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Predicting shape and stability of air–water interface on superhydrophobic
surfaces with randomly distributed, dissimilar posts

B. Emami, H. Vahedi Tafreshi,a� M. Gad-el-Hak, and G. C. Tepper
Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond,
Virginia 23284-3015, USA

�Received 28 March 2011; accepted 20 April 2011; published online 19 May 2011�

A mathematical framework developed to calculate the shape of the air–water interface and predict
the stability of a microfabricated superhydrophobic surface with randomly distributed posts of
dissimilar diameters and heights is presented. Using the Young–Laplace equation, a second-order
partial differential equation is derived and solved numerically to obtain the shape of the interface,
and to predict the critical hydrostatic pressure at which the superhydrophobicity vanishes in a
submersed surface. Two examples are given for demonstration of the method’s capabilities and
accuracy. © 2011 American Institute of Physics. �doi:10.1063/1.3590268�

A combination of hydrophobicity and microfabricated
roughness can result in a phenomenon known as superhydro-
phobicity. The drag force imparted by a moving liquid in
contact with a superhydrophobic surface is reduced because
the air entrapped inside the pores of the surface reduces the
contact between water and solid walls.1 Superhydrophobic
surfaces can, therefore, be exploited to reduce the drag force
exerted on submerged moving objects such as ships, subma-
rines, or torpedoes. Superhydrophobic surfaces are often
manufactured by microfabrication of grooves or posts on a
hydrophobic surface. When the pore space on a superhydro-
phobic surface is filled with air, the system is considered to
be at the Cassie state.2 If the hydrostatic pressure is high,
water may penetrate into the pores of the surface and replace
the air. This results in the elimination of superhydrophobic-
ity, and transition to the so called Wenzel state.3,4 The pres-
sure at which a superhydrophobic surface departs from the
Cassie state, and therefore the superhydrophobic property
vanishes, is referred to as the critical pressure in this work.

Balance of forces has previously been used to study the
meniscus shape in capillary tubes,5,6 capillary channels,7

shape of a droplet,8–12 and liquid bridge that forms when a
solid disk is withdrawn from a liquid reservoir,13 as well as
the capillary rise between vertical plates.14 Only a few stud-
ies have applied balance of forces to investigate the shape
and stability of the air–water menisci of superhydrophobic
surfaces. Extrand15,16 applied balance of forces to a superhy-
drophobic surface with ordered pillars to study the stability
of the meniscus formed by a drop on the surface. By apply-
ing balance of forces, an analytical relationship was pro-
posed by Zheng et al.17 to predict the stability of the menis-
cus formed between the cylindrical posts or square pillars on
a microfabricated superhydrophobic surface.

In the present work, we developed a method to calculate
the meniscus shape under different hydrostatic pressures of
any microfabricated superhydrophobic surface with ran-
domly distributed circular posts of dissimilar diameters,
heights, and materials. The shape of the meniscus is then
used to calculate the critical hydrostatic pressure at which the
superhydrophobicity of the surface vanishes. Note that the
existing models can only be applied to surfaces with orderly

distributed identical posts. Beyond the microfabricated supe-
rhydrophobic surfaces, the present method can potentially be
used to calculate the critical pressure of surfaces with fibrous
superhydrophobic coatings.18,19

Consider a superhydrophobic surface with a set of iden-
tical posts orderly placed next to one another. Figure 1�a�
shows a schematic of a post and the corresponding meniscus;
d, h, and L represent the post diameter, height, and the center
to center distance between two neighboring posts, respec-
tively. Note that because of the geometrical symmetry, only

a�Electronic mail: htafreshi@vcu.edu.

FIG. 1. �Color online� Schematic of �a� a post with the corresponding air–
water meniscus; �b� computational domain for a surface with ordered iden-
tical posts; and �c� computational domain for a general surface with ran-
domly distributed dissimilar posts.
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half of the meniscus is shown. A Cartesian coordinate system
is chosen such that the z-axis is along the symmetry axis of
the post, and the coordinates’ origin is on the top of the post.
By applying balance of forces on the meniscus z=F�x ,y� one
gets

P + P� − Pa − � � · n� = 0, �1�

where P is the gauge hydrostatic pressure, P� is the ambient
pressure, Pa is the pressure in the entrapped air, � is the
air–water surface tension, and n� is the surface unit normal
vector. Here, it is assumed that P��g�F�, and so the pressure
is uniform over the meniscus. Let us define a function
G�x ,y ,z��F�x ,y�−z. Obviously, G�x ,y ,z�=0 on the menis-
cus surface. It can be shown that the meniscus surface
unit normal vector, n� , can be calculated as a function of
G as n� =�G / ��G�. Hence, nx= �1+Fx

2+Fy
2�−1/2Fx, ny = �1

+Fx
2+Fy

2�−1/2Fy, and nz=−�1+Fx
2+Fy

2�−1/2, where nx, ny, and
nz are the components of n� in x, y, and z directions, respec-
tively, and Fx=�F /�x, and Fy =�F /�y.

Assuming that h� �F�, the pressure of the entrapped air
is not affected by the meniscus shape, and therefore, Pa
� P�. Equation �1� then reduces to � ·n� =�, where �= P /�.
One gets

�1 + Fy
2�Fxx + �1 + Fx

2�Fyy − 2FxFyFxy = ��1 + Fx
2 + Fy

2�3/2,

�2�

where indices x and y represent the partial derivatives with
respect to x and y, respectively. This yields a second-order
nonlinear partial differential equation �PDE� which is solved
numerically. Due to symmetry, the equation is solved in a
domain representing a quarter of one post, as shown in Fig.
1�b�. Note that � represents the whole domain, �C represent
the domain boundary at the post wall, and �� represents all
other boundaries. Equation �1� is subject to the boundary
conditions F ��C=0 and �F /�n ���=0.

Using the computed water–air interface surface, z
=F�x ,y�, one can calculate the critical hydrostatic pressure at

which the superhydrophobicity fails. It is known that the
failure occurs when the angle between the meniscus and
post, ��x ,y�, reaches the water–air–solid flat surface contact
angle.15–17 Hence, the superhydrophobicity is dependent
upon the condition ��x ,y�	
, where 
 is the water–air–
solid flat surface contact angle. Therefore, unless the condi-
tion

��F��C 	 �cot 
� �3�

holds on a surface with ordered circular posts, the superhy-
drophobicity fails.

The above formulation is valid for any superhydropho-
bic surface with randomly distributed circular posts of differ-
ent diameters, materials, and heights. Figure 1�c� shows a
computational domain with randomly distributed posts. Each
post i has a diameter di and a height hi, and is of a material
with a flat surface contact angle 
i. A boundary condition
F ��Ci

=hi−max	hj
 is applied on the post walls, 	�Cj
, and so
F=0 on the boundary of the tallest post. With the randomly
distributed posts, periodic boundary condition is applied on
all other boundaries, ��. In the same way, the above condi-
tion can be generalized as

∀i:��F��Ci
	 �cot 
i� . �4�

We used the FLEXPDE program from PDESolutions Inc. to
solve Eq. �2�, along with the above boundary conditions. All
the numerical solutions were run on a workstation with a
dual core 2.4 GHz CPU, and 4 GB of RAM; each solution
took less than a minute. Careful attention was paid to ensure
that the results of our calculations are not dependent on the
choice of the mesh size.

Unlike the work of Zheng et al.17 who assumed that the
meniscus slope does not change along the perimeter of a
post, which is an oversimplification considering the lack of
axisymmetry in an ordered post configuration, our model al-
lows the slope to adapt itself along a post perimeter based on
the relative positions of the neighboring posts.

For validation purposes, we applied our method to a mi-
crofabricated surface with circular posts with a diameter of
d=10 �m orderly located next to each other, with a center to
center distance of L=1.5d, corresponding to a gas area frac-
tion of 65%. Here we assume that posts have identical
heights. The posts are made up of a hydrophobic material
with a water–solid contact angle of 120°. Equation �2� was
solved in a computational domain similar to what was shown
in Fig. 1�b�. Figures 2�a� and 2�b� show the results for the
meniscus surface, F�x ,y�, at hydrostatic pressures of 1000 Pa
and 7000 Pa, respectively. The surface function F, and the
coordinates x and y are normalized with the post diameter. It
can be seen that the meniscus curves and dips under the
hydrostatic pressure, and that the curvature and the dip in-
crease with pressure. At a hydrostatic pressure of 7000 Pa,
the depth of the meniscus is significant, and reaches about
20% of the post diameter at the deepest point. Equation �3�
was then used to calculate the critical pressure. Figures 2�a�
and 2�b� also show the contours for the value of the meniscus
surface gradient, ��F� at the above pressures. As one would
expect, the maximum surface gradient occurs in the vicinity
of the post wall, where the meniscus slope is maximum.
Furthermore, the meniscus gradient increases with hydro-
static pressure. The surface remains superhydrophobic, if
��F� is less than �cot 
�= �cot 120°��0.58. At a hydrostatic

FIG. 2. �Color online� Calculated meniscus surfaces and gradient ���F��
contours for a superhydrophobic surface with ordered identical posts at �a�
P=1000 and �b� P=7000 Pa. The contour values are in the range of 0 to 0.6
�blue to red in the online version�. Note that due to symmetry, the results
correspond to a quarter of one post.
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pressure of 7000 Pa, the value of the meniscus gradient ap-
proaches 0.58 in the vicinity of the post. More precisely, our
calculations revealed that Eq. �3� does not hold beyond a
hydrostatic pressure of 7200 Pa, i.e., the critical pressure. It
is worth mentioning that the model of Zheng et al.17 predicts
a critical pressure of 7800 Pa for the surface considered here.

As mentioned earlier, we believe that our model is more
accurate, as it calculates the local slope of the meniscus on
the post perimeter with no simplifying assumptions.

To demonstrate capabilities of our method, we calculated
the meniscus shape and the critical pressure for a superhy-
drophobic surface with randomly distributed posts of dis-
similar diameters ranging between 8 and 12 �m, and ran-
dom heights ranging between 50 and 51 �m. The surface
gas area fraction and the flat surface contact angle were 65%
and 120°, respectively. Figures 3�a� and 3�b� present the pre-
dicted meniscus surfaces, at the hydrostatic pressures of 100
Pa and 3400 Pa, respectively. Again, the results show that the
depth of the meniscus shape, and therefore the value of the
meniscus gradient, increases with pressure �see the contours
of meniscus gradient�. Again, the maximum meniscus gradi-
ent occurs in the vicinity of the posts, and increases with
hydrostatic pressure. At a pressure of 3400 Pa the maximum
value of the meniscus gradient approaches 0.58�=�cot 
�
= �cot 120°��, and so the superhydrophobicity starts to vanish.
Note that the critical pressure of the surface with randomly
distributed posts of dissimilar heights and diameters is much
lower than that of a similar surface with ordered identical
post, as expected.20

In summary, we have developed a general method to
calculate the meniscus shape and the critical pressure of any
superhydrophobic surface with randomly distributed circular
posts of dissimilar diameters, heights, and materials. We be-
lieve that this method is more accurate than any previously
developed method and is computationally inexpensive.

Financial support from the Defense Advanced Research
Projects Agency �DARPA�, Contract No. W91CRB-10-1-
0003, is acknowledged.
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FIG. 3. �Color online� Calculated meniscus surfaces and gradient ���F��
contours for a superhydrophobic surface with randomly distributed posts of
random diameters and heights at �a� P=100 and �b� P=3400 Pa. The con-
tour values are in the range of 0 to 0.6 �blue to red in the online version�.
The zoomed in illustrations are provided for a better visualization, and cor-
respond to the location where the superhydrophobicity starts to vanish.
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