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Biophysical Characterization of Anticoagulant Hemextin AB Complex
from the Venom of Snake Hemachatus haemachatus

Yajnavalka Banerjee,*y Rajamani Lakshminarayanan,z§ Subramanian Vivekanandan,*{

Ganesh Srinivasan Anand,* Suresh Valiyaveettil,z and R. Manjunatha Kini*k

*Department of Biological Sciences, Faculty of Science, and zDepartment of Chemistry, National University of Singapore, Singapore;
yDepartment of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California; §School of Dentistry,
Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California; {Division of Structural
and Computational Biology, School of Biological Sciences, Nanyang Technological University, Singapore; and kDepartment of Biochemistry,
VCU Medical Center, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia

ABSTRACT Hemextin AB complex from the venom of Hemachatus haemachatus is the first known natural anticoagulant that
specifically inhibits the enzymatic activity of blood coagulation factor VIIa in the absence of factor Xa. It is also the only known
heterotetrameric complexof two three-finger toxins. Individually only hemextinAhasmild anticoagulant activity, whereashemextin
B is inactive. However, hemextin B synergistically enhances the anticoagulant activity of hemextin A and their complex exhibits
potent anticoagulant activity. In this study we characterized the nature of molecular interactions leading to the complex formation.
Circular dichroism studies indicate the stabilization of b-sheet in the complex. Hemextin AB complex has an increased apparent
molecular diameter in both gas and liquid phase techniques. The complex formation is enthalpically favorable and entropically
unfavorable with a negative change in the heat capacity. Thus, the anticoagulant complex shows less structural flexibility than
individual subunits. Both electrostatic and hydrophobic interactions are important for the complexation; the former driving the
process and the latter helping in the stabilization of the tetramer. The tetramer dissociates into dimers and monomers with the
increase in the ionic strength of the solution andalsowith increase in the glycerol concentration in thebuffer. The twodimers formed
under each of these conditions display distinct differences in their apparent molecular diameters and anticoagulant properties.
Based on these results, we have proposed a model for this unique anticoagulant complex.

INTRODUCTION

Blood coagulation is a physiological response to vascular

injury that results in the formation of hemostatic plug, which

prevents blood loss (1,2). The process is initiated by tissue

factor (TF), a cellular receptor for the activated coagulation

factorVIIa (FVIIa), which is exposed after vascular injury (3).

FVIIa bound to TF activates factor X (FX) and factor IX.

Activated factor X (FXa) converts small amounts of pro-

thrombin to thrombin (4). Thrombin in turn amplifies the

coagulation cascade by activating the platelets (5) and factors

(6) and VIII (7,8). Coagulation is propagated when factor IXa

binds to factor VIIIa to form intrinsic tenase, a complex that

efficiently activates FX. FXa then binds to factor Va to form

prothrombinase, thereby increasing the rate of FXa-mediated

conversion of prothrombin to thrombin by .300,000-fold

(9). The resultant burst of thrombin rapidly converts fibrin-

ogen to fibrin. Fibrin monomers polymerize to form the fibrin

mesh that is stabilized and cross-linked by transglutaminase

factor XIIIa (10,11). Thus the initial formation of TF-FVIIa

complex is crucial for the clot initiation and is considered an

ideal target for the treatment of thromboembolic disorders.

Drugs that target this complex are potent inhibitors of co-

agulation and thus are highly sought after. Though, naturally

occurring inhibitors of FVIIa have been identified, they are

not specific. For example, dysinosinA isolated from the sponge

family Dysideidae inhibits FVIIa with a Ki of 108 nM. How-

ever, it also an inhibitor of thrombin (12,13). Until recently

only two natural anticoagulants targeting specifically the TF-

FVIIa complex has been identified. They are tissue factor

pathway inhibitor (TFPI) (14,15) and nematode anticoagulant

peptide (NAPc2) (16,17). TFPI is a 42-kDa plasma glyco-

protein consisting of three tandem Kunitz-type domains. The

first and second domains inhibit TF-FVIIa and FXa, respec-

tively. The thirdKunitz domain and theC-terminal basic region

of themolecule have heparin-binding sites. The anticoagulant

action of TFPI is a two-stage process. The second Kunitz

domain binds first to amolecule of FXa and deactivates it. The

first domain then rapidly binds to an adjacent TF-FVIIa

complex, preventing further activation of FX (18–20). On the

other hand,NAPc2 is an 8-kDa short polypeptide. It first binds

to FXa or zymogen FX to form a binary complex before its

interaction and inhibition of membrane-bound TF-FVIIa (21).

Therefore, despite the structural differences, both inhibitors

form a quaternary complex with TF-FVIIa-FXa. Further,

in both the complexes the active site of FVIIa is occupied by

the respective inhibitors and is not accessible.

Snake venoms are veritable gold mines of anticoagulant

proteins (22,23). Recently, we isolated and characterized a

novel anticoagulant protein complex (hemextin AB complex)

from the venom of elapid snake Hemachatus haemachatus
(African ringhals cobra) (24,25). Hemextin AB complex
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specifically and noncompetitively inhibits the TF-FVIIa

complex with a Ki of 25 nM. Further, it inhibits FVIIa in the

absence of TF and FX. Thus, unlike TFPI and NAPc2, this

unique complex neither requires FX scaffold nor does it bind

to the active site of FVIIa (24).

Structurally, hemextin AB complex consists of two

proteins—hemextin A and hemextin B, both of which be-

long to the three-finger toxin family of snake venom proteins.

Individually, only hemextin A exhibits a mild anticoagulant

activity, whereas hemextin B is inactive. However, hemextin

B synergistically enhances the anticoagulant activity of

hemextin A and their complex has potent anticoagulant ac-

tivity. Thus, the formation of this unique synergistic complex

of three-finger toxins is important for its ability to inhibit clot

initiation (24). There are only a few noncovalent protein com-

plexes in snake venoms that do not contain phospholipase A2

as an integral part, such as rhodocetin (26,27) and pseutarin

C (28,29). Hemextin AB complex is the only known snake

venom protein complex formed by the interaction between

two three-finger toxins and is the only known heterotetra-

meric complex of three-finger toxins.

Since hemextin AB complex is both structurally and func-

tionally unique, we have investigated the molecular interac-

tions involved in the formation of this novel complex. In

particular we have examined the role of electrostatic and hydro-

phobic interactions in the formation of tetrameric anticoag-

ulant complex. Hemextin AB complex has identical molecular

diameter in both gas and solution phases. Isothermal titration

calorimetry (ITC) studies reveal that the complex formation

is entropically unfavored, which indicates the reduced struc-

tural flexibility of the complex. Hemextin AB assembly is an

enthalpically driven process with some conformational changes

accompanying the complexation. The tetrameric complex be-

haves differently in buffers of higher ionic strength. It is also

sensitive to the presence of glycerol in the buffer solution.

Thus, a complex interplay of electrostatic and hydrophobic

interactions drives the formation and stabilization of this

novel anticoagulant protein complex. Based on our obser-

vations, we propose a model for the assembly of hemextin

AB complex.

MATERIALS AND METHODS

Purification of hemextins A and B

Hemextin A and hemextin B were purified using the methods described

earlier (24). Briefly, H. haemachatus crude venom (100 mg in 1 ml distilled

water) was applied to a Superdex 30 gel filtration column (1.6 3 60 cm)

equilibrated with 50 mM Tris-HCl buffer (pH 7.4) and eluted using the same

buffer, using an ÄKTA Purifier system (Amersham Biosciences, Uppsala,

Sweden). Fractions containing potent anticoagulant activity were pooled and

subfractionated on a Uno S-6 (Bio-Rad, Hercules, CA; column volume, 6 ml)

cation-exchange column. The peaks containing hemextin A and hemextin B

were further purified using reversed-phase high-performance liquid chro-

matography (RP-HPLC) on a Jupiter C18 (1 3 25 cm) column. Both

proteins were found to be homogeneous with molecular masses of 6835.00

6 0.52 and 6792.566 0.32 Da, respectively, as determined by electrospray

ionization mass spectrometry (ESI-MS) (24).

Circular dichroism spectroscopic studies

Far-ultraviolet (UV) circular dichroism (CD) spectra (260–190 nm) were

recorded using a Jasco J-810 spectropolarimeter (Jasco, Tokyo, Japan). All

measurements were carried out at room temperature (25�C) using 0.1 cm

pathlength stoppered cuvettes. The instrument optics was flushed with 30 l/min

of nitrogen gas. The spectra were recorded using a scan speed of 50 nm/min,

resolution 0.2 nm, and bandwidth 2 nm. For each spectrum, a total of six

scans were recorded, averaged, and baseline subtracted. The conformation

of hemextin A and hemextin B at different concentrations were monitored in

50 mM Tris-HCl buffer (pH 7.4). To study the complex formation, titration

experiments were carried out by keeping the concentration of hemextin A

constant at 0.5 mM, and varying the concentration of hemextin B.

Determination of molecular diameters

The apparent molecular diameters of the hemextin AB complex and the

individual hemextins were determined in both the gas and solution phases

using Gas Phase Electrophoretic MobilityMacromolecule Analyzer (GEMMA)

and dynamic light scattering (DLS), respectively.

GEMMA

The molecular diameters in the gas phase were determined with GEMMA

(30) using a nano-differential mobility analyzer, model 3980, with a standard

condensation particle counter, type 3025 (TSI, St Paul, MN). The instrument

was operated in the ‘‘cone jet’’ mode with an operating voltage between 2.5

and 3.0 kV, resulting in currents from 200 to 300 nA. Filtered ambient air at

2 l/min and a concentric sheath gas flow of filtered CO2 at 0.1 l/min was used

to stabilize the electrospray against corona discharge. Sample solutions of

hemextin A (4 ng/ml) and hemextin B (4 ng/ml) were prepared in 20 mM

ammonium acetate (pH 7.4) immediately before the experiment. Hemextin

AB complex (4.5 ng/ml) was reconstituted in the above buffer and was in-

cubated at 37�C for 10 min. Another three-finger protein, toxin C, isolated

and purified from the same venom, was used as a control in the GEMMA

experiments. The samples were infused into the electrospray chamber with

an inlet flow rate of 100 nl/min. Twenty scans over the whole electrophoretic

mobility (EM) diameter range (0–25 nm) were recorded and averaged to ob-

tain a GEMMA spectrum. Data presentation was done without the appli-

cation of any smoothing algorithm.

DLS

The complex formation studies with DLS were carried out at 25�C using a

BI200SM instrument (Brookhaven Instruments, Holstville, NY). A verti-

cally polarized argon ion laser (514.2 nm, 75 mW; NEC model GLG-3112)

was used as the light source. Sample solutions of hemextin A (4 mM),

hemextin B (4.1 mM), and hemextin AB complex (4.6 mM) in 50 mM Tris-

HCl buffer (pH 7.4) were prepared immediately before the experiment. The

hydrodynamic diameter for the hemextin AB complex and the individual

hemextins were recorded at 25�C in solutions of different ionic strengths and

at different glycerol concentrations. The ionic strengths were varied by the

addition of NaCl. From the measured translational diffusion coefficient (DT),

the hydrodynamic radius (RH) can be calculated using the Stokes-Einstein

relation:

DT ¼ kBT=6phRH; (1)

where, kB is the Boltzmann constant, T is the temperature in Kelvin, and h is

the viscosity of the solvent. The intensity-intensity time correlation functions

were obtained with a BI-9000 digital correlator. The particle size and size

distribution were obtained by analyzing the field correlation function jg(1)(t)j
using constrained regularized CONTIN method (31).
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Thermodynamics of hemextin AB
complex formation

ITC experiments were performed using a Microcal VP-ITC calorimeter

(Microcal LLC, Northampton, MA) to study the thermodynamics of the forma-

tion of hemextin AB complex. Unless otherwise noted, all experiments were

performed in 50 mM Tris-HCl buffer (pH 7.4). Both the proteins were dis-

solved in the same buffers, filtered and degassed before titration. Hemextin

A (0.1 mM) was kept in the sample cell and hemextin B (1 mM) was loaded

into the syringe. The syringe stirring speed was set to 300 rpm. Data were

collected in high feedback mode, with a filter period of 3 s. For each ex-

periment, a control titration was performed by injecting hemextin B into the

appropriate buffer. Finally, the control data were subtracted from the raw

data to obtain an isotherm corrected for heats of dilution. The first injections

presented defects in the baseline and these data points were not included

in the fitting process. The calorimetric data were processed and fitted to

the single set of identical sites model using Microcal Origin (Version 7.0)

data analysis software supplied with the instrument. The expression for the

heat released per injection, DQ(i), is given by

DQðiÞ ¼ QðiÞ 1 dVi = 2V0½QðiÞ1Qði� 1Þ� � Qði� 1Þ; (2)

where Q(i) is the total heat content, dVi is the volume injected at the ith

injection, and V0 is the cell volume. The total heat content Q of the solution

(determined relative to zero for the unliganded species) contained in the active

cell volume, V0, was calculated according to Eq. 3, where KA is the binding

affinity constant,n is the number of sites,DH is the enthalpy of ligand binding,

and Mt and Xt are the bulk concentration of macromolecule and ligand,

respectively, for the binding X 1 M4 XM

Q ¼ nMtDHV0

2

"
11
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1
1

nKaMt

�
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The change in heat (DQ) measured between the completions of two

consecutive injections is corrected for dilution of the protein and ligand in

the cell according to standard Marquardt method (32,33). The free energy

change (DG) during the interaction was calculated using the relationship:

(DG ¼ DH � TDS ¼ �RT ln Ka). All the experiments were performed at

37�C unless otherwise indicated.

The role of electrostatic interactions in the complex formation was eval-

uated by performing ITC experiments in 50 mM Tris-HCl buffer of various

ionic strengths. The ionic strengths of the buffers were altered by adding

sodium chloride (NaCl) (35–150 mM). To study the role of hydrophobic in-

teractions in the complex formation, experiments were performed in 50 mM

Tris-HCl buffer (pH 7.4) containing various concentrations of glycerol

(125–250 mM).

Size-exclusion chromatography studies

All size-exclusion chromatography (SEC) experiments were carried out at

room temperature on a prepacked Superdex 75 gel filtration column (1.6 3
60 cm) using a ÄKTA Purifier system (Amersham Biosciences, Uppsala,

Sweden). The column was eluted with 50 mM Tris-HCl buffer (pH 7.4) or

the specified elution buffer, at a flow rate of 1 ml/min. The sample volume

applied to the column was 4 ml. The column was calibrated using ovomu-

coid (28 kDa) ribonuclease (15.6 kDa), cytochrome C (12 kDa), apoprotinin

(7 kDa), and pelovaterin (4 kDa) (34) as molecular weight markers. The void

volume was determined by running Blue Dextran. The column was equil-

ibrated with at least two bed volumes of the elution buffer before each run.

Electrostatic contributions in the hemextin AB complex formation were

studied by monitoring its elution in 50 mM Tris-HCl buffer (pH 7.4) with

different concentrations of NaCl (75 and 150 mM). Hydrophobic contribu-

tions for the complex formation were determined by recording the elution of

hemextin AB complex in 50 mM Tris-HCl buffer (pH 7.4) with different

concentrations of glycerol (125 and 250 mM). In both the studies, the col-

umn was first equilibrated with the desired buffer before the application of

the reconstituted hemextin AB complex in the respective buffer to the col-

umn. The protein elution was monitored by recording absorbance at 280 nm.

Anticoagulant activity

The anticoagulant activity of individual hemextins and hemextin AB com-

plex were determined using prothrombin time clotting assay (A. J. Quick,

1935). The anticoagulant activity of a specific concentration of hemextin

A (4.4mM), hemextin B (4.4mM), and hemextin AB complex (0.22mM)was

monitored in 50 mM Tris-HCl (pH 7.4) containing different concentrations

of NaCl (35–150 mM for studying the role of electrostatic interactions) and

glycerol (125–250 mM for studying the role of hydrophobic interactions).

The concentrations of hemextin A and hemextin AB complex were chosen

in a way such that in the absence of salt/glycerol the recorded clotting times

are similar. Control experiments were performed without the addition of the

anticoagulant proteins to evaluate the effect of salt and glycerol on clotting.

One-dimensional NMR spectroscopy

One-dimensional (1D) proton NMR experiments were carried out using

Bruker 700MHz spectrometer (Billerica,MA), equippedwith amodern cryo-

probe, and electronic variable temperature unit. The spectra were acquired

using Topspin software (Bruker) interfaced to the spectrometer. Hemextin A

(0.5mM) and hemextin B (0.5 mM)were prepared in 50mMTris-HCl buffer

(pH7) and transferred to a 5-mmdiameterWillmadNMR tube.All deuterated

solvents were purchased from Aldrich Laboratories (Milwaukee, WI) with

99.9% isotopic purity. The spectral width was set to 11,202 Hz for all NMR

experiments. The huge resonance due to the water protons was suppressed by

the WATERGATE pulse sequence (35). Typically, 512 scans were averaged

for each free induction decay before apodization and then performing the

Fourier transformation. 1H chemical shifts were referenced to a sodium 2,2-

dimethyl-2-silapentane-5-sulfonate solution (DSS).

RESULTS AND DISCUSSION

Conformational changes during the
complex formation

It has been shown previously that hemextin A and hemextin

B interact with each other and form a 1:1 heterotetrameric

complex and this complex formation is important for its

ability to inhibit FVIIa and clot initiation (24). To study the

conformational changes associated with the hemextin AB

complex formation we used far-UV CD. First, we recorded

the CD spectra of individual hemextins A and B (Fig. 1, A
and B). Their CD spectra display negative minima at 217 nm

and positive maxima at 196 nm, which are due to the n to p*
transition and the p to p* transition of the amide chromo-

phore, respectively, typical of a b-sheet structure (Fig. 1, A
and B). Next, a titration CD experiment was performed to

study the complex formation between the two proteins. In this

experiment, the concentration of hemextin A was kept con-

stant at 0.5 mM and the conformational changes in hemextin

A in the presence of various concentrations of hemextin B

were recorded. The shape of the CD spectrum upon addition

of hemextin B to hemextin A did not change significantly
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(Fig. 1 C). However, the CD intensity at 217 nm increases

with the incremental addition of hemextin B and reaches max-

imum at the 1:1 molar ratio suggesting increase in b-sheet
content and stoichiometric binding of hemextin B to hemextin

A, respectively (see Supplementary Material, Fig. S1A). The

difference spectrum obtained by subtracting the CD spectrum

of 1:1 complex from the sum of the CD spectra of hemextin A

and hemextin B indicates the conservation of b-sheet struc-
ture in the complex, suggesting possible folding upon com-

plex formation. (see Supplementary Material, Fig. S1B).

Changes in molecular diameters during the
complex formation

The diameter of the individual hemextins and hemextin AB

complex were determined in both gas and solution phases.

In the gas phase analyses using GEMMA, hemextin A, and

hemextin B showed the apparent molecular diameters of

10.20 6 0.38 nm and 8.82 6 0.42 nm, respectively (Fig. 2).

Hemextin AB complex exhibited a larger diameter of 16.30

6 0.43 nm. To further confirm on the GEMMA results, we

examined the effect of toxin C, another three-finger toxin

isolated from the venom ofH. haemachatus, on the molecular

diameters of hemextins A and B, to determine the specificity

of interaction. Toxin C did not affect the anticoagulant ac-

tivity of hemextin A in prothrombin time clotting assay (data

not shown) and did not form a complex with hemextin A. At

equimolar concentration of toxin C, the molecular diameter

of hemextin A or hemextin B remains unaffected (Fig. 2).

The solution phase studies with DLS also confirmed the in-

crease in molecular diameter associated with the complex for-

mation. Single scattering populations (unimodal distribution)

for hemextin A, hemextin B, and hemextin AB complex were

FIGURE 1 Conformational changes associated with the formation of

hemextin complex. CD spectra of (A) hemextin A (0.5mM) and (B) hemextin

B (0.5 mM). (C) Conformational changes in hemextin A with increasing

concentrations of hemextin B: (black) hemextin A 0.5 mM; (red) hemextin A

0.5 mM plus hemextin B 0.25 mM; (green) hemextin A 0.5 mM plus

hemextin B 0.4 mM; (blue) hemextin A 0.5 mM plus hemextin B 0.5 mM;

(gray) hemextin A 0.5 mM plus hemextin B 0.9 mM; (inset) the observed

change in the CD spectra around the 217-nm region.

FIGURE 2 Measurement of molecular diameter during the hemextin AB

complex formation using GEMMA. The molecular diameters of the in-

dividual hemextins and the hemextin AB complex are calculated based on

their electrophoretic mobility. The formation of hemextin AB complex leads

to an increase in the molecular diameter. Addition of equimolar toxin C does

not show any significant increase in the molecular diameters of hemextin A

and hemextin B validating the obtained data.
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observed in DLS suggesting the homogeneity of the sample

preparations with hydrodynamic diameters of 10.3, 9.9, and

16.8 nm, respectively (Fig. 3 A). The narrow size distribution

of a single monodisperse species for 1:1 mixture of hemextin

A and hemextin B suggests the formation of a well-defined

complex. It is important to note that the tetrameric hemextin

AB complex and individual hemextins exhibited comparable

molecular diameters in both gas and solution phases. The ap-

parent molecular dimensions are significantly larger than the

theoretical diameter estimated for a native protein and much

smaller than the estimated length of the proteins in completely

‘‘extended conformation’’ (36,37). Such an anomaly could

be due to the nonglobular conformation of the proteins (38).

The molecular diameter of hemextin AB complex is, how-

ever, much smaller compared to the estimated size of a tetramer

indicating that the four monomers are compactly packed.

Thermodynamics of the hemextin AB
complex formation

ITC permits the study of macromolecular interactions in so-

lution and is the only technique that can resolve the enthalpic

and entropic components of binding affinity (39–41). It was

used to study the thermodynamics of hemextin AB complex

formation. Each injection gave rise to negative (exothermic)

heat of reaction (Fig. 4). The binding isotherm fits to a single

set of binding sites model, suggesting an equimolar binding

between hemextin A and hemextin B. The interaction be-

tween them is thermodynamically allowed (as indicated by

negative DG) (Table 1). A favorable negative DH but un-

favorable negative DS changes indicate that the complex

formation is enthalpically driven, and van der Waals interac-

tions and hydrogen bonds may play an important role in the

complex formation (42). Also, the formation of a less dy-

namic complex is entropically disfavored, as has been ob-

served in the studies pertaining to the dimerization of insulin

(43). Thus the recorded negative entropic change (DS) indicates
the formation of a less flexible or less disordered hemextin

AB complex. The binding constant (KA) for the formation

of hemextin AB complex was 2.23 3 106 M�1 and it falls

within the KA values for protein-protein interactions in bio-

logically relevant processes that range from 104 to 1016 M�1

(44).

The effect of temperature on the hemextin AB
complex formation

To further understand energetics of the complex formation,

complete temperature profile of the thermodynamic param-

eters associated with the binding of hemextin A to hemextin

B was studied over the temperature range of 25–45�C. The
temperature dependence of DH is shown in Fig. 5 A and

Table 1. The temperature dependence of DH over a narrow

temperature range is given by the equation:

DH ¼ DH0 1DCpðT � T0Þ; (4)

where, DH0 is the binding enthalpy at an arbitrary reference

temperature and DCp is the heat capacity change of binding.

The DCp obtained from the slope (DCp¼ dDH / dT) (Fig. 5 A)
is �163 cal/K�1mol�1. Negative DCp indicates a reduction

in the nonpolar solvent-accessible surface area, as explained

by the following equation (45,46),

DCp ¼ 0:45ðDASAnonpolÞ � 0:26ðDASApolÞ cal=molK; (5)

where, DASApol and DASAnonpol are the change in the polar-

and nonpolar-accessible surface areas, respectively. Thus,

hemextin AB complex formation is associated with the

burial of hydrophobic surface area.

Fig. 5 B shows the plot of DG and DH as a function of

TDS. It is clear that the DG of binding remained temperature

independent and is a result of linear dependence of DH on

TDS. This strongly suggests the enthalpy-entropy compen-

sation for the binding of hemextin A to hemextin B. This

phenomenon is a universal feature for protein-peptide inter-

actions, where weak molecular interactions undergo constant

rearrangements to realize a lower free energy of binding

(42,47–49). The correlation between entropy and enthalpy

for a range of interacting protein-protein systems was deter-

mined (r2 ¼ 0.956). The data for hemextin AB complex fall

well along this correlation line (see Supplementary Material,

Fig. S2).

The negative DCp indicates the net thermodynamic driving

force for the association to shift from entropic to enthaplic

with increasing temperature. At the intersection point of both

lines DG ¼ DH ¼ �8.4 kcal mol�1 (Fig. 5 B), which cor-

responds to a temperature Ts (temperature at which the contri-

bution from entropy is zero (50,51)). At Ts the contribution
from entropy changes from favorable to unfavorable. From

Fig. 5 A, DH ¼ �8.4 kcal mol�1 is connected with a Ts of
16�C (289 �K).
The negative DCp for the hemextin AB complex formation

further suggests that the observed entropy change upon bind-

ing must include significant contribution from the hydropho-

bic effect in the physiological temperature range. Therefore,

for protein-protein/ligand interaction(s) the net entropy of as-

sociation is given by the equation:

DSassoc ¼ DSHE 1DSrt 1DSother; (6)

where, DSHE, DSrt, and DSother are the entropy changes due to
hydrophobic effect, reduction of rotational and translational

degree of freedom, and from other sources, respectively.

At Ts, the overall entropy of association is zero and the

above equation becomes:

DSassoc ¼ DSHEðTsÞ1DSrt 1DSother ¼ 0: (7)

In the absence of crystallographic data, the DSHE(Ts) was
estimated from the equation,

DSHEðTsÞ ¼ 1:35DCp lnðTs=386Þ; (8)
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FIGURE 3 Determination of hydrodynamic diameter using DLS. (A) CONTIN analysis hemextin A, hemextin B, and hemextin AB complex in 50 mMTris-

HCl buffer. Effect of various concentrations of NaCl (B) and glycerol (C) on hemextin AB complex. The calculated hydrodynamic diameters for each

molecular species are shown. (Note the dimer formed in glycerol has a different diameter than the one formed in salt.)
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and found to be 64 cal deg�1 mol�1. It has been shown that

protein-protein interaction DSrt is nearly equal to �50 cal

deg�1 mol�1 (52,53). Thus the DSother is calculated to be

�14 cal deg�1 mol�1. Because of experimental uncertainties

in the heat capacity change and the entropy of complex for-

mation, as well as in the value of the rotational-translational

entropy term, the analysis of coupled folding is typically not

suitable for distinguishing small extents of folding from the

rigid body case. However, from the nonzero value of DSother
it can be concluded that that there is no evidence for large-

scale coupled folding, during the formation of hemextin AB

complex. Again,C¼ DSother /�5.6 cal deg�1 mol�1, where

C designates the number amino acid residues involved in the

folding transition (54). Therefore, approximately three res-

idues are involved in the folding transition. Also, from Fig. 5

B the enthalpic counterpart of TS, namely TH, the temperature

at which the enthalpic contribution to the Gibbs free energy

of binding changes from favorable to unfavorable is cal-

culated to be 244 �K. Therefore, below �29�C the binding

process is entropically driven and only in the interval be-

tween TS and TH (i.e., between�29�C and 16�C), both the en-
tropic and enthalpic parts of the Gibbs free energy of binding

are favorable.

Oligomerization states of the anticoagulant
complex and individual hemextins

Hemextin AB complex exists as a tetramer and the complex

formation is pivotal for its potent anticoagulant activity. In

addition, as determined in prothrombin time and kinetic as-

says the stoichiometry of complex formation is 1:1 (24,25).

We evaluated the role of both electrostatic and hydrophobic

interactions in complex formation.

Electrostatic interactions in hemextin AB complex formation

Firstly, the binding constant for hemextin AB complex

formation was determined by ITC in buffers of increasing

ionic strength. The log KA values for the complex formation

decreased linearly with the increasing NaCl concentration

(Fig. 6 A, Table 1), illustrating the participation of electro-

static interactions in complex formation. Secondly, the effect

of buffer ionic strength on the assembly of hemextin AB

FIGURE 4 Interaction studies between hemextin A and B using ITC. (A)

Raw ITC data showing heat release upon injections of 1 M hemextin B into a

1.4-ml cell containing 0.1 mM of hemextin A; (B) integration of the raw ITC

data yields the heat/mol versus molar ratio. The best values of the fitting

parameters are 1.04 for N, 2.233 106 M�1 for KA, and�11.68 kcal M�1 for

DH (Table 1).

TABLE 1 Thermodynamic analysis of hemextin A-hemextin B interaction

ITC experiments KA 3 106 (M�1) DH (kcal/mol) DS (cal/deg mol) DG (kcal/mol)

At different temperatures (�C)
25 2.07 �9.92 �4.43 �8.6

37 2.23 �11.7 �8.645 �9

45 1.97 �13.12 �12.49 �9.15

At different salt concentrations

35 mM NaCl 0.63 �10.5 �7.2 �8.2

75 mM NaCl 0.33 �9.32 �4.8 �7.8

100 mM NaCl 0.02 �7.31 �3.82 �6.12

150 mM NaCl 0.002 �5.01 �1.2 �4.6

At different glycerol concentrations

125 mM Glycerol 0.32 �10.8 �11.01 �7.6

175 mM Glycerol 0.2 �10.5 �10.6 �7.2

250 mM Glycerol 0.05 �9.4 �10 �6.4

All ITC experiments in salt and glycerol were carried out at 37�C.
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complex was examined with the help of SEC. In the absence

of salt, the complex eluted as a tetramer and the individual

hemextins as monomers (Fig. 7 A). In the presence of 75 mM

NaCl the tetramer started dissociating into dimer (Fig. 7 B).
With further increase in ionic strength of the buffer (NaCl

150 mM) the complex eluted mostly as a dimer and mono-

mer(s). ESI-MS and HPLC analyses of the dimer peak in-

dicated that it contains both hemextins A and B (data not

shown). This observation again reconfirms the importance of

electrostatic interactions in hemextin AB assembly. Inter-

estingly, an additional protein peak eluted slower than the

monomers indicating hemextin A and/or hemextin B was

undergoing a conformational change in buffers of high ionic

strength. Therefore, we monitored the elution profiles of in-

dividual hemextins in buffers of high ionic strength. Hemextin

A at 75 mMNaCl concentration showed two peaks; a second

protein peak eluted slower than the monomer (Fig. 7 B).
With further increase in the ionic strength (NaCl 150 mM)

hemextin A eluted mostly in the second peak. ESI-MS and

HPLC analyses of this second peak show that it is struc-

turally intact hemextin A (data not shown). Thus, the change

in the elution profile of hemextin A in buffers of higher ionic

strength hinted a conformational change in the protein, which

was further confirmed by 1D NMR studies (see below). In-

creased ionic strength of buffer did not have any effect on the

elution of hemextin B (Fig. 7, A and B).
We also determined the hydrodynamic diameters of hemextin

AB complex and individual hemextins in buffer solutions of

high ionic strength using DLS (Fig. 3 B). (As GEMMAworks

on the principle of nano-ESI, we did not determine the mo-

lecular diameters in buffers containing high salt using this

technique.). At high salt concentrations, the hemextin AB

complex exhibits a high polydispersity indicating the pres-

ence of different species. At 75 mM NaCl, there are three

different populations. In addition to the monomer(s) and the

tetramer, there is an additional population with an apparent

molecular diameter of 12.4 nm. Based on our SEC results

(Fig. 7 B), we suggest that the 12.4-nm species could be the

dimeric hemextin AB complex. As expected, the population

of 12.4-nm species increases when the concentration of NaCl

is increased to 150 mM (Fig. 3 B). Thus DLS data also sug-

gest the dissociation of the tetrameric complex to a dimer. As

expected, polydispersity was also observed with hemextin A

in buffers of high ionic strength (Fig. 3 B). An additional pop-
ulation of 11.57-nm-sized particle, in addition to its native

size of 10.4 nm is observed. Based on the SEC (Fig. 7 B) and
1D-NMR (see below), we suggest that the 11.57-nm species

represents the conformationally altered form of hemextin A.

No change in the hydrodynamic diameter of hemextin B was

observed with the increase in buffer ionic strength (Fig. 3 B).
To understand the implications of the change in conforma-

tion of hemextin A and the breakdown of tetrameric complex,

we monitored the anticoagulant activity of the complex and

individual hemextins in buffers of high ionic strengths. Higher

FIGURE 5 Thermodynamics of hemextin A-hemextin B interaction. (A)

Effect of temperature on the energetics of hemextin A-hemextin B inter-

action: enthalpy change (DH), change in entropy term (TDS), and free energy
change (DG). (B) Enthalpy-entropy compensation in complex formation.

(Point of intersection of lines corresponding to DH and DG corresponds to Ts)

FIGURE 6 Hemextin AB complex formation under different buffer con-

ditions. (A) Dependence of KA on the ionic strength of the buffer. The binding

affinity decreases with the increase in buffer ionic strength indicating the

importance of electrostatic interactions. (B) Dependence of KA on the glyc-

erol concentration. The binding affinity decreases with the increase in glyc-

erol concentration indicating the importance of hydrophobic interactions.
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concentration of NaCl did not affect the anticoagulant ac-

tivity of hemextin A (Fig. 8 A). Thus despite the change(s) in
conformation (see below), hemextin A retains its anticoag-

ulant activity. The anticoagulant activity of hemextin AB com-

plex, in contrast, decreased with the increase in ionic strength

up to 100 mM NaCl (Fig. 8 A). However, further increase in
the salt concentration did not significantly affect the antico-

agulant activity. At 150 mM NaCl the complex exists as a

mixture of a dimer, monomer(s), and conformationally al-

tered hemextin A as is evident from the SEC experiments

(Fig. 7 B). Therefore, the remaining anticoagulant activity

observed at 150 mM or higher NaCl concentration is due to

the presence of monomeric hemextin A and not due to di-

meric hemextin AB complex. Hence, it can be concluded that

the dimer formed at high salt concentrations does not have

any significant anticoagulant activity.

FIGURE 7 SEC studies of hemextin AB complex in different buffer conditions. (A) Elution profiles of hemextin AB complex in Tris-HCl buffer. Effect of

various concentrations of NaCl (B) and glycerol (C) on hemextin AB complex. The tetrameric complex (peak denoted by 4) dissociates into dimer and

monomer (peaks denoted by 2 and 1, respectively) with the increase in salt or glycerol. Asterisk denotes the peak containing conformationally altered hemextin

A. (D) Calibration of the column using the following proteins as molecular weight markers: ovomucoid (28 kDa), ribonuclease (15.6 kDa), cytochrome C (12

kDa), apoprotinin (7 kDa), and pelovaterin (4 kDa). The molecular weights of the tetramer, dimer, and monomers were calculated from the calibration curve.

FIGURE 8 Effect of buffer conditions on anticoag-

ulant activity. Effect of various concentrations of NaCl

(A) and glycerol (B) on the anticoagulant activity of

hemextin A (O), hemextin B (M), hemextin AB

complex (:). The anticoagulant activity of hemextin

AB complex decreases with the increase in concentra-

tions of NaCl and glycerol. The arrows indicate the

concentrations of (A) NaCl and (B) glycerol where the

anticoagulant complex exists mostly as a mixture of

dimer and monomers (see text for details); (n) denotes

the anticoagulant activity recorded in the absence of the

proteins.
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Thus, these studies in buffers of high ionic strength

strongly suggest that electrostatic interactions play crucial

role in the assembly of hemextin AB complex. As hemextin

A undergoes conformational change(s) in the presence of salt

(see below), the dissociation of tetramer in a buffer of high

ionic strength may not only be due to the disruption elec-

trostatic interaction but also due to conformational change(s)

in hemextin A. Further, high salt concentration leads to the

formation of a dimer that is functionally inert (in terms of

lack of synergic increase in anticoagulant activity). Based on

the obtained results, we hypothesize that the dimer assem-

bled at 150 mM NaCl concentration is probably formed by

the interplay of predominantly hydrophobic interactions. There-

fore, successive experiments were carried out to evaluate the

importance of hydrophobic interactions in the complex for-

mation.

Hydrophobic interactions in the hemextin AB
complex formation

We carried out ITC experiments in buffers containing in-

creasing concentrations of glycerol. Adsorption of glycerol

to hydrophobic patches on the surface of proteins interferes

in the hydrophobic interactions (55,56). A decrease in the

association constant was observed with the increase in glyc-

erol concentration (Fig. 6 B and Table 1), showing the impor-

tance of hydrophobic interactions in the complex formation.

We monitored the elution of hemextin AB complex in buffers

containing glycerol on a Superdex 75 column (Fig. 7 C). In
buffers containing high glycerol concentration the tetramer

dissociates into dimer and monomers. ESI-MS and HPLC

analyses of the dimer peak indicate that it contains both

hemextins A and B (data not shown). However, no additional

peak corresponding to altered conformation of hemextin A

was observed. The elution of individual hemextins remained

unaltered in the presence of glycerol (Fig. 7 C). The break-
down of hemextin AB complex in the presence of glycerol

was also observed in the DLS studies (Fig. 3 C). At 125 mM

glycerol concentration, an additional population of 12.8-nm-

sized species was observed in addition to the monomers and

the tetrameric complex. Based on SEC studies, we propose

that the 12.8-nm species is a dimer. The 12.8-nm species in-

creases with the increase in glycerol concentration (Fig. 3 C).
It is important to note that the apparent molecular diameter of

this dimer is different from the dimer formed in buffers of

high ionic strength (12.8 vs. 12.4 nm; Fig. 3, B and C). (As
GEMMA works on the principle of nano-ESI, we did not

determine the molecular diameters in buffers containing glyc-

erol using this technique.). No polydispersity was observed

in the case of individual hemextins in the presence of glyc-

erol (Fig. 3 C).
To further understand the implication of the breakdown of

hemextin AB complex in glycerol, we monitored its antico-

agulant activity and that of the individual hemextins in buffers

containing different concentrations of glycerol. The antico-

agulant activity of hemextin AB complex decreased with the

increase in glycerol concentration (Fig. 8 B). At 125 mM

glycerol concentration there is no decrease in the anticoag-

ulant activity. However, at 250 mM glycerol concentration

(at which hemextin AB complex exists as a mixture of dimer

and monomers; Fig. 7 C) there is a decrease in the antico-

agulant activity. But this activity is higher than that of the

anticoagulant effect of hemextin A alone. Therefore, we con-

clude that the dimer observed at 250 mM glycerol concen-

tration exhibits the anticoagulant activity higher than hemextin

A alone but lower than that of the tetramer. In other words,

dimer formed in the presence of glycerol is different from the

dimer formed in salt; the former dimer exhibiting an increased

anticoagulant activity compared to hemextin A alone, whereas

the latter not doing so. Glycerol, however, did not affect the

anticoagulant activity of individual hemextins (Fig. 8 B).
The dissociation of the tetramer into dimer and monomers

in the presence of glycerol indicates the importance of hy-

drophobic interactions in the tetrameric complex formation.

This role of hydrophic interaction is further supported by the

negative DCp change observed during the formation of

hemextin AB complex.

Our data strongly suggest that both electrostatic and hy-

drophobic interactions are important for the formation of tet-

rameric hemextin AB complex. To confirm that decrease in

binding affinity between the monomers observed in salt and

glycerol is not a solute osmotic effect, the KA recorded in salt

and glycerol was plotted against osmotic pressure (see Sup-

plementary Material, Fig. S3). At similar osmolality of salt

and glycerol decrease in binding affinity was more pro-

nounced in salt than glycerol. This indicates that fall binding

affinity is due to disruption of either electrostatic (for salt) or

hydrophobic (for glycerol) interactions.

The effect of buffer conditions on the
conformation of hemextins

Earlier studies using SEC (Fig. 7 B) and DLS (Fig. 3) indi-

cated that hemextin A undergoes conformational changes

in the presence of salt. We conducted 1D-NMR analysis to

study the conformation of hemextins A and B under different

buffer conditions (Fig. 9). In the presence of NaCl, there is a

decrease in the number of Ha resonance peaks between 4.8

and 6 ppm in the case of hemextin A (Fig. 9 A). These chem-

ical shifts contribute to the interresidue NOE crosspeaks

between Ha of different amino acid residues forming antipar-

allel b-sheet structure typically observed in all three-finger

toxins (57). Thus a decrease in the b-sheet content of hemextin

A is observed in the presence of NaCl. In addition, there are

several changes in the chemical shifts of side chains. A no-

table change is a highly shielded methyl peak that appears at

the negative chemical shift value (�0.38 ppm) in the pres-

ence of salt. These observations strongly support conformational

changes in hemextin A in the presence of NaCl. The overall

dispersion of 1D proton NMR spectra of hemextin A in the
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presence of glycerol (deuterated) remains the same with the

subtle changes in the amide region (Fig. 9 A). Thus, hemextin

A did not undergo any significant conformational change

upon the addition of glycerol. Similar studies with hemextin

B show that it did not undergo any significant conforma-

tional changes in the presence of NaCl or glycerol (Fig. 9 B)
since there is almost one to one match for the spectral fre-

quencies.

Model for hemextin AB complex

Based on our studies we propose a model for the assembly

of hemextin AB complex (Fig. 10). Two molecules each of

hemextin A and B form the tetrameric complex in Tris-HCl

buffer (Fig. 10 A). The formation of this compact, synergistic

complex is important for its anticoagulant activity. As il-

lustrated earlier, hemextin AB dimer in high salt is different

from the dimer formed in the presence of glycerol (Fig. 10 C).
The former dimer has an apparent molecular diameter of

12.4 nm and lacks anticoagulant activity, whereas the latter

has an apparent molecular diameter of 12.8 nm and exhibits

slightly higher anticoagulant effects (Fig. 10 C). Thus, the
breakdown of tetramer to dimer probably occurs in two

different interfaces of interaction between hemextin A and B.

One interface is sensitive to the ionic strength of its sur-

roundings whereas the other is sensitive to glycerol (Fig. 10C).
Further, in the presence of salt, hemextin A undergoes con-

formational changes (Fig. 10 B) which may interfere in the

tetramer formation. The dimer formed under high ionic condi-

tions lacks the complete synergistic anticoagulant site (marked

by a dotted semicircle in Fig. 10 C) and hence the resultant

dimer is as active as hemextin A alone. (Fig. 8). In contrast,

hydrophobic interactions are predominant in the second inter-

face. Therefore, glycerol dissociates the tetramer into dimers.

However, in this case only minor changes occur in the syn-

ergistic anticoagulant site of the complex (as shown in

Fig. 10 C) and hence the resultant dimer is active (Fig. 8).

We propose that the tetramer formation most likely stabilizes

the anticoagulant site of hemextin A. The binding between

hemextin AB complex/hemextin A and FVIIa has been

characterized to validate the proposed model (Y. Banerjee,

J. Mizuguchi, E. Person, R. Doley, S. Iwanaga, and R.

Manjunatha Kini, unpublished data).

CONCLUSION

Hemextin AB complex is the first synergistic anticoagulant

complex isolated from snake venom comprising solely two

three-finger toxins—hemextin A and hemextin B (24). The

tetrameric complex formation is a prerequisite for the syn-

ergistic inhibition of FVIIa. This complex formation is an

enthalpically driven process. The complex exhibits identical

apparentmolecular diameters in gas and solution phases. Ther-

modynamics of hemextin AB complex formation indicates

the absence of large-scale coupled folding. Both electrostatic

and hydrophobic interactions are important for the assembly

FIGURE 9 One-dimensional 1HNMR

studies. Spectrumof (A) hemextinA and

hemextin B under different buffer con-

ditions. Note that in the presence of salt,

hemextin A undergoes a conforma-

tional change; also, the peaks are sharp

throughout the spectrum. In addition, all

1D 1H NMR spectra also exhibited a

wide range of chemical shift dispersions

(amide region 7–10 ppm, Ha region

3.8–6 ppm, and methyl region �0.4 –to

1.5 ppm), which is a characteristic of

well-folded proteins. Therefore, the ob-

served structural change is not due to

resonance broadening or aggregation

(because no aggregation state was ob-

served asmentioned) but it is only due to

addition of NaCl to hemextin A.
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of the tetramer. Based on our results we propose that the tet-

ramer formation takes place by the participation of two in-

terfaces. One of the interfaces is predominantly sensitive to

the buffer ionic strength, indicating that electrostatic inter-

actions are predominantly active in that interface. The other

being sensitive to glycerol concentration of the solution in-

dicates the participation of mostly hydrophobic interactions.

The proposed model may help in a better understanding of

the structure-function relationship of this novel anticoagulant

complex.
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