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Abstract

Barrier islands are complex and dynamic systems that provide critical ecosystem services to coastal populations. Stability of
these systems is threatened by rising sea level and the potential for coastal storms to increase in frequency and intensity.
Recovery of dune-building grasses following storms is an important process that promotes topographic heterogeneity and
long-term stability of barrier islands, yet factors that drive dune recovery are poorly understood. We examined vegetation
recovery in overwash zones on two geomorphically distinct (undisturbed vs. frequently overwashed) barrier islands on the
Virginia coast, USA. We hypothesized that vegetation recovery in overwash zones would be driven primarily by
environmental characteristics, especially elevation and beach width. We sampled species composition and environmental
characteristics along a continuum of disturbance from active overwash zones to relict overwash zones and in adjacent
undisturbed environments. We compared species assemblages along the disturbance chronosequence and between islands
and we analyzed species composition data and environmental measurements with Canonical Correspondence Analysis to
link community composition with environmental characteristics. Recovering and geomorphically stable dunes were
dominated by Ammophila breviligulata Fernaud (Poaceae) on both islands while active overwash zones were dominated by
Spartina patens (Aiton) Muhl. (Poaceae) on the frequently disturbed island and bare sand on the less disturbed island.
Species composition was associated with environmental characteristics only on the frequently disturbed island (p = 0.005)
where A. breviligulata was associated with higher elevation and greater beach width. Spartina patens, the second most
abundant species, was associated with larger sediment grain size and greater sediment size distribution. On the less
frequently disturbed island, time since disturbance was the only factor that affected community composition. Thus, factors
driving the abundance of dune-building grasses and subsequent recovery of dunes varied between the two geomorphically
distinct islands.
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Introduction

Barrier islands host critically important ecosystems that provide

a number of ecosystem services to coastal communities. The

stability and function of these systems are threatened by sea-level

rise [1] and the potential for coastal storms to increase in

frequency and intensity [2,3]. Barrier islands are complex and

dynamic environments where steep environmental gradients (i.e.

high spatial variability in resources and/or stresses), frequent

disturbances and feedbacks between vegetation and topography

interact to affect both community structure and geomorphic

stability (i.e., the degree to which dune or overwash topography

maintains form throughout time) [4,5,6]. Storm overwash events,

where wave runup and storm surge combine to overtop dunes, are

particularly important in driving both community composition

and island topography [3,6,7,8,9,10]. Overwash may reduce or

temporarily eliminate vegetative cover by exposing plants in low-

elevation areas (relative to wave height) and/or areas unprotected

by dunes to severe, acute stresses such as saltwater flooding,

abrasion by water-borne sand and sand burial [4,11,12,13].

During severe storms, overwash may alter local topography by

flattening dunes, a primary source of protection for many barrier

island plants [6,7,8,9,14,15].

Because of the interactions between vegetation and topography

during disturbance and recovery, feedbacks between vegetation

and abiotic processes, like dune-building, are an important part of

ecosystem function in coastal systems [4,16]. Recovery of local
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topography after severe overwash events depends on both the

presence of dune-building grasses that trap sand and rebuild

elevation and an adequate supply of sand for dune building

[6,16,17]. On larger islands with diverse topographies, only severe

storms can overtop and/or flatten dunes. Given sufficient time

between storms, a protective dune (or dunes) may form if dune-

building species are present in adequate densities and sediment

supply is sufficient. On low-elevation, frequently disturbed islands

the frequency of overwash and/or the absence of dune building

grasses results in a lack of stable dunes, which further perpetuates a

low elevation state [4,5,10]. Many of these processes are well

documented; however, the specific mechanisms that drive

recovery and composition of plant communities, or result in

suppression of dune-building species, after overwash events have

not been adequately described.

Along the Mid-Atlantic and northeastern coast of the United

States, recovery of dunes after overwash depends largely on the

establishment of the dune-building grass Ammophila breviligulata
Fernaud (Poaceae). Commonly known as American beachgrass, A.
breviligulata is characterized by a guerilla root morphology and

high tolerance to sand burial that initiates the formation of a

continuous line of protective dunes along coastlines [18,19].

Colonization of overwash zones with A. breviligulata is a

transitory, but necessary, step in ecosystem recovery after over-

wash events [16,17]. Barrier island plants, especially species that

colonize the seaward side of islands, are exposed to a number of

harsh physical stresses such as sea spray, intense solar radiation

and blowing sand, which limit the number of species that can

inhabit this environment [11,13,20,21,22,23,24]. Ammophila
breviligulata is one of a very few species that can thrive in this

environment and are considered to be foundation species for these

systems [25]; however, a lack of dune-building grasses in some

low-lying areas suggests that other mechanisms, especially physical

drivers, are associated with A. breviligulata abundance [10].

Other species can also tolerate the harsh physical conditions that

characterize active overwash zones and presence of these species

may have a negative effect on dune-building. Some of these species

have been termed ‘‘burial-tolerant stabilizers’’, because they can

withstand sand burial like A. breviligulata and they tend to

stabilize surface sediments in active overwash zones, but they do

not trap sand to build dunes [5].

Coastal plant communities have often served as model systems

to study the relative importance of physical, geographic, and biotic

drivers of plant community assemblages. The relatively simple

structure and clear delineations among vegetation types make

coastal plant communities an ideal system to test hypotheses

related to community assemblages. As a result of steep environ-

mental gradients and visible delineations in vegetation, a niche

model has long provided the best explanation of spatial patterns of

species abundance in coastal systems [11,20,26]. More recently, a

landscape position model was described that condenses a variety of

key coastal environmental gradients into two variables—elevation

above mean sea level and distance to shoreline— to create

‘‘habitat polygons’’ [24]. Habitat polygons serve as surrogates for a

wide range of environmental variables and successfully described

the distribution of dominant species (i.e. species highest in

frequency and abundance) across a range of functional groups

on a Virginia barrier island [24]. However, it is uncertain whether

the habitat polygon for a given species represents a universal

threshold of establishment or if habitat polygons vary among

islands. Furthermore, there may be situations in which habitat

polygons result from ecogeomorphic feedbacks that alter the

landscape, such as dune-building after establishment of dune-

building grasses. For example, A. breviligulata, which frequently

inhabits low-lying, disturbed areas, actually increases elevation by

trapping sand that accretes vertically to form dunes [17,24]. Such

feedbacks complicate inferences of cause and effect between

habitat characteristics and community composition.

Our objectives were to examine variations in plant community

structure across a disturbance chronosequence of overwash

recovery on two geomorphically distinct barrier islands to

determine how vegetation recovery varies with landscape-level

island geomorphologic characteristics and local environmental

characteristics. To support these objectives, we addressed three

questions relating to community development in overwash zones:

1) How do plant communities vary among active, recovering and

relict overwash zones and adjacent, undisturbed communities? 2)

How does plant community recovery following overwash vary

between two geomorphically distinct barrier islands? and 3) How

does community composition relate to elevation, distance to

shoreline, beach width and sediment characteristics? While we

addressed these questions for the whole community, we give

additional attention to two common dune species—A. breviligu-
lata and Spartina patens (Aiton) Muhl. (Poaceae)—that have

previously been shown to have important effects on dune building.

We hypothesized that in overwash zones vegetation recovery,

including recovery of A. breviligulata, would follow a predictable

trajectory on both islands depending on environmental charac-

teristics, especially elevation and distance to shoreline. These

results contribute to our understanding of the relative importance

of time since overwash, local environmental parameters and island

geomorphology in the recovery of plant communities and recovery

of dunes in storm overwash zones.

Methods

Study site
Our study area was located on the Eastern Shore of Virginia,

which represents the southern end of the Delmarva Peninsula

between the Chesapeake Bay and Atlantic Ocean on the east coast

of the United States. The Virginia Coast Reserve (VCR), a

National Science Foundation funded Long-Term Ecological

Research site (owned and managed by The Nature Conservancy)

includes a chain of barrier islands that vary in size, shape,

disturbance regime and vegetation coverage. Access to field sites

was made possible by The Nature Conservancy (Lat. 37.417 N,

Lon. 75.686 W) and U.S. Fish and Wildlife Services (Lat. 37.737

N, Lon. 75.563 W). No endangered or protected species were

involved in the study. We focused on two islands that serve as end

members in terms of island geomorphology (i.e. size, elevation,

topographic complexity and disturbance history) within the

Virginia barrier island system (Fig. 1, Table 1). Hog Island (Lat.

37.417 N, Lon. 75.686 W) is the larger, higher, and less frequently

disturbed of the two islands. It is characterized by a series of shore-

parallel dune ridges dominated by a mix of annual grasses and

separated by dense shrub thickets [27,28]. Mesic sites in the

interior of the island are dominated by dense thickets of the

evergreen, nitrogen-fixing shrub Morella cerifera L. Small

(Myricaceae) while low elevation areas of the island interior are

characterized by large areas of open water and freshwater marshes

dominated by Typha latifolia L. (Typhaceae) and Phragmites
australis (Cav.) Trin. Ex Steud. (Poaceae). Active overwash zones

are generally limited to the first line of dunes with the exception of

one large overwash zone near the center of the island, which may

flood the island interior during strong tropical storms or intense

Nor’easters. In comparison, Metompkin Island (Lat. 37.737 N,

Lon. 75.563 W) is a smaller island dominated by relatively

homogenous, low-lying topography at the northern end, whereas

Vegetation Recovery after Overwash
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Figure 1. The Eastern Shore of Virginia, part of the DelMarVa peninsula on the Atlantic Coast of the Virginia, USA. Hog and
Metompkin Islands represent end-members within the barrier island chain in regards to geomorphology, disturbance and vegetation. Hog Island has
greater topographic complexity, is less frequently disturbed and has more plant cover and diversity than Metompkin Island.
doi:10.1371/journal.pone.0104747.g001
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the southern end is characterized by discontinuous dunes.

Vegetation is also homogenous and dominated by grasses with

little woody diversity, most of which is located on the widest area

of the island near the southern end. The simple topography and

low elevation of this island make it prone to extensive overwash

even during mild tropical storms and/or Nor’easters [29].

Overwash identification
The study site had not been affected by a major hurricane since

2003 (Hurricane Isabel); however, several less intense storms

impacted the region more recently including Tropical Storm

Ernesto (2006), Tropical Storm Hannah (2008) and a particularly

severe Nor’easter in Autumn 2009. The 2009 Nor’easter caused

storm surges comparable to the record surges observed during

Hurricane Isabel and had major impacts on dunes on both study

islands. Specific overwash study sites were identified through

ground surveys in spring 2010. Sites were classified as ‘‘active

overwash’’ if they lacked relief and exhibited evidence of recent

overwash such as lack of vegetation, wave-associated dune loss

and/or hydraulic sand deposition within the past 1–2 years.

Recently disturbed sites that showed some dune accretion since the

most recent overwash event were classified ‘‘intermediate over-

wash’’. Sites exhibiting evidence of overwash in the past several

decades (e.g. shell armoring), but which were protected from wave

action by seaward dunes at the time of the field survey were

classified as ‘‘relict overwash’’. In addition to sampling overwash

sites, adjacent communities were sampled to determine species

composition under undisturbed conditions. These sites were

classified as either dune or swale based on elevation relative to

the surrounding topography. Hereafter, these five environmental

types will be referenced: active, intermediate, relict, dune, and

swale. On Hog Island, six morphologically representative sites

were identified: one large, active site; two intermediate sites; one

relict site and two geomorphically stable sites with both dunes and

swales. On Metompkin Island, six sites were identified: four active

sites, one intermediate site, and one geomorphically stable site.

Relict sites were not present on Metompkin Island. For each site,

the physical extent of the overwash zone was estimated visually by

walking the boundary of the overwash zone using indicators of

overwash, such as hydraulic sand deposition (for recent overwash

events), limited vegetation cover, presence of standing dead

vegetation, consistently low topography and/or the presence of

shells.

Field sampling
During summer 2010, overwash community composition was

sampled by visually estimating percent cover within quadrats

along shore-perpendicular and alongshore transects. Many over-

wash zones were roughly semi-circular in shape (elongated in the

cross-shore dimension) having a narrow neck extending landward

from the beach toward the back-barrier. To best capture

variations within this geometry, we established one shore-

perpendicular transect (SPT) and two alongshore transects (AST)

at each site. The SPTs extended from the toe of the foredune (or if

dunes were absent from where the foredune toe was expected to

be) to the first undisturbed community beyond the overwash zone.

SPTs varied in length from 70 to 140 m. At each site, the ASTs

intersected the SPT at 5 m and at the mid-point of the SPT,

extending 50 m to each side of the SPT or until the first

undisturbed habitat was reached. Together, the ASTs capture

additional shore-perpendicular variation near the dune breach

point and in the middle of the fan portion of the overwash. The

adjacent undisturbed areas included grassy swales, intact dunes,

mud flats, marshes and shrub thickets. All transects included one

sampling point in adjacent undisturbed communities. Along each

transect, vegetation was sampled every 5 m using a 0.25 m2

quadrat (0.560.5 m). Vegetation at each point was identified to

the lowest possible taxonomic unit in the field according to

[30,31]. When positive field identification was uncertain, reference

samples were collected and identified later according to [32].

Percent cover of each species was quantified visually to the nearest

5%, except for individuals of small plants which were recorded as

1% cover. No endangered or protected species were involved in

the study. A list of species, with full scientific nomenclature can be

found in Table 2.

The habitat type of each sampling point was classified as noted

above. Location and elevation of each point were recorded with a

high-resolution GPS (R7/8 GNSS, Trimble Navigation Limited,

post-processed to cm-scale accuracy using OPUS). Location of the

shoreline, defined here as the high water mark during a high tide,

was also recorded for each site and distance to shoreline was

determined for each sampling point. Sediment samples were

collected every 10 m (every other sample point) on both the cross-

and alongshore transects. After drying and sieving through a

2 mm sieve to remove shells, organic matter was removed using

loss on ignition (LOI). Each sample was then analyzed in sets of 3

sub-samples using an LS 13 320 laser diffraction particle size

analyzer (Beckman Coulter). The volume-percent size distribu-

tions of the sub-samples were analyzed to obtain the mean and

standard deviation (which serves as a measure of sorting) for each

site sampled.

Data analysis
A total of 697 quadrats were sampled across both islands with

327 and 370 points on Hog and Metompkin islands, respectively.

Species-sample curves were constructed to verify that the number

of plots in each habitat type was adequate to represent species

richness (i.e. the number of species present) for that habitat and

island. Diversity was quantified for each habitat/island combina-

tion using the Shannon-Wiener Index applied to percent cover.

Table 1. Physical characteristics of two islands on the Atlantic Coast of Virginia, USA.

Island Area (ha) Length (km) Width (km) Mean Elevation (m) Max Elevation (m)

Min Max

Hog 750 12.1 0.3 1.8 2.3 (0.6) 5.8

Metompkin 295 10.4 0.2 0.7 1.7 (0.7) 4.7

Hog Island is the more topographically complex island with up to four dune ridges of varying heights and wider beaches whereas Metompkin Island has a single dune
or no dune and narrow, gently sloping beaches. Mean elevation (6 one standard deviation) includes data only from measurements collected during the current study
and is limited to the primary dune and first swale. Max elevation for each island was derived from LiDAR imagery.
doi:10.1371/journal.pone.0104747.t001
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To avoid pseudoreplication, spatial autocorrelation among sample

points along each transect was tested by calculating Moran’s I
using distance and percent cover data. Although vegetation,

especially coastal vegetation, often shows strong tendencies toward

spatial autocorrelation, none was detected within these sites, likely

due to the sparse cover, high habitat heterogeneity, relatively high

species richness, and tendency for common species to occur

among all plots. More importantly, this allowed each sample

quadrat to be treated as an independent unit for the remainder of

the analysis. Significant differences in percent cover among sites

and among islands were determined by two-way ANOVA with

Tukey post-hoc comparisons. Because relict overwash sites were

absent on Metompkin Island, they were excluded from this

analysis.

Canonical correspondence analysis (CCA) determined the

potential influence of environmental characteristics on community

structure [33]. The environment input matrix included elevation

above mean sea-level, distance to the high water mark, beach

width (defined as distance between dune toe and high water mark),

mean grain size and the standard deviation of sand grain size at

each sampling point. The community input matrix consisted of

percent cover for each species in each quadrat. Row and column

scores were standardized by centering and normalizing. Scaling

was optimized by ‘‘site’’ (sensu PC-Ord) and scores were derived

from ‘‘site attributes’’ for these ordinations. A Monte-Carlo test on

Eigenvalues with 1000 iterations determined the significance of the

relationship between matrices. Percentage of variation in commu-

nity structure explained by each ordination axis was determined

from a ratio of the axis Eigenvalue and the total variance [33]. The

strength of relationship between each ordination axes and

environmental variables are reported using the intraset correla-

tions [33]. Separate analyses were performed for each island to

examine island-specific associations between vegetation and

environmental characteristics. A joint ordination was also

performed to compare habitat classifications between islands.

Scaling was optimized by species and axis scores were derived

from species for the joint ordination. All ordinations were

performed in PC-Ord Version 5 (MJM Software Design,

Gleneden Beach, OR, USA). All data used herein are available

on the VCR website at http://www.vcrlter.virginia.edu/home1/

dataCatalog and can best be found using the dataset ID numbers

VCR12186 through VCR12189.

Results

We found a total of 29 species across all sites with the most

common families being Poaceae (nine species) and Asteraceae

(seven species) (Table 2). All but two species (Morella cerifera and

Iva frutescens) were herbaceous (Table 2). Plant cover and

diversity varied significantly along the disturbance chronosequence

on both islands (Tables 3). On Hog Island, active overwash zones

had the lowest cover and lowest diversity of all habitat types. All

other habitats on Hog Island had ,10 times more cover and at

least twice the number of species as found in active sites (Table 3).

On Metompkin Island, cover was also lowest in active sites but

diversity in active sites was similar to diversity in intermediate and

swale sites and higher than diversity on dunes. Dunes on

Metompkin Island had the lowest species diversity of any habitat

classification on either island (Table 3). In comparing the two

islands, mean cover of all points was significantly higher (p,0.001,

F = 7.059) on Hog Island than on Metompkin Island. On Hog

Island, 23% of points sampled were bare sand and on Metompkin

Island 46% of all sampled points were bare sand. Bare sand points

were primarily located in active overwash zones on both islands.

When bare points were excluded, mean cover was also signifi-

cantly higher on Hog Island at 11.060.6% versus 9.060.5% on

Metompkin Island (p = 0.010, F = 2.163) but the difference was

smaller. Hog Island also had higher species richness with 25

species versus 16 species on Metompkin Island, and Hog Island

had higher overall species diversity (Table 3).

Ammophila breviligulata and S. patens were the most and third

most abundant species, respectively, across all sites. Panicum
amarum Elliott was also common on dunes and was the second

most abundant species overall on both islands. When comparing

cover of these species among habitat types, a typical pattern of A.
breviligulata growth and dune recovery was observed on Hog

Island—active overwash zones were dominated by bare sand, A.
breviligulata was most abundant in active and intermediate

overwash zones and on intact dunes, and S. patens was most

abundant in low-elevation swales and relict overwash zones (Fig. 2

and Fig. 3). On Metompkin Island, active overwash zones were

dominated either by bare sand or by sparse cover of S. patens.
Although S. patens was the dominant species in active overwash

zones, it was much less abundant overall on Metompkin Island

and it was completely absent from dunes (Fig. 3). Ammophila
breviligulata was the dominant species (i.e. highest frequency and

abundance) on dunes (Fig. 3).

Table 3. Summary of community characteristics for overwash zones and adjacent undisturbed dune and swale environments on
two barrier islands along the Atlantic Coast of Virginia, USA.

Hog Island Metompkin Island

Habitat Species richness Diversity (H9) Cover (%) Species richness Diversity (H9) Cover (%)

Active 6 0.60 1.0 (0.3) a, * 10 0.76 1.9 (0.3) a, *

Intermediate 17 1.01 12.4 (1.3) c, * 11 0.84 8.9 (1.4) b, c, *

Dune 17 0.84 9.7 (0.7) b, * 6 0.42 7.2 (0.9) b, *

Swale 16 1.01 9.7 (1.2) b 11 0.66 10.6 (0.9) c

Relict 13 0.86 10.2 (1.5) – – –

All Sites 25 1.05 8.4 (0.5)* 16 0.90 4.2 (0.3)*

Species richness and diversity (Shannon Index, H9) values are calculated across all sampling quadrats within each habitat class. Cover is calculated as the mean (6
standard error) for all sampling quadrats for a given class. An * denotes a significant difference in percent cover between similar habitats on the two islands. Lowercase
letters denote significant differences among habitat types on the same island.
doi:10.1371/journal.pone.0104747.t003
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Environmental characteristics did not explain a significant

amount of variation in community structure on Hog Island

(p = 0.156 for Axis 1). Environment did explain a small, but

significant amount of variation in community structure on

Metompkin Island (Fig. 3) where Axis 1 explained 10.0% of the

variation in community structure (p = 0.005) and Axis 2 explained

an additional 6.5% of variation (p = 0.030). Axis 1 was negatively

associated with beach width (r = 20.544) and elevation (r = 2

0.442) and positively associated with distance to shoreline

(r = 0.432). Axis 2 was associated with sediment characteristics

including mean grain size (r = 20.918) and grain size distribution

(r = 20.809) (Fig. 4). When species ordination scores were plotted

as mean values based on a priori habitat classifications (Fig. 5), all

habitat classifications were relatively similar on Hog Island.

However, habitat classifications on Metompkin Island diverged

substantially, indicating greater variability in community structure

on Metompkin Island than on Hog Island. Only dune sites

exhibited any similarity between the two islands, likely because of

the importance of A. breviligulata in dune sites on both islands

(Fig. 5).

Figure 2. Rank abundance curves for five habitat types across a disturbance gradient and all samples on Hog Island, Virginia, USA.
Ranks for Ammophila breviligulata (AB) and Spartina patens (SP) are noted on each panel. ‘‘Active’’ sites were recently overwashed while
‘‘intermediate’’ sites showed evidence of recent dune building after disturbance. ‘‘Relict’’ sites had historical evidence of overwash but are currently
stable. ‘‘Dune’’ and ‘‘swale’’ sites are undisturbed habitats adjacent to overwash zones.
doi:10.1371/journal.pone.0104747.g002
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Discussion

Differences in vegetation recovery among sites and between

islands were not simply the result of variations in environmental

characteristics that affect plant physiological tolerances. Rather,

recovery of plant communities on barrier islands after storm

overwash, and subsequent recovery of dunes, is a complex process

that integrates site disturbance history (i.e. time since overwash

and overwash frequency), island geomorphology, and the effects of

local environmental characteristics. On Hog Island—the more

geomorphically stable of the two islands—we observed a typical

trajectory of vegetation establishment and dune recovery among

overwash zones of varying ages [16,17,21] where A. breviligulata
was the most abundant species in active overwash zones and

intermediate overwash zones and the second most abundant

species on dunes. Undisturbed swales were dominated by S. patens
while relict overwash zones were dominated by a variety of later

successional species that were unique to these sites. Metompkin

Figure 3. Rank abundance curves for four habitat types across a disturbance gradient and all samples on Metompkin Island,
Virginia, USA. Ranks for Ammophila breviligulata (AB) and Spartina patens (SP) are noted on each panel. Note that Metompkin Island had no relict
overwash sites. ‘‘Active’’ sites were recently overwashed while ‘‘intermediate’’ sites showed evidence of recent dune building after disturbance.
‘‘Relict’’ sites had historical evidence of overwash but are currently stable. ‘‘Dune’’ and ‘‘swale’’ sites are undisturbed habitats adjacent to overwash
zones.
doi:10.1371/journal.pone.0104747.g003
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Island—the more disturbed of the two islands— showed greater

variability among habitats and a different pattern of plant

community structure across the disturbance gradient. Dunes on

Metompkin Island were dominated by A. breviligulata; however,

the island was generally dominated by broad, low-elevation

overwash terraces (often spanning the entire width of the island)

that were dominated by S. patens.
The observed differences in species richness and species

diversity between the islands and between similar habitats on

each island suggest key differences in drivers of community

structure. For instance, Hog Island had higher species richness

than Metompkin Island overall; however, this was primarily due to

the presence of an additional habitat type (relict overwash zones)

that was not present on Metompkin Island. These sites were

inhabited by several species not found in other habitat classifica-

tions and this explains much of the difference in overall richness

between Metompkin Island and Hog Island. However, while

overwash events temporarily removed most or all vegetation and

few species can tolerate repeated overwash, species richness did

not necessarily increase with persistent lack of disturbance. For

example, five species (Cenchrus tribuloides, Dichanthelium sp.,

Ipomoea sp., Salicornia depressa and Spartina alterniflora) were

unique to study sites on Metompkin Island, and all of these unique

species were found only in active or intermediate overwash sites.

Dispersal from overwash debris deposits (wrack) is an important

source of propagules and promotes re-colonization of beach

habitats after overwash [21,34,35], and supports theories that

some level of disturbance promotes diversity [34,35,36,37].

The observed patterns of species richness and diversity in

undisturbed habitats also provide evidence for mechanisms of

vegetation recovery after overwash. The least disturbed habitats

on Hog Island (relict overwash) had the lowest species richness

among habitats on Hog Island, further indicating that a lack of

disturbance does not necessarily correlate with species richness,

particularly if overwash deposits are a major source of propagules

[34,37]. More likely, species richness is primarily a function of

dispersal [34,36,38] while cover and evenness are functions of

stressors that filter out intolerant species [21] as well as time since

disturbance. In less-disturbed habitats—such as relict overwash

sites on Hog Island—a lack of new species introductions from

overwash deposits and an increase in competitive filtering results

in lower species richness, although diversity improves because no

single species dominates, which is consistent with previous findings

[34,36,37,39].

Vegetation diversity, or a lack thereof, may also be an important

indicator of the processes driving recovery of dune-building

grasses. Dunes on Metompkin Island had the lowest diversity of

any habitat classification on either island and were dominated by

A. breviligulata (Table 3). Spartina patens was completely absent

from dune sites on Metompkin. It is unlikely that S. patens was

absent from dunes on Metompkin Island because of physiological

tolerances. Spartina patens is common on dunes on Hog Island

and may actually exclude A. breviligulata on older, less-disturbed

dunes [28,40]. Rather, the low diversity and absence of S. patens
on dunes on Metompkin Island could indicate that A. breviligulata
most easily establishes and grows to a sufficient density to build

dunes when fewer competitors are present in the immediate area,

especially the burial tolerant stabilizers [5]. Ammophila brevili-
gualata did not seem to be negatively associated with other

common dune species, especially P. amarum. Although the

extremely low cover observed in our data indicates that resource

(e.g. water and nutrients) competition is unlikely, interference may

Figure 4. Canonical correspondence analysis of species scores and environment gradients on Hog Island (left panel) and
Metompkin Island (right panel). Axes scores were derived from site attributes. ‘‘Bch_wdth’’ is the distance from the mean water line to the edge
of the foredune, ‘‘Dist’’ is the distance from the sample plot to the high tide line, ‘‘Elev’’ is elevation above mean sea level, ‘‘Mean_Grn’’ is the mean
sand particle size, and ‘‘Std_Dev’’ is a metric representing the heterogeneity of sand grain sizes at each point. Species codes: AMBR = Ammophila
breviligulata, ANSC = Andropogon scoparius, CAED = Cakile edentula, CHMA = Chamesyche maculata, CIHO = Cirsium horridulum, COCA = Conyza
canadensis, CYES = Cyperus esculentes, LESP = Lepidium sp., MOCE = Morella cerifera, PAAM = Panicum amarum, PADI = Panicum dichotiflorum,
RUAC = Rumex acetosella, SPPA = Spartina patens, SOSE = Solidago sempervirens, SCLA = Scutellaria lateriflora, TRDU = Tragopogon dubius.
doi:10.1371/journal.pone.0104747.g004
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affect establishment. In a concurrent and complementary study

focusing primarily on the geomorphic dynamics of these sites, it

was suggested that S. patens, even in small amounts, stabilizes

surface sediments in active overwash zones effectively ‘‘starving’’

A. breviligulata of sand needed to build dunes, particularly if shell

armoring is also present and acting to suppress aeolian transport

[10].

Although coastal ecosystems are typically considered to be

driven by physical gradients that directly determine species

composition based on plant physiological tolerances [21,23,24],

our results show that island geomorphology affects the relationship

between community structure and environmental characteristics

such as elevation. Our ordination analysis suggested that there was

no effect of environmental characteristics within the habitats we

sampled on Hog Island; thus, it appears that all species present in

these communities on Hog Island are adapted to the suite of

environmental variables represented within the sites sampled. The

results for Hog Island in no way suggest that abiotic stresses are

unimportant on islands in general; rather, environmental variation

in the relatively narrow strip of vegetation affected by overwash on

Hog Island may not be great enough to select among the species

sampled in this study. In comparison, a small, but significant effect

of environmental characteristics was observed on the more

frequently disturbed Metompkin Island where there was greater

variation among habitat classifications. Elevation, distance to

shoreline, beach width, sediment grain size and sediment size

distribution all had small, though significant, associations with

community structure. Spartina patens, in particular, was associ-

ated with grain size and sediment size distribution. This finding is

consistent with [41] who showed that mean grain size was an

important characteristic in driving community structure on

Mediterranean dunes. Spartina patens was also found to be a

significant indicator species of active overwash zones on

Metompkin Island [10]. Coarse, poorly sorted sand typified

Metompkin Island overall and overwash zones in particular [10],

and the relationship between sediment size characteristics and S.
patens provides some additional evidence of an association

between S. patens and active overwash zones.

Our results compare favorably to other studies of community

structure in coastal dune systems. Soil organic matter and mean

grain size were found to be the best predictors of community

structure in dune vegetation along the Mediterranean Coast where

soil parameters explained ,16% of variation [41]. Other recent

work in coastal dunes [9,42,43] has shown stronger effects of

environment on plant community parameters. However, direct

comparisons among studies are difficult because of the variety of

analytical approaches used (e.g. non-metric multidimensional

scaling (NMS), Principal Components Analysis (PCA), path

Figure 5. Mean (± SE) site scores from a joint ordination (canonical correspondence analysis) across five levels of overwash
disturbance on two Virginia barrier islands, Hog and Metompkin (Met). Relict sites were absent from Metompkin Island. Axis scores were
derived from species.
doi:10.1371/journal.pone.0104747.g005
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analysis, cluster analysis), differences in community characteristics

included in the analysis (e.g. species richness, productivity) and the

specific environmental parameters measured (e.g. storm frequen-

cy, soil organic matter). In general, these studies show that

vegetative cover and diversity increase with lower storm frequency,

reduced exposure to wind and wave energy, and increased soil

organic matter. We believe our results are the first to directly show

an association between a species (S. patens), overwash zones [4]

and parameters linked to overwash disturbance (sediment grain

size).

Several factors likely contribute to the relatively low amount of

variation explained (compared to NMS, PCA, etc.) in our study

and other studies using CCA [41]. For example, the relatively low

cover observed in dune ecosystems and the small size overwash

fans relative to other landscape units (e.g. salt marshes and dune

ridges) inherently provide fewer samples and a weaker signal than

environments having higher cover and encompassing a larger

area. Additionally, because CCA integrates between a correspon-

dence analysis ordination and a multiple regression of those scores

with environmental data to find the best fit between environmental

and community data, the amount of variation explained by CCA

(relative to other ordination techniques) is generally expected to be

lower [33]. Unlike other ordination techniques, such as NMS or

PCA, CCA ignores community structure that is not associated

with environmental variables. While this leads to lower variation

explained relative to these other ordination techniques, CCA is

better able to identify the most important environmental factors

for community data where other, more open ordination

techniques may not [33].

The dominance of S. patens in active overwash zones, the

absence of S. patens from dunes on Metompkin Island and the

association of S. patens with sediment size characteristics support

previous work suggesting that biotic feedbacks have a significant

effect on the success of dune-building grasses after storm overwash

[5]. Specifically, it has been suggested that a feedback loop,

subsequently termed the ‘‘maintainer feedback’’, may contribute

to the long-term maintenance of the low-elevation, frequently

disturbed environment which characterizes Metompkin Island

[5,10]. The absence of dune-building due to the presence of S.
patens enhances the probability of repeated disturbances [5].

Spartina patens would thus act as the ‘‘maintainer species’’ [10]

because it contributes to the maintenance of the low-elevation

overwash terraces that allow a cycle of repeated storm overwash.

Our results add to the growing body of work [4,5,10] that

demonstrate the importance of feedbacks between vegetation and

the environment in barrier island ecosystems. Shoreline changes

resulting from increases in storm frequency and rising sea level are

likely to increase in the coming decades, making barrier islands

and associated ecosystem services more vulnerable [44]. Addi-

tionally, to reduce the vulnerability of barrier islands to global

change, islands should be managed for ecosystem function rather

than maintained as physical structures [45]. However, function is

difficult, if not impossible, to generalize across systems as complex

and dynamic as barrier islands. Feedbacks between vegetation and

topography are an integral part of island function and our data

show that feedbacks need to be understood across a variety of

island morphologies, even for islands in the same chain. For much

of the U. S. East Coast, the factors that affect the density of A.
breviligulata after storms are an important component of island

recovery, and understanding what drives this process is a critical

step in learning to manage barrier islands for function.
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