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Shaaban Elroby,2 Saadullah G. Aziz,2 and Abdulrahman O. Alyoubi2
1Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
2Department of Chemistry, Faculty of Science King Abdulaziz University, Jeddah 21589, Saudi Arabia

(Received 1 July 2013; accepted 10 July 2013; published online 23 August 2013)

Equilibrium thermochemical measurements using an ion mobility drift cell technique have been uti-
lized to investigate the binding energies and entropy changes associated with the stepwise hydration
of the biologically significant ions pyrimidine radical cation and protonated pyrimidine. The bind-
ing energy of the hydrated pyrimidine radical cation is weaker than that of the proton-bound dimer
pyrimidineH+(H2O) consistent with the formation of a weak carbon-based CHδ+ · · OH2 hydrogen
bond (11.9 kcal/mol) and a stronger NH+ · · OH2 hydrogen bond (15.6 kcal/mol), respectively. Other
proton-bound dimers such as pyrimidineH+(CH3OH) and pyrimidineH+(CH3CN) exhibit higher
binding energies (18.2 kcal/mol and 22.8 kcal/mol, respectively) due to the higher proton affini-
ties and dipole moments of acetonitrile and methanol as compared to water. The measured collisional
cross sections of the proton-bound dimers provide experimental-based support for the DFT calculated
structures at the M06-2x/6-311++G (d,p) level. The calculations show that the hydrated pyrimidine
radical cation clusters form internally solvated structures in which the water molecules are bonded to
the C4N2H4

•+ ion by weak CHδ+ · · OH2 hydrogen bonds. The hydrated protonated pyrimidine clus-
ters form externally solvated structures where the water molecules are bonded to each other and the
ion is external to the water cluster. Dissociative proton transfer reactions C4N2H4

•+(H2O)n−1 + H2O
→ C4N2H3

• + (H2O)nH+ and C4N2H5
+(H2O)n−1 + H2O → C4N2H4 + (H2O)nH+ are observed

for n ≥ 4 where the reactions become thermoneutral or exothermic. The absence of the dissociative
proton transfer reaction within the C4N2H5

+(CH3CN)n clusters results from the inability of acetoni-
trile molecules to form extended hydrogen bonding structures such as those formed by water and
methanol due to the presence of the methyl groups which block the extension of hydrogen bonding
networks. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817327]

I. INTRODUCTION

Intermolecular forces, including hydrogen bonds and
ion-molecule interactions,1–5 are important in many biolog-
ical, chemical, and astrochemical processes such as the con-
formation and folding of proteins, base pair stacking in DNA,
drug design, macromolecular assemblies, molecular recogni-
tion, clathrate hydrate formation, ices, and the formation of
complex organics and ices in interstellar space.1–8

Ionic hydrogen bonds are strong intermolecular forces,
often 10–30 kcal/mol, which can form in ionizing environ-
ments between radical ions or protonated molecules and
neutral molecules.1 Such bonds can form between stable
organic molecular ions and polar solvent molecules such as
water, methanol, and acetonitrile.1 For example, organic ions
can interact with water molecules by either relatively weak
carbon-based CHδ+—O hydrogen bonds, such as in benzene
radical cation, or via stronger hydrogen bonds, such as in
protonated pyridine where the NH+—O hydrogen bonds are
formed.9–11 Insight into the basic molecular interactions can
be obtained from the energies and structures of the key species

a)Author to whom correspondence should be addressed. Electronic mail:
mselshal@vcu.edu

involved in the stepwise association of polar molecules with
organic ions. These data can be obtained experimentally by
measuring binding energies and ion mobility of the cluster
ions, and computationally by calculating the structures
and binding energies of the hydrated and solvated organic
ions.12–16

In recent papers we examined such interactions in the
hydration of the organic ions: benzene (C6H6

+.), cyclic
C3H3

+, acetylene (C2H2
+.), acetylene dimer (C2H2)2

+.,
acetylene trimer (C2H2)3

+., phenyl acetylene (C8H6
+.), pyri-

dine (C5H5N+.), 2-flouropyridine (C5H4NF +.), and proto-
nated pyridine (C5H5NH+) using a combination of equilib-
rium thermochemical measurements, ion mobility, and DFT
calculations.9–11, 16–20 The hydration energies of these organic
ions vary over an unexpected wide range from 8 to 18
kcal/mol depending on the nature of the hydrogen bonding
interaction.9–11, 16–20 For example, benzene radical cation in-
teracts with water molecules by relatively weak CHδ+ · · O
hydrogen bonds resulting in stepwise hydration energies,
�H◦

n−1,n, where n is the number of water molecules, that
are nearly constant at 8.5 ± 1 kcal/mol for n = 1-6.9, 10 Dis-
sociative proton transfer is observed in the C6H6

+.(H2O)n

clusters with n ≥ 4 resulting in the generation of proto-
nated water clusters, H3O+(H2O)n with n ≥ 3 and the phenyl

0021-9606/2013/139(8)/084304/11/$30.00 © 2013 AIP Publishing LLC139, 084304-1
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radical (C6H5
.).10 Phenyl acetylene radical cation (C8H6

+.)
forms two kinds of CHδ+ · · O hydrogen bonds with water
molecules through the interaction with the hydrogen atoms
of the phenyl and acetylene groups.16 Hydration of the acety-
lene radical cation (C2H2

+.) results in the formation of two
covalent ions C2H3O+ and C2H4O+. produced with an overall
rate coefficient that increases with decreasing temperature.19

The reactivity, combined with energetics, suggests that the
C2H4O+. adduct is vinyl alcohol (H2C=CHOH+.), while the
protonated ketene CH2COH+ is most likely the C2H3O+ ion
observed.19 The measured hydration energy can confirm the
covalent nature of the organic ions as in the case of the
acetylene trimer ion (C2H2)3

+. where its sequential hydra-
tion energies with 1-6 water molecules are found to be iden-
tical to those of the benzene ion thus confirming the forma-
tion of benzene cations following the Electron Impact (EI)
ionization of acetylene clusters.18, 21 Similarly, the measured
hydration energy combined with structural calculations of
the acetylene dimer ion (C4H4

+.) confirms the formation of
cyclobutadiene+. as the major isomer of the C4H4

+. ions
formed in EI ionized acetylene clusters.20 Interestingly, the
hydration energy of the cyclic C3H3

+ ion (11.7 kcal/mol) is
higher than those of the C6H6

+. and C8H6
+. ions reflecting

the higher charge density on the C3H3
+ ion as compared to the

larger radical cations C6H6
+. and C8H6

+..17 The hydration en-
ergy can also identify the nature of the charge on the organic
ion and distinguish between a conventional radical cation and
a distonic ion. For example, the measured hydration ener-
gies of the pyridine and 2-F pyridine radical cations (15-16
kcal/mol) are consistent with distonic structures of these ions
(•C5H4NH+ and •C5H3FNH+, respectively) where the pro-
tonated nitrogen sites form stronger NH+ · · OH2 hydrogen
bonds similar to protonated pyridines.11 The stepwise hydra-
tion of different organic ions can, thus, provide prototypical
models for understanding structural and energy changes asso-
ciated with hydration which could lead to a molecular level
understanding of complicated condensed phase phenomena
such as hydrophobic hydration and clathrate formation.4, 5

Pyrimidine (C4H4N2) represents the major structural
feature in three biological nucleobases: uracil (found in
RNA only), thymine (found in DNA only), and cytosine
(in both RNA and DNA), and it possesses two different
proton acceptor sites: the ring π -cloud and the lone pairs
of the heteroatoms.7 Therefore, pyrimidine solvation can
be regarded as a prototype for the solvation of heterocyclic
aromatic rings containing nitrogen heteroatoms.13, 14 The
structure of the pyrimidine-water neutral complex has been
determined as a planar (or nearly planar) structure with
a hydrogen bond between a nitrogen lone pair and the
water hydrogen.22–25 Multiphoton ionization of the neutral
pyrimidine (water)n and pyrimidine (methanol)n clusters
produces the protonated cluster series C4H4N2H+(H2O)n

and C4H4N2H+(CH3OH)n, respectively, resulting from
intracluster proton transfer reactions.26, 27 However, the
stepwise binding energies of these protonated pyrimidine
clusters have not been experimentally determined. Similarly,
the structures of these clusters have been calculated from ab
initio calculations, but no experimental based evidence for
these structures has been reported.

In this paper, we provide a detailed experimental and the-
oretical study of the energetics and structures of the hydrated
pyrimidine radical cation C4H4N2

•+(H2O)n with 1-4 water
molecules, where two kinds of hydrogen bonds CHδ+—OH2

or Nδ+—H2O can be formed. For comparison, we also study
the hydration of protonated pyrimidine (C4H4N2)H+(H2O)n

with n = 1-3 where stronger binding may occur through the
proton-bound hetero dimer C4H4N2H+H2O. Furthermore, we
compare the energetics and structures of the hydrated proto-
nated pyrimidine with those involving methanol and acetoni-
trile [C4H4N2H+(CH3OH)n and C4H4N2H+(CH3CN)n, re-
spectively] where the effect of the solvent polarity can be
examined. To obtain energetics data, we use the drift tube
thermochemical measurements, and for structural determina-
tion we use ion mobility measurements coupled with DFT
structural calculations. The results provide new insights into
the factors that determine the structures and energetics of the
clusters of polar molecules with N-containing heterocyclic or-
ganic ions.

A. Experimental

The thermochemical and ion mobility experiments were
performed using the VCU mass-selected ion mobility spec-
trometer. The details of the instrument can be found in several
publications,16–20 and only a brief description of the experi-
mental procedure is given here (see Fig. S1, supplementary
material).28

In the experiment, ∼0.5%–2% pyrimidine vapor
(Aldrich, 99% purity) seeded in 3–4 atm of the carrier gas,
helium or 10% hydrogen in helium, is expanded through a
pulsed conical nozzle (500 μm diameter) in pulses of 200–
300 μs duration at repetition rates of 50–100 Hz. The neutral
molecular beam is ionized by an axial electron-impact ionizer
using 50–70 eV electron energy. The pyrimidine.+ or the
H+pyrimidine ions are mass-selected via the first quadrupole
mass-filter. The ion beam is injected into the drift cell in
30–50-μs-wide packets using injection energies of 10–13
eV, (laboratory frame) which are the minimum energies
(depending on the pressure in the drift cell) to introduce the
injected ions against the counter flow of the gas escaping
from the cell. The drift cell contains the reactant water
vapor, alone or in a mixture with helium buffer gas in the
thermochemical measurements while it contains helium only
in the mobility measurements. Most of the ion thermalization
occurs outside the cell entrance by collisions with the solvent
molecules and He atoms escaping from the cell entrance
orifice. At a cell pressure of 0.2 Torr, the number of colli-
sions that the pyrimidine ion encounters within the 1.5 ms
residence time inside the cell is about 104 collisions, which
is sufficient to ensure efficient thermalization of the ions. The
temperature of the drift cell can be controlled to better than
±1 K using four temperature controllers. Liquid nitrogen
flowing through solenoid valves is used to cool down the drift
cell. The reaction products can be identified by scanning a
second quadrupole mass filter located coaxially after the drift
cell. The arrival time distributions (ATDs) are collected by
monitoring the intensity of each ion as a function of time.
The reaction time can be varied by varying the drift voltage.
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As an example, the ATDs of the reactant
(C4N2H4

•+)(H2O)n−1 and product (C4N2H4
•+)(H2O)n

ions are measured as a function of the drift
voltage across the cell. The ion intensity ratio,
(C4N2H4

•+)(H2O)n/(C4N2H4
•+)(H2O)n−1, is measured

from the integrated peak areas of the ATDs as a function
of decreasing cell drift field corresponding to increasing
reaction times, and equilibrium is achieved when a constant
ratio is obtained. Under these conditions, the equilibrium
constant is then obtained using Eq. (1),

Keq = I[C4N2H•+
4 (H2O)n]/I[C4N2H•+

4 (H2O)n−1]P (H2O) ,

(1)
where I is the intensity of the ion peak taken from the inte-
grated ATD. The equilibrium constants measured as a func-
tion of temperature yield �H◦ and �S◦ from the slopes and
intercepts, respectively, of the van’t Hoff plots. All of the re-
sults are replicated three or more times.

B. Theoretical

DFT calculations of the lowest energy structures of
the (C4N2H4

•+)(H2O)n and the C4N2H5
+(X)n (X = H2O,

CH3OH, CH3CN) clusters were carried out at the M06-
2X/6-311++G(d,p) level using the GAUSSIAN 09 suite of
programs.29 Frequency calculations have been performed for
all the optimized geometries at the same level of theory to ob-
tain the zero point vibrational energy (ZPVE) and to verify the
absence of any imaginary frequencies. The calculated bind-
ing energies (with respect to pyrimidine•+(H2O)n−1 + H2O
or pyrimidineH+(X)n−1 + X) were corrected for BSSE using
the scheme of Boys and Bernardi as described in the Gaus-
sian program.29 The ion mobility and collision cross sections
were calculated by the trajectory method using Mobcal pro-
gram which employs a potential composed of Lennard-Jones
and ion-induced dipole interactions.30

II. RESULTS AND DISCUSSION

A. Stepwise hydration of the pyrimidine radical cation
and protonated pyrimidine

Figures 1(a) and 1(b) display the mass spectra obtained
following the injection of the pyrimidine radical cation and
protonated pyrimidine, respectively, into the drift cell contain-
ing helium carrier gas or He-water mixtures at various pres-
sures and temperatures as indicated in the figures.

In the absence of water in the drift cell, only the
mass-selected pyrimidine radical cation is observed as
shown in Fig. 1(a). In the presence of water, both the
(C4N2H4

•+)(H2O)n with n = 1-5 and the protonated water
series H+(H2O)n with n = 4-9 are observed. They consis-
tently shift towards higher n as the temperature of the drift
cell decreases. For example, at 238 K (235 K is the low-
est attainable temperature under our experimental conditions
before water freezes out in the drift cell) the observed ions
are (C4N2H4

•+)(H2O)n with n = 2-5 and H+(H2O)n with
n = 5-9 as shown in Fig. 1(a). Similar observations are ob-
tained by injecting the protonated pyrimidine into the drift cell
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FIG. 1. (a) Mass spectra resulting from the injection of mass-selected pyrim-
idine radical cation into a helium (He)-water (W) vapor mixture at different
temperatures using 12.7 eV injection energy (laboratory frame) and 2.5 V/cm
drift field. (b) Mass spectra resulting from the injection of mass-selected pro-
tonated pyrimidine (H+Py) into a helium (He)-water (W) vapor mixture at
different temperatures using 13.9 eV injection energy (laboratory frame) and
2.2 V/cm drift field.
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containing He–water mixtures as shown in Fig. 1(b). How-
ever, in this case the protonated clusters (C4N2H5

+)(H2O)n

can be observed at higher temperatures as shown in Fig. 1(b)
at 366 K and 300 K for the C4N2H5

+(H2O) and
the (C4N2H5

+)(H2O)2 clusters, respectively. This indicates
higher hydration energies for the protonated pyrimidine as
compared to the pyrimidine radical cation.

The mass spectra displayed in Figs. 1(a) and 1(b) show
the presence of protonated water clusters H+(H2O)n with
n ≥ 4. The formation of these ions is attributed to the dis-
sociative proton transfer reactions shown in Reactions (2) and
(3) below, similar to those previously observed in the hydra-
tion of benzene and phenylacetylene radical cations,9, 10, 16

[C4H4N2(H2O)n−1] + H2O → C4H3N.
2 + [H+(H2O)n]; n ≥ 4,

(2)

[H+C4H4N2(H2O)n−1] + H2O

→ C4H4N2 + [H+(H2O)n]; n ≥ 4. (3)

The proton transfer reactions (2) and (3) exhibit a critical
size (n ≥ 4) where these reactions become exothermic. This
can be rationalized by the proton affinity (PA) of the water
subcluster needed to extract the proton from the pyrimidine
radical cation (Reaction (2)) or from the protonated pyrim-
idine (Reaction (3)). The observation of n ≥ 4 for both re-
actions indicates that the PA of the water tetramer (n = 4)
must be higher than that of the C4N2H3

• radical (Reaction (2))
and also higher than that of the pyrimidine molecule (Reac-
tion (3)). The PA of (H2O)4 can be estimated as 215 kcal/mol
which is indeed higher than the PA of the pyrimidine molecule
(212 kcal/mol).10, 31 This also indicates that the PA of the
C4N2H3

• radical can be estimated as <215 kcal/mol. The
observed proton transfer reactions generating the H+(H2O)n

ions with n ≥ 4 reflect the stability of the H3O+ ion and its
preferential solvation by three water molecules to form the
closed shell solvated hydronium ion H3O+(H2O)3 cluster.1

Under the experimental conditions listed in Figs. 1(a)
and 1(b), equilibrium could be established as indicated by
the identical ATDs of the reactant and product ions. If
the (C4N2H4

•+)(H2O)n−1 and (C4N2H4
•+)(H2O)n ions are

in equilibrium, their ATDs must be identical. This is ev-
ident from the ATDs of the (C4N2H4

•+)(H2O)n ions with
n = 1-5 and the (C4N2H5

+)(H2O)n ions with n = 0-3,
as shown in Figs. S2 and S3, respectively (supplementary
material).28 The equilibrium constants for the stepwise hy-
dration of the C4N2H4

•+ and C4N2H5
+ ions with 1-4 and

1-3 water molecules, respectively, are measured at different
temperatures and the resulting van’t Hoff plots are shown in
Figs. 2(a) and 2(b), respectively. �H

o
and �S

o
values for each

hydration step (n − 1 → n) are obtained from the slope and
the intercept, respectively, of the corresponding van’t Hoff
plot. The measured values are duplicated at least three times
for each equilibrium step and the average values are reported
in Table I.

The results shown in Table I indicate that the binding en-
ergies of the pyrimidine•+(H2O)n clusters are weaker than
those of the pyrimidineH+(H2O)n clusters. In both series,

TABLE I. Measured thermochemistry (�H
◦

n-1,n and �S
◦

n-1,n) of the for-
mation of pyrimidine.+(H2O)n and H+pyrimidine.(H2O)n clusters; with
n = 1-4 and n = 1-3, respectively.

Pyrimidine.+ Protonated pyrimidine

n −�Ho a −�So b BE c −�Ho a −�So b BE c

1 11.9 23.6 13.5 (10.8) 16.7 38.6 19.7 (16.9)
2 10.4 18.8 13.4 (10.3) 12.7 35.6 15.0 (12.9)
3 9.0 19.5 11.5 (9.5) 11.0 34.9 13.2 (11.6)
4 7.9 17.6 11.4 (8.9)

a�H◦
n−1,n units are kcal/mol.

b�S◦
n−1,n units are cal/molK.

cBinding energy calculated at the M06-2X/6-311++G(d,p) level (with ZPE and BSSE
corrections included).

the binding energies −�Ho
n−1,n decrease with increasing n

and, in the case protonated pyrimidine, approach the limiting
macroscopic value of 10.5 kcal/mol condensation energy of
water.1 This follows the usual trend in systems with conven-
tional ionic hydrogen bonds.1
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FIG. 2. Van’t Hoff plots of the temperature dependence of the equilibrium
constant of the stepwise hydration of (a) the pyrimidine radical cation and
formation of pyrimidine+.(H2O)n with n = 1-4, and (b) protonated pyrimi-
dine and formation of H+pyrimidine (H2O)n with n = 1-3.
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In relation to these data, we note that the C–H hydrogens
of the conventional pyrimidine radical cation (C5H4N2

•+) can
only form carbon-based CHδ+ · · OH2 bonds to water, simi-
lar to those formed by the benzene•+ ion.9, 10 Such hydrogen
bonds are typically weak, and the measured values in Table I
are consistent with the 8–12 kcal mol−1 observed in the hy-
dration of benzene and phenylacetylene radical cations.9, 10, 16

In fact, DFT calculations below also show that the hydrogen
bond strength of the conventional pyrimidine•+ ion to wa-
ter is 10.8 kcal/mol, in good agreement with the measured
value of 11.9 kcal/mol. In contrast, protonated pyrimidine
forms a stronger NH+ · · OH2 bond of 16.7 kcal/mol simi-
lar to the calculated value of 16.9 kcal/mol as shown in Ta-
ble I. This situation is different from the hydration of the
pyridine ions, where the measured binding energies of the
pyridine•+(H2O)n clusters were similar to those of the pro-
tonated pyridine–water clusters, (C5H5NH+)(H2O)n, that in-
volve NH+ · · OH2 bonds, and different from those of the hy-
drated benzene radical cation. These relations indicated that
the hydrated pyridine•+ ions have the distonic •C5H4NH+

structures that can form NH+ · · OH2 bonds.11 Based on these
comparisons, it can be concluded that the hydrated pyrimidine
ions observed in the present work have the conventional rad-
ical cation structures similar to the hydrated benzene cation
that forms CHδ+ · · OH2 bonds with water molecules. This
could imply that the barrier for the rearrangement of the hy-
drated conventional pyrimidine radical cation to the distonic
structure is higher than the corresponding barrier in the case
of hydrated pyridine cation.

The gas phase hydration energy of protonated pyrimidine
measured in this work (16.7 kcal/mol) is consistent with the
hydration energies of other aromatic ions recently measured
using energy-resolved collision-induced dissociation (CID).12

For example, the CID hydration energies of protonated ani-
line, acetophenone, and phenol were measured as 14.4, 15.6,
and 17.5 kcal/mol, respectively. The hydration energy of pro-
tonated pyrimidine is higher than that of aniline and slightly
lower than that of phenol. The measured hydration energies
appear to correlate well with the proton affinity of the aro-
matic molecules as discussed in Ref. 12.

B. Calculated structures of the hydrated pyrimidine
radical cation and protonated pyrimidine

The calculated structures of the lowest energy isomers
of the hydrated pyrimidine radical cation (C4N2H4

•+)(H2O)n

with n = 1-4 are shown in Figs. 3 and 4. The lowest energy
isomer of the monohydrated ion (PW1-a) has a bifurcated
structure with H2O bonding to two CH hydrogens with rela-
tively larger distances (2.4 Å and 2.2 Å) than typical H-bonds
as shown in Fig. 3(a). This structure is similar to that found
for the benzene•+(H2O) complex.10 Other isomers PW1-b
and PW1-c are slightly higher in energy and involve direct
CHδ+ · · OH2 bonds of 1.9–2.0 Å depending on the charge
density on the H atoms of the pyrimidine cation.

The addition of the second water molecule forms both in-
ternally solvated structures (PW2-a and PW2-b in Fig. 3) in
which both water molecules are bonded to the C4N2H4

•+ ion,
which is therefore “inside” the solvent, and an externally sol-

(a) 

 
(PW1-a)                                       (PW1-b)            (PW1-c)
ΔE =10.8                                        ΔE =9.8                                      ΔE =9.6 

(b) 

                    
(PW2-a)                                         (PW2-b)      (PW2-c)
ΔE = 10.3                                       ΔE = 10.2                                            ΔE = 10.1 

FIG. 3. Structures of (a) pyrimidine.+(H2O) and (b) pyrimidine.+(H2O)2
calculated by DFT at the M06-2x/6-311++G (d,p) level. Binding energies
(�E) are corrected for zero-point energies (ZPE) and basis-set super position
errors (BSSE). Energies are in kcal/mol. Distances are in Angstrom.

vated structure (PW2-c in Fig. 3) where the water molecules
are bonded to each other and the ion is external to this solvent
cluster. Both types of structures have similar binding energies.
The hydrogen bond of 1.8 Å between the two water molecules
in isomer PW2-c is shorter than that between the first water
molecule and the CH of the pyrimidine ion (1.92 Å in PW1-b)
reflecting the stronger interaction among the water molecules.

The lowest energy isomers of the C4N2H4
•+(H2O)3 clus-

ter also show both internally solvated (PW3-a) and externally
solvated (PW3-b) structures with similar binding energies.
Hydrogen bonding between three H2O molecules attached
to the pyrimidine cation forms a cyclic structure (PW3-b)
which apparently further stabilizes the cluster and increases
the interaction with the cation as evident from the short

(a)

 
(PW3-a)                                        (PW3-b)      (PW3-c)
ΔΕ  = 9.5                                        ΔΕ  = 9.4                                            ΔΕ  = 8.6 

(b)

 

   (PW4-a)                                     (PW4-b)  (PW4-c)
ΔΕ  = 8.9                                     ΔΕ  = 8.6                                              ΔΕ  = 8.5 

FIG. 4. Structures of (a) pyrimidine.+(H2O)3 and (b) pyrimidine.+(H2O)4
calculated by DFT at the M06-2x/6-311++G (d,p) level. Binding energies
(�E) are corrected for zero-point energies (ZPE) and basis-set super position
errors (BSSE). Energies are in kcal/mol. Distances are in Angstrom.
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(PH+W1)                                       (PH+

ΔE = 16.9                    ΔE = 11.6                    

  (PH+W3-a)                                 (PH+W3-b)             (PH+W3-c) 
   ΔE = 11.9                                       ΔE = 11.5                                  ΔE = 11.2 

W2)

FIG. 5. Structures of H+pyrimidine(H2O)n clusters with n = 1-3 calculated
by DFT at the M06-2x/6-311++G (d,p) level. Binding energies (�E) are
corrected for zero-point energies (ZPE) and basis-set super position errors
(BSSE). Energies are in kcal/mol. Distances are in Angstrom.

CHδ+ · · OH2 hydrogen bond (1.6 Å) in isomer PW3-b. The
same trend continues to the C4N2H4

•+(H2O)4 cluster where
the largest binding energy is provided by isomer PW4-a where
two water dimers form bifurcated bonds with the pyrimidine
ion and represent an optimization between the internally and
externally solvated structural motifs.

With respect to the observed deprotonation reaction (2),
isomer PW4-c in Fig. 4 may be relevant. This isomer has a
nearly similar binding energy (8.5 kcal/mol) to the measured
value of 7.9 kcal/mol, and it has the four water molecules
bonded together in a common cyclic tetramer which allows
pulling the proton from C4N2H4

•+ ion. In fact, one of the
CHδ+ · · OH2 bonds in PW4-c is significantly shorter (1.99 Å)
than typical bifurcated bonds suggesting a transition towards
proton transfer to generate the H+(H2O)4 ions.

The calculated structures of the hydrated protonated
pyrimidine (C4N2H5

+)(H2O)n clusters are significantly dif-
ferent from those of the hydrated radical cation. As shown
in Fig. 5, hydration of protonated pyrimidine results in only
externally solvated structures where the water molecules are
bonded to each other and the ion is external to this solvent
cluster. This is mediated by the stronger interaction that in-
volves NH+ · · OH2 bonds similar to other ionic hydrogen
bonds where the proton is shared between two centers con-
taining lone pairs of electrons.

The lowest energy pyrimidineH+(H2O) isomer,
(PH+W1) in Fig. 5, has the water molecule directly at-
tached to the NH+ center via a NH+—O hydrogen bond of
1.67 Å similar to the structure of the hydrated protonated
pyridine.11 The second water molecule binds to the first water
molecule by a 1.73 Å hydrogen bond while the NH+—O bond
shortens to 1.59 Å as shown in isomer (PH+W2) in Fig. 5.
Three isomers were found for the pyrimidineH+(H2O)3

cluster with small differences in binding energies. Isomer
(PH+W3-a) shows a symmetric structure where a central
water molecule binds by 1.75 Å hydrogen bonds to two other
water molecules and to protonated pyrimidine by a shorter
NH+—O bond of 1.43 Å. This structure is consistent with a
growth pattern that could lead to dissociative proton transfer
within the pyrimidineH+(H2O)4 cluster to form the closed

shell solvated hydronium ion H3O+(H2O)3 as observed
experimentally.

C. Stepwise solvation of protonated pyrimidine with
methanol and acetonitrile

Figures 6(a) and 6(b) display the mass spectra obtained
following the injection of protonated pyrimidine into the
drift cell containing methanol and acetonitrile vapors, respec-
tively, at various pressures and temperatures as indicated in
Figs. 6(a) and 6(b). In the case of methanol the main series
observed are the C4N2H5

+(CH3OH)n with n = 1-3 and the
protonated methanol clusters H+(CH3OH)n with n = 3-6, and
both series shift towards higher n as the temperature of the
drift cell decreases. However, in the case of acetonitrile, only
the C4N2H5

+(CH3CN)n series with n = 1-3 is observed as
shown in Fig. 6(b).

The formation of protonated methanol clusters, with n
= 3-6 as shown in Fig. 6(a), is attributed to the dissociative
proton transfer reactions (4), similar to reactions (2) and (3)
observed in the hydration reactions above,

[H+C4H4N2(CH3OH)n−1] + CH3OH

→ C4H4N2 + [H+(CH3OH)n]; n ≥ 3. (4)

The observation of reaction (4) for n ≥ 3 is a direct con-
sequence for the higher PA of methanol (180 kcal/mol)31 as
compared to water (165 kcal/mol),31 and therefore only three
methanol molecules connected by H-bonding are able to ex-
tract the proton from the protonated pyrimidine site to the
methanol subcluster to generate the protonated methanol clus-
ters H+(CH3OH)n with n = 3-6.

The absence of the deprotonation channel within the
C4N2H5

+(CH3CN)n clusters can be explained by the inability
of acetonitrile molecules to form extended hydrogen bonding
structures such as those formed by water and methanol due to
the presence of the methyl groups which block the extension
of hydrogen bonding networks.

Under the experimental conditions listed in Figs. 6(a)
and 6(b), equilibrium could be established as indicated
by the identical ATDs of the reactant and product ions
as shown in Figs. S4 and S5 for the C4N2H5

+(CH3OH)n

and C4N2H5
+(CH3CN)n clusters, respectively (supplemen-

tary material).28 The equilibrium constants for the step-
wise hydration of the C4N2H5

+ ions with 1-3 methanol and
acetonitrile molecules are measured at different tempera-
tures and the resulting van’t Hoff plots for the formation of
C4N2H5

+(CH3OH)n with n = 1-3 and C4N2H5
+(CH3CN)n

with n = 2-3 clusters are shown in Figs. 7(a) and 7(b), re-
spectively. The measured �H

o
and �S

o
values are reported

in Table II. Because of the higher binding energy of the
C4N2H5

+(CH3CN) complex and the need to conduct the equi-
librium measurements at higher temperatures, it was not pos-
sible to obtain a van’t Hoff plot for the formation of the
C4N2H5

+(CH3CN) complex under our experimental condi-
tions. Instead, we were able to measure �G◦ at one tempera-
ture (350 K), and using �S◦ of 28 cal/mol K, we can estimate
�H◦ for the formation of the C4N2H5

•+(CH3CN) complex as
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FIG. 6. Mass spectra resulting from the injection of mass-selected protonated pyrimidine (H+Py) into (a) helium (He)–methanol (CH3OH) and (b) helium
(He)–acetonitrile (CH3CN) vapor mixtures at different temperatures and pressures as indicated.

22.3 kcal/mol which is in good agreement with the calculated
value of 22.8 kcal/mol shown in Table II.

D. Calculated structures of methanol and acetonitrile
clusters with protonated pyrimidine

Figure 8 displays the low energy structures of the
C4N2H5

+(CH3OH)n clusters calculated at the M06-2X/6-
311++G(d,p) level. The lowest energy structure of the
C4N2H5

+(CH3OH) complex (PH+M1-a in Fig. 8) shows a
proton-bound dimer with a short NH+—O hydrogen bond
of 1.59 Å consistent with a large calculated binding en-
ergy of 19.6 kcal/mol which is a little overestimated from

TABLE II. Measured thermochemistry (�H
◦

n−1,n and �S
◦

n−1,n) of the for-
mation of H+pyrimidine(CH3OH)n and H+pyrimidine(CH3CN)n clusters;
with n = 1-3. The calculated binding energies (BE) of the lowest energy
isomers are shown for comparison.

H+Pyrimidine (CH3OH)n H+Pyrimidine (CH3CN)n

n −�Ho a −�So b BE c −�Ho a −�So b BE c

1 18.2 26.9 21.4 (19.6) n/a n/a 23.7 (22.8)
2 12.8 27.4 15.8 (15.1) 13.0 26.3 14.5 (12.9)
3 11.8 31.3 12.9 (11.2) 11.2 27.9 13.5 (13.4)

a�H◦
n−1,n units are kcal/mol.

b�S◦
n−1,n units are cal/molK.

cBE (Binding energy − calculated by DFT at the M06-2x/6-311++G (d,p) level
(corrected for ZPE and BSSE).

the measured value of 18.2 kcal/mol. However, the proton-
bound dimer structure is clearly the most stable structure
as the carbon-based bifurcated CHδ+—O structure (PH+M1-
b in Fig. 8) has significantly lower binding energy (10.6
kcal/mol). For the C4N2H5

+(CH3OH)2 cluster, three struc-
tures were found with the hydrogen-bonding chain (PH+M2-
a) giving the highest binding energy (15.1 kcal/mol) which
is again overestimated as compared to the experimental value
of 12.8 kcal/mol. The other two structures show proton shar-
ing between the two methanol molecules (PH+M2-b) and a
combination of NH+—O and CHδ+—O hydrogen bonding
interactions (PH+M2-c). The lowest energy structure of the
C4N2H5

+(CH3OH)3 cluster involves a cyclic hydrogen bond-
ing structure of the three methanol molecules (PH+M3-a)
which results in a binding energy of 11.2 kcal/mol, in a good
agreement with the measured value of 11.8 kcal/mol. The
other two structures shown in Fig. 8 represent a combination
of NH+—O and CHδ+—O hydrogen structures (PH+M3-b)
and a proton-shared structure (PH+M3-c) both with signifi-
cantly lower binding energies than the PH+M3-a structure.

The calculated low energy structures of the
C4N2H5

+(CH3CN)n clusters are shown in Fig. 9. Similar to
the water and methanol clusters, the lowest energy structure
for n = 1 is the proton-bound dimer (C4N2H4)H+NCCH3

with a binding energy of 22.8 kcal/mol as compared to the
experimentally estimated value of 22.3 kcal/mol. The calcu-
lated lowest energy structure of the (C4N2H4)H+(CH3CN)2

cluster (PH+A2-a in Fig. 9) shows that the second acetonitrile
molecule shares the proton of the protonated pyrimidine with

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.172.48.59 On: Mon, 12 Oct 2015 18:14:03



084304-8 Hamid et al. J. Chem. Phys. 139, 084304 (2013)

(a)

2.0 2.4 2.8 3.2 3.6 4.0 4.4

9

12

15

18

21

24

n=3

n=2

R
ln

K
 (

ca
l.m

ol
-1
.K

-1
)

1000/T (K-1)

n=1

(b)

3.4 3.5 3.6 3.7 3.8 3.9 4.0

10

12

14

16

18

20

22

n=3

n=2

1000/T (K-1)

R
 ln

 K
(c

al
.m

ol
-1
.K

-1
)

 

FIG. 7. Van’t Hoff plots of the temperature dependence of the equilibrium
constant of the stepwise formation of (a) H+pyrimidine(CH3OH)n clusters;
with n = 1-3 and (b) H+pyrimidine(CH3CN)n clusters with n = 2-3.

the first acetonitrile molecule through relatively long bonds
(2.12 Å), and a binding energy of 12.9 kcal/mol in excellent
agreement with the measured value of 13.0 kcal/mol. The
other two structures (PH+A2-b and PH+A2-c in Fig. 9) show
binding through the weak CHδ+—N hydrogen bonds to the
pyrimidine ring hydrogens. For the (C4N2H4)H+(CH3CN)3

cluster, the three lowest energy structures (PH+A3-a,
PH+A3-b, and PH+A3-c in Fig. 9) consist of multiple
CHδ+—N hydrogen bonds in bifurcated structures that lead
to binding energies (13.4–12.5 kcal/mol) higher than the
measured value of 11.2 kcal/mol.

E. Trends in binding energies and effect of solvent

Figure 10 illustrates the variations of �H◦
n−1,n vs. n for

the studied systems. Since the van’t Hoff plot for the forma-
tion of (C4N2H4)H+(CH3CN) could not be obtained due to
vanishing intensity of the (C4N2H4)H+ ion since the equi-

(PH+M1-a)                                         (PH+M1-b)                                 
ΔE = 19.6                     ΔE = 10.6                                   

 
(PH+M2-a)                                         (PH+M2-b)                                   (PH+M2-c)         
ΔE = 15.1                   ΔE = 10.7           ΔE = 8.8          

           
(PH+M3-a)                                   (PH+M3-b)                                   (PH+M3-c)         
ΔE = 11.2                   ΔE = 8.7            ΔE = 8.6          

FIG. 8. Structures of the H+Pyrimidine(CH3OH)n clusters (PH+Mn) with
n = 1-3 calculated by DFT at the M06-2x/6-311++G (d,p) level. Binding
energies (�E) are corrected for zero-point energies (ZPE) and basis-set super
position errors (BSSE). Energies are in kcal/mol. Distances are in Angstrom.

librium is shifted to higher clusters, we used the calculated
binding energy (22.8 kcal/mol) instead of �H◦ in Fig. 10.
The data show that acetonitrile forms a stronger proton-bound
dimer than methanol and water with the protonated pyrim-
idine. This is a consequence of the strong dipole moment

             (PH+A1)                                                         (PH+A2-a)      
  ΔE = 22.8                                                     ΔE = 12.9       

 

 
            (PH+A2-b)                                                            (PH+A2-c)                                

      ΔE = 11.6                                                         ΔE = 10.0       

 

  (PH+A3-a)                                  (PH+A3-b)                               (PH+A3-c)
 ΔE = 13.4                                     ΔE = 12.6                               ΔE = 12.5      

FIG. 9. Structures of the H+Pyrimidine(CH3CN)n clusters (PH+An) with
n = 1-3 calculated by DFT at the M06-2x/6-311++G (d,p) level. Binding
energies (�E) are corrected for zero-point energies (ZPE) and basis-set super
position errors (BSSE). Energies are in kcal/mol. Distances are in Angstrom.
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FIG. 10. Measured �H◦
n vs n for the formation of pyrimidineH+(X)n clus-

ters with X = water (W), methanol (M), and acetonitrile (A) and n = 1-3. For
comparison, �H◦

n values for the hydration of pyrimidine radical cation with
1-4 water molecules are also included (Py-Wn).

of acetonitrile (3.9 D) as compared to 1.7 D and 1.6 D for
methanol and water, respectively. As a result, the ion-dipole
interaction term is stronger in the case of acetonitrile, and the
overall binding energy is significantly higher than those of
methanol and water. The sequential binding energies in all
cases follow the trend of decreasing �H◦

n−1,n with increasing
n which can be expected for association reactions dominated
by ion-dipole interactions including ionic hydrogen bonding.1

However, Fig. 10 shows that the decrease in �H◦
n−1,n vs. n

plot is more regular in the hydration of the radical cation than
in the hydration of the protonated pyrimidine or its stepwise
association with methanol and acetonitrile molecules. This is
due to the change in the nature of bonding from weak carbon-
based CHδ+—O hydrogen bonds in case of the radical cation
to stronger NH+—O ionic hydrogen bonds with protonated
pyrimidine.

Figure 10 also shows a significant drop in the binding
energy (43%) upon the addition of the second acetonitrile
molecule to the proton-bound dimer (C4N2H4)H+(NCCH3)
as compared to the methanol and water interactions where the
corresponding drops in binding energies are 30% and 24%,
respectively. The transition from strong ionic hydrogen bond-
ing in the proton-bound dimer to weaker CHδ+—N type of
bonds is responsible for the sharp drop in the binding energy
of the (C4N2H4)H+(CH3CN)2 cluster. However, in the case of
water and methanol extended hydrogen bonding networks can
be formed as shown in the calculated low energy structures of
the (C4N2H4)H+(H2O)2 and (C4N2H4)H+(CH3OH)2 clusters
displayed in Figs. 5 and 8, respectively.

F. Ion mobility measurements of the
proton-bound dimers

To verify the structures of the proton-bound dimers
(C4N2H4)H+(X) for X = H2O, CH3OH, and CH3CN, we
measured the mobility of the mass-selected ions generated
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FIG. 11. Mass spectra resulting from the injection of the EI ionized
binary clusters of (a) pyrimidine-water, (b) pyrimidine-methanol, and
(c) pyrimidine-acetonitrile into the drift cell containing (a) 0.93 Torr he-
lium at 298 K, (b) 0.83 Torr helium at 300 K, and (c) 1.23 Torr helium
at 302 K.
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by EI ionization of the binary pyrimidine-water, pyrimidine-
methanol, and pyrimidine-acetonitrile clusters. The mass
spectra of the ionized binary clusters are shown in Fig. 11, and
ATDs of the mass-selected proton-bound dimers as a func-
tion of the drift field are provided in Fig. S6 (supplementary
material).28

The mass spectra displayed in Fig. 11 show the forma-
tion of the proton-bound mixed dimers (C4N2H4)H+(X) for
X = H2O, CH3OH, and CH3CN in addition to the pyrimidine
homodimer (C4N2H4)H+(C4N2H4). Following the EI ioniza-
tion of the binary neutral clusters, intracluster proton trans-
fer reactions generate the proton-bound dimers in addition to
higher protonated clusters. The energy released from exother-
micity of these reactions is dissipated by evaporative cooling
where weakly bound neutral molecules are evaporated from
the cluster. This mechanism acts as a third-body effect in the
sequential association reactions studied in the drift tube as de-
scribed in Secs. I–III.

In the experiment to measure ion mobility, a packet of
the mass selected ions of interest is injected into the drift cell
and the arrival time distribution ATD is collected at varying
cell voltages, V (with T and P held constant), where T is the
buffer gas temperature (K) and P is the buffer gas pressure
(Torr).20, 21 The reduced mobility Ko is obtained from the plot
of the drift time (td) versus P/V which according to Eq. (5)
gives a straight line with slope containing Ko and an inter-
cept corresponding to to, the effective time spent outside the
drift cell. All the mobility measurements were carried out in
the low-field limit where the ion’s drift velocity is small com-
pared to the thermal velocity and the ion mobility is indepen-
dent of the field strength (E/N < 6.0, where E is the elec-
tric field intensity and N is the gas number density and E/N
is expressed in units of Townsend (Td) where 1 Td = 10−17

V cm2),32

td =
(

z2 × 273.15

T × 760 × Ko

)(
P

V

)
+ to. (5)

The average collision cross section, �(1.1), of the ions in
the helium buffer gas is calculated according to the kinetic
theory as shown in Eq. (6),

K = 3qe

16N

(
2π

kBTeff

) 1
2
(

Mi + Mb

MiMb

) 1
2 1

�
(1,1)
avg

, (6)

where qe is the ion charge, N is the number density of the
buffer gas, Teff is the effective temperature, Mi and Mb are the
masses of the ion and buffer gas, respectively, and �(1,1)

avg is
the orientationally averaged collision integral. The resulting
reduced mobility K0 and the corresponding collisional cross
sections of the proton-bound dimers are shown in Table III.
It is clear that measured collision cross sections are in ex-
cellent agreement with those calculated based on the lowest
energy structures of the proton-bound dimers. This provides
experimental-based support for the DFT structures obtained
at the M06-2x/6-311++G (d,p) level.

TABLE III. Mobility and collision cross sections in helium of the pyrim-
idine radical cation, protonated pyrimidine, and the proton-bound dimers
(C4N2H4)H+(X) with X = H2O, CH3OH, and CH3CN.

Ion T (K) K0(expt.)
a �(expt.)

b K0(calc.)
c,a �(calc.)

c,b

Pyrimidine 299 12.2 44.9 12.3 44.5
H+Pyrimidine 301 11.8 46.1 12.1 45.1
H+Pyrimidine(H2O) 300 10.4 52.3 10.0 54.7
H+Pyrimidine(CH3OH) 300 8.6 63.0 8.9 61.1
H+Pyrimidine(CH3CN) 302 8.1 66.8 8.2 66.0

aK0 in cm2 V−1 s−1.
b� in Ǻ2.
cCalculated by Mobcal (Ref. 29) at 300 K based on the lowest energy structures obtained
from DFT at the M06-2x/6-311++G (d,p) level.

III. SUMMARY AND CONCLUSIONS

Equilibrium thermochemical measurements using an ion
mobility drift cell technique have been utilized to investigate
the binding energies and entropy changes associated with
the stepwise hydration of the pyrimidine radical cation and
protonated pyrimidine. The binding energy of the hydrated
pyrimidine radical cation is weaker than that of the proton-
bound dimer pyrimidineH+(H2O) consistent with the forma-
tion of a weak carbon-based CHδ+ · · OH2 hydrogen bond
(11.9 kcal/mol) and a stronger NH+ · · OH2 hydrogen bond
(15.6 kcal/mol), respectively. Other proton-bound dimers
such as pyrimidineH+(CH3OH) and pyrimidineH+(CH3CN)
exhibit higher binding energies (18.2 kcal/mol and
22.8 kcal/mol, respectively) due to the higher proton
affinities and dipole moments of acetonitrile and methanol as
compared to water.

DFT calculations show that the hydrated pyrimidine radi-
cal cation clusters form internally solvated structures in which
the water molecules are bonded to the C4N2H4

•+ ion by
weak CHδ+ · · OH2 hydrogen bonds. The hydrated protonated
pyrimidine clusters form externally solvated structures where
the water molecules are bonded to each other and the ion is
external to water cluster.

Dissociative proton transfer reactions
C4N2H4

•+(H2O)n−1 + H2O → C4N2H3
• + (H2O)nH+

and C4N2H5
+(H2O)n−1 + H2O → C4N2H4

• + (H2O)nH+

are observed for n ≥ 4 where the reactions become ther-
moneutral or exothermic. These reactions become favorable
due to the formation of the closed shell solvated hydronium
ion H3O+(H2O)3. In case of methanol, the reaction is ob-
served at n ≥ 3 due to the higher proton affinity of methanol
as compared to water. The absence of the dissociative proton
transfer reaction within the C4N2H5

+(CH3CN)n clusters
results from the inability of acetonitrile molecules to form
extended hydrogen bonding structures such as those formed
by water and methanol due to the presence of the methyl
groups which block the extension of hydrogen bonding
networks.

The measured collisional cross sections of the proton-
bound dimers provide experimental-based support for the
DFT calculated structures at the M06-2x/6-311++G (d,p)
level.
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