

Leica TCS-SP2 AOBS (Leica Microsystems). Colocalization

calculations were performed using Volocity Quantitation software

(Perkin-Elmer).

Mixed germ cell preparation
A male adult mouse was anesthetized and euthanized, and the

testis decapsulated and placed in 5 mL PBS. Collagenase IV

(Sigma-Aldrich) was added to a final concentration of 0.5 mg/mL

and DNase I (Sigma-Aldrich) to a final concentration of 1.0 mg/

mL. Testis solution was incubated 30 min at 32uC to dissociate

cells, then centrifuged 5 min at 1000 rpm. Cells were fixed by

15 min incubation in 1% paraformaldehyde/PBS at room

temperature, then washed three times with PBS. Prior to plating,

cells were re-suspended in 12.5 mL PBS and 50 mL of cell

suspension was spread on SuperFrost/Plus microscope slides

(Fisher Scientific) and allowed to air-dry. Slides were

used immediately for immunocytochemistry or stored at 280uC
until use.

Cell fractionation into nuclei and cytoplasm
Freshly isolated mouse male germ cells (see germ cell slide

preparation protocol) were separated into nuclear and cytoplasmic

fractions using a Nuclear/Cytosol Fractionation Kit (BioLine, Inc.)

per manufacturer’s instructions.

Western blotting analysis
Equal amounts of protein (50 mg/lane) were heated to 95uC for

10 minutes in 46sample buffer, loaded onto 10% sodium dodecyl

sulfate-polyacrylamide gels, electrophoretically separated, and

transferred to PVDF membranes. The membranes were blocked

and then incubated with primary antibody at 4uC overnight. After

being washed, the blots were incubated appropriate HRP-

conjugated secondary antibody (GE Healthcare UK) for 1 hour

at room temperature. After washing, protein was detected with

Super Signal Chemiluminescent Substrate (Pierce). Densitometry

performed using ImageJ [45].

Immunocytochemistry and immunohistochemistry
Slides were first blocked 1 hour at room temperature with 10%

goat serum/PBS. Following overnight incubation with primary

antibody (diluted 1:100–300 in blocking medium) at 4u C, slides

were washed with PBS and incubated 1 hour at room temperature

with Alex 488-conjugated anti-mouse IgG secondary antibody

(1:500; Jackson ImmunoResearch Laboratories) or Cy3-conjugated

anti-rabbit IgG secondary antibody (1:1000; Jackson ImmunoR-

esearch Laboratories). Following secondary antibody incubation,

slides were washed in PBS and sealed using VectaMount with DAPI

(Vector Laboratories).

Generation of adenovirus to express SPAG16S
Adenovirus expressing SPAG16S (AdSpag16s) was generated

with AdEasyTM Adenoviral Vector System (Stratagene) following

the instruction manual. Briefly, mouse Spag16S cDNA was

subcloned into adenovirus shuttle vector pShuttle-CMV and the

cDNA was transferred into pAdEasy-1 virus genome by means of

homologous recombination in an adenovirus packaging cell line

HEK-293 cells (ATCC; Manassas, VA). The expression of

SPAG16S was tested with western blotting using proteins from

COS-1 cells (ATCC) and BEAS-2B cells (ATCC) infected with

AdSpag16S or control Ad virus. The AdSpag16S and control Ad

virus were amplified and titered in the Macromolecule Core

Facility of Virginia Commonwealth University.

Generation of plasmid to express SPAG16S
Mouse testis cDNA was used as a template to amplify Spag16S

sequence by PCR. Amplified PCR product was cloned in a

pCR2.1 Topo TA vector for sequencing, then released by

restriction enzyme digestion and ligated in a pTarget vector.

Primers used: Forward (BamHI): 59-GGATCCCCTGTAGA-

TATGCAACCAGATCC-39; Reverse (SalI): 59-GTCGAC

GCTGATCAGATCCACAACCGAATG-39.

RT-PCR and real-time PCR
Total RNA was isolated from cultured cells and indicated tissues

with Trizol (Life Technologies, Inc., Grand Island, N.Y.), the

RNA was reversed transcribed, and the cDNAs were used for RT-

PCR or real-time PCR.

For real-time PCR, cDNAs from BEAS-2B cells transfected with

pcDNA3 or Spag16S/pcDNA3 plasmids or infected with Ad-

Spag16S or control Ad virus were utilized for PCR. Primers were

designed for detection of human SPAG16L using the software from

GeneScript Corporation (http://www.genscript.com/). Real-time

PCR reactions were carried out using the 26SYBR green master

mix (BioRad). Akap4, Spag17, and Spag6 primers have been

previously reported [46].

(human) SPAG16L – Forward: 59-TTCAGACTGCTGCTTC-

CATC-39; Reverse: 59-TCGCCTGTACATAGATCCCA-39

(mouse) Spag16L – Forward: 59-AGCAAGCCAGAGACATC-

CAT-39; Reverse: 59-CCAGAAATCTTCCCAACAGC-39

(mouse) Spag16S – Forward: 59-CTCTGACACAATGAGTAT-

GG-39 (exon 10a); Reverse: 59-CTACAGGAAATTCTGAAT-

CC-39 (exon 11)

18S – Forward: 59-GGCCCTGTAATTGGAATGAGTC-39;

Reverse: 59-CCAAGATCCAACTACGAGCTT-39

Luciferase promoter activity assay
Promoter plasmids were designed using a PGL3 basic vector

(Promega). For each experiment, BEAS-2B cells were co-transfected

with empty vector or promoter plasmid and a control (pTarget -

Promega) or test (SPAG16S) plasmid using Fugene 6 transfection

reagent (Roche) then cultured 48 hours. Cells were lysed using 16
passive lysis buffer according to manufacturer’s instructions

(Promega) and luciferase activity measured using freshly-prepared

reagents. Data are represented as relative fold difference from PGL3

control promoter co-transfected with control pTarget vector

plasmid.

Generation of promoter constructs for promoter function
assays

Promoter sequences were amplified by PCR from mouse DNA

and sub-cloned in a PGL3 basic vector after sequences were

confirmed by first cloning in a Topo Vector (Invitrogen) for
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sequence analysis. Primers were designed to specifically amplify

regions upstream of the transcription start site (Fig. 9). 2 kb,

1.5 kb, and 0.5 kb promoter constructs were previously generated

in our lab [46]. 0.3 kb, 0.2 kb and 0.1 kb promoter constructs

were generated as described using a common reverse primer (59-

CTCGAGGCTTGCAACTGCGGCCCCTCGGTGCC-39) wit

the following forward primers:

0.3 kb Spag16L –59-GGTACCCGCAAGCAAGCAAG-

CAAGCAAGCAAGC-39

0.2 kb Spag16L – 59-GGTACCGGTTCTGGGCTTC-

AGGTCTGCAGTCC-39

0.1 kb Spag16L – 59-GGTACCCGCTTGACCGGGG-

CCTTTTGGTGC-39

Statistical Analysis
Statistical analyses were performed in Microsoft Excel using a t

test.

Supporting Information

Figure S1 Mouse and Rat Spag16S putative promoter
and 59-UTR regions. Sequences of mouse and rat transcription

start sites and putative upstream promoter regions. Transcription

start sites as noted in red correspond with GenBank sequences

(mouse – NM_025728.3; rat – BC158602). Upstream genomic

regions are also as noted in GenBank (mouse – AY742710.2; rat –

NC_00508: 68851813–68853621). Alignment analysis performed

using MacVector v10.6.

(TIF)
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