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Geometrical modeling of fibrous materials under compression
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Many fibrous materials such as nonwovens are consolidated via compaction rolls in a so-called
calendering process. Hot rolls compress the fiber assembly and cause fiber-to-fiber bonding resulting
in a strong yet porous structure. In this paper, we describe an algorithm for generating three
dimensional virtual fiberwebs and simulating the geometrical changes that happen to the structure
during the calendering process. Fibers are assumed to be continuous filaments with square cross
sections lying randomly in the x or y direction. The fibers are assumed to be flexible to allow
bending over one another during the compression process. Lateral displacement is not allowed
during the compaction process. The algorithm also does not allow the fibers to interpenetrate or
elongate and so the mass of the fibers is conserved. Bending of the fibers is modeled either by
considering a constant “slope of bending” or constant “span of bending.” The influence of the
bending parameters on the propagation of compression through the material’s thickness is discussed.
In agreement with our experimental observations, it was found that the average solid volume
fraction profile across the thickness becomes U shaped after the calendering. The application of
these virtual structures in studying transport phenomena in fibrous materials is also demonstrated.

© 2007 American Institute of Physics. [DOIL: 10.1063/1.2794476]

I. INTRODUCTION

In manufacturing nonwovens, thermoplastic fibers are
often bonded together by thermal calendering (see Fig. 1). In
this process, the calender rolls slightly melt the surface of the
fibers and cause them to fuse together at the crossovers. Hot
calendering causes permanent changes in the structure and
depending on the temperatures and pressures used in the pro-
cess, various degrees of densification and fiber linkage can
be achieved.

During the past years, there have been many pioneering
works aimed at simulating the three dimensional (3D) struc-
ture of a fibrous material. Qi and Uesaka' generated 3D an-
isotropic virtual media made of interpenetrating fibers to
model paper boards. With the same objective but in a differ-
ent way, Koponen et al.* modeled 3D structures made up of
short fibers based on a model developed by Niskanen and
Alava.® Further investigations on 3D assembly of interpen-
etrating fibers have been conducted by Clague and Phillips4
and Tomadakis and Robertson’ who investigated the perme-
ability of their fibrous media. In all the above studies, once a
fibrous medium was generated, no further processing was
performed on it. Thus, these studies have been limited to
uncompressed assemblies of (discontinuous) fibers. Note that
there are a few available published works dealing with com-
pressing fibrous materials. These studies, however, are fo-
cused on stiffness and rigidity of fibrous materials (Kello-
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maki et al.,é Astrom et al.,7 and Wu and Dzeniss). Our
objective in this paper, however, is to simulate the structure
of a nonwoven material before and after calendering. Since
our fibers are continuous, these nonwovens would be similar
to those produced by spun bonding. Spun bonding is a manu-
facturing technology which offers a one-step process for pro-
ducing nonwovens from the raw materials (thermoplastic
polymers) as the fiber and fabric productions are combined.
Spun bonded fibers are continuous filaments that are
quenched and drawn to form highly oriented crystalline fiber
morphologies. Once collected in a web form, the fibers need
to be bonded to form a fabric. Calendering is a common
process used for thermally bonding spun bonded webs. In the
current paper, we generate virtual spun bonded nonwovens
and simulate the changes in their microstructural geometry

J

un-bonded [iber-web consolidated fabrie

()

FIG. 1. (Color online) A schematic drawing of smooth calender bonding.
Drawing is not to scale.

© 2007 American Institute of Physics
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Determine orientation

Generate a coordinate
until the gap condition is
respected

Orientation the
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previous fiber?

Generate a coordinate
Increase current thickness
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Scan the lower layer for
contacts and create the links
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FIG. 2. The flowchart of the procedure developed for generating uncom-
pressed webs.

during the calendering process at different compaction ratios
(the ratio of the original to final thicknesses). The next sec-
tion will describe our algorithm for generating spun bonded
nonwovens. This will be followed by a section on virtually
compressing these media in Sec. III. The application of the
current geometric modeling in calculating transport phenom-
ena in fibrous materials is briefly discussed in Sec. IV fol-
lowed by the conclusions in Sec. V.

Il. GENERATING UNCOMPRESSED FIBERWEBS

Most nonwovens can be assumed to be 3D layered struc-
tures. Such structures consist of a large number of fibers or
filaments sequentially deposited on top of one another in a
somewhat random manner in a horizontal plane to build the
required 3D geometry. Consequently, there is a great differ-
ence between their properties in the in-plane and through-
plane directions. As mentioned before, there are a few avail-
able published studies attempting to generate 3D fibrous
structures, but in most of these works, fibers were assumed
to interpenetrate into each other at the crossovers, which ob-
viously is unrealistic.*>*!° Here, we plan to construct the
above-mentioned 3D structure of stacked horizontal fibers
with no volume (mass) loss. In order to simulate a spun
bonded nonwoven web suitable for compaction, we consid-
ered the fibers to have square cross sections and lie horizon-
tally in the plane of the web and only in the x or y direction
unlike our previous web generation algorithm.”_]3 This will
ease the fiber bending process as will be explained later in
the next section. The fibers are represented by a succession
of cubes of size 1, with integer coordinates in the x and y
directions. This also means that all the dimensions are non-
dimensionalized by the fiber diameter.

J. Appl. Phys. 102, 073533 (2007)

FIG. 3. (Color online) An example of the uncompressed webs generated by
our algorithm.

To generate an uncompressed 3D web, for each fiber, the
first step is to determine the orientation. This orientation,
being either in the x or y direction, is chosen randomly but
according to a given proportion. This allows us to generate
anisotropic fiberwebs where the number of fibers in the x
direction, for instance, is greater than that in the y direction.
If the orientation is the same as that of the previously gen-
erated fiber, the current altitude is kept constant as the fiber
will be created in the current layer. Accordingly, if the ori-
entation is different, the current altitude is increased and the
fiber will be generated in a new layer. The next step consists
in generating a coordinate for this fiber: as the fibers are of
infinite length, a fiber which is oriented in the x direction
only needs a y coordinate. In order to have control on the
minimum distance between two parallel fibers, a gap param-
eter g is introduced. The cases of g=0 and g=2, for instance,
correspond to the condition where the minimum spacing be-
tween two parallel fibers having identical height (z) is zero
and two fiber diameters, respectively. Note that a case of g
=—1 which represents the case of two parallel fibers depos-
ited on top of each other is not allowed (see the flowchart in
Fig. 2). Because of this gap parameter, tentative coordinates
will be generated for the fiber until one fulfills the gap con-
dition for all the fibers already present in that layer. If no
coordinate can be found, the fiber orientation is changed.

The last stage, establishing contacts between the new
fiber and the ones below it, is crucial for the compression
part of the simulation. For that purpose, a cube being in
contact with another cube from above or below contains ref-
erences to the contacted cube and its hosting fiber. This will
facilitate the propagation of bending.

The above fiber deposition process will be repeated until
the targeted dimensionless basis weight or thickness is
reached. We define the dimensionless basis weight as the
ratio of the total volume (or weight) of the fibers to the
surface area of the sample. We consider volume and weight
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FIG. 4. SVF of the square samples with the side lengths of 50, 250, and
500 units having different dimensionless basis weights.

to be interchangeable, i.e., we assume a density of 1 for the
fibers. Note that the size of the sample and the length of the
fibers are identical as the fibers are assumed to be continuous
filaments. Therefore, dimensionless basis weight simply be-
comes the ratio of the number of fibers to the sample size.
Figure 3 shows a 50 X 50 web made of 80 fibers with a
length of 50 spanning across the sample from isometric
views. As mentioned before, spun bonded webs are made of
continuous filaments collected and compacted together in the
form of planar fibrous structures. The aforementioned web
generation algorithm places the ends of each fiber at the pe-
ripheral boundaries of the square boxes considered for the
simulations. In Fig. 4 we plotted the solid volume fraction
(SVF) of square samples with the side lengths of 50, 250,
and 500 units having different dimensionless basis weights
(SVF is shown in percentile for convenience). It can be seen
that the SVF of the webs made with this algorithm is inde-
pendent of the basis weight. Note that this is what one may
expect from any porous medium, i.e., increasing the thick-
ness does not influence the solidity of the medium. Adding a
larger number of fibers per unit of area simply increases the
thickness of the web without changing its SVF. It can be seen

10000
1000 1
100 1
—8— SVF (%)
—O— Thickness
10
1 -
01 T
1 10 100 1000

Sample Size

FIG. 5. Influence of sample size on the web SVF and thickness at a fixed
dimensionless basis weight.
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FIG. 6. Influence of fiber orientation distribution on SVF of the fiberweb.

that SVF is only a function of the size of the sample being
generated. Increasing the width of the box in our algorithm
causes a reduction in the SVFE. The SVF of a real nonwoven
fiberweb is independent of the sample size as long as the
sample size is sufficiently larger than the smallest length
scale in the medium. Defining the length scale in fibrous
media is difficult especially in the cases where fibers have no
finite length such as spun bond filters. Spun bond filters are
made of continuous filaments curled, coiled, and stacked on
top of each other. It is a fact that such fiberwebs are made up
of sequential depositions of these filament segments on top
of each other. The diameter of these spiral trajectories is
much larger than the size of the samples that one can pro-
duce in a regular personal computer with finite amount of
accessible memory and computing speed. To this end, we
modeled such structures with straight objects extending from
one end of the sample to the other. This causes the SVF to
become dependent on the sample size and one needs to use
the relevant sample size to simulate a given nonwoven sheet.
The origin of this counterintuitive property of our model is
that on average, the number of fibers per layer is relatively
independent of the sample size, whereas their length is not
(i.e., the length of the fiber and size of the sample are the
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FIG. 7. Influence of the gap size on SVE.
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FIG. 8. (Color online) Fiber bending at crossovers.

same). As a consequence, when changing the sample size,
the total volume of the fibers varies linearly while the vol-
ume of the whole fiberweb changes in proportion to the
square of the sample size. Cutting subsamples from a 100
X 100 web, for instance, will result in media with lower
SVFs unless the subsample size is greater than a critical size.
The reason is that when one cuts a small subsample from a
modeled large fiberweb, there will be some vertical gaps
between the fibers in the subsample. These gaps are formed
because some of the fibers in the subsample are deposited on
fibers which are part of the large original web but are not in
the subsample. Obviously, the smaller the subsample, the
greater is the chance that fibers in the subsample have verti-
cal gaps between them. However, if the subsample is larger
than some critical size (a size comparable to that of the origi-
nal sample), the subsample’s SVF will be close to that of the
original sample.

In order to find the sample size that can resemble a real
spun bonded fabric of a given initial basis weight and SVF
(before the compaction), we generated different spun bonded
webs having an identical dimensionless basis weight in
square boxes with different sizes (see Fig. 5). The rapid de-
crease in the SVF with increasing sample size is evident.
Note that the thickness of the web increases by increasing the
sample size for a fixed basis weight.

The uncalendered nonwovens discussed above were
made up of an assembly of fibers laid down in either of the x
or y direction with equal probabilities. Our algorithm allows
generating fiberwebs in which fibers are deposited in the x or
y direction but with unequal chances. The reason for this is
that most of the fiberweb production processes introduce

a)

FIG. 9. (Color online) Fiber bending with constant bending step (a) and
constant bending span (b) with 7=1/3.

J. Appl. Phys. 102, 073533 (2007)

some degrees of directionality to the fiberwebs which can
potentially affect the final results. Even in the case of spun
bonded webs, when the speed of the conveyor belt is in-
creased, noticeable anisotropy is observed along the direc-
tion in which the conveyor travels (machine direction). Thus,
we considered fiberwebs with different overall fiber orienta-

WP

-“ﬁﬁ .

FIG. 10. (Color online) A web compressed using constant bending step and
constant bending span with 7;=1/3 (a) and T;=1/8 (b).
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FIG. 11. (Color online) SEM images of a spun bonded fabric after calen-
dering: (a) top view and (b) side view.

tions in the x and y (machine and cross-machine directions).
To generate a fiberweb with fibers highly oriented in the x
direction, for instance, fibers were generated randomly as
before but with only 10% chance of being the x direction
(10% XD), for instance. Five different uncompressed webs
having fibers with 10%, 20%, 30%, 40%, and 50% chances
of being the y direction are generated. Fiber orientation in-
fluences the way fibers will be stacked up. When fibers are
mostly deposited in the x direction, for example, a higher
number of fibers can be placed in the same plane of constant
height (z). Therefore, highly oriented uncompressed webs
will have a lower thickness and, consequently, a higher SVF
than the isotropic webs. Figure 6 shows the average SVF of
the above-mentioned structures versus the percentage of the
fibers oriented in the x direction.

As mentioned before another controlling parameter that
is used in this work is the minimum allowable distance be-
tween parallel fibers at a constant height (z). Figure 7 shows
the influence of the gap g on the SVF for a 50 X50 web
having a dimensionless basis weight of 20. Obviously, in-
creasing g increases the likelihood of having only one fiber

J. Appl. Phys. 102, 073533 (2007)

at a given height. Increasing g prevents the fibers from de-
positing in the same altitude and therefore causes the web’s
thickness to increase almost linearly proportional to the num-
ber of deposited fibers and consequently leads to a sharp
decrease in the SVF of the media.

lll. MODELING COMPRESSION
A. Algorithm

The compression process in this paper is purely geo-
metrical. The fibers on the outside of the web are pushed
toward the inside, bending and moving the fibers in their
way. Modeling bending of the fibers at the crossovers is
complicated and inspired here by the algorithm developed by
Niskanen and Alava® for simulating wood fibers in paper
boards. When fibers are under compression, they bend ac-
cording to a parameter 7 (see Fig. 8). T} is the step or slope
of the bend, whereas 1/Tf is the distance over which each
side of a fiber will bend. A large T, resembles bending of a
soft and flexible fiber whereas a small T represents rigid
fibers. At first glance, and according to Fig. 8, considering 7
or 1/T; constant might seem equivalent. However, this is not
true in more complex situations like the one illustrated in
Fig. 9. In Fig. 9(a), we assumed a constant step (7) during
the fiber bending. When fiber A is pushed down against fiber
B and bending step 74=1/3 is kept constant, the cube in fiber
C which is in contact with fiber B (i.e., cube number 4,
denoted C,) moves down only by 1/3 (shown by an arrow)
and no other cube in fiber C needs to be affected. The alter-
native scenario is the case where bending distance (1/7) is
kept constant. In this case every time a cube is moved, the
bending will be propagated and shared by 1/7; number of
cubes on the same fiber. As it can be seen in Fig. 9(b), when
C, is moved down by 1/3, C; and C, are also moved each
by 1/9 so that a 1/T,=3 total number of cubes are affected.
The difference between these two bending models is more
evident when Ty is increased. Therefore, the simulation had
to be able to handle both scenarios and the differences both
in algorithm and results will be presented.

Compression takes place progressively and alternatively
from the bottom and the top. The compaction process
progresses stepwise and in the unit of fiber diameter (cube
side). At each step, the bending procedure will be applied to
all the fibers that are affected by the downward (or upward)
displacement of the upper (or lower) fibers. The simulation
procedure is highly recursive, propagating the compression
in breadth, along the fibers, and in depth through contact
points. Figures 10(a) and 10(b) show the same fiberweb
when compacted from the top and bottom using the above
constant-slope and constant-span algorithms with 1/7,=3
and 1/T,=8. Note the flat surface on the top and bottom. It
can be seen that the bending of the fibers becomes smoother
when the bending slope is reduced. For a realistic simulation,
the bending slope should be adjusted according to the me-
chanical properties of the fibers. Note that our current model
is purely geometrical. Relating the T, parameter to real
physical/mechanical properties of a fiberweb is a very inter-
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( Propagate down (Fiber F, Cube C) )

[ #2020 cube linked under .0) |

Propagate right down (Fiber F2,
Cube C2)
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New or existing contact
under (F2,C2)?

Propagate down (Fiber F2,
be C2)

(©)

FIG. 12. The flowcharts of the algorithms developed for reducing the web thickness with a constant 7 (a), bending (b), and positioning of the cubes (c).

esting and important step forward. Our geometric model
serves as a first step in developing a physical/mechanical
model for fiberwebs under compression.

Figure 11 shows two scanning electron microscopy
(SEM) images of a spun bonded fabric made of polypropyl-
ene fibers with an average diameter of 15 um after calender-
ing by smooth hot rolls. The spun bonded fibers were
produced and calendered in the pilot laboratory of the Non-
wovens Cooperative Research Center (NCRC) at NC State

University. Note the similarities between the way fibers bend
at the crossovers in Fig. 11(b) and our model shown in Figs.
8-10. Note also that the model does not take into account the
flattening of the fibers at the crossovers: the cross section
remains a square.

The flowchart in Fig. 12(a) shows the algorithm for
reducing the web thickness by one unit when 7} is
kept constant. It calls three different subroutines:
bend_left_side_down, bend_right_side_down, and propagate
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FIG. 13. (Color online) A fluffy structure compacted with different compac-
tion ratios. From top to bottom: (SVF=4.5% and C,=1.0), (SVF=10% and
C,=2.0), (SVF=15% and C,=2.9), and (SVF=25% and C,=5.0). It can be
seen that by increasing the compaction ratio from 1 to 5, SVF increases
from 4.5% to 25%.

_down. The first two [see Fig. 12(b)] are essentially similar

as they take care of bending a fiber in accordance with the 7

parameter, one for each side of the cube along the fiber.
When bending, as cubes are lowered, care must be taken to
also check for the creation of new contacts. If such contacts
are detected, or if the cube being lowered was already in
contact with a fiber, a call to propagate_down [see Fig. 12(c)]
is made. propagate_down takes care of correctly positioning
the cube in contact with the cube calling it and then calls
bend_left down and bend_right down in order to bend that
fiber.

J. Appl. Phys. 102, 073533 (2007)
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FIG. 14. (Color online) Influence of the calendering temperature and pres-
sure on the SVF of spun bonded fabrics.

The principle remains the same if 1/7} is kept constant,
the only difference being in how the bending is calculated in
bend_left_ down and bend_right_down.

Additional information needs to be stored in the cube
structure in order to keep track of which direction they are
pushed in and whether or not they are locked in place. In the
case of T constant, the simulation will attempt to repeat the
compression process until a target thickness is reached but if
a cube, while moving in one direction, hits or comes in con-
tact with another cube that came from the other direction, the
process will be stopped prematurely in order to preserve the
slope constant. The case of 1/T constant does not have this
limitation.

B. Compaction ratio

As mentioned before, our algorithm allows a fiberweb to
be compressed down to different thicknesses. To demonstrate
this, five uncompressed samples were generated according to
the aforementioned algorithm (see Sec. II). These structures
were made up of 100 fibers with a length of 40 units, laid
down randomly in the x or y direction. The thickness of these
structures, being statistically a function of the fiber deposi-
tion procedure, happened to vary between 43 and 50 units.
These structures were compressed to different final thick-
nesses of 25, 17, 13, 10, and 8 units. Increasing the compac-
tion ratio C, causes the SVF of the calendered media to
increase. Figure 13 shows an uncompressed structure com-
pacted to different thicknesses. It can be seen that by increas-
ing the compaction ratio from 1 to 5, the SVF increases from
4.5% to 25%.

As mentioned before, we also produced spun bonded
fabrics made of polypropylene fibers with an average diam-
eter of 15 um with different basis weights ranging from
20 to 100 g/m>. These fabrics were compacted using heated
smooth calender rolls in NCRC’s pilot nonwoven laboratory.
Three different temperatures of 105, 120, and 135 °C and
three different nip pressures of 200, 400, and 600 1b per lin-
ear inch were considered in the experiments. Note that nip
pressure is normally shown in force per unit length of the
line of contact between the rolls, i.e., width. The influence of
the calendering temperature and pressure is shown in Fig. 14
where a given fabric has been calendered under different
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T,=1/3

T,=1/8

e

FIG. 15. (Color online) A fiberweb compressed with different bending
slopes varying from 7,=1/3 to T,=1/8.

conditions. It can be seen that by increasing the nip pressure,
the SVF of the fabric increases. It also shows that increasing
the roll temperature leads to an increase in the SVF. Chang-
ing the roll temperature and pressure here was only a means
of increasing the SVF of the nonwoven media. The data
shown in Fig. 14 are averaged over all the basis weights
considered. This is because, as discussed in Sec. II, the SVF
of a nonwoven fabric is independent of its basis weight. This
is also confirmed experimentally in our preliminary experi-
ments (not shown). It is worth mentioning that a similar ar-
gument is valid even if the fabrics have been calendered. If
the calender’s settings are fixed, no matter what the basis
weight (thickness), the resulting fabrics will have, within
some statistical error, an identical SVFE. This is because in a
typical calender, a feedback control system, depending on

J. Appl. Phys. 102, 073533 (2007)
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FIG. 16. SVF profiles of the structures shown in Fig. 15. The local SVF is
always higher at the top and bottom layers. The higher the bending slope,
the greater is the difference between the fabrics’ SVF at the outer and inner
layers.

the thickness of the incoming fabric, adjusts the gap between
the two rolls in such a way that the given nip pressure is
achieved. Therefore, no matter what the thickness, all the
fabrics are compacted with the same compaction ratio and
will have an identical SVF.

C. Effects of fiber rigidity

To study the influence of fiber rigidity on the fabric’s
permeability, an uncompressed structure was considered and
compacted to a final thickness with six different fiber bend-
ing slopes (see Fig. 15). As mentioned before, small bending
slopes represent rigid fibers whereas large bending slopes
model soft and flexible fibers. We used an uncompressed
structure with a size of 30X 30 made of 50 fibers. This
sample had an initial thickness of 25 and an initial SVF of
6.67%. The sample was then compressed to a thickness of
10 units resulting in a SVF of 16.67% using six different
bending slopes of T;=1/3-1/8. Figure 16 shows the SVF
profile of these structures. It can be seen that the local SVF is
always higher at the upper and lower layers as explained
before (see Fig. 17). Note that the higher the bending slope
(the softer the fiber), the greater is the difference between the
SVF at the outer and inner layers. This means that the com-
pression process propagates deeper into the media when the

FIG. 17. (Color online) SEM image of the cross section of a fabric after
calendering.
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FIG. 18. SVF profile through the thickness of the medium (z). Compaction
is based on constant slope and constant span.

fibers are rigid. In other words, high fiber rigidity results in
achieving a more uniform SVF across the thickness of the
fabric. When the fibers are soft, the SVF increases locally at
the outer layers and the middle parts stay very porous. As
long as the initial web is the same, the SVF is independent of
the value of 7, and of whether 7 or 1/T} is kept constant.
However, the profile of the SVF along the thickness of the
web is different, as shown in Fig. 18.

IV. MODELING TRANSPORT PHENOMENA

Nonwoven materials have their greatest applications in
areas where their interaction with a fluid becomes important.
Air and liquid filters, wipes, barrier fabrics, protective cloth-
ing, heat and sound insulation materials are among the ap-
plications where nonwoven materials are highly demanded.
Modeling such properties requires realistic and detailed in-
formation of the medium. The simulation algorithm dis-
cussed in this paper can serve as a platform for future studies
in the above-mentioned areas.'>™"

V. CONCLUSIONS

In this paper, for the first time, an attempt has been made
to model a fiberweb and its structural changes during the
thermal calendering process. To simplify this highly complex
problem, several assumptions were made. Fibers were as-
sumed to have square cross sections and bend over each

J. Appl. Phys. 102, 073533 (2007)

other according to a simple set of geometrical rules. The
fiber lateral displacement during the compaction process, re-
quiring a series of force balance calculations over the fibers,
was ignored as the current algorithm is only designed to
model the geometry of a calendered fabric. The fiber orien-
tation is restricted to two directions. The current study is a
first step in developing more sophisticated algorithms. Nev-
ertheless, simulation results are in good agreement with our
experimental observations. Our results indicate that the cal-
endering has a very significant influence on the fabric’s SVF.
By calculating the SVF across the fabric’s thickness, we ob-
tained a U-shaped profile indicating that the compaction is
maximum at the outer layers and minimum in the middle. We
have also experimentally observed such a U-shaped SVF
profile. The geometries developed here can be used for
studying heat and fluid flow through calendered nonwoven
fabrics at different levels of compaction.
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