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RESEARCH ARTICLE
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Abstract
Alcohol consumption is known to lead to gene expression changes in the brain. After per-

forming weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA

and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol

dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA

modules significantly correlated with AD were identified (Bonferoni-adj. p� 0.05). Cell-type-

specific transcriptome analyses revealed two of the mRNA modules to be enriched for neu-

ronal specific marker genes and downregulated in AD, whereas the remaining four mRNA

modules were enriched for astrocyte and microglial specific marker genes and upregulated

in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were

enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and

MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in

processes related to immune functions, i.e. cytokine signaling (all adj. p� 0.05). In mRNA

and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In con-

trast to the expected biological functions of miRNAs, correlation analyses between mRNA

and miRNA hub genes revealed a higher number of positive than negative correlations

(χ2 test p� 0.0001). Integration of hub gene expression with genome-wide genotypic data
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resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were signifi-

cantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024,

respectively) in AD GWAS signals in a large, independent genetic sample from the Collabo-

rative Study on Genetics of Alcohol (COGA). In conclusion, our study identified putative

gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of

AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological

mechanisms of AD.

Introduction
Alcohol dependence (AD) is a chronic, debilitating substance use disorder. Over the past few
decades, research has unveiled the vast complexity of the genetic architecture underlying AD
and alcohol-related phenotypes (ARP). Family, twin and adoption studies currently estimate
the heritability of AD to be 50–60% [1, 2]. Both animal and human postmortem brain studies
reveal that chronic alcohol consumption leads to broad transcriptional changes in brain
regions not known to previously play a role in AD [3]. Early postmortem human brain expres-
sion studies focused on the prefrontal cortex (PFC), where genes related to GABAA receptor
subunits and mitochondrial function were found to be differentially expressed in chronic alco-
holics [4, 5]. Similarly, genome-wide expression studies in PFC implicated variation in the
expression of genes related to processes such as myelination, cell cycling, oxidative stress, and
transcription [6–11]. Research into other brain regions, such as nucleus accumbens (NAc) or
the ventral tegmental area (VTA), revealed differential expression of genes related to cell archi-
tecture, cell signaling, vesicle formation, and synaptic transmission [8]. These findings suggest
that there are brain region-specific susceptibilities and adaptations to chronic alcohol con-
sumption that likely have a distinct effect on the behavioral phenotypes comprising AD [6, 8,
12].

Evaluation of the regulatory mechanisms underlying genetic differentiation is necessary to
better understand the neurobiology of AD [13]. Transcriptional and translation regulation by
microRNAs (miRNAs) in substance use disorders and AD is a growing field of interest in
recent years [14]. MiRNAs are small, non-coding, regulatory RNA molecules that function pri-
marily to repress translation of an estimated 30–50% of all protein-coding genes by downregu-
lation of mRNA [15]. MiRNA play a pivotal role in regulation of the central nervous system
(CNS), where approximately 70% of known miRNAs are expressed. Similarly, mRNA in the
CNS have longer 3’ untranslated regions (3’UTRs), which represent a large number of poten-
tial miRNA target sites [16, 17]. The cooperative and combinatorial targeting ability of miRNA
allow precise and robust gene regulation at both the single-gene and the gene-network level
[18]. To date, there have been limited studies in rodent and cell-based models, and even fewer
studies of genome-wide miRNA expression in AD postmortem brain tissue [19–23]. One such
study on the PFC of AD subjects identified 35 upregulated miRNAs, which are known to target
mRNAs that function in apoptosis, cell adhesion, cell cycling, signaling, and neuronal develop-
ment [20]. Another recent study profiled mRNAs and miRNAs in the PFC of rats following
chronic exposure to alcohol, where mRNAs with functions in neurotransmission, axonal
guidance, neuroadaptation, and neurotransmitter signaling were found to be differentially
expressed [24]. While the specific relationship between miRNA and mRNA associated with
AD is difficult to ascertain, due to the complexity of the transcriptome in AD, several miRNA:
mRNA interactions have been experimentally validated [25–28]. Combined genomic profiling
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of miRNA and mRNA in human NAc has not been conducted, despite the well-established
role of NAc in the mesocorticolimbic pathway central to the rewarding properties of alcohol
and other drugs of abuse.

Individual assessment of gene expression cannot alone explain the complex etiology of
AD; thus, an integrative approach to assessing gene expression in a network framework is nec-
essary to unravel the molecular underpinnings of AD. Weighted gene co-expression network
analysis (WGCNA) is a tool that has been used to successfully build and identify gene networks
involved in various disorders including schizophrenia, major depression, AD, and ARPs [29,
30]. Integrating dysregulated gene networks in AD, identified by WGCNA, with genetic data,
identified by GWAS, provides an invaluable tool to further discern the genetic basis of AD sus-
ceptibility. This approach, termed ‘genetical genomics’, classifies associations between genetic
variants and gene expression as quantitative trait loci (eQTLs), which are then modeled as
quantitative traits [31–33]. As the majority of genetic variants are located outside of protein-
coding regions, their influence on cell function likely involves subtle modification of gene tran-
scription and translation [34]. The connection between genetic variation and gene expression
may identify functional loci not previously associated with AD, as well as offer specific, testable
hypotheses for polymorphisms associated with AD [34–36]. Recent studies in rodent models
have identified hub genes which play a role in the behavioral responses to alcohol by a coordi-
nate analysis of acute alcohol-responsive gene networks, linked genetic intervals, and alcohol
behavioral responses [37]. Linkage disequilibrium (LD) of eQTLs with genetic variants impli-
cated in AD and ARPs can provide a biological mechanism for disease-associated variants with
no otherwise apparent functions as there is empirical evidence suggesting that eQTLs are over-
represented among GWAS signals [38, 39].

In this study we evaluated mRNA and miRNA expression patterns in the NAc of 18 AD
cases and 18 matched controls and perform gene co-expression network analysis to identify
gene networks associated with AD. We then integrated gene expression with genotypic data to
identify eQTLs that impact the expression of network hub genes in NAc, and provide evidence
that these eQTLs are enriched for AD GWAS signals in the Collaborative Study on the Genetics
of Alcoholism (COGA) sample.

Results
Based on our univariate analysis, we identified systemic changes in mRNA and miRNA expres-
sion levels in the NAc between subjects with AD and healthy controls. Specifically, at a nominal
p� 0.05 we identified 4,571 (25%) differentially expressed mRNA transcripts and 240 (14%)
differentially expressed miRNAs, which are statistically much greater than these expected by
chance (hypergeometric p = 5x 10−5 and p = 9x10-9, respectively). Our results are also in agree-
ment with results from previous postmortem brain expression studies, which have shown simi-
lar widespread changes in gene expression in PFC and VTA [3, 40]. The univariate analyses
results for the mRNA and miRNA transcripts are provided in S1 Table, respectively.

Identification of mRNA co-expression modules
The major limitation of most genomic studies is the focus on individual genes with the highest
statistical significance. In this study we utilized a network based approach, to establish a better
functional understanding of changes occurring in the NAc transcriptome of subjects with AD.
All nominally significant transcripts identified in the univariate analyses (p� 0.05) were used
to generate AD-relevant gene co-expression networks. This significance threshold was chosen
to allow the inclusion of true positive signals with smaller effect size (which would otherwise be
excluded with more stringent statistical criteria) and to retain a sufficient number of genes with
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biological importance in AD in the building of gene co-expression networks. A total of 24 mod-
ules were identified, including the greymodule (Mgrey), which contains 13 transcripts unas-
signed to any of the other 23 modules [41]. The module sizes varied from 1106 transcripts in
Mturquoise to 35 transcripts inMdarkgrey (Fig 1A). Next, to assess the quality of sample matching
and to detect any confounded modules, the module eigengenes (MEs), which represent the
sum of gene expression profiles of each module, were correlated to four matching demograph-
ics (age, pH, Postmortem Interval (PMI) and RNA integrity Number (RIN)) and to smoking

Fig 1. (A) Cluster dendrogram andmodule assignment for mRNAmodules fromWGCNA. Topological overlap dissimilarity measure is clustered
by average linkage hierarchical clustering andmodule assignments (dynamic hybrid algorithm) are denoted in the color bar (bottom). 4571
transcripts were assigned to one of 24 modules including Mgrey. (B). Following the same outline, 240 miRNAs are assigned to one of 12 modules
indicated by color (including Mgrey).

doi:10.1371/journal.pone.0137671.g001
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status. Four modules were significantly correlated (adj. p� 0.05) with brain pH and PMI, and
were removed from all subsequent analyses. Of the remaining 20 modules, six were signifi-
cantly correlated with AD case-status (Fig 2A).Mturquoise andMyellow were downregulated in
AD cases, whileMgrey60,Mpink,Mgreen andMsalmon were upregulated, and these six modules
contained 45% of the 4571 transcripts. A full table containing module size, correlations and p-
values for all mRNA modules is provided in S2 Table.

Identification of miRNA co-expression modules
The differentially expressed miRNAs clustered into 12 modules, includingMgrey (Fig 1B). Mod-
ule sizes varied from 73 transcripts (Mturquoise) to five transcripts (Mgreenyellow andMpurple), with
Mgrey containing four otherwise unassigned transcripts. After correlation to matching demo-
graphics and smoking status, only one module,Mblack, was significantly correlated with PMI
(subsequently removed from analysis). Of the remaining modules, three (Mblue,Myellow and
Mbrown) were significantly correlated with AD status (adj. p� 0.05) (Fig 2B). These three

Fig 2. Module-trait relationships. (A) mRNAmodule MEs are correlated (Pearson) to AD case-status (Class), brain pH, PMI, Age, RIN and subject
smoking status to assess for confounding. P-values shown are unadjusted for multiple testing. After adjusting for number of modules tested, MEturquoise,
MEyellow, MEgrey60, MEpink, MEgreen and MEsalmon are significantly correlated with AD case-status (Class). (B). Similarly, after adjusting p-values for number of
modules tested, miRNAs MEyellow, MEblue and MEbrownmodules are significantly correlated with AD case-status (Class).

doi:10.1371/journal.pone.0137671.g002
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modules contained 41% of the 240 differentially expressed miRNAs analyzed by WGCNA.
A full table containing module size, correlations, and p-values for all modules is available in
S2 Table.

Detection of network hub genes
The six mRNA modules significantly correlated with AD were explored to identify hub genes.
In scale-free network topology, ‘hubs’ are the most highly connected genes (of which there are
relatively few among all the nodes within a network). A highly significant positive correlation
between module membership ((MM), correlation of individual gene expression with ME of
its respective module) and gene significance ((GS), correlation of individual gene expression
with AD case-status) for NAc was observed, supporting previous observations in PFC, where
genes significantly correlated with AD were also the most important (or central) elements of
the module for AD (Fig 3A) [42]. Of the 2034 transcripts clustered in the six modules, 518
transcripts were located in the top quartile of MM and were selected as candidate hub tran-
scripts (see Material and Methods). After collapsing their transcript IDs to unique Hugo Gene
Nomenclature (HGNC) symbols, 461 unique genes were identified. Among these, three genes,
guanylate cyclase activator 1A (GUCA1A), polypyrimidine tract binding protein 1 (PTBP1),
and transgelin 2 (TAGLN2) were shared as hub genes in more than one module. Full tran-
script, GS, MM, and gene symbol annotation for candidate hub transcripts are available in
S3 Table.

From the three significant miRNA modules, 26 miRNA hub genes in the top quartile of
MM were identified (Fig 3B); however, one miRNA, hsa-miR-3676, was removed from analysis
as it was reported as a tRNA fragment and not processed as a miRNA according to miRBase
(www.mirbase.org). Many of the miRNA hub genes also belonged to the same miRNA gene
family (<10 kb genomic distance apart). For example, hsa-miR-377-5p, -134-5p, and -382-5p
fromMblue are located in the same genomic cluster of chromosome 14q; this region was previ-
ously reported to contain overexpressed miRNAs in the PFC of AD cases [21]. In addition,
miR-382 overexpression in the NAc was shown to attenuate voluntary alcohol intake in a two-
bottle choice rat model [26]. Hsa-miR-132-3p and hsa-miR-212-3p, also inMblue, have been
previously associated with schizophrenia/bipolar disorder and cocaine dependence [43–46].
Both hsa-miR-132-3p and hsa-miR-212-3p are in the same miRNA family and are important
for neuronal function and long-term potentiation, as well as for neuronal survival in Alzhei-
mer’s disease.Mbrown included miRNA from the hsa-miR-34b and hsa-miR-34c family, which
have been implicated in neurodegenerative disorders including Huntington’s, Alzheimer’s and
Parkinson’s disorders [47, 48]. More importantly, in agreement with our data from NAc, hsa-
miR-34c-5p was recently reported to be upregulated in the PFC of human AD subjects [20].
A full table of the significant miRNA modules with GS and MM information is available in
S3 Table.

Detection of cell specific co-expression modules in NAc
The mRNA co-expression modules significantly correlated with AD were assessed for enrich-
ment of cell-type specific marker genes. All six modules showed cell-specific enrichment after
correction for multiple testing (Table 1). Similar to other alcohol related studies in Prefrontal
Cortex and Ventral Tegmental Area, our analysis revealed that alcohol has discrete effects on
different cell types [40]. For example, the neuronal expression-associated modules,Myellow and
Mturquoise, were negatively correlated with AD status, while the glial and microglial-associated
modules,Mgreen,Mgrey60, andMsalmon, were positively correlated with AD.Mpink was also

eQTL Impact on Gene Expression in Nucleus Accumbens
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Fig 3. (A). mRNAmodules significantly correlated with AD case-status. Each point represents an individual transcript within eachmodule, which
are plotted by the absolute value of their expression correlation to AD case-status (Gene Significance) on the y-axis andmodule eigengene
(Module Membership) on the x-axis. The regression line, correlation value and p-value is shown for each plot, which indicates that GS of
transcripts increases with increasing intramodular connectivity (MM). (B). miRNAmodules significantly correlated with AD case-status. Each
point represents an individual miRNA transcript within eachmodule, which are plotted by the absolute value of their expression correlation to AD
case-status (Gene Significance) on the y-axis andmodule eigengene (Module Membership) on the x-axis. Similarly to mRNAmodules, GS of
miRNA transcripts increases with increasing intramodular connectivity (MM).

doi:10.1371/journal.pone.0137671.g003
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positively correlated with AD; however, this module was significantly enriched for astrocyte
cell specific gene expression only.

Gene set enrichment analysis
WGCNA allows for the generation of gene modules that are related by their co-expression pat-
terns. Studies employing WGCNA have found that modules organized by co-expression pat-
terns are enriched for biologically relevant functions [49–51]. Thus, the mRNA modules
significantly correlated with AD were assessed for enrichment of cellular process and biological
functional categories using the gene set enrichment analysis (GSEA) software. Gene lists for
each module were generated by ranking all 4571 differentially expressed transcripts according
to their MM in each of the six significant mRNA modules, which was achieved by correlating
individual gene expression values to the ME of each of the six significant modules (as previ-
ously described) [52]. To assess for enrichment of cellular processes and functional categories,
all transcripts from the mRNA modules were collapsed into unique, functionally annotated
genes by GSEA, resulting in 3742 unique gene symbols. Using the default parameters in GSEA,
we identified 364 a priori gene sets significantly enriched (FDR� 0.10) within the six MM
ranked gene lists. Of these, 117 a priori gene sets were enriched in multiple (�2) modules.
Interestingly, no a priori gene sets were shared between glial cell-associated modules,Mgreen,
Mgrey60,Mpink andMsalmon, and the neuron-associated modules,Mturquoise andMyellow.

Sixty-eight a priori gene sets shared enrichment inMturquoise andMyellow, with genes pre-
dominantly involved in the ‘neuronal system’ and neurotransmission, neurodegenerative dis-
orders (Huntington’s, Parkinson’s and Alzheimer’s), protein metabolism, DNA repair and
replication, transcription and mRNA processing, cell cycling, oxidative phosphorylation, glu-
cose metabolism, mitochondrial function, and MAPK cell signaling pathways. BothMturquoise

andMyellow were negatively correlated with AD, suggesting decreased activity/function of these
pathways and processes. The full list of shared enriched gene sets between the neuronal mod-
ules is available in S4 Table. Shared a priori gene set enrichment between the glial cell-associ-
ated modules was predominantly betweenMgreen,Mpink andMsalmon, totaling 18 gene sets, with
genes involved in cytokine/immune signaling, cell surface interactions, and cell signaling path-
ways (JAK/STAT, RhoA and TGF-β), which were upregulated in AD cases. The full list of
shared enriched gene sets between the glial enriched modules is available in S4 Table.

While overlapping a priori gene sets between modules suggests shared functionality between
these gene co-expression networks, we also identified a priori gene sets that were unique to
each of the significant mRNAmodules. Specifically, 51 a priori gene sets were unique among

Table 1. Brain list enrichment for cell type specific modules.

Module Gene sets p-values Adj. p-values Enriched Genes

Green Microglia (M8) 6.37E-48 3.82E-47 49

Green Microglia (M10) 2.34E-08 1.41E-07 13

Green Astrocytes (M3) 1.61E-07 9.63E-07 30

Grey60 Astrocytes (M3) 1.84E-04 1.11E-03 9

Grey60 Microglia (M8) 8.62E-04 5.17E-03 5

Pink Astrocytes (M3) 1.27E-39 7.60E-39 64

Salmon Microglia (M10) 1.86E-06 1.12E-05 8

Salmon Astrocytes (M3) 9.14E-04 5.49E-03 13

Salmon Microglia (M8) 7.39E-03 4.44E-02 6

Turquoise Neuron (M11) 3.02E-18 1.81E-17 86

Yellow Neuron (M13) 4.05E-03 2.43E-02 10

doi:10.1371/journal.pone.0137671.t001
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five of the six modules, with no unique gene sets enriched inMgrey60. Of these, 24 gene sets were
uniquely enriched in Mturquoise, a neuron-associated module, with genes involved in mRNA pro-
cessing and degradation, DNA repair, protein modification, and glucose and carbohydrate
metabolism. InMyellow, also a neuron-associated module, genes involved in neurotransmitter
binding/transmission and opioid signaling, long-term potentiation, calcium signaling and trans-
lation regulation pathways were enriched among 9 gene sets. Of the glial cell-associated modules,
Mgreen exhibited enrichment with 12 gene sets related to immune function and signaling, apopto-
sis, and actin cytoskeleton regulation.Mpink andMsalmon were enriched for gene sets with genes
involved in glycosaminoglycan metabolism, Notch signaling, and lysosomal activity, respectively.
The full list of unique enriched gene sets is given in S5 Table.

Assessment of mRNA:miRNA module interactions in AD
The purpose of correlating mRNA and miRNAMEs was to investigate whether general corre-
lation patterns could be detected at the gene network level. As MEs are representative of mod-
ule-wide gene expression profiles, this analysis gives a global perspective of miRNA:mRNA
interactions in our AD sample. Although the strongest correlations between mRNA and
miRNAMEs were positive (ranging between r = 0.63 and 0.75), negative correlations were also
prominent (ranging between r = -0.37 and -0.56) (Fig 4). After assessing miRNA:mRNAME
correlations, our next step was to examine the individual miRNA:mRNA hub gene interactions
driving the module correlations. The Pearson correlations between 518 transcripts, represent-
ing the 461 mRNA hubs and 25 miRNA hubs, resulted in 12,950 correlations (S6 Table), of
which a higher number of positive versus negative correlations were observed (59% vs. 41%; χ2

p� 0.0001). Interestingly, Nunez, et al. (2013) reported similar findings in a mouse model of
AD where miRNA:mRNA positive correlations were more abundant than negative correlations
[22]. It is unclear, however, whether these positive correlations represent direct miRNA upre-
gulation of target mRNAs or secondary effects of the miRNA targeting mediating molecules.
Therefore, we elected to focus on negative correlations, as the predominant (and canonical)
effect of miRNAs on gene expression is through mRNA downregulation, which then manifests
as negative miRNA:mRNA expression correlations [53].

Next, the significant negative miRNA:mRNA correlations were intersected with bioinfor-
matic predictions to identify the most likely direct miRNA:mRNA target interactions. At FDR
<0.10, 2445 significant negative correlations were retained. The intersection resulted in the
identification of 481 miRNA:mRNA targeting pairs between 25 hub miRNAs and 244 hub
mRNAs. Similar to the ME network-level correlations, a clear separation of module miRNAs:
mRNA interactions was also detected. For example, miRNAs from theMblue andMyellowmod-
ules targeted only the glial cell-associated mRNA modules,Mgreen,Mgrey60,Mpink andMsalmon,
whereas miRNAs from theMbrown targeted only the neuron-associated mRNAmodules,Mtur-

quoise andMyellow. Within each mRNA module we identified several instances of cooperative
miRNA targeting, i.e. multiple miRNAs targeting a single mRNA gene. It has previously been
shown that cooperative miRNA regulation of mRNAs leads to an enhanced repressive effect
and greater specificity of target regulation [54]. The most prominent case of such cooperative
targeting by miRNAs was for AF4/FMR2 family, member 1 (AFF1), which was targeted by 8
miRNAs from miRNA:Mblue andMyellow. The full list of the 481 significant negatively corre-
lated and bioinformatically predicted miRNA:mRNA targeting pairs is given in S7 Table.

Identifying eQTLs for candidate mRNA and miRNA hub genes
To better understand the underlying genetic mechanisms of AD in NAc, we integrated expres-
sion data with previously collected genotypic data to identify eQTLs affecting the expression of
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hub mRNA and miRNA genes. Only cis-eQTLs (defined within 1 megabases) were considered
in our analysis, as our study was underpowered to identify trans-eQTLs. Five hundred and
ninety-one significant mRNA hub cis-eQTLs were identified (FDR� 0.10). In some cases, a
single gene was associated with multiple eQTLs. Thus, the total number of mRNAs for which
eQTLs were detected was 383. The full list of the identified mRNA eQTLs is given in S8 Table.
The most significant mRNA cis-eQTL signal we detected was for glutamate decarboxylase
(GAD1; p = 5.5x10-7), the rate-limiting enzyme in gamma-aminobutyric acid (GABA) biosyn-
thesis (Fig 5). Interestingly, variants in the GAD1 gene have been previously associated with
AD in Han Taiwanese men [55].

At an FDR� 0.10, 68 miRNA cis-eQTLs were detected; the most significant cis-eQTLs were
detected for hsa-miR-134-5p (p = 7.1x10-5) and -370-3p (p = 8.2x10-5) (Fig 6A and 6B). We
also identified many instances of single variants associated with the expression of multiple
miRNAs. This is not surprising in that many miRNAs are clustered genomically (within 10kb),
and being expressed on the same primary transcript, will show similar regulatory patterns [56].
The full list of the identified eQTLs for the miRNA hub genes is given in S8 Table.

Fig 4. miRNA:mRNAModule relationships: Significant mRNAmodule MEs (rows) are correlated
(Pearson) to significant miRNAMEs for blue, brown and yellowmodules (columns). Strongest
correlations is positive between miRNAMEbrown and mRNAMEgrey60 (r = 0.75) and strongest negative
correlation is between miRNAMEbrown and mRNAMEturquoise (r = -0.56) and miRNAMEblue and mRNA
MEgrey60 (r = -0.56). miRNAMEblue and MEyellow are negatively correlated with glial cell-associated
mRNAmodules and miRNAMEbrown is negatively with neuron-associated mRNAmodules.

doi:10.1371/journal.pone.0137671.g004
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eQTLs in NAc are enriched in alcohol related GWAS
All significant eQTLs for the mRNA and miRNA hubs were queried against GWAS case/ con-
trol data from a large, independent genetic sample, the Collaborative Studies On Genetics of
Alcohol (COGA) (N = 1399), to assess whether our eQTLs were associated with risk for AD or
alcohol related phenotypes (ARPs) [57]. Since a priorimolecular evidence increases the likeli-
hood of true association, we queried our eQTLs against GWAS loci associated with AD and
other ARPs using a more liberal threshold of p�10−3. In addition to providing explanatory
power to the GWAS signals, this analysis could also provide candidates for functional studies
to investigate the molecular mechanism(s) through which eQTLs confer risk for developing
AD.

We first determined whether there was enrichment of AD association signals from the
COGA sample within our significant eQTLs. To that end, we tested the European Americans
in the COGA sample (for a set-based enrichment of AD and ARP, i.e. AD case/ status, AD
symptom count and maximum number of drinks in 24 hours) with association signals within
our eQTLs. Based on this analysis, we observed a significant set-based enrichment for AD diag-
nosis and AD symptom counts, which also passed the Simes’ correction for multiple testing

Fig 5. eQTL (chr2:170783092:D) effect on the expression of the glutamate decarboxylase (GAD1)
gene. The bar plot depicts the differential expression of GAD1 among homozygote for the major (11, red),
heterozygote (12, green) and homozygote for the minor alleles (22, blue) subjects.

doi:10.1371/journal.pone.0137671.g005

Fig 6. (A). rs11626307 effect on the hsa-miR-134-5p (A) and hsa-miR-370-3p (B) expressions.

doi:10.1371/journal.pone.0137671.g006
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(adj. p = 0.014 and p = 0.024, respectively). Among the enriched eQTL sets, the most signifi-
cant GWAS signals in COGA at p�10−3 were: 1) rs1780705 for neuronatin (NNAT), a mRNA
hub gene inMyellow, associated with AD at p = 2.2x10-4, 2) rs13392737 for a long non-coding
RNA (PKI55), a mRNA hub gene inMturquoise, associated with AD at p = 1.6x10-4 and 3)
rs4243820 for replication protein A2, 32kDa (RPA2), a mRNA hub gene inMturquoise, associ-
ated with an AD at p = 4.1x10-4[58, 59].

Discussion
The purpose of this study was to perform a transcriptome analysis of mRNA and miRNA expres-
sion to identify gene co-expression modules correlated with excessive alcohol consumption in
human NAc. The NAc is a central component of the mesocorticolimbic system (MCL) and has
been shown to be involved in addictive behaviors. A current theory on the mechanism by which
the NAc modulates addiction is that the NAc integrates signals from other MCL regions on the
single-neuron level in order to modulate goal- and motivation-directed behavior [60–62]. We
assembled our expression data with previously generated genome-wide genotype data to identify
NAc-specific cis-eQTLs affecting the expression of mRNA and miRNA network hub genes. We
then tested whether the eQTLs were enriched for AD GWAS signals. This is the first study to
show that genetic variants (previously shown to be associated with AD or ARP) are eQTLs,
which affect the differential expression of genes between AD cases and controls in NAc.

Cell type-specific profiling of our co-expression networks revealed significant enrichment of
neuronal or glial marker genes within specific modules. The genes in the neuronal and glial
specific modules showed interesting and opposing patterns of expression. Genes from the neu-
ronal expression associated modules were downregulated in AD, while those from the glial
modules were upregulated in AD. We speculate that the opposing patterns of expression reflect
cytological changes occurring in the brains of AD as a result of prolonged alcohol consump-
tion, which is known to have strong neurotoxic effects [63]. We could not differentiate whether
these changes are the result of a global downregulation of expression in neurons or the result of
a progressive loss of neuronal cell mass. A previous study on the amygdala of chronic alcoholics
reported downregulation of neuronal gene expression, coupled with the upregulation of glial
cell expression[40]. We would like to point out that using cell deconvolution to estimate cell-
specific gene expression relies on computational algorithms; thus, it is conceivable that these
approaches will be inherently noisier than a direct estimation of cell proportions.

In an effort to better understand the biological processes influencing the organization of our
co-expressed gene networks in NAc, we performed GSEA, utilizing a well-curated collection of
gene sets ascertained from both physiological and pathological cellular states and functions.
This analysis revealed that neuron-specific modules were downregulated for gene sets enriched
with: 1) brain related functions such as neuronal signaling, neurotransmission, long-term
potentiation, and constitutive cell maintenance, 2) growth functions such as glucose metabo-
lism, oxidative phosphorylation, mitochondrial function, and MAPK signaling, and 3) involve-
ment in the etiology of neurodegenerative disorders such as Alzheimer’s, Parkinson’s, and
Huntington’s. In support of our findings, alcohol has been shown to modulate MAPK signaling
cascades depending on cell type, brain region, and ethanol treatment paradigm [13, 64, 65].
However, our results contrast those of an earlier study assessing gene expression in the PFC,
VTA and NAc of chronic alcoholics [8]. The authors reported that genes involved in oxidative
phosphorylation and energy production were only differentially expressed in PFC, whereas we
observed these functional pathways to be differentially expressed in the NAc. Potential reasons
for this discrepancy could be either the small sample size of the previous study or technical,
platform-dependent differences.
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The negative impact of alcohol intake on mitochondrial function has been well documented
in several animal models, and excessive alcohol consumption in mice has been linked to degra-
dation of mitochondrial DNA [66–69]. As AD is a risk factor for dementia, prolonged alcohol
consumption has been shown to have a toxic effect on amyloid precursor protein. This leads to
an accumulation of beta-amyloid in neurons from alcohol dependent rats, perhaps mediated
through increased production of reactive oxygen species and mitochondrial dysfunction [70].
Results from human studies, however, have been more equivocal. While a postmortem brain
analysis of chronic alcoholics did not detect greater incidence of neuropathological lesions
compared to control subjects, a Swedish national cohort study concluded that history of alco-
hol dependence conferred a greater risk for Parkinson’s disease diagnosis [71, 72].

Astrocyte and microglial associated modules exhibited increased expression in AD subjects
and were predominantly enriched with immune related processes. The immune signaling pro-
cesses resulting from repeated alcohol abuse arise from activation of astrocytes and microglia;
when coupled with alcohol-induced loss of neurogenesis, are thought to enhance the negative
emotional states that lead to addiction [73]. In this study,Mgreen was the module most signifi-
cantly associated with these immune related processes, i.e. Toll-like receptor 4 (TLR4) signaling
and inflammatory cytokine pathways. Injection of lipopolysaccharides (LPS) in mice has been
shown to induce the expression of innate immune genes through activation of TLR4 in micro-
glia and astrocytes, leading to depression-like behaviors [73]. LPS infusions in human studies
were also reported to reduce reward responses and increase depressed mood [74]. Further-
more, induction of innate immune genes in mice resulted in increased ethanol consumption,
whereas inactivation of such genes reduced drinking behavior [75, 76]. These observations
highlight the role of immune signaling in the neurobiology of addiction and support our GSEA
findings in astrocyte and microglial associated modules.

By integrating miRNA and mRNA co-expression modules, we were able to examine the reg-
ulatory roles that miRNA have on their gene targets (as both mRNA and miRNA data was gen-
erated from the same subjects). Performing a module eigengene (ME) correlation analysis, we
found that the significant miRNA and mRNA ADmodules were also negatively correlated
with each other,i.e.miRNA modules upregulated in chronic alcoholics were negatively corre-
lated with the downregulated mRNAmodules and vice versa—suggesting that the neuropathol-
ogy of AD is at least partially modulated by specific miRNA:mRNA interactions. Interestingly,
we also observed positively correlated miRNA and mRNA modules that contained miRNA:
mRNA targeting pairs. Although these interactions were not further assessed, they may be
important for disease development. Considering the canonical role of miRNA in negatively
modulating gene expression, these results are surprising. Similar observations were also
reported in an animal based study, where highly significant positive miRNA:mRNA correla-
tions were detected in the PFC of mice undergoing acute alcohol exposure [22]. One potential
explanation is that the positive miRNA:mRNA expression correlations observed in the animal
model are the result of an uncompensated miRNA response to the increase in gene expression
following the alcohol consumption. Considering that our postmortem sample consists of
chronic alcoholics with drinking histories of several decades, attributing our positive miRNA:
mRNAmodule correlations to a temporal artifact seems unlikely. A more plausible explana-
tion, which stems directly from the negative regulatory capacity of miRNA function, could be
that the observed positive correlations reflect secondary miRNA targets, as the expression of
such secondary miRNA targets are expected to be positively correlated with miRNA expression
[77]. Regardless of the mechanism by which these positive correlations are occurring, we are
the first to report that such positive correlations appear to be preserved in chronic alcoholic
subjects and that these may reflect either an adaptive or decompensated state resulting from
excessive alcohol consumption.
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By exploring miRNA:mRNA interactions at the single hub level, we observed that many
of the mRNA hub genes were predicted to be targeted by multiple miRNAs, thus highlight-
ing the cooperative capacity of these molecules. Cooperative targeting by miRNAs produces
synergistic mRNA target repression and enhances the ‘fine-tuning’ capacity of these mole-
cules [54]. In addition, cooperative targeting is thought to increase the cell’s ability to buffer
induction of gene expression by external stimuli. We speculate that the cooperative regula-
tion of a single mRNA hub gene by multiple miRNAs provides redundancy within the
system to respond to the loss of a critical miRNA:mRNA interaction. In such a case, the
presence of additional miRNA target sites ensures that repression of gene expression will be
maintained.

Another observation from our results is that miRNA belonging to a miRNA family act
cooperatively to control the expression of a single mRNA target. For example, members of
the hsa-miR-34 family (hsa-miR-34b and hsa-miR-34c) clustered into miRNA module
Mbrown, and were shown to target numerous hub genes in the neuronal expression associated
mRNA modules,Mturquoise andMyellow. This miRNA family has been shown to play role in a
wide range of human disease phenotypes including neuropsychiatric and neurodegenerative
disorders, and is also reported to be upregulated in the PFC of human chronic alcoholics
[20, 47, 48]. In addition, we identified that hsa-miR-34c-5p and hsa-miR-34b-5p coopera-
tively target neuronatin (NNAT; rs1780705) and proteosome subunit beta, type 5 (PSMB5;
rs10137082)–two mRNA hub genes with significant eQTLs that were also associated with
AD (p< 10−3) in the COGA sample. Our most significant eQTL signal was associated with
glutatamate decarboxylase (GAD1) expression, the rate-limiting enzyme in GABA biosyn-
thesis and previously implicated in AD. GAD1 was also cooperatively targeted by the hsa-
miR-34 family of miRNAs [55, 78]. Thus, our observations here corroborate a priori evidence
implicating the involvement of the hsa-miR-34 family in alcohol addiction phenotypes and
reinforce its significance.

There is empirical evidence that eQTLs are over-represented in GWAS signals, and sev-
eral reports have linked AD association signals with eQTLs [31, 38, 39, 79, 80]. Our study
adds to this growing body of evidence, as we find that AD GWAS signals are significantly
over-represented in our eQTLs, thus strengthening the significance of these genetic associa-
tions and providing potentially causal mechanisms of action for our eQTL findings. For
example, in addition to NNAT and PSMB5, eQTLs for a long non-coding RNA (PKI55;
rs13392737), adaptor related protein complex 1, sigma 1 subunit (AP1S1; rs10279545) and
translocation associated membrane protein 1 (TRAM1; rs2959574) were also associated with
AD at p = p = 9.1x10-4 and p = 6.2x10-3, respectively. In particular, NNAT and AP1S1 have
prior evidence of involvement with AD [81]. NNAT, an imprinted gene expressed early in
brain development, was shown to regulate dendritic calcium levels in hippocampal neurons
and was differentially expressed in the NAc, PFC, and VTA of an acute ethanol response
mouse model [82, 83]. AP1S1, a clathrin-related protein involved in membrane trafficking
and endocytosis, as well as the causal gene for MENDIK (mental retardation, enteropathy,
deafness, neuropathy, ichthyosis and keratoderma) syndrome, was differentially expressed
in the PFC of chronic alcoholics [9, 84]. Although we did not observe significant enrichment
of AD GWAS signals among our significant eQTLs for miRNA hubs, NNAT and PSMB5
from neuronal expression-associated mRNA modules,Myellow andMturquoise, respectively,
were both cooperatively targeted by hsa-miR-34 family miRNAs. It is possible that hsa-miR-
34 family miRNAs exhibit trans-eQTL effects with variants associated with NNAT and
PSMB5; however, as this analysis requires much larger samples, we did not have the power
test this hypothesis here.
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Conclusions
In this study, we identified mRNA and miRNA co-expression modules differentially expressed
in a matched AD case-control postmortem sample, including cell type-specific associations
and the differential enrichment of biological processes therein. Our results corroborate previ-
ously reported findings in the literature; however, we are first to identify the dysregulation of
these processes in the NAc of human alcoholics. While central to the MCL system, the NAc
also acts in conjunction with other critical brain regions, and we believe our study advances
our knowledge of the effect of alcohol on this prominent reward/reinforcement circuit.

Our most important finding is the identification of the effects that alcohol relevant eQTLs
have on gene expression in the brain. To our knowledge, this is the first study to perform such
analyses in human postmortem brains of subjects with AD.

While novel in its approach to integrating genetic and molecular data in postmortem alco-
hol research, our study is not without limitations. First, postmortem brain studies are observa-
tional, as the manipulation of the brain of living human subjects is not possible. Although the
cross-sectional nature of these studies limits causal inferences, we believe our eQTL analysis,
and subsequent integration with GWAS data, are major steps toward clarifying the directional-
ity of these observations. Secondly, although our sample size (N = 36) is the largest postmortem
alcohol study in the NAc to date, the sample size is still small. In an attempt to reduce the
experimental variance and allow for increased power, we performed stringent case/ control
matching for factors known to systemically impact gene expression levels, an approach that
has been successfully applied before [85–88]. We believe that by using this experimental design
and implementing integrative multivariate approaches, we can greatly further our understand-
ing of the alcohol addiction processes and translate these advances into effective therapeutic
strategies for patients suffering from substance use disorders.

Methods and Materials

Postmortem tissue
Tissues from 41 AD cases and 41 controls were received from the Australian Brain Donor
Program, New South Wales Tissue Resource Centre, which is supported by The University of
Sydney, National Health and Medical Research Council of Australia, Schizophrenia Research
Institute, National Institute of Alcohol Abuse and Alcoholism, and the New South Wales
Department of Health (http://sydney.edu.au/medicine/pathology/trc/). Cases were excluded if
there was: 1) a history of infectious disease (i.e. HIV/AIDS, hepatitis B or C, or Creutzfeldt-
Jakob disease), 2) an unsatisfactory agonal status (determined from the circumstances sur-
rounding the death), 3) a post-mortem interval>48 hours, or 4) significant head injury. In
addition to case status, age, sex, ethnicity, brain weight, brain pH, post-mortem interval (PMI),
tissue hemisphere, clinical cause of death, blood toxicology at time of death, smoking status,
neuropathology, and liver pathology were provided for each subject (S9 Table).

RNA isolation and sample selection
Total RNA containing the small RNA fraction was isolated from 100mg of frozen tissue from
the nucleus accumbens (NAc) using the mirVana-PARIS kit (Life Technologies, Carlsbad,
CA), following manufacturer's protocols. RNA concentration was measured using the Quant-
iT Broad Range RNA Assay kit (Life Technologies), and the RNA Integrity Number (RIN) was
measured on the Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA). All
subjects were initially included for matching based on age, sex, ethnicity, brain pH, PMI and
RIN, and this yielded 18 appropriately matched case-control pairs with RINs�6 (N = 36).

eQTL Impact on Gene Expression in Nucleus Accumbens

PLOS ONE | DOI:10.1371/journal.pone.0137671 September 18, 2015 15 / 28

http://sydney.edu.au/medicine/pathology/trc/


mRNA expression microarrays
The Affymetrix1 protocol (Affymetrix, Santa Clara, CA) has been previously described [89].
Briefly, starting from 300ng of total RNA, cDNA synthesis and cRNA labeling were performed
using the GeneChip

1

3' IVT Express Kit (Affymetrix). Ten μg of fragmented cRNA were
hybridized on the Affymetrix GeneChip

1

Human Genome U133A 2.0 (HG-U133A 2.0). This
array provides comprehensive coverage of the transcribed human genome using 22,214 probe-
sets, and captures the expression of�18,400 human transcripts. Each array was scanned on the
Affymetrix GeneChip

1

Scanner 3000 7G (Affymetrix), and raw probe intensities stored in.CEL
files by the GeneChip

1

Operating Software (GCOS v1.4). Array quality was assessed by moni-
toring the 30/50 ratios of GAPDH, and the percentage of “Present” genes (%P) and array exhib-
iting GAPDH 30/50 < 3.0 and %P> 40% were considered of good quality. Based on these
metrics no arrays were excluded.

miRNA expression microarrays
The Affymetrix GeneChip miRNA 3.0 microarray contains probesets to measure the expres-
sion level of 1733 human mature miRNAs from miRBase v.17 (www.mirbase.org), the primary
repository for annotated miRNAs [90]. Total RNA (500ng) from each specimen was labeled
using the FlashTag™ Biotin HSR RNA labeling kit (Affymetrix). Each RNA sample was spiked
with five different oligonucleotides (as positive endogenous controls) to assess the efficiency of
the labeling reaction. The RNA samples were subjected to a brief Poly(A) tailing reaction fol-
lowed by ligation of a biotinylated signal molecule. Each labeled sample was then hybridized
onto a GeneChip

1

miRNA 3.0 Array, and scanned on a GeneChip
1

Scanner 3000 7G as
described above. The microarray data was submitted to the NCBI GEO archive and are avail-
able under GSE62699.

Microarray normalization
Expression values were calculated following the pre-processing procedure: 1) GCRMA back-
ground correction, 2) log2 transformation, 3) quantile normalization, and 4) median-polish
probeset summarization using Partek Genomics Suite v6.23 (PGS; Partek Inc., St. Louis, MO)
[91, 92]. The batch effect removal option in PGS was used to control for batch effect. mRNA
and miRNA microarray quality was assessed by principal component analysis (PCA) of the
expression values for both the miRNA and mRNA arrays. Samples were plotted along the first
three principle components (PCs) to identify potential microarray outliers. Of the 36
HG-U133A 2.0 microarrays, one AD sample did not load onto two of the first three PCs and
was removed from subsequent analysis (n = 35). No samples were removed from miRNA
microarray analysis.

Microarray analyses
Single gene analysis for differential expression of mRNA and miRNA transcripts was per-
formed in the Number Cruncher Statistical Software (NCSS) v9, using a robust multiple regres-
sion model. Prior to the main analyses, a step-wise regression analysis was performed to assess
the impact of smoking and liver and brain pathology on expression (as these covariates could
not be effectively matched). Only measures significant at a nominal p<0.05 were included as
covariates in the regression model to evaluate dependence of gene expression on AD case-sta-
tus. Smoking was the only covariate with a systemic effect on mRNA expression, and was
included as covariate in the robust multiple regression analysis.
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To evaluate the reliability of the expression microarrays, expression levels of five genes were
validated by quantitative real-time PCR using a Taqman approach (Applied Biosystems, Foster
City, CA): CD63 (catalog# Hs01041237_g1), LPPR1 (catalog# Hs00214827_m1), PLK2 (cata-
log# Hs01573405_g), AKR1A1 (catalog #Hs00895477_m1) and MAPT (catalog
#Hs00902194_m1). The expression of these genes was normalized using two reference genes as
endogenous controls: POLR2A (catalog #Hs00172187) and RPS17 (Hs #00734303-g). The effi-
ciencies of the target and reference genes expression were assessed by LinRegPCR software
(http://www.gene-quantification.com/LinRegPCR_help_manual_v11.0.pdf). The expression
levels of the five genes measured by the two platforms were well correlated (S1 Fig). The indi-
vidual expression values reported in S10 Table also demonstrate an agreement in magnitude
and direction of expression between the microarray and PCR based results.

WGCNA–construction of mRNAmodules
The method for constructing scale-free networks by WGCNA has been described in previous
studies [41, 93]. The gene co-expression networks were constructed by using the WGCNA
v1.36 package in R environment (v3.02). In order to construct gene modules, pair-wise Pearson
correlation coefficients were first calculated between all differentially expressed transcripts to
generate a signed similarity matrix selecting for positive correlations only. To emphasize
(weight) stronger correlations at the expense of weaker correlations, the signed similarity
matrix was then raised to the lowest power, β = 14, that approximated a scale-free network
topology (R2>0.80), to generate an adjacency matrix. Following this, a topological overlap
measure (TOM) was calculated, which assessed transcript interconnectedness. A dissimilarity
measure was calculated from the TOM and was subsequently used for average linkage hierar-
chical clustering. Module definition parameters included a minimummodule size of 35 genes
and a minimummodule merge height of 0.8 (default parameter).

Following module definition, the first principal component of each module–the module
eigengene (ME)–was calculated as a synthetic gene representing the expression profile of all
genes within a given module. Modules were named by a conventional color scheme and then
correlated to AD case-status, matching demographics and relevant covariates. Statistical signif-
icance was assessed at Bonferoroni-adj. p� 0.05 (corrected for number of tested modules).

Construction of miRNA modules
The steps for constructing miRNA co-expression modules were as described above (with a few
differences). After generating the signed similarity matrix, a β = 5 was chosen to generate the
adjacency matrix. A TOM and dissimilarity measure was calculated as previously described
and a minimummodule size of five miRNA genes was chosen. Five was chosen as the mini-
mummodule size for the miRNA genes due to the smaller size of the miRNA transcriptome
relative to the mRNA transcriptome. The default minimummodule merge height of 0.8 was
retained. After modules were defined, MEs were calculated and correlated to AD case-status
and demographics, and all confounded modules were removed from subsequent analysis.

Brain list enrichment
The mRNA modules significantly associated with AD case-status were assessed for enrichment
of brain cell-type specific co-expression genes using the ‘UserListEnrichment’ option in
WGCNA, which allows for detection of statistical enrichment of external a priori gene sets
associated with several phenotypes and tissues. Statistical significance of enrichment of genes
from cell-type specific gene sets within our mRNA co-expression modules was assessed by one
tail hypergeometric test (adj. p� 0.05) [94].
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Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was used for detection of known biological processes
and pathways enriched within the mRNA modules using GSEA v2.0.14 software from the
Broad Institute, as previously described [95, 96]. Individual gene lists for each of the mRNA
modules significantly correlated with AD case-status were generated by rank-ordering all dif-
ferentially expressed mRNA transcripts by their module membership (MM) to each of the AD-
associated modules.

In GSEA software, the Affymetrix HG-U133A 2.0 transcript IDs of all nominally differen-
tially expressed (p� 0.05) mRNA transcripts were converted to HUGO Gene Nomenclature
Committee (HGNC) gene symbols and in cases of multiple transcripts representing a single
gene, the probeset with the highest MM was retained [97]. A priori gene sets were obtained
from the Molecular Signatures Database v4.0 (MSigDB; http://www.broadinstitute.org/gsea/
msigdb) from the Broad Institute. A total of 1320 gene sets from the Canonical Pathways subset
of the C2: Curated Pathways collection of MSigDB was assessed. Default parameters were then
applied to give a minimum and maximum a priori gene set size between 15 and 500 genes,
respectively. Of the 1320 a priori gene sets used for GSEA from the C2: Curated Pathways col-
lection fromMSigDB, 929 gene sets were excluded due to gene set size parameters (i.e. gene
sets smaller than 15 genes) and 391 a priori gene sets were used for final GSEA analysis.

In order to identify module-specific a priori gene sets, the leading edge analysis (LEA) tool
within GSEA software was applied. The leading edge genes are the subset of genes in the gene
list preceding the point of maximum ES, i.e. the genes that contributed to the net increases in
ES and constituted the significant enrichment of the a priori gene set. After identifying the LE
genes for each ranked gene list, we selected those a priori gene sets containing at least one mod-
ule member gene to be module-specific gene sets.

Candidate gene prioritization
Hub genes comprise the highly interconnected nodes within gene co-expression modules and
have been shown to be functionally significant [98]. In our study, candidate hub genes were
defined by their intramodular connectivity, the strength of which is measured by the absolute
value of the Pearson correlation (r� 0.8) between individual gene expression and ME, referred
also as a module membership (MM) [99, 100]. The upper quartile of transcripts with the high-
est MM in each AD-significant module (employed for both mRNA and miRNA modules) was
chosen as criterion for selection of candidate hub genes.

miRNA:mRNA Analysis
The miRNA and mRNA hub genes from the modules significantly correlated with AD were
correlated (Pearson product moment) with each other. Since one sample was removed from
the mRNA arrays, for the correlation analysis the same sample was removed from the miRNA
arrays as well. In the correlation procedure, we focused only on the negative miRNA:mRNA
MEs correlations, as these represent the direct, gene silencing effects of miRNAs on their tar-
gets, and the significant negative correlations were adjusted at a FDR�0.10.

Next, the significant negative correlations were intersected with miRNA:mRNA interactions
that were predicted computationally by miRanda software using the default parameters [101].
All Affymetrix candidate hub mRNA transcript IDs were converted to HGNC gene symbols
with the Affymetrix HG-U133A 2.0 annotation file, version 34.

The miRanda software (August 2010 version release) was run locally to predict putative tar-
gets for hub genes as previously described [102]. The intersection between miRanda
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predictions and expression correlations was shown to give a set of miRNA:mRNA targeting
pairs that had fewer false positives compared to predictions alone [103].

eQTL detection
Genotype calls for the postmortem AD sample were generated as part of a larger GWAS and
integrated with miRNA and mRNA hub genes to identify expression quantitative trait loci
(eQTLs). The genotype data used to generate the eQTLs for the mRNA and miRNA genes are
provided in S11 Table, respectively. Briefly, all samples were genotyped on the Affymetrix
Genome-Wide Human SNP Array 6.0; imputed genotype probabilities greater than 98% were
converted into hard call genotypes of 0,1, or 2 using GTOOL software and filtered to eliminate
ambiguity, i.e. no “unknown” calls [104]. Genetic variants were then filtered with Plink v1.07
to exclude variants in LD (R2� 0.8) [105]. Based on a sample size of n = 34 (one individual was
removed from the sample due to genotype missingness), for a reliable estimation of the eQTL
effects on gene expression a minor allele frequency�24% was required.

eQTLs were detected by MatrixEQTL software package in R within a linear regression
framework using an additive model, accounting for the potential effects of smoking and AD
case-status [106]. All significant results were adjusted for multiple testing at FDR� 0.10.

Test for GWAS association signals enrichment
The enrichment analysis was performed by assessing the association between AD and whole
gene eQTLs SNP-set in the R package gskat. Gskat performs a set-based test for the effects of a
SNP set in association studies for both quantitative and discrete phenotypes using the general-
ized estimation equation approach. Specifically, a Kernel Machine (KM) estimating based sta-
tistic was constructed to test for the association between an AD and other alcohol related
phenotype and a SNP set.

Specifically in the COGA European American (EA) sample, we tested for the following phe-
notypes: alcohol diagnosis (AD_DX), alcohol symptoms count (AD_SX), and maximum
drinks in 24 hour (MAX24), using mRNA (591 SNPs) and miRNA(68 SNPs) eQTL sets. Cor-
rection for multiple testing was assessed using the Simes test; Simes is modification of Bonfer-
roni test and performs better for small number of multiple tests [107]. MAX24 phenotype
didn’t show significance in any set based analysis. None of the three phenotypes show set-
based signal with miRNA set, most likely due to lack of power. Additional pertinent informa-
tion for the enriched eQTLs, such as chromosome position and minor allele frequency is pro-
vided in S12 Table.

COGA Sample
The test of enrichment for AD association signals was performed in a case-control sample of
1399 phenotyped subjects of European descent only who were selected from the COGA sam-
ple. Cases had a lifetime diagnosis of AD by DSM-IV criteria. Controls reported consuming
alcohol but did not have a diagnosis of AD or alcohol abuse by any of the diagnostic criteria
assessed by SSAGA, and did not meet diagnostic criteria for dependence on cocaine, mari-
juana, opioids, sedatives or stimulants. Controls could not share a known common ancestor
with a case and were preferentially selected to be above the age of 25 years. Genotyping was
completed using the Illumina Human 1 M DNA Analysis BeadChip at the Center for Inherited
Disease Research. Additional details on the COGA GWAS sample can be found in Edenberg
et al. (2010) and Yan et al. (2014) [108, 109].

The Collaborative Study on the Genetic of Alcoholism was approved under VCU IRB proto-
col (# HM20000289); informed written consent, has been obtained from all participants.
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Supporting Information
S1 Fig. Validation of the microarray expression data using quantitative PCR. Expression
levels of five genes measured by the expression array-based approach were validated using
quantitative PCR in all 36 postmortem Nucleus Accumbens (NAc) RNA samples. The correla-
tion coefficients were calculated using the Pearson product moment: The correlation coeffi-
cients for CD63, LPPR1, PLK2, TPD52L1 and MAPT was 0.891, 0.926, 0.907, 0.845 and 0.628,
respectively.
(TIF)

S1 Table. (A) Results from the univariate mRNA analysis. The analysis was performed
using multiple regression model implemented in the Number Cruncher Statistical Software
(NCSSv.9). (B). Results from the univariate miRNA analysis. The analysis was performed
using multiple regression model implemented in the Number Cruncher Statistical Software
(NCSSv.9).
(DOCX)

S2 Table. (A) MRNAmodules. MRNAmodule size and ME correlation to AD case-status
(Class) and sample demographics with un-adjusted p-values. (B) MiRNA modules. MiRNA
module size and ME correlation to AD case-status (Class) and sample demographics with
un-adjusted p-values.
(DOCX)

S3 Table. (A) Candidate hub mRNA transcripts from top quartile of MM from 6 mRNA
modules significantly correlated with AD case-status. P-values are unadjusted. (B) Candi-
date hub miRNA transcripts from top quartile of MM from 3 miRNAmodules signifi-
cantly correlated with AD case-status. P-values are unadjusted.
(DOCX)

S4 Table. (A) Shared gene sets enriched between significant modules associated with neuro-
nal cell expression. (B) Shared gene sets enriched between significant modules associated
with glial cell expression.
(DOCX)

S5 Table. Unique significant enriched a priori gene sets for the significant modules.
(DOCX)

S6 Table. The entire list of Pearson correlation coefficients resulting from the correlations
of 461 mRNA hubs and 25 miRNA hubs.
(DOCX)

S7 Table. Significant negatively correlated miRNAs: mRNAs with bioinformatic support.
(DOCX)

S8 Table. (A) Table of the significant cis-eQTLs for the mRNA hubs at FDR�0.1. (B)
Table of the significant cis-eQTLs for the miRNA hubs at FDR�0.1.
(DOCX)

S9 Table. Brain Sample Demographics. The lines in bold represent the matched case-control
samples (N = 36) used in this study.
(DOCX)

S10 Table. The table reports the individual expression values of the validated genes between
the microarray and the PCR platforms. The letters behind each ID number reflects the
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disease status of the subject (i.e., A = Alcoholics and C = Controls).
(DOCX)

S11 Table. (A) Genotype calls for the mRNA hub genes. In the GEN file used by Gtool to
convert between PED and GEN files, the genotypes are expressed as pairs of 1,2,0 where 1
corresponds to allele A from the GEN file and 2 corresponds to allele B. If none of the prob-
abilities are over the calling threshold then the pair is unknown, 0 0. This should allow the
conversion of indels and other biallelic structural variants from the 1000 Genomes. (B)
Genotype calls for the miRNA hub genes.
(XLSX)

S12 Table. (A) List of the mRNA eQTLs identified in the Australian postmortem sample
and tested for enrichment in COGA EA sample; Table abbreviations: chromosome (CHR),
base pair position (BP), minor allele frequency (MAF) and Australian (AUS). (B) List of
the miRNA eQTLs identified in the Australian postmortem sample and tested for enrich-
ment in COGA EA sample.Table abbreviations: chromosome (CHR), base pair position
(BP), minor allele frequency (MAF) and Australian (AUS).
(DOCX)
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