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Abstract

Aims and Hypothesis: Glucose-stimulated insulin secretion from beta-cells is a tightly regulated process that requires
calcium flux to trigger exocytosis of insulin-containing vesicles. Regulation of calcium handling in beta-cells remains
incompletely understood. Gem, a member of the RGK (Rad/Gem/Kir) family regulates calcium channel handling in other cell
types, and Gem over-expression inhibits insulin release in insulin-secreting Min6 cells. The aim of this study was to explore
the role of Gem in insulin secretion. We hypothesised that Gem may regulate insulin secretion and thus affect glucose
tolerance in vivo.

Methods: Gem-deficient mice were generated and their metabolic phenotype characterised by in vivo testing of glucose
tolerance, insulin tolerance and insulin secretion. Calcium flux was measured in isolated islets.

Results: Gem-deficient mice were glucose intolerant and had impaired glucose stimulated insulin secretion. Furthermore,
the islets of Gem-deficient mice exhibited decreased free calcium responses to glucose and the calcium oscillations seen
upon glucose stimulation were smaller in amplitude and had a reduced frequency.

Conclusions: These results suggest that Gem plays an important role in normal beta-cell function by regulation of calcium
signalling.

Citation: Gunton JE, Sisavanh M, Stokes RA, Satin J, Satin LS, et al. (2012) Mice Deficient in GEM GTPase Show Abnormal Glucose Homeostasis Due to Defects in
Beta-Cell Calcium Handling. PLoS ONE 7(6): e39462. doi:10.1371/journal.pone.0039462

Editor: Josep V. Planas, Universitat de Barcelona, Spain

Received March 21, 2012; Accepted May 21, 2012; Published June 28, 2012

Copyright: � 2012 Gunton et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Cooperative Research Centre for Asthma (CRC) (to CRM), National Institutes of Health (NIH) R01 DK46409 (to LS), R01
HL072936 (to DA and JS), R01 HL074091 (to JS). MR is the recipient of a National Health and Medical Research Council (NHMRC) RD Wright Fellowship. JEG is the
recipient of a National Health and Medical Research Council (NHMRC)/The Diabetes Australia Research Trust (DART) Career Development Award. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: j.gunton@garvan.org.au

. These authors contributed equally to this work.

Introduction

Regulated insulin secretion from pancreatic beta-cells is

required for normal glucose homeostasis. However, the molec-

ular pathways underlying glucose-stimulated insulin secretion

(GSIS) are complex and remain incompletely understood. In

order to secrete insulin in response to glucose, beta-cells must

sense a rise in extracellular glucose which in turn leads to

a stimulus-secretion coupling cascade that triggers insulin

granule exocytosis. Glucose is ‘sensed’ via an increase in the

ATP to ADP ratio [1–2]. Glucose enters the beta-cell via

facilitative glucose transporters [3–4], and is then metabolised

via the glycolytic pathway, Krebs cycle and the electron

transport chain (ETC) to generate 34–36 molecules of ATP

per molecule of metabolised glucose [5]. Increased ATP:ADP

closes K(ATP) channels, leading to membrane depolarisation

[6–8]; this in turn leads to the opening of voltage-dependent

calcium channels (VDCC) in the cell membranes, facilitating

calcium influx into the beta-cell [9–11]. Insulin granule

trafficking and insulin exocytosis in beta-cells are ATP and

calcium dependent processes [12].
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Beta-cells express a broad range of VDCC, but there is general

agreement that L-type VDCCs are the major subtype that regulate

insulin secretion [13–15], although other subtypes have been

shown to contribute [16]. Thus, deletion of the Cav1.2 isoform in

murine beta-cells decreased calcium currents by,45%, and led to

glucose intolerance in the whole animal [17]. While other VDCC

such as Cav2.3 are also involved, their role appears to be less

prominent. In human islets, L-type calcium channel blockers

impair beta-cell function [16], although other low and high voltage

calcium channel isoforms are also expressed in human islets [18]

and may also play important functional roles.

A number of interacting molecular systems, including phos-

phorylation of the pore-forming subunit of the channel by

numerous kinases or interaction with calmodulin, can modulate

VDCC activity and the resulting Ca2+ currents. Recent studies in

cardiomyocytes and neurons have highlighted a role for members

of the RGK (Rem/Rem2/Rad/Gem/Kir) subfamily of the Ras-

related small GTPases in VDCC regulation [19–20]. The RGK

subfamily differ from the majority of Ras superfamily GTP-

binding proteins in lacking a C-terminal lipidation/prenylation

membrane anchoring domain, and they are subject to transcrip-

tional regulation [19]. Recent structural studies suggest that these

proteins might not operate as guanine nucleotide-induced

molecular switches [21].

Individual RGK family members differ in their tissue distribu-

tions. However, when overexpressed, all have the ability to inhibit

Ca2+ current from voltage-dependent Ca2+ channels in a CaVb-
dependent manner [22–24]. In addition, Gem and Rad can

associate with and modulate Rho kinase b activity (ROKb), to
regulate cytoskeletal dynamics [25]. Gem was the first member of

the RGK family to be identified, and subsequent studies showed

that it is expressed in a diverse range of cell types, including

pancreatic beta-cells [22,24,26]. By over-expressing the gene in

vitro, the molecular mechanisms by which RGK family members

regulate VDCC are starting to emerge [19]. For instance,

a previous report demonstrated that Gem over-expression in

Min6 beta-cells inhibited glucose-stimulated insulin secretion,

consistent with what is known about the importance of Ca2+

channels in triggering beta-cell insulin secretion [24].

Based on the expression of Gem in pancreatic beta-cells, the

effects in Min6 cells, and the ability of Gem to regulate the

function of VDCC in neurons, we hypothesised that decreasing

Gem may improve insulin secretion and glucose tolerance in vivo.

To explore the physiological role for Gem in beta-cells and to

address the hypothesis that Gem-mediated regulation of Ca2+

channel regulates glucose-stimulated insulin release, Gem-null

mice were created and characterised.

Materials and Methods

Ethics Statement
All animal work has been conducted according to relevant

national and international guidelines. All studies were approved by

the Garvan Animal Ethics Committee.

Generation of Gem-deficient Mice
Conditional Gem-deficient (Gem2/2) mice were generated on

a C57BL/6 background by Ozgene (Perth, Australia). The

targeted deletion of Gem was achieved by disruption of exon 2

of the Gem gene (Fig. 1A, B). The targeting construct, which

contained two loxP sites flanking exon 2, was subsequently cloned

into a PGKneo vector and transfected into mouse embryonic

stems cells. Transfected embryonic stem cells were then micro-

injected into C57BL/6 blastocysts to generate chimeras that were

bred with C57BL/6 mice. To delete exon 2, Gemflox/flox mice

were bred with ‘‘Deleter’’ mice carrying the Cre transgene [27].

The Cre transgene was bred out from the line to obtain both

Gem2/2 and Gem+/+ (wild-type) mice.

Deletion of exon 2 was confirmed by sequencing Gem

transcripts from Gem+/+ and Gem2/2 cDNA (primers ATC

ACA CAG CCT CGG ACT GC and GAA TGA GAG GAG

GCT GGC CTA) using conventional approaches at SUPAMAC

(University of Sydney, Australia).

Glucose Tolerance Tests (GTT)
GTT were performed in 8 week old male mice that were fasted

overnight. Blood was collected from a tail nick at the times

indicated. An intraperitoneal (i.p.) injection of glucose (2 g/kg) was

given after the 0 minute time point. Glucose was measured as

previously reported [28].

Glucose Stimulated Insulin Secretion (GSIS)
GSIS was performed as previously reported [18] in mice aged

,12 weeks. Mice were fasted overnight. Blood was collected from

a tail nick at time 0, then mice received 3 g/kg of i.p. glucose, and

further blood samples were collected for insulin ELISA.

Insulin Tolerance Testing (ITT)
To assess whole body insulin sensitivity, insulin tolerance tests

were performed as previously reported [29] in mice at 16 weeks of

age. Mice were fasted overnight, and were given 0.5 U/kg of

insulin i.p. then blood glucose was measured at the times shown.

Isolation of Primary Murine Islets
Islets were isolated from 8–10 week old male mice as previously

described [28,30]. A Ficoll density gradient at 4uC was used to

separate the islets from other tissue.

Isolated islets were hand-picked and 15 islets were placed into

each microcentrifuge tube. Islets were washed twice and then pre-

warmed DMEM containing low glucose (1 mM glucose) was

added for 2 hours to return insulin secretion to baseline. Then

baseline insulin secretion was measured in fresh low glucose

media. The islets were then stimulated with the glucose

concentrations indicated for 15 minutes. After washing in PBS,

islets were lysed in acid ethanol for measurement of total insulin

content. Insulin was measured by ELISA (Crystal Chem) or RIA

(Lincoplex), according to the manufacturers’ protocols. ATP was

measured using the Roche bioluminescence kit as we have

previously reported [28].

Pancreas Histology and Determination of Islet Mass
Formaldehyde-fixed whole pancreata from overnight-fasted

mice were paraffin-embedded, cut into 5 mm sections and

stained with haematoxylin and eosin (H&E). Islet mass was

determined by calculating the islet area relative to total area,

using 5 mm pancreas sections that were selected to be .100 mm
apart. Sections (3–4 per pancreas) were analyzed to determine

mean relative islet area per mouse, which was then multiplied

by total pancreas weight to obtain islet mass. Proportional beta-

cell area per islet was calculated using insulin staining as

previously reported [18].

Fura-2 Measurements
Islets were incubated with 2 mmol/l Fura-2 AM and 1 ml of

2.5% pluronic acid for 30 min at 37uC. After loading, islets were
washed and incubated for 20 minutes in saline containing

115 mM NaCl, 3 mM CaCl2, 5 mM KCl, 1 mM MgCl2,

GEM Regulates Beta-Cell Function
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Figure 1. Gem deletion does not alter islet development. A) Lox-p sites were introduced on either side of exon 2 of the Gem gene. Deletion of
exon 2 was confirmed by PCR and by Southern blotting. B) GEM mRNA is highly expressed in human islets compared to other members of the RGK
family and to the house-keeping gene TATA-box binding protein (TBP). C) Islet morphology and islet mass (D) were not altered by Gem deletion in

GEM Regulates Beta-Cell Function
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10 mM HEPES and 11.1 mM glucose (pH 7.2). [Ca2+]i was

measured by placing islets in a small recording chamber on an

Olympus IX50 inverted epifluorescence microscope (Olympus,

Japan). Fura-2 was excited at 340/380 nm using a galvanometer

driven mirror that alternated a light beam from a Xenon source

(HyperSwitch; IonOptix, Milton, MA). A photomultiplier tube

collected the 510 nm emission using IonWizard software (IonOp-

tix). Solutions were perfused through the recording chamber using

either a gravity fed system, or using a peristaltic pump. Free Ca2+

levels are expressed as fura2 ratios in most cases, or the ratios were

converted to absolute concentrations using an in vitro calibration

curve, as in [31].

Results

Generation of Gem2/2 Mice
Mice with targeted disruption of the Gem gene were generated

using the Cre-loxP recombination system (Figure 1A). Deletion of

exon 2 was confirmed by Southern blot of genomic DNA (Fig. 1A,

middle section), and by RT-PCR using cDNA generated from

bone marrow (Figure 1A, right section). Sequencing of the full

length and truncated transcripts confirmed insertion of a pre-

mature stop codon in the Gem2/2 mice. The sequence encoded

by the truncated Gem2/2 deletes three of five guanine nucleotide

binding sites, the calmodulin binding site, the domains required

for interaction with ROKb, and the motif for membrane

localization [26,32]. Gem2/2 mice were viable, fertile and of

normal size and weight.

However, when heterozygotes were bred, the genotype propor-

tions for male offspring deviated from those expected (x2-test,
P,0.009). From 280 pups born to 17 breeding pairs, an elevated

proportion of Gem2/2 males (37%) was observed, with a reduced

rate of heterozygous males (40%). Wild types were 23% of male

offspring (p = ns). Mice otherwise appeared normal.

Gem is not Required for Normal Pancreatic Islet
Development
GEM and the other members of the RGK family are

expressed in human pancreatic islets, with GEM exhibiting the

highest relative level of expression (Figure 1B). As a first step in

analysing beta-cells from Gem2/2 mice, we examined tissue

sections for defects in pancreatic structure. Islet structure in

Gem2/2 mice was indistinguishable from controls (Figure 1C)

and calculated islet mass did not differ (Figure 1D). These data

indicate that Gem is not necessary for the gross development of

islets in the pancreas.

Whole pancreata were dissected after an overnight fast, and the

insulin content per pancreas was measured. Gem+/+ and Gem2/2

pancreata contained similar amounts of insulin (Figure 1E),

suggesting that insulin production and storage were not affected

by Gem deletion. Proportional beta-cell area per islet was also not

different (data not shown). In the Gem-null mice, there was

increased expression of other family members Rem and Rem2

(Figure 1F).

Gem2/2 Mice were Glucose Intolerant
Previous studies demonstrated that the forced over-expression of

Gem in the Min6 beta-cell line inhibited glucose-stimulated insulin

secretion [24]. Based on this, we hypothesised that systemic

glucose homeostasis would be improved in Gem2/2 mice.

Following an overnight fast, the fasting blood glucose levels of

8 week old null mice, were similar to wild-type controls

(Figure 2A). However, Gem2/2 mice displayed significantly

impaired glucose tolerance (p,0.005 by ANOVA for repeated

measures, Figure 2A). The mice also had significantly increased

area under the curve of GTT (p,0.002, data not shown). Glucose

tolerance testing in a separate cohort of slightly older mice (12

weeks) was also significantly abnormal (Figure 2B).

Impaired Glucose Tolerance in Gem2/2 Mice is Due to
Decreased Insulin Secretion
Impaired glucose tolerance could result from impaired insulin

production, impaired glucose-stimulated secretion (GSIS) or

increased insulin resistance in liver and muscle. We hypothesised

that the defect would be in GSIS since Gem is highly expressed in

beta-cells but has not been reported to be expressed in peripheral

insulin sensitive tissues. In addition, islet morphology was normal

in Gem null mice.

Fasting insulin was not different in Gem2/2 mice, but post-

challenge levels of insulin were significantly reduced compared

to controls (Figure 2C). First phase and second phase insulin

release were both significantly affected in vivo. Most striking,

however, was the near complete ablation of first phase insulin

secretion in the Gem2/2 mouse, which resembles the response

of human patients with T2D who similarly lose first phase

secretion [33].

Insulin Tolerance Testing (ITT)
Although GEM has not been shown to be expressed in

peripheral, insulin-sensitive tissues [34] it was important to

determine whether the GEM nulls had altered whole body insulin

sensitivity. We found no difference in the insulin sensitivity of wild

type versus null animals whether insulin sensitivity was expressed

in terms of absolute values of glucose (Figure 2D) or as a percentage

of baseline glucose (data not shown). As shown in Figure 2C,

fasting insulin levels did not differ.

Gem2/2 Islets Exhibit Impaired Insulin Secretion in
Response to a High Glucose Challenge
To confirm that Gem mice had an islet defect, islets were

isolated for testing of GSIS ex vivo. The islets were stimulated in

vitro with 1, 5 or 25 mM D-glucose, and insulin secretion was

measured using a standard static incubation protocol. There was

no difference in insulin release at low glucose (1 mM, Figure 2E).

However, there was a trend towards lower insulin secretion at

5 mM glucose, and a ,50% reduction in insulin secretion in

response to high glucose concentrations (25 mM glucose,

Figure 2E), confirming that the secretory defect persisted in

isolated islets. The glucose stimulated increase in ATP concen-

trations was normal in Gem-null islets (Figure 2F), indicating that

a more distal defect was responsible for impaired insulin

secretion.

Ca2+ Handling by Gem2/2 Beta-cells is Impaired
In pancreatic beta-cells, insulin release is Ca2+ dependent [35].

Since Gem is able to regulate Ca2+ channel function in other

systems [24], we focused on Ca2+ as a potential mechanism

underlying impaired GSIS in Gem2/2 mice. To test intracellular

free Ca2+ handing, islets were loaded with the membrane

mice. E) Total insulin content of the pancreas was not altered by Gem deletion. Black bars indicate Gem+/+ mice, and white bars indicate Gem-
deficient (2/2) mice. Error bars indicate 61SEM.
doi:10.1371/journal.pone.0039462.g001

GEM Regulates Beta-Cell Function
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Figure 2. Gem-deficient mice were glucose intolerant. A) Eight (8) week old Gem2/2 mice had impaired glucose homeostasis on glucose
tolerance testing (GTT). B) Glucose tolerance was also significantly worse in 12 week old Gem2/2 mice. C) Glucose stimulated insulin secretion in vivo
was impaired in Gem2/2 mice. D) Whole body insulin sensitivity was un-altered in Gem2/2 mice, as indicated by insulin tolerance tests. E) Insulin
release in isolated islets was impaired in Gem2/2 mice. F) Glucose stimulated increase in ATP content was normal in Gem2/2 mice. Error bars indicate
61SEM. * = p,0.05, ** = p,0.01, *** = p,0.001.
doi:10.1371/journal.pone.0039462.g002

GEM Regulates Beta-Cell Function
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permeable dye Fura-2-AM [36]. Islets incubated in 2.8 mM

glucose after dye loading did not exhibit oscillatory activity, as

expected. Following a glucose challenge, Gem2/2 islets failed to

display the normal increase in Ca2+ concentration seen in wild

type islets (Figure 3A), and the amplitude of the Ca2+ oscillations

produced was decreased (Figure 3B). Calculated calcium concen-

tration at 11.1 mM glucose was decreased by ,50% in Gem-null

islets. Thus, the glucose-stimulated Ca2+ response of Gem2/2

islets was depressed relative to controls, which could significantly

contribute to the decreased insulin secretion seen in response to

glucose both in vivo and in vitro.

Under steady state conditions with 11.1 mM glucose, islets from

Gem+/+ mice displayed regular [Ca2+]i oscillations having a 3–5

minute period, as previously described for control islets [37]

(Figure 4A). In contrast, the [Ca2+]i oscillations of islets of Gem2/2

mice recorded under these same conditions had reduced amplitude

(Figure 4B) and frequency, with their cycle time being ,20%

longer compared to Gem+/+ islets (Figure 4C). Thus, islets from the

Gem2/2 mice had defective free Ca signaling compared to wild

type controls, which may account for their abnormal insulin

secretion.

Figure 3. Gem-deficient mice have impaired calcium flux. A) Gem+/+ islets exposed to 11.1 mM glucose establish regular calcium oscillations.
B) In contrast, islets from Gem2/2 mice have impaired oscillations. C) The calculated calcium at 11.1 mM glucose is significantly lower in Gem2/2

islets. Error bars indicate 61SEM. * = p,0.05.
doi:10.1371/journal.pone.0039462.g003

GEM Regulates Beta-Cell Function
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Discussion

The molecular pathways controlling GSIS are complex and

calcium channel regulation in pancreatic beta-cells remains

incompletely understood. In this study, we describe an important

role for the Ras-related GTPase Gem in regulating glucose

homeostasis, insulin secretion, and beta-cell calcium handling,

including altered beta-cell [Ca2+]i oscillations. Gem2/2 mice were

glucose intolerant due to their impaired insulin secretion, which is

likely to result, at least in part, from their markedly altered calcium

handling properties. More detailed studies will be needed to more

fully elucidate the contribution of particular ion channels and

channel regulatory proteins in mediating this result.

Gem belongs to the RGK family of Ras-related GTPases, which

includes Rad, Rem, and Rem2 [19]. While relatively little is

known about the physiological roles of RGK family members, all

RGK proteins are known to be capable of modulating VDCC

function [23–24], with Gem and Rad also able to regulate

cytoskeletal dynamics [32,38]. These actions may be interrelated,

as calcium has been shown to contribute to actin cytoskeletal

dynamics [39]. The conserved ability of all RGK proteins to

potently inhibit VDCCs, suggests that tissue-specific patterns of

expression contribute to the functional differences between family

members. Previous studies reported expression of Gem and Rem2

in rodent pancreatic beta-cells [22,24]. Analysis of human islets

indicate that multiple RGK family members are expressed in beta-

cells, but further expression studies are required to focus

specifically on beta-cells within the islet. Based on the dual

expression of Gem and Rem2 in beta-cells, and their shared ability

to modulate VDCC function, we speculate that there may be some

redundancy between proteins in the regulation of GSIS. In this

case, Rem2 and Rem were increased. They may partially

compensate for the lack of Gem in Gem2/2 islets, even perhaps

be deleterious, and it will be interesting to examine insulin

secretion in islets from Rem22/2 and Rem2/2 mice. Gem is

expressed during differentiation and in the adult brain, and it is

well known that the brain influences insulin secretion, especially in

the anticipatory phase before a meal. Intra-peritoneal GTTs avoid

this potential confounder, and the defect in insulin secretion

persisted in isolated islets. However, a central contribution to

glucose intolerance in these mice cannot be excluded.

The physiological function(s) of the RGK proteins remain

incompletely understood despite a growing number of in vitro

studies. The majority of this work has relied on RGK protein

overexpression, with only a few studies attempting to address the

physiological roles of endogenous RGK proteins. A growing

number of studies have examined the function of Rad protein in

the heart. Rad deletion generates mice with increased susceptibil-

ity to cardiac hypertrophy and more severe cardiac fibrosis

following transverse aortic constriction induced pressure overload

[40]. RNAi-dependent reduction of Rad in myocytes increases Ca2+

currents, providing evidence that Rad functions as a negative

regulator of cardiac contractility, and that loss of Rad-dependent

Ca2+ channel inhibition in the heart is pathogenic [41]. An RNAi

screening approach identified a role for Rem2 in synaptogenesis

[42], but the potential contribution of Rem2 to Ca2+ channel

function was not assessed. Rem2 overexpression inhibits VDCC

currents in primary hippocampal neurons [43]. It is not yet known

whether all RGK proteins will demonstrate a dominant role in

Ca2+ current regulation.

Importantly, none of these studies have examined the function

of endogenous RGKs in pancreatic islets. Using a gene knockout

approach, these studies identify Gem as an important regulator of

glucose homeostasis. Gem is known to interact with the b-subunits
of L-type Ca2+ channels, and to potently inhibit VDCCs [24].

Over-expression of Gem in MIN6 cells has been shown to

decrease the surface expression of co-expressed VDCC CaVa1
subunit, and to reduce human C-peptide release in cells expressing

human pro-insulin [24]. Insulin secretion is linked to the extent of

Ca2+ entry via L-type VDCC, so Gem-mediated blockade of L-

Figure 4. Calcium oscillations are slower in Gem2/2 mice. A)
Wild-type mice (Gem+/+) have normal amplitude and frequency of
calcium oscillations after exposure to 11.1 mM glucose. B) In contrast,
Gem2/2 islets display smaller amplitude oscillations of lower frequency.
C) Oscillation cycle time was slower in Gem-null islets. Error bars
indicate 61SEM. ** =p,0.01.
doi:10.1371/journal.pone.0039462.g004

GEM Regulates Beta-Cell Function
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type VDCC would be expected to, inhibit insulin secretion.

Conversely, Gem knockout would be predicted to increase Ca2+

currents, and potentiate GSIS. In contrast, the present study shows

that beta cells from Gem2/2 mice have decreased free Ca2+

oscillations, accompanied by decreased GSIS in vivo and in vitro.

Nichols and colleagues presented an ‘inverse-U’ model to explain

the secretory response to beta-cell excitability [44]. The crux of the

‘inverse-U’ model is that there is a linear direct-relationship

between the insulin secretory response and excitability for low to

mid-ranges of excitability. However, for relatively high levels of

excitability, insulin secretion drops precipitously, a scenario that is

exemplified by Kir6.22/2 or SUR2/2 mice, which have tonic

activation of L-type VDCC, yet have impaired insulin secretion

[45]. We speculate that the Gem2/2 mice yield a similar, although

not quite so extreme, pattern of GSIS as the K+-channel knockout

mice because Gem2/2 directly increases tonic L-type VDCC.

Alternative hypotheses, such as Gem deficiency affecting Ca2+

buffering by the cell, or the coupling between Ca2+ influx and

granule release, remain possible.

In summary, the deletion of Gem in mice caused abnormal

glucose tolerance that was due to a specific beta-cell dysfunction.

Lack of Gem thus significantly diminished both the amplitude and

the frequency of islet calcium oscillations seen following exposure

to glucose. It is well known that GSIS results from K(ATP) channel

mediated beta-cell depolarization and the subsequent opening of

calcium channels and increased [Ca2+]i. Maintaining optimal

levels of Gem activity thus appears to be important for preserving

normal beta-cell function.
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