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Shortest-Path Network Analysis Is a Useful Approach
toward Identifying Genetic Determinants of Longevity
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Kennedy3, Matt Kaeberlein4*

1 Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America, 2 Department of Mathematics and

Applied Mathematics, Virginia Commonwealth University, Richmond, Virginia, United States of America, 3 Department of Biochemistry, University of Washington, Seattle,

Washington, United States of America, 4 Department of Pathology, University of Washington, Seattle, Washington, United States of America

Abstract

Background: Identification of genes that modulate longevity is a major focus of aging-related research and an area of intense
public interest. In addition to facilitating an improved understanding of the basic mechanisms of aging, such genes represent
potential targets for therapeutic intervention in multiple age-associated diseases, including cancer, heart disease, diabetes, and
neurodegenerative disorders. To date, however, targeted efforts at identifying longevity-associated genes have been limited by
a lack of predictive power, and useful algorithms for candidate gene-identification have also been lacking.

Methodology/Principal Findings: We have utilized a shortest-path network analysis to identify novel genes that modulate
longevity in Saccharomyces cerevisiae. Based on a set of previously reported genes associated with increased life span, we
applied a shortest-path network algorithm to a pre-existing protein–protein interaction dataset in order to construct a
shortest-path longevity network. To validate this network, the replicative aging potential of 88 single-gene deletion strains
corresponding to predicted components of the shortest-path longevity network was determined. Here we report that the
single-gene deletion strains identified by our shortest-path longevity analysis are significantly enriched for mutations
conferring either increased or decreased replicative life span, relative to a randomly selected set of 564 single-gene deletion
strains or to the current data set available for the entire haploid deletion collection. Further, we report the identification of
previously unknown longevity genes, several of which function in a conserved longevity pathway believed to mediate life
span extension in response to dietary restriction.

Conclusions/Significance: This work demonstrates that shortest-path network analysis is a useful approach toward
identifying genetic determinants of longevity and represents the first application of network analysis of aging to be
extensively validated in a biological system. The novel longevity genes identified in this study are likely to yield further
insight into the molecular mechanisms of aging and age-associated disease.
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Introduction

Network-based approaches are one particularly useful method

for representing complex biological systems [1]. As the technical

acumen for characterizing complex interactions has advanced, so

has the feasibility of building large scale networks via sophisticated

computational tools that facilitate elucidation of such systems [2].

Network analysis methods have provided insights into many types

of biological interactions, including transcriptional regulation,

genetic interaction, protein–protein interactions, expression cor-

relation, sequence homology and redundant patterns of associa-

tions called motifs [3,4,5]. Network theory has been employed in

the discovery of hereditary disease-genes in people, thanks in part

to the availability of human genome-wide protein–protein

interaction (PPI) data sets and powerful computational tools that

are able to assess the complex topology of PPI networks [6].

Originally proposed by Witten [7,8], network methods are now

being applied to unravel the complexity of aging. For example,

Xue et al. have characterized protein–protein interaction network

modules associated with aging in humans and flies and performed

limited biological validation of their network in Caenorhabditis

elegans [9]. In another study, several potential longevity-associated

genes (LAGs) were predicted in C. elegans, based on interactions

with previously described LAGs [10]. Thus far, however, a

comprehensive analysis of an entire putative longevity network has

not been described and the utility of network approaches to

predict novel longevity genes and pathways remains to be

determined.
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The budding yeast Saccharomyces cerevisiae has served as a

particularly useful model system for identifying genetic and

environmental factors that modulate cellular longevity [11,12].

Two distinct types of aging have been described in yeast:

replicative aging, which refers to the number of cell divisions a

mother cell is capable of completing, and chronological aging,

which is defined by the length of time a cell can survive in a non-

dividing state. Several known yeast LAGs have counterparts that

influence aging in multicellular eukaryotes [13], providing

confidence that at least some mechanisms of yeast aging are likely

to be evolutionarily conserved.

Results

We have applied a shortest-path network strategy (see Mate-
rials and Methods) in order to identify previously unknown

LAGs that modulate yeast replicative life span (RLS). This

approach is based on the conjecture that proteins connecting pairs

of other proteins with well-defined biological functions (e.g.,

modulating longevity) have a higher probability to share that

function, as compared to those selected at random [10]. In order to

construct the shortest path longevity network (SPLN), we first

generated a list of 40 previously reported LAGs, with the criteria

that only genes associated with increased RLS were included in the

set (Table S1). Using this set of RLS LAGs and a dataset of known

interactions (Pathway Studio 5.0, Ariadne Genomics, Rockville,

MD), we first generated a Composite SPLN defined by the least

number of interactions required to link each pair-wise combination

of input LAGs (Figure 1a). The Composite SPLN (Table S2) was

comprised of 220 genes/proteins associated by several interaction

types that included physical binding, genetic relationships, and

transcriptional regulation, among others. We then extracted the

binding (protein–protein) interactions from the Composite SPLN

to build a Binding SPLN for RLS analysis (Table S3). The

resulting Binding SPLN contained 171 genes/proteins, including

33 of the 40 input LAGs (7 of the input LAGs are not integrated in

the Binding SPLN but are components of the Composite SPLN)

and 138 putative novel longevity genes (Figure 1b).

In order to determine whether our Binding SPLN successfully

predicted new LAGs, we performed RLS analysis on 88 single-

gene deletion strains corresponding to each of the genes/proteins

contained in the Binding SPLN for which a deletion strain was

available in the yeast ORF deletion collection (Table S4). We

utilized a previously described iterative approach for large-scale

RLS analysis [14]: each deletion mutant was initially assayed in

strains derived from the MATa ORF deletion collection and, in

cases where a statistically significant (p,0.05) increase in median

RLS was observed, RLS was determined for independently

derived isogenic cells obtained from the MATa ORF deletion

collection [14]. This analysis led to the identification of seven

single-gene deletion strains (elp4D, rim1D, rpl20bD, sok1D, sps1D,

tif4631D, and tma19D) that were significantly long-lived in both

haploid mating types (Figure 2) and seven additional single-gene

deletions (boi2D, gcn4D, loc1D, sip2D, snf1D, swi5D, and tom1D) that

were significantly long-lived if data from both mating types were

pooled, but which had not reached statistical significance in the

MATa mating type at the time this manuscript was being prepared

(Figure 3). Nine additional strains (abp1D, clb2D, idp3D, phd1D,

rtn1D, rvs161D, sec28D, taf14D, and ysc84D) showed a significant

increase in RLS in the MATa background, but were not long-lived

in the MATa background. We have previously observed divergent

phenotypes in MATa and MATa strains lacking the same gene

taken from the ORF deletion collection [13,15]. While mating-

specific effects on longevity cannot be excluded a priori, in most

cases these differences are likely due to additional genetic changes

in one or the other mating type that arose during creation or

propagation of the strain sets. RLS data for each of the 88 deletion

strains analyzed are provided in Table S4.

Based on comparable RLS analysis of 564 randomly chosen

single-gene deletion strains, we can estimate the expected

frequency of life span extension in strains carrying deletion alleles

of non-essential genes across the entire yeast genome (RLS data

for 564 randomly selected deletion strains provided Table S5).

Among the 564 randomly selected deletion strains, 2.7% (15/564)

were significantly long-lived in both mating types, while 4.3% (24/

564) were long-lived if data were pooled for both mating types

(Table 1). A majority of these long-lived deletion mutants

contained in the set of 564 randomly selected deletion strains

have been previously described [15]; however, here we report

three novel long-lived strains (inp51D, msw1D, and rpl37bD) that

show increased RLS in both mating types (Figure 4). Inp51 codes

for a phosphatidylinositol 4,5-bisphosphate 5-phosphatase, Msw1

codes for a mitochondrial tryptophanyl-tRNA synthetase, and

Rpl37b codes for a protein component of the large ribosomal

subunit. The mechanism(s) by which these proteins modulate

longevity has not been further characterized; however, abundance

of the ribosomal large subunit has recently emerged as a key

longevity determinant in yeast [16] and it seems likely that deletion

of RPL37B is increasing life span via a similar mechanism.

If the Binding SPLN algorithm successfully predicted novel LAGs,

then we expect that deletion of Binding SPLN components will be

more likely to be associated with altered RLS compared to randomly

selected gene deletions. Consistent with this prediction, increased

RLS is significantly enriched among the 88 deletion strains from the

Binding SPLN relative to the randomly selected set of 564 deletion

strains using the highly stringent criterion of increased RLS in both

mating types (p = 0.02, Fisher’s exact test). A significant enrichment is

also observed using the less stringent criterion of increased RLS in

data pooled between mating types (p = 1.661024, Fisher’s exact test).

Among the Binding SPLN deletion strains, 8% (7/88) are

significantly long-lived in both mating types and 15.9% (14/88)

are significantly long-lived when data from both mating types are

pooled, compared to only 2.7% (15/564) and 4.3% (24) in each

category for the randomly selected set of 564 deletion strains

(Table 1). The set of 88 deletion strains corresponding to the Binding

SPLN is also significantly enriched for increased RLS when

compared against data obtained as part of an ongoing genome-

wide analysis of RLS across the approximately 4700 single-gene

deletion strains contained in the haploid yeast ORF deletion

collection [14] (Table 1), in which only 1.5% (72/4681) currently

show a significant increase in life span in both mating types and 6.1%

(288/4681) are significantly long-lived when data is pooled across

haploid mating types. These data demonstrate that the Binding

SPLN is significantly enriched for genes that limit RLS, suggesting

that the SPLN successfully predicts LAGs.

As a further test of the predictive power of the SPLN, we next

asked whether the 88 Binding SPLN-associated gene deletions

were also enriched for decreased RLS. Since the Binding SPLN

was built based on PPIs, which include both positive and negative

regulatory interactions, many of the Binding SPLN components

are likely to function in a longevity-promoting role, and deletion of

these components may be associated with shortened life span. To

determine whether this was the case, we used MATa mean RLS

cutoff values of 20 generations and 15 generations (the average

RLS of the parental strain is ,26 generations) and asked whether

short-lived gene deletions occur more frequently in the Binding

SPLN, relative to either the set of 564 randomly chosen deletion

strains or the current data available for the entire deletion

A Yeast Longevity Network
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Figure 1. A shortest-path longevity network in yeast. (A) A Composite shortest path longevity network was constructed using the set of yeast
longevity associated genes listed in Table S1. (B) The Binding shortest-path longevity network was extracted from the Composite shortest-path
longevity network by only considering protein–protein interactions.
doi:10.1371/journal.pone.0003802.g001

A Yeast Longevity Network
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collection. These cutoff values were arbitrarily chosen; however,

computational analysis of greater than 5000 individual mother cell

life spans indicates that a wild type life span distribution will yield a

5-cell mean RLS of 15 or lower less than 0.3% of the time and 20

or lower approximately 7% of the time (Figure S1). Thus,

deletion mutants with a mean RLS of less than 20 generations are

likely to be short-lived and those with mean RLS less than 15 are

almost certainly short-lived, relative to the parental strain. Among

the Binding SPLN deletion strains, 36% (32/88) had a mean RLS

less than 20 generations, while only 17% of either randomly

selected deletions (96/564) or the entire deletion collection (818/

4681) had a mean RLS less than 20 generations (Table 2). At a

mean RLS cutoff of 15 generations, enrichment for short RLS in

the Binding SPLN is even more pronounced: 15% (13/88) of

Binding SPLN deletion strains, 3% (19/564) of the randomly

selected deletions, and 5% (231/4681) of the entire deletion

collection had mean RLSs below this value. In every case, the

Binding SPLN was significantly enriched (p,0.05, Fisher’s exact

test) for short-lived deletion mutants relative to either the set of 564

randomly selected deletions or the entire deletion collection.

We considered the possibility that genes contained in both the

Binding SPLN and the randomly selected set of 564 deletion

strains might complicate our quantification of enrichment for

LAGs in the Binding SPLN. A total of eleven genes were present

Figure 2. Gene deletions that are significantly long-lived in both haploid mating types predicted from the binding shortest path
longevity network. Replicative life span is plotted for elp4D, rim1D, rpl20bD, sok1D, sps1D, tif4631D, and tma19D relative to experiment matched
wild type (WT) cells. Replicative life span extension was significant in both mating types (p,0.05, Wilcoxon Rank-Sum Test). Pooled data from both
mating types is shown. Mean life spans, numbers of mother cells analyzed, and p-values are provided in Table S4.
doi:10.1371/journal.pone.0003802.g002

A Yeast Longevity Network
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in both the predicted LAGs from the Binding SPLN and the

random set of 564 deletion strains (Table S6). If these genes are

excluded from the analysis, the Binding SPLN is still significantly

enriched for both long-lived and short-lived (p,0.05, Fisher’s

exact test in every case) deletion mutants relative to the randomly

selected set (Table S6). Therefore, we conclude that the set of

predicted LAGs in the Binding SPLN is enriched for both

longevity-promoting and longevity-limiting genes/proteins, and

that our Binding SPLN analysis successfully predicts LAGs at a

rate significantly greater than can be achieved by randomly

selecting genes/proteins from the genome.

Discussion

We are encouraged by the success of our initial SPLN analysis

at predicting novel LAGs; however, we also recognize that some

features of our experimental design may have limited the

predictive power of the SPLN. For example, the set of previously

reported LAGs used to derive the SPLN was generated based on

RLS data from studies performed by multiple laboratories using a

variety of yeast isolates of diverse genetic composition (Table S1).

This approach was taken in order to be as inclusive as possible

when building the initial SPLN; however, strain-specific effects are

Figure 3. Gene deletions that are significantly long-lived when data is pooled from both haploid mating types predicted from the
binding shortest path longevity network. Replicative life span data is plotted for boi2D, gcn4D, loc1D, sip2D, snf1D, swi5D, and tom1D, relative
to experiment matched wild type cells. Replicative life span extension was significant in data pooled from both mating types (p,0.05, Wilcoxon
Rank-Sum Test). Pooled data from both mating types is shown. Mean life spans, numbers of mother cells analyzed, and p-values are provided in
Table S4.
doi:10.1371/journal.pone.0003802.g003

A Yeast Longevity Network
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known to influence RLS, and some of the mutations reported to

increase RLS in other strain backgrounds do not have a similar life

span-extending effect in the parental strains of the ORF deletion

collection used for all RLS analysis in this study [17]. Indeed,

among the 40 previously reported LAGs used to build the SPLN

(Table S1), less than half are significantly long-lived as deletion

alleles in the parental strains used for this study. Future iterations

of the SPLN are therefore likely to benefit by limiting the input

genes/proteins to only those known to influence aging in BY4741

and BY4742.

A second feature that may have limited the predictive power of

the Binding SPLN is the sole use of PPIs in order to build the

network. Reported protein–protein interactions from large-scale

data sets may have a significant false-positive rate, which can result

in sub-networks of the Binding SPLN that do not represent true in

vivo interactions. In addition, PPIs represent only a fraction of all

possible interactions that can occur in cells. For example,

transcriptional regulation (or repression) of a gene by a

transcription factor would not be represented in the Binding

SPLN, yet may be highly relevant in determining longevity. Thus,

a comprehensive analysis of the Composite SPLN is likely to

identify additional RLS LAGs that were not identified here. This

study has yet to be performed; however, based on our analysis to

date, the Composite SPLN contains at least one additional long-

lived deletion strain that is not present in the Binding SPLN, ypt6D
(Figure S2), and is already enriched for both long- and short-lived

mutants relative to the rest of the deletion collection (Table S7).

YPT6 codes for a RAS-like GTPase required for fusion of

endosome-derived vesicles with the late Golgi and is homologous

to the C. elegans LAG rab-10 [13], which is thought to act in the

same pathway as dietary restriction (DR) and has recently been

shown to modulate resistance to polyglutamine toxicity in a

nematode model of Huntington’s disease [18,19]. Following

comprehensive analysis of the Composite SPLN, it will be of

interest to determine whether the Composite SPLN is more or less

efficient at predicting LAGs compared to the Binding SPLN.

Figure 4. Novel longevity associated genes identified from replicative life span analysis of 564 randomly selected single-gene
deletion strains. Replicative life span is plotted for inp51D, msw1D, and rpl37bD relative to experiment matched wild type (WT) cells. Replicative life
span extension was significant in both mating types (p,0.05, Wilcoxon Rank-Sum Test). Pooled data from both mating types is shown. Mean life
spans, numbers of mother cells analyzed, and p-values are provided in Table S5.
doi:10.1371/journal.pone.0003802.g004

Table 1. Increased life span in single-gene deletion strains from the binding shortest-path longevity network relative to randomly
selected strains.

Dataset Both Haploid Mating Types p - value Pooled,0.05 p - value

Binding SPLN (88) 8.0 % (7) - 15.9% (14) -

R564 (564) 2.7 % (15) 0.02 4.3% (24) 1.661024

DELSET (4681) 1.5% (72) 8.261024 6.1% (288) 1.161023

The percentage of single-gene deletion strains that are significantly long-lived in the Binding shortest-path longevity network ( Binding SPLN), a randomly selected set
of 564 deletion strains (R564), or the 4681 deletion strains from the deletion collection for which RLS data has been obtained (DELSET) is shown. The number of strains in
each category is shown in parentheses. The p-value category refers to the results of a Fisher’s Exact test comparing the frequency of increased RLS in each random set
(R564 or DELSET) relative to the Binding SPLN.
doi:10.1371/journal.pone.0003802.t001

Table 2. Decreased life span in single-gene deletion strains
from the binding shortest-path longevity network relative to
randomly selected strains.

Dataset
Mean
RLS,15 p - value

Mean
RLS,20 p - value

Binding SPLN (88) 14.8 % (13) - 36.4% (32) -

R564 (564) 3.4 % (19) 8.261025 17.0% (96) 5.561025

DELSET (4681) 5% (231) 4.661024 17.5% (818) 2.361025

The percentage of single-gene deletion strains with an observed mean
replicative life span (MRLS) less than 20 or 15 in the Binding shortest-path
longevity network (SPLN), a randomly selected set of 564 deletion strains
(R564), or the 4681 deletion strains from the deletion collection for which RLS
data has been obtained (DELSET) is shown. The number of strains in each
category is shown in parentheses. The p-value category refers to the results of a
Fisher’s Exact test comparing the frequency of short RLS in each random set
(R564 or DELSET) relative to the Binding SPLN.
doi:10.1371/journal.pone.0003802.t002

A Yeast Longevity Network
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An alternative approach to the Binding SPLN algorithm used in

this study would be to focus solely on genes coding for proteins that

interact directly with known LAGs. If only direct PPIs involving the

40 previously reported LAGs contained in Table S1 are considered,

a ‘‘first neighbors’’ longevity network containing 1375 genes/proteins

is obtained (Table S8). Although complete biological validation of

this first neighbors longevity network is not currently feasible, an

estimate of the predictive power of such a strategy can be obtained by

considering the 937 gene deletions from this network for which some

limited RLS data has already been obtained as part of our ongoing

genome-wide study. Relative to the entire deletion collection, the first

neighbors longevity network is significantly enriched for short-lived

deletions (Table S8). There is a trend toward enrichment for long-

lived deletions, but this trend has not reached statistical significance.

In each case, the SPLN was a better predictor of altered life span than

the first neighbors longevity network. Thus, we conclude that by

constraining our network to shortest-path interactions, the network

size is reduced by approximately 10-fold and true-positive interac-

tions are likely to be enriched.

Despite the limitations of this first iteration of the SPLN, the

algorithm successfully predicted novel LAGs at a rate significantly

greater than expected by random chance. In addition, several

features of the network are notable. For example, SOK1, deletion of

which was observed to increase RLS in both haploid mating types,

interacts genetically with both the target of rapamycin (TOR) kinase

and the cyclic AMP-dependent protein kinase (PKA); overexpres-

sion of SOK1 suppresses phenotypes associated with reduced PKA

activity and confers resistance to the TOR-inhibitor rapamycin

[20,21]. Our data demonstrate that deletion of SOK1 is sufficient to

confer increased RLS (Figure 2). Taken together, these results

support the hypothesis that Sok1 functions in parallel with TOR

and PKA to modulate longevity. This is of particular interest, as

both TOR and PKA, along with the ribosomal S6 kinase ortholog

Sch9, are thought to mediate life span extension in response to DR,

and epistasis analysis places deletion of TOR1, deletion of SCH9,

and mutations that reduce PKA activity in the same pathway as DR

and in a pathway parallel to the histone deacetylase Sir2

[15,22,23,24,25]. We therefore propose that deletion of SOK1 is a

novel genetic mimic of DR in yeast.

In addition to SOK1, at least three other gene deletions found to

increase life span in both haploid mating types are likely to

function in the same longevity pathway downstream of TOR,

PKA, and Sch9 by regulating mRNA translation: RPL20B, which

codes for a constituent of the large ribosomal subunit, TIF4631,

which codes for a translation initiation factor, and TMA19, which

codes for a homolog of translationally controlled tumor protein

and physically associates with ribosomes [26]. Tif4631 was

recently identified as one member of a set of evolutionarily

conserved longevity factors that modulate aging by regulating

mRNA translation [13]. In a separate study, we have recently

reported that Rpl20b also functions downstream of TOR and

Sch9 and modulates replicative life span by a mechanism that

involves increased translation of Gcn4 [16]. Both Gcn4 and the

eIF2 kinase Gcn2, which regulates translation of Gcn4, were

identified by our SPLN analysis, as was LOC1, which is constituent

of 66S pre-ribosomal particles and is required for normal

abundance of ribosomal 60S subunits [16].

The fact that the Binding SPLN identified new components of

the nutrient responsive TOR longevity pathway is an encouraging

indication that the structure of the Binding SPLN accurately

reflects the most important aspects of longevity control in yeast. It

seems unlikely, however, that the LAGs contained in the SPLN

are confined to TOR-related functions, as several of the previously

reported LAGs used to generated the SPLN are thought to

function in pathways parallel to TOR signaling, and many of the

novel LAGs identified from this study have no known link to TOR

signaling. For example, Boi2 is a fungal-specific protein involved in

polar growth and bud emergence. We speculate Boi2 influences

RLS, which is a measure of the capacity to form buds, via it’s role in

bud emergence, perhaps by modulating retention of extrachromo-

somal rDNA circles or oxidatively damaged proteins in the mother

cell, both of which are associated with yeast aging [27,28]. Other

examples of novel LAGs identified from the Binding SPLN that are

likely to be unrelated to TOR activity include Elp4, Sps1 and Rim1.

Epl4 functions as an elongator complex subunit required for

modification of wobble nucleosides in tRNA; Sps1 is required for

localization of enzymes involved in spore wall synthesis; and Rim1 is

a single-stranded DNA-binding protein essential for mitochondrial

genome maintenance. Thus, the SPLN algorithm successfully

identified novel LAGs of diverse function, allowing for future

determination of the varied genetic relationships and molecular

mechanism(s) by which replicative aging is modulated in yeast.

The ability to accurately predict genetic and environmental

determinants of longevity has previously proven difficult. Several

approaches toward longevity gene identification have been

attempted, including characterization of gene expression and

physiological biomarkers of longevity, candidate gene analyses,

and unbiased genomic screening. The data presented here

demonstrate that SPLN analysis is a useful tool for predicting

genes/proteins that modulate longevity. Although the analysis

described here was limited to genes/proteins that modulate yeast

RLS, similar approaches are equally applicable to other

organismal systems for which large-scale interaction data sets are

available, including worms, flies, and mice. To the best of our

knowledge, this is the first example of a quantitatively predictive

algorithm for identifying novel LAGs and, as such, represents an

important advance in aging-related science. As more sophisticated

data sets become widely available, the predictive ability of our

SPLN approach is likely to improve substantially, and may prove

particularly useful for identifying candidate longevity loci in

humans, where life span analysis is not a feasible approach.

Materials and Methods

Construction of composite and binding shortest path
longevity networks

A set of genes that have been reported to be associated with

increased replicative life span (RLS) in Saccharomyces cerevisiae was

generated. This set was derived from our Aging Genes/

Interventions Database (formerly the SAGE KE Genes/Interven-

tions Database [29]; http://www.kaeberleinlab.org/ageid), the

GenAge database [30], and from independent literature searches.

Based on this set of longevity associated genes (LAGs), a

Composite shortest-path longevity network (SPLN) was construct-

ed by introducing names of genes (canonical names) from our

compiled set into PATHWAY STUDIO 5 software (Ariadne

Genomics, Rockville, MD) and selecting the shortest path mode

for network building [10]. The software identified associations

among the input genes by referencing a proprietary yeast

interaction database. The composite SPLN integrated many

classes of gene/protein interactions such as binding interactions,

genetic interactions, transcriptional regulatory interactions, post-

translational chemical interactions, and others. The Composite

SPLN yielded many predicted LAGs that were located along the

paths of the input genes (Figure S1). Next, we extracted all the

binding interactions from the Composite SPLN and used those to

construct a Binding SPLN that consisted of easily testable vertices

(i.e. canonical genes as opposed to mechanical processes,
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complexes, etc). The Binding SPLN was comprised of 171 genes/

proteins, including the 33 of the 40 input LAGs (7 of the input

LAGs did not have any binding interactions in the binding SPLN

but had other interactions in the composite SPLN), 45 essential

genes, and 5 genes that either had no known deletions or had

representative strains that were not viable. The remaining 88

genes from the Binding SPLN were examined by RLS analysis as

single-gene deletions.

Replicative life span analysis
Replicative life span was assayed as described [17,31]. The

deletion strains employed in the replicative aging experiments were

derivatives of BY4742 (MATa his3D1 leu2D0 lys2D0 ura3D0) and

BY4741 (MATa his3D1 leu2D0 met15D0 ura3D0). The parental

wild-type strains (BY4741, BY4742) and the yeast ORF deletion

collection [32] were obtained from Research Genetics (Carlsbad,

CA). The deletion strains chosen for life-span experiments were

thawed from frozen stock (280uC, 25% glycerol) and plated onto

rich media (YPD). After 48-hour incubation in 30uC, selected

colonies were patched to YPD. The following evening, the cells were

lightly patched onto fresh YPD plates for RLS determination. After

an overnight incubation at 30uC, the yeast cells were arrayed on

YPD plate with a micromanipulator and left to undergo 1–2

divisions. RLS was measured for individually selected virgin cells.

Plates that were not used during the experiments were wrapped with

parafilm to preclude desiccation. Life span plates were stored at 4–

6uC overnight. Daughter cells were separated from mother cells by

gentle manipulation with fine dissecting needle and tabulated every

2–4 hours. All experiments were performed ‘blind’, such that the

strains were coded in a manner precluding identification of any

strain by individuals performing microdissection during the course of

the experiment.

The iterative process for large-scale RLS determination was

previously described [15]. Based on a numerical analysis described

in the prior report [15], it was established that a majority of long-

lived strains can be accurately classified based on initial

determination of RLS for 5 mother cells from a MATa single-

gene deletion strain, followed by further analysis of additional

mother cells from those MATa deletion strains that have a 5-cell

mean RLS greater than 26 generations. Those strains that achieve

a p-value of 0.05 or less as MATa deletions are verified by

examining the RLS of the corresponding deletion independently

derived in the MATa mating type. This iterative approach was

used to identify long-lived single-gene deletion strains from 564

randomly selected mutants [15] and is currently in use to

characterize the aging potential of 4775 single-gene deletions

strains in the yeast ORF deletion collection, of which RLS data

has been obtained for 4680 (at least 5 mother cells examined).

Statistical Analysis
P-values for replicative life span analysis were calculated using a 2-

tailed Wilcoxon Rank-Sum test. In each case, mother cell replicative

life spans for the deletion mutant under examination were compared

to mother cell replicative life spans for experiment matched wild type

(BY4742 for MATa cells, BY4741 for MATa) mother cells. The

MATLAB 7.2 ‘ranksum’ function was used to calculate all Wilcoxon

test p-values. To determine whether Binding SPLN or the

Composite SPLN was enriched for short- or long-lived deletion

strains relative to the randomly selected set of 564 deletion mutants

[14] or the current data set for the entire deletion collection, a

Fisher’s exact test was performed using the Fisher’s exact test

calculator at http://www.langsrud.com/fisher.htm.

Supporting Information

Figure S1 Distribution of mean replicative life spans for 5 and

10 cell sets of BY4742 mother cells.

Found at: doi:10.1371/journal.pone.0003802.s001 (0.13 MB PDF)

Figure S2 Deletion of YPT6, a component of the composite

shortest-path longevity network, increases replicative life span.

Found at: doi:10.1371/journal.pone.0003802.s002 (0.11 MB PDF)

Table S1 Set of yeast genes reported to be associated with

increased replicative life span used to construct the shortest-path

longevity network.

Found at: doi:10.1371/journal.pone.0003802.s003 (0.11 MB PDF)

Table S2 Relation table for the composite shortest path

longevity network.

Found at: doi:10.1371/journal.pone.0003802.s004 (0.16 MB PDF)

Table S3 Components of the Binding shortest-path longevity

network.

Found at: doi:10.1371/journal.pone.0003802.s005 (0.10 MB PDF)

Table S4 Replicative life span analysis of single-gene deletion

strains corresponding to genes in the binding shortest-path

longevity network.

Found at: doi:10.1371/journal.pone.0003802.s006 (0.14 MB PDF)

Table S5 Replicative life span analysis of 564 randomly selected

single-gene deletion strains.

Found at: doi:10.1371/journal.pone.0003802.s007 (0.36 MB PDF)

Table S6 Genes contained in both the randomly selected set of

564 single-gene deletion strains and the predicted longevity

associated genes in the binding shortest path longevity network.

Found at: doi:10.1371/journal.pone.0003802.s008 (0.12 MB PDF)

Table S7 Enrichment of longevity-associated genes in the

Composite shortest-path longevity network.

Found at: doi:10.1371/journal.pone.0003802.s009 (0.08 MB PDF)

Table S8 The first neighbors longevity network has less

predictive power than the Binding SPLN.

Found at: doi:10.1371/journal.pone.0003802.s010 (0.17 MB PDF)
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