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Abstract

The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons
respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT) to ethanol is a fast
compensatory response that develops within a single drug session and normalizes neuronal function despite the continued
presence of the drug. We performed a genetic screen to identify genes required for the development of acute functional
tolerance to ethanol in the nematode C. elegans. We identified mutations affecting multiple genes in a genetic pathway
known to regulate levels of triacylglycerols (TAGs) via the lipase LIPS-7, indicating that there is an important role for TAGs in
the development of tolerance. Genetic manipulation of lips-7 expression, up or down, produced opposing effects on
ethanol sensitivity and on the rate of development of AFT. Further, decreasing cholesterol levels through environmental
manipulation mirrored the effects of decreased TAG levels. Finally, we found that genetic alterations in the levels of the TAG
lipase LIPS-7 can modify the phenotype of gain-of-function mutations in the ethanol-inducible ion channel SLO-1, the
voltage- and calcium-sensitive BK channel. This study demonstrates that the lipid milieu modulates neuronal responses to
ethanol that include initial sensitivity and the development of acute tolerance. These results lend new insight into studies of
alcohol dependence, and suggest a model in which TAG levels are important for the development of AFT through
alterations of the action of ethanol on membrane proteins.
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Introduction

Alcohol abuse is a prevalent and serious disorder. Current drug

treatments are inadequate, in part because the molecular nature of

acute ethanol response is not well understood. A component of the

ethanol response in humans that is predictive of the susceptibility

to abuse alcohol is an individual’s naı̈ve level of response to the

drug [1], and this phenotype is strongly genetically influenced

[2,3]. This level of response to ethanol consists of at least two

components, initial sensitivity and the development of acute

functional tolerance (AFT). Initial sensitivity is measured during

the onset of intoxication. In the nematode, C. elegans, we observe

initial sensitivity at 10 minutes of ethanol exposure. AFT reflects a

homeostatic mechanism of the nervous system to rapidly adapt to

the intoxicating effects of ethanol that is not a result of ethanol

metabolism. In mammals, AFT is observed during a single drug

exposure and is measured as a greater behavioral impairment at

the beginning of a drinking session than the impairment observed

at a similar blood ethanol concentration during the falling phase of

blood alcohol concentration. In C. elegans, we observe AFT during

a single ethanol exposure, in which the animals recover their

ability to move despite no decrease in internal ethanol concen-

tration [4].

Several proteins and pathways have been described that modify

the development of acute functional tolerance in different species.

GABAA receptors isolated from ethanol-treated mice demonstrate

acute tolerance in vitro [5], and this requires functional Protein

Kinase Ce. In addition, Protein Kinase Ce knock out mice show

defects in AFT [6]. In C. elegans, we have previously shown that the

Neuropeptide Y Receptor-like protein, NPR-1, acts to negatively

regulate the development of acute functional tolerance. This

observation extends to the mouse, where animals with loss of

function of various components of the brain NPY pathway recover

more rapidly from hypnotic doses of ethanol [7,8], a measure of

the development of AFT in mice [9].

Much work has focused on the effects of ethanol on protein

targets, and several excellent candidates for ethanol effector

molecules have been identified [10,11]. As the dominant theory

for many years, the lipid fluidity hypothesis of ethanol intoxication

proposed an indirect effect of ethanol on membrane proteins via

perturbation of membrane lipid structure [12,13]. While this

theory has fallen out of favor for several reasons, including the

observation of direct actions of ethanol on proteins, the relevance

of lipid-protein interactions in modulating protein function and in

modulating direct ethanol-protein effects are increasingly a target

of study [14–17].
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This study is designed to identify the molecular mechanisms for

the development of AFT. Here, we report that an unbiased genetic

screen for modulators of the development of AFT yielded genes

involved in determining levels of triacylglycerols in the animal.

Our data support a conclusion that the lipid environment is

important in the ability of the animal to modify cell function in the

development of AFT to ethanol.

Results

Isolation of Mutants Defective in Acute Functional
Tolerance

In order to identify the molecular mechanisms underlying acute

functional tolerance (AFT) to ethanol, we performed an unbiased

genetic screen for animals that are impaired in the ability to

develop AFT. We have previously shown that NPR-1 activity

antagonizes the development of AFT; in an npr-1 mutant

background, AFT develops more quickly than in wild type,

suggesting that NPR-1 function acts to slow the development of

AFT [4]. We took advantage of this phenotype of fast and obvious

development of AFT in the npr-1 mutant background to sensitize

our screen to make it easy to identify animals with diminished

AFT. The advantage of using this sensitized background is that we

should be able to identify mutations in which AFT is diminished

but not completely abolished, which would be difficult in the N2

wild-type background.

We performed EMS mutagenesis on npr-1(ky13) animals, and

subjected their F2 progeny to a behavioral screen. We treated the

animals with ethanol, allowed them time to develop AFT, and

then identified animals that had not developed tolerance using a

locomotion assay in which animals that could not develop

tolerance would be too impaired by ethanol to crawl to an

attractive odorant. We isolated animals that had not developed

tolerance, allowed them to produce self-progeny, and retested

their progeny in a quantitative assay of basal activity and ethanol

responses that measured both initial sensitivity and the develop-

ment of AFT. In this secondary assay, we placed worms on plates

that were contained 0 mM or 400 mM of ethanol. Movies were

recorded of locomotion at 10 and 30 minutes of treatment, and

speed was determined by computer analysis of the movies. We

define the decrease in speed at 10 minutes of treatment, relative to

untreated animals of the same genotype, as the initial sensitivity of

animals to ethanol. We have previously shown that wild-type

worms move faster at 30 minutes relative to their speed at 10

minutes of ethanol exposure, and we consider the amount of

recovery of speed between 10 and 30 minutes to be the degree of

acute functional tolerance. We judged animals to be defective in

AFT if they had a reduced recovery of speed at 30 minutes versus

the genetic background strain (npr-1(ky13) or N2).

We tested approximately 2600 mutagenized haploid genomes,

and recovered 16 recessive mutations that blunted the develop-

ment of AFT in the npr-1(ky13) mutant background, these identify

14 complementation groups. We pursued molecular characteriza-

tion of the mutation eg613 first because of its robust phenotype

(Figure 1a).

Identification of ctbp-1 as a Mediator of AFT
The eg613 mutation was mapped to the left arm of the X

chromosome using SNP mapping methods with the polymorphic

wild strain, CB4856 [18,19]. Using transformation rescue

experiments we identified the gene affected by mutation in the

eg613 mutant strain as ctbp-1. We found that the eg613 mutation is

a splice site mutation in the last nucleotide of intron 9 in the open

reading frame of the gene ctbp-1 that is predicted to generate a

premature stop codon that results in a truncated protein. A

deletion allele of ctbp-1, ok498, failed to complement eg613 for the

AFT phenotype, and homozygous ctbp-1(ok498) animals phe-

nocopied eg613 mutants by suppressing the fast development of

AFT of npr-1(ky13), tested in a visual assay of speed on ethanol,

indicating that ctbp-1 is disrupted by the eg613 mutation. The

CTBP-1 protein contains a DNA-binding THAP domain, and

Figure 1. The transcriptional regulators CTBP-1 and PAG-3 are
required for the development of AFT. Animals were treated with
0 mM and 400 mM exogenous ethanol. Relative speeds were calculated
as treated over untreated speeds. Animals shown in the same graph
were tested simultaneously on the same plates. a) Wild-type N2 animals
develop AFT, and npr-1(ky13) animals are significantly faster developers
of AFT. Compared with npr-1(ky13), npr-1(ky13) ctbp-1(eg613) animals
have decreased initial sensitivity to ethanol; the decrease in develop-
ment of AFT was not significantly different from npr-1(ky13). ctbp-
1(eg613) animals in an npr-1(+) (N2) background develop significantly
less AFT than N2 (n = 22). b) PAG-3 is required for the development of
AFT. pag-3(n3098) animals do not develop AFT, and when tested in the
sensitized background, pag-3(n3098) npr-1(ky13) animals have de-
creased initial sensitivity and are slow developers of AFT compared
with npr-1(ky13) (n = 13). Note that the large decrease in speed in pag-
3(n3098) animals at 30 minutes of ethanol exposure is largely driven by
an increase in their untreated speed at 30 minutes, and may not reflect
an actual increase in sensitivity to ethanol during that interval. We have
not observed this kind of increase in untreated speed in other strains of
animals tested, including in the npr-1(ky13) pag-3(n3098) double
mutant. pag-3(n3098) animals do not increase their speed on ethanol
over the course of 30 minutes, indicating that they are defective in AFT
(at 400 mM: 10 minutes = 32.4 6 2.6 mm/sec, 30 minutes = 33.7 6
1.3 mm/sec; not significantly different t40 = 0.42, P = 0.67). Error bars
are s.e.m. For indicated comparisons: n.s., not significant; *, P , 0.05; **,
P , 0.01; ***, P , 0.001; for comparison to N2 at 10 minutes: ###, P ,
0.001; for comparison to npr-1(ky13) at 10 minutes: {, P , 0.05; {{, P ,
0.01; {{{, P , 0.001.
doi:10.1371/journal.pone.0035192.g001

Lipids Modulate Acute Ethanol Tolerance in C. elegans
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CTBP-1 has been shown to act as a negative regulator of

transcription [20].

In order to determine if ctbp-1(eg613) is dependent on a loss of

npr-1 function to modify AFT, we crossed the mutation away from

the npr-1(ky13) mutation and tested its ability to develop acute

tolerance in the presence of wild-type npr-1. When we examined

the development of AFT in animals carrying the ctbp-1(eg613)

mutation alone, we found that they had reduced AFT compared

with N2 animals (Figure 1a), demonstrating that ctbp-1 is a

component that is generally required for the development of AFT,

independent of the genetic background.

The transcriptional regulator sir-2.1 acts genetically upstream to

repress function of ctbp-1 [21]; we predicted that in a sir-2.1 mutant

strain, loss of negative regulation of ctbp-1 might result in fast

development of AFT. We found that sir-2.1 mutant animals were

resistant to ethanol relative to N2, and, while there was a trend

toward fast development of AFT, there was not a statistical

difference in rate of AFT from N2 (Figure 2). Together, these

results suggest that ctbp-1 is a regulator of AFT.

pag-3 is Required for AFT and pag-3 was Isolated in the
Screen

The transcription factor CTBP-1 has been shown to bind to

and act with the zinc-finger transcription factors PAG-3 and

ZAG-1 to repress transcription of target genes [20]. We reasoned

that if ctbp-1 mutant animals are defective in AFT because of loss

of transcriptional regulation of some effector genes that are

cooperatively regulated by these co-repressors, then animals

defective in either of the other two co-repressors should also be

defective in AFT. Animals mutant in either pag-3 or zag-1 have

locomotion defects; we were unable to test zag-1 mutants in our

behavioral assays because they are too uncoordinated to allow us

to distinguish between locomotion defects induced by ethanol

and their baseline uncoordination. The more extreme phenotype

of the zag-1 and pag-3 mutants compared with ctbp-1 mutants

suggests that those genes have functions in addition to their

cooperative role with ctbp-1. While pag-3 mutant animals are also

uncoordinated, their locomotion defect is less severe, and we

were able to assess them for the development of AFT. We found

that the loss-of-function allele pag-3(n3098) did not develop AFT,

and it also suppressed the fast development of AFT of npr-1(ky13)

(Figure 1b), suggesting that ctbp-1(eg613) is defective in AFT

because it fails to regulate transcription, and that this function of

ctbp-1 requires pag-3. Since a mutation in pag-3 was able to

suppress the npr-1-mediated fast development of AFT, we

reasoned that our genetic screen may have identified an allele

of pag-3. Another mutation isolated in our screen, bet16, mapped

to the genetic interval containing pag-3 and failed to complement

four alleles of pag-3 for the AFT phenotype, as tested in visual

assays of speed on ethanol. These results indicate that this

behavioral screen identified multiple members of a molecular

pathway that is involved in the development of AFT.

Dysregulation of ida-19s Control of Neurosecretion is not
Responsible for the AFT Phenotypes of ctbp-1

We were interested in determining which genes that are

regulated by ctbp-1 and pag-3 are responsible for the defect in

AFT that we observed in those animals. To date, in C. elegans,

the only specific regulatory target of pag-3 that has been reported

is the gene ida-1, which encodes a protein involved in dense core

vesicle release. The loss of negative regulation of ida-1 in pag-3

mutants causes increased neurosecretion [22]. We would expect

any gene that is important for the shared AFT phenotype in pag-

3 and ctbp-1 to also be misregulated in the ctbp-1 mutant. Chen

et al. [21] performed microarray analysis of a ctbp-1 mutant, and

reported genes with expression differences of 2-fold or more from

wild type, and while expression of ida-1 was not reported to be

altered in this study, it remained possible that a more subtle

transcriptional dysregulation, which did not meet the criteria for

inclusion in that report, may be functionally relevant in the

development of AFT. Therefore, we tested whether altering ida-1

function could be an explanation for the altered rate of

development of AFT in ctbp-1 and pag-3. We found that the

response of the strong loss-of-function ida-1(ok409) mutant

animals to ethanol was indistinguishable from that of N2

(Table 1), suggesting that a change in the rate of neurosecretion

is not the explanation for the AFT phenotype of animals carrying

mutations in these transcriptional regulators. As noted above, we

have further observed that pag-3 mutant animals are mildly

uncoordinated, while ctbp-1 mutants are not, suggesting that this

transcriptional repressor may regulate expression of a larger

group of genes than those that overlap with ctbp-1, and ida-1 may

be in that class of differentially regulated genes.

ctbp-1 Regulates AFT through Repression of lips-7
Expression

CTBP-1 has been demonstrated to regulate the transcription of

approximately 200 genes [21]. Chen et al [21] reported that ctpb-

1(ok498) mutants have an extended lifespan, and that the loss of

regulation of the lips-7 triacylglycerol (TAG) lipase in the ctbp-1

mutant could explain this aspect of the ctbp-1 mutant phenotype.

In ctbp-1(ok498) mutant animals, lips-7 message is increased, and

the resulting lipase overexpression caused animals to accumulate

16.8% less TAGs, and animals in which lips-7 had been

inactivated by RNA interference had dramatically increased levels

of TAGs [21]. We hypothesized that if the effect of loss of function

of ctbp-1 on ethanol response, like its effect on lifespan, is due to its

Figure 2. The ctbp-1-regulated gene lips-7 modulates the rate of
the development of AFT. Animals were tested on 0 mM and
400 mM exogenous ethanol. Relative speeds were calculated as treated
over untreated speeds. All animals were tested simultaneously on the
same plates. a) lips-7(ok3110) animals are resistant to ethanol at 10
minutes of exposure relative to wild-type N2, and they develop
significantly more AFT than wild-type N2 animals (n = 13). b) The
transcription factor sir-2.1 is a negative regulator that acts genetically
upstream of ctbp-1 [21]; in a sir-2.1 mutant strain, loss of negative
regulation of ctbp-1 should result in fast development of AFT.
Compared with N2, sir-2.1(ok434) mutant animals were resistant to
ethanol at 10 minutes of exposure but their apparent increase in
development of AFT did not reach statistical significance (n = 13). Error
bars are s.e.m. For indicated comparisons: n.s., not significant; *, P ,
0.05; ***, P , 0.001; for comparison to N2 at 10 minutes: ###, P ,
0.001.
doi:10.1371/journal.pone.0035192.g002

Lipids Modulate Acute Ethanol Tolerance in C. elegans
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Table 1. Mutants tested for initial sensitivity and development of acute functional tolerance to ethanol.

GENE PROTEIN
PHENOTYPE of
LOSS-of-FUNCTION INITIAL SENSITIVITYa DEVELOPMENT OF AFTb

ida-1(ok409) [22] Protein tyrosine
phosphatase-like receptor

Increase in
neurosecretionc

Not different from N2 Not different from N2

N2 (109) : 28.1 6 2.4% N2 (309): 36.4 6 2.3%

ok409 (109): 32.1 6 2.1% recovery (309-109): 8.3 6 2.3%

t6 = 1.66, P = 0.15 ok409 (309): 41.8 6 1.9%

recovery (309-109): 9.7 6 1.9%

t6 = 0.49, P = 0.64

nhr-49(ok2165) and
nhr-49(gk405) [40]

Nuclear hormone
receptor

Increase in fat storaged Not different from N2 No development of AFT

N2 (109): 30.3 6 1.4% N2 (309): 34.8 6 3.3%

ok2165 (109): 30.3 6 3.0% recovery (309-109): 4.5 6 3.7%

t7 = 0.002, P = 0.99 ok2165 (309): 28.0 6 3.2%

N2 (109): 34.9 6 2.6% recovery (309-109): -2.3 6 1.4%

gk405 (109): 38.8 6 3.7% N2 (309): 47 6 4.0%

t6 = 0.97, P = 0.37 recovery (309-109): 11.7 6 2.5%

gk405 (309): 38.6 6 3.8%

recovery (309-109): -0.2 6 3.1%

bbs-1(ok1111) [41] Ortholog to human BBS1 Increase in fat storaged More sensitive than N2 Faster development of AFT relative to N2

N2 (109): 31.4 6 3.4% N2 (309): 43.1 6 2.1%

ok1111 (109): 15.2 6 0.95% recovery (309-109): 11.7 6 2.5%

t8 = 4.5, P ,0.01 ok1111 (309): 32.0 6 2.1%

recovery (309-109): 16.7 6 2.0%

t8 = 2.9, P , 0.05

tub-1(ok1972) [42] tubby Increase in fat storaged Not different from N2 Not different from N2

N2 (109): 34.9 6 3.5% N2 (309): 48.9 6 2.9%

ok1972 (109): 28.3 6 2.5% recovery (309-109): 13.8 6 1.9%

t5 = 1.4, P = 0.21 ok1972 (309): 46.6 6 4.9%

recovery (309-109): 15.1 6 2.0%

t5 = 0.47, P = 0.65

fat-7(wa36); fat-5(tm420)
[43]

Fatty acid desaturases Decrease in fat storaged Not different from N2 Faster development of AFT relative to N2

N2 (109): 32.2 6 1.6% N2 (309): 35.3 6 3.2%

wa36;tm420 (109): 30.3 6 2.8% recovery (309-109): 6.5 6 1.6%

t11 = 0.80, P = 0.44 wa36;tm420 (309): 44.6 6 2.5%

recovery (309-109): 14.2 6 1.7%

t11 = 6.7, P , 0.0001

sbp-1(ep79) [44] Homolog to mammalian
SREBP

Decrease in fat storaged Less sensitive than N2 e No development of AFT

N2 (109): 32.4 6 2.6% N2 (309): 43.6 6 2.8%

ep79 (109): 45.9 6 4.2% recovery (309-109): 11.2 6 2.4%

t6 = 3.0, P , 0.05 ep79 (309): 37.9 6 5.5%

recovery (309-109): -8.0 6 8.5%

aThe degree of initial sensitivity was determined as the percent of untreated speed after 10 minutes of ethanol exposure. Significance was determined relative to the
effect of ethanol on wild-type N2 animals treated on the same plates using paired two-tailed t-tests. bThe development of acute functional tolerance (AFT) was
determined by comparing the rate of locomotion at 30 minutes vs. 10 minutes of ethanol exposure. If the mutant strain developed significant tolerance, we compared
its rate of development of tolerance to the rate of wild-type N2 animals treated on the same plates using unpaired two-tailed t-tests. cida-1 is known to be negatively
regulated by pag-3; the response of the strong loss of function ida-1(ok409) mutant animals to ethanol was indistinguishable from that of N2, suggesting that a change
in neurosecretion is not the explanation for the AFT phenotype of ctbp-1 and pag-3. dGenetic manipulation of fat stores by mutations in the genes nhr-49, bbs-1, tub-1,
fat-7 and fat-5, and sbp-1 did not alter ethanol sensitivity or AFT in a consistent manner, suggesting that fat levels themselves do not influence the rate of development
of AFT. esbp-1 mutant animals have a basal speed that is significantly slower than N2 (Table S1). For this reason, the magnitude and interpretation of the ethanol
responses of this strain may be subject to a floor effect.
doi:10.1371/journal.pone.0035192.t001

Lipids Modulate Acute Ethanol Tolerance in C. elegans
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failure to down-regulate lips-7, then loss of lips-7 should have the

opposite phenotype to loss of ctbp-1; that is, lips-7 mutants should

display ethanol resistance and/or fast development of AFT. We

found that lips-7(ok3110) mutant animals are both resistant to

ethanol and fast developers of AFT, indicating that regulation of

TAG levels is important for the development of AFT (Figure 2a).

These results support the notion that the effect on lipase regulation

via lips-7 is a mechanism of ctbp-19s effect on AFT (Figure 2b).

Fat Stores do not Regulate AFT
Regulation of the lipase gene lips-7 has a significant effect on the

development of AFT. In one model of how this lipase function

affects AFT, fat levels in the animals could regulate ethanol effects

because TAGs are the main stored fat in C. elegans. To test this

hypothesis, we altered fat levels in the animals using genetic

manipulations, and tested the effect on ethanol sensitivity and AFT

development in our locomotion assay. If the changes in the level of

stored fat in ctbp-1 and lips-7 mutants is the cause of the defect in

AFT, then decreasing fat levels through genetic manipulation

should cause a decrease in AFT (mimicking ctbp-1(eg613) mutants),

while increasing fat levels should cause animals to be resistant to

ethanol or fast developers of AFT (similar to lips-7 mutant

animals). We tested several genes involved in regulating the levels

of stored fat; mutations in these genes either yield increases or

decreases in stored fat (Table 1). While several changes in fat levels

did not cause an AFT phenotype, for those that did alter AFT,

there was no consistent correlation between fat levels and the

ability to develop AFT (Table 1). These data suggest that, by

themselves, levels of stored fat do not predict the ability of the

animal to develop AFT.

The Development of AFT is Cholesterol Dependent
In addition to their role in fat storage, TAGs are also

components of the lipid membrane. To analyze the involvement

of membrane environment in the development of AFT, we

manipulated the plasma membrane by depleting the worms of

cholesterol, a component of membrane lipid rafts [23]. C. elegans

are cholesterol auxotrophs; all of their cholesterol is captured

through their diet, and acute effects of cholesterol depletion

include a suppression of clathrin-independent endocytosis in

neurons, a lipid raft-mediated process [24], suggesting that

cholesterol is involved in the development or maintenance of

particular membrane structures. If AFT requires specific

membrane microdomain structures that include cholesterol, then

altering the amount of cholesterol available to the animals may

modify their ability to develop tolerance. We found that N2 and

npr-1(ky13) animals reared on cholesterol-depleted media dem-

onstrated a substantial suppression of the development of AFT

(Figure 3a and 3b). In contrast, adding additional cholesterol to

the medium did not affect the ability of animals to develop AFT

(not shown). Together, these data suggest that the structure of the

lipid bilayer is essential for the development of tolerance.

The Development of AFT Requires SLO-1
Both the manipulation of cholesterol and the lipid constituents

of the membrane environment are known to modulate the

ethanol effect on the mammalian BK (KCNMA1/Slo1) potas-

sium channel, an ethanol target protein[14,17,25–28]. In worms,

ethanol activates SLO-1 in vivo, causing a large efflux of

potassium ions, hyperpolarizing the cell and depressing neuronal

excitability, which is a major cause of intoxication in C. elegans

[29]. The mammalian BK channel is also activated by ethanol,

and this effect, as well as the channel’s basal activity, depends on

the thickness of the lipid bilayer; channels that reside in thicker

membrane are less basally active and are less activated by

ethanol [17,28], suggesting that movement of the BK channel

into and out of areas of thicker membrane microenvironments

may allow for very fast modulation of the effects of ethanol on

this channel [28]. We hypothesized that this may be one

mechanism by which worms develop AFT to ethanol. If AFT

requires modulation of SLO-1 function, then complete loss of

SLO-1 should reduce or eliminate the development of tolerance.

In an otherwise wild-type background, null slo-1(eg142) mutant

animals are quite resistant to the sedative effects of ethanol on

locomotion, and, importantly, do not develop significant toler-

ance to ethanol (Figure 4b). We asked if loss of slo-1 completely

eliminated the ability of animals to develop tolerance, even in a

genetic background of fast development of tolerance. In the

sensitized npr-1(ky13) mutant background, slo-1(eg142) animals,

that lack SLO-1, are able to develop a degree of tolerance

(Figure 4b), indicating that modulation of the ethanol effect on

SLO-1 occurs during AFT but that SLO-1 is not the sole

mediator of AFT.

Figure 3. Disruption of the plasma membrane through
cholesterol starvation eliminates the ability to develop AFT.
Worms require exogenous cholesterol for plasma membrane mediated
processes such as clathrin-independent endocytosis. Young adult
animals that were starved of exogenous cholesterol during their
development were tested on 0 mM and 400 mM ethanol. Relative
speeds were calculated as treated over untreated. Animals shown in the
same graph were tested simultaneously on the same plates. a) Wild-
type N2 animals develop AFT when reared on cholesterol-containing
(NGM) plates, but do not develop AFT when starved of cholesterol
(n = 14). b) npr-1(ky13) animals develop AFT when reared on NGM
plates, but develop reduced levels of AFT when starved of cholesterol
(n = 7). Together, these results suggest that the development of AFT
requires cholesterol in the membrane. Error bars are s.e.m. For indicated
comparisons: n.s., not significant; *, P , 0.05; **, P , 0.01; for
comparison to N2 on NGM at 10 minutes: ###, P , 0.001; for
comparison to npr-1(ky13) on NGM at 10 minutes: {, P , 0.05.
doi:10.1371/journal.pone.0035192.g003
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ctbp-1 and lips-7 Modulate the Function of SLO-1
If modulation of SLO-1 activity represents a significant

component of AFT then it is possible that the increased TAG

levels associated with loss of lips-7 or sir-2.1 function are acting to

either protect the SLO-1 protein from ethanol or are reducing

overall activity of the SLO-1 protein, or both. If the action of this

increase in TAGs is to reduce overall activity of SLO-1 then we

predicted that we should be able to observe an inhibitory effect on

SLO-1 function in the lips-7 and sir-2.1 mutants in the absence of

ethanol. Reduced SLO-1 function in the slo-1 mutant causes an

increase in the amplitude of the locomotion waveform (loopy

motion phenotype, Figure 4a), and we observed that both lips-7

and sir-2.1 mutants are loopy (Figure 4a). In contrast, we predicted

that in a ctbp-1 mutant, in which there is a decrease in TAGs, there

should be an increase in SLO-1 activation, which should lead to

the opposite phenotype, a flattened body waveform. Consistent

with the prediction, we found that ctbp-1 mutants are flat relative

to N2 (Figure 4a).

We were able to test more directly whether or not loss of lips-7 is

able to modulate the function of SLO-1 in the absence of ethanol,

using special alleles of slo-1. Two gain-of-function alleles of slo-1

that enhance the open probability and open time of the channel

have been described [29]. These animals have a slow locomotion

phenotype, which shares characteristics with the phenotype of

ethanol intoxication. We hypothesized that lips-7 might suppress

these gain-of-function defects if the increase in levels of TAGs

reduces the activity of the channel. We tested the locomotion of

slo-1(ky389gf); lips-7(ok3110) and slo-1(ky399gf); lips-7(ok3110)

animals and found that loss of lips-7 was able to significantly

rescue the locomotion defect of both slo-1 gain-of-function

mutations (Figure 4c). These data strongly suggest that changes

in TAG levels resulting from increased or decreased LIPS-7

activity are able to influence the activity of a transmembrane

protein (SLO-1) both in its basal state and in the presence of

ethanol.

Discussion

We have used a genetic screen for mutations that result in

defects in the development of AFT to identify two transcriptional

co-repressors, ctbp-1 and pag-3, that regulate the ability of animals

to develop AFT. Transcriptional repression of the lips-7 TAG

lipase is required for normal development of AFT, and loss of lips-

7 enhances the rate and degree of AFT, indicating that action of

Figure 4. SLO-1 protein function is modulated by lips-7 function. a) Representative micrographs of crawling C. elegans, when the animal’s
head is at the dorsal most point in the propagation of its waveform. Anterior is left, scale bar is 200 mm. Wild-type N2 demonstrates the normal
sinusoidal body posture of a crawling worm. slo-1(eg142), lips-7(ok3110), and sir-2.1(ok434) demonstrate a similar exaggerated, loopy, body posture. In
contrast, ctbp-1(eg613) has a flattened body posture. b) SLO-1 function is required for normal AFT. Worms were treated with 400 mM exogenous
ethanol. slo-1(eg142) null mutant animals do not develop significant AFT, whereas slo-1(eg142); npr-1(ky13) double mutants do develop tolerance. The
degree of recovered speed of slo-1(eg142); npr-1(ky13) did not achieve statistical significance compared with npr-1(ky13), although there was a strong
trend for an attenuated response compared with the robust development of AFT by npr-1(ky13) (n = 14). These data suggest that SLO-1 is not the sole
mediator of the development of AFT in the worm. c) Loss of lips-7 can modulate function of slo-1 gain-of-function alleles. slo-1(ky398gf) and slo-
1(ky399gf) mutations increase the open probability or open time of the SLO-1 channel, resulting in a slow locomotion phenotype [29]. Loss of lips-7
significantly suppresses the slow movement phenotype of both slo-1(gf) alleles in the absence of ethanol (n = 6 for slo-1(ky389gf); n = 9 for slo-
1(ky399gf)) indicating that the increase in TAGs in lips-7 can cause a change in the function of the membrane channel, SLO-1. These results suggest
that lips-7 alters SLO-1 function through a plasma membrane mechanism. Error bars are s.e.m. For indicated comparisons: n.s., not significant; *, P ,
0.05; ***, P , 0.001; for comparison to N2: #, P , 0.05; ##, P , 0.01; ###, P , 0.001.
doi:10.1371/journal.pone.0035192.g004
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this lipase inhibits the development of AFT. One component of

the normal development of AFT appears to involve modulation of

the ethanol effect on the transmembrane ethanol target protein

SLO-1, and the function of SLO-1 gain-of-function mutations is

modulated by the action of lips-7, suggesting that there is a role for

TAGs in the regulation of SLO-1 function. Depletion of

cholesterol impaired the development of AFT and, while

cholesterol is used both as a component of the plasma membrane

and as a precursor to steroid synthesis in the worm, taken together,

these data suggest a role for membrane microdomain structure in

AFT.

These results lead us to propose a model for a mechanism for

fast adaptations associated with the development of AFT: the

effects of ethanol on a membrane protein, such as SLO-1, are

countered by moving the protein into or out of specific membrane

microdomains to achieve a more normal function of the neuron in

the presence of ethanol. In this model, cholesterol and the TAGs

on which LIPS-7 acts would constitute components of these

microdomains that reduce the ethanol effect on the target protein,

either by protecting the protein from ethanol or by changing the

protein’s activity in opposition to the ethanol effect. An increase in

the levels of these TAGs might lead to an increase in the size or

quantity of these protective microdomains, thereby increasing the

potential for minimizing ethanol’s effects on target proteins;

decreases in the level of these TAGs would have the opposite effect

on AFT. This model accounts for the altered rates and

development of AFT in mutants for the ctbp-1, pag-3 and lips-7

genes, which regulate levels of these TAGs in different directions.

While we favor a model of a direct effect of lipid microdomains

in modulation of SLO-1 activity, as is seen for mammalian SLO-

1/BK channels (reviewed by Treistman and Martin [30]), the data

presented here are also compatible with a model in which lipid

modulation of activity of neuronal function occurs independently

of SLO-1 function. For example, altering the level of TAGs might

increase the excitability of cholinergic motor neurons or decrease

the excitability of GABAergic motor neurons, both effects might

lead to a decreased ethanol response. Loss of lips-7 function, which

increases TAG levels, results in a loopy locomotion phenotype,

acute ethanol resistance and a more rapid development of AFT.

These phenotypes are consistent with an increase in the overall

excitability of the locomotor cholinergic circuitry. However, we

have shown previously with mutants that enhance the activity of

the cholinergic neurons, that the degree of neuronal excitability

and the degree of ethanol sensitivity are not well correlated [29].

Effects by TAGs in a SLO-1-dependent manner and general

neuronal excitability effects are not mutually exclusive models, and

in fact these two postulated lipid effects may act in concert to

modify ethanol response at the behavioral level.

While our results do not directly address the question of the

causative microdomains in the membrane, one obvious candidate

is the lipid raft, a cholesterol- and sphingomyelin-rich micro-

domain in the plasma membrane. We show that cholesterol

depletion results in a significant reduction in the development of

AFT. Mammalian SLO-1/BK function is known to be modulated

by the cholesterol environment in which it resides in the

membrane [14,25–27], and the mammalian BK channel is found

in lipid rafts [31]. Recent studies suggest that the modulation of

channel function by cholesterol is through a specific interaction

with a protein surface on the SLO-1/BK channel itself rather than

a secondary effect of cholesterol’s effect on lipid packing [25,27].

There is increasing awareness of the modulation of function of

membrane proteins by their interaction with lipids. This model of

proteins moving between different lipid microenvironments during

AFT might include the effects of ethanol on multiple ethanol

responsive proteins in addition to SLO-1. For instance, ethanol

treatment inhibits localization of the proteins Lck, ZAP70, LAT

and PLCc1 to lipid rafts in T lymphocytes [15]. Another

intriguing candidate for a protein whose function is may be

modulated by its location in rafts is H-ras, which is known to be

involved in the dynamic response of NMDA receptors to ethanol

[32]. In its inactive form, H-ras resides in lipid rafts, and when

activated, it must move out of rafts to efficiently activate its target

Raf [33].

Importantly, this mechanism of modulation of protein function

may reflect a more general process used in maintaining

homeostasis in neurons. The mechanisms of development of

AFT to ethanol are likely to represent processes that neurons use

to modulate their function in response to depressive stimuli in

general.

An individual’s level of response to ethanol is dependent on the

AFT process. We hypothesize that subtle alterations in plasma

membrane structure, perhaps through natural genetic variation in

the lipid metabolism machinery, could lead to differences in rates

of development of AFT between individuals, which may contrib-

ute to predisposition to alcohol dependence (AD) [1]. Additional

support for this hypothesis comes from the observation that

membranes isolated from the brains of rats selectively bred for

high and low ethanol sensitivity showed differences in their ethanol

responsive phenotypes as measured by both membrane protein

mobility and membrane thickness [34].

Recently, a human genome-wide association study of AD in an

Australian population identified a SNP in the human homolog of

ctbp-1, called CTBP2, as the marker with the most significant P

value for association with AD [35]. Significantly, the mammalian

CTBP2 protein also acts as a transcriptional repressor, and has

recently been shown to play a role in regulating genes with roles in

lipid metabolism in adipocytes [36]. Variation in the function of

this gene may have more general effects on lipid membrane

composition and could impact responses to alcohol. We suggest

that it may be fruitful to further examine genes involved in

cholesterol and lipid biosynthesis in vertebrate models and human

genetic association studies of alcohol dependence.

Materials and Methods

Worm Husbandry
C. elegans strains were maintained as described [37]. Strains used

in this study were: N2 (var. Bristol), AX201 npr-1(ky13), BZ613

ctbp-1(eg613) (46outcrossed), RB733 ctbp-1(ok498), BZ846 ctbp-

1(ok498); npr-1(ky13), MT8987 pag-3(n3098), JCB40 pag-3(n3098);

npr-1(ky13), JCB25 pag-3(bet16); npr-1(ky13) (16outcrossed),

VC226 ida-1(ok409), RB2287 lips-7(ok3110), VC199 sir-

2.1(ok434), RB1716 nhr-49(ok2165), VC870 nhr-49(gk405),

VC837 bbs-1(ok1111), RB1600 tub-1(ok1972), BX110 fat-7(wa36);

fat-5(tm420), CE541 sbp-1(ep79), BZ142 slo-1(eg142), JCB95 slo-

1(ky389) (16outcrossed), JCB96 lips-7(ok3110); slo-1(ky389), JCB97

slo-1(ky399) (16outcrossed), and JCB98 lips-7(ok3110); slo-

1(ky399).

Genetic Screen
npr-1(ky13) animals were mutagenized in 47 mM ethyl meth-

anesulfonate (EMS) for 4 hours. Second generation progeny were

screened for failure to develop AFT: Worms were incubated for 90

minutes in 300 mM ethanol in M9, then were placed on one side

of a 10 cm Petri plate filled with assay agar [38] and 300 mM

ethanol. Worms were enticed to move across the plate to a spot of

chemoattractant (1 mL of 1:200 benzaldehyde:ethanol). In these

conditions, all npr-1(ky13) animals are able to develop sufficient
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AFT to be able to move to the spot of chemoattractant. After 90

minutes, worms that had not reached the chemoattractant were

picked individually and allowed to generate self-progeny. These

progeny were tested in a secondary screen for the development of

AFT; animals that failed to develop AFT were kept.

Analysis of Speed
Speed was analyzed as described previously [4], with minor

modifications: Briefly, assay plates were dried for two hours at

37uC with lids off on the day of the assay. Copper rings were

melted into the surface of the plates, and two hours before the

beginning of the assay, ice-cold 100% ethanol was added to plates

to a final concentration in the agar of 0 mM or 400 mM. Age-

matched first day adult animals were acclimated to the lack of food

in the assay for a period of 30 minutes by moving them to

unseeded dried plates. Ten worms of each test strain were moved

into a copper ring on an assay plates and movies were recorded of

their movement at 10 and 30 minutes of exposure. Only strains

that were tested in the same assay on the same plates were

compared to each other. Movies were made on an Olympus SZX-

7 stereo microscope (magnification of 0.8x with a 0.5x objective to

make a large enough field of view) using a Retiga 4000R camera

(QImaging) and ImagePro Plus (6.2) (MediaCybernetics) software.

2-minute recordings (1 frame per second) were captured, and the

speed of each worm was tracked using ImagePro plus software and

an average speed for each group of 10 animals was calculated.

Assessment of Ethanol Response
We assess ethanol response in three ways:

1- Initial Sensitivity: We compare the degree of depression of

speed (relative speed) at 10 minutes to that of the control strain.

A statistical difference at this timepoint reflects a change in

initial sensitivity.

2- Development of Acute Functional Tolerance: We compare the

speed of a strain at 30 minutes versus 10 minutes to determine

if the strain had developed AFT. A statistically significant

increase in speed at 30 minutes vs. 10 minutes is AFT.

3- Comparison of AFT with the control strain: We compare the

amount of speed recovered versus the control strain. Statisti-

cally significant differences in the amount of recovered speed

reflects a difference in the degree of AFT.

Statistics
Animals that were compared were tested on the same plates

under identical conditions. Untreated and treated raw speeds are

shown in Table S1. Relative speeds (treated/untreated X 100) for

ethanol effects were calculated and used for all strains in statistical

comparisons. Statistics were performed using Prism 5.0 (Graph-

Pad). Comparisons of 10-minute treated speed, comparisons of

recovered speed (treated speed at 30 minutes minus treated speed

at 10 minutes), and comparison of untreated speed on NGM

versus cholesterol-depleted media were made using 1-way

ANOVA, with Tukey’s multiple comparison posthoc tests.

Development of AFT was tested by unpaired two-tailed t-test.

Cholesterol Starvation
Cholesterol-depleted media was prepared as described previ-

ously [39].

Supporting Information

Table S1 Comparison of untreated speeds and treated
speeds (400 mM ethanol) for strains in each experiment
used to calculate relative treated speeds. All strains were

compared with N2, except for Figure 1b and Figure 3b, where npr-

1(ky13) is the comparison strain. The data was analyzed using 2-

way repeated measures ANOVA. If the ANOVA was significant

for the strain comparison, Bonferroni multiple comparison post-

hoc tests were used to determine the significance of differences

between the test strain at 10 minutes and at 30 minutes of ethanol

exposure compared with the comparison strain.

(DOC)
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