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Abstract—Today, there is widespread use of mobile applica-
tions that take advantage of a user’s location. Popular usages of
location information include geotagging on social media web-
sites, driver assistance and navigation, and querying nearby
locations of interest. However, the average user may not real-
ize the high energy costs of using location services (namely the
GPS) or may not make smart decisions regarding when to enable
or disable location services—for example, when indoors. As a
result, a mechanism that can make these decisions on the user’s
behalf can significantly improve a smartphone’s battery life. In
this paper, we present an energy consumption analysis of the
localization methods available on modern Android smartphones
and propose the addition of an indoor localization mechanism
that can be triggered depending on whether a user is detected
to be indoors or outdoors. Based on our energy analysis and
implementation of our proposed system, we provide experimen-
tal results—monitoring battery life over time—and show that
an indoor localization method triggered by indoor or outdoor
context can improve smartphone battery life and, potentially,
location accuracy.

Index Terms—Context-aware services, energy efficiency,
Internet of Things, mobile computing, operating systems, sensor
systems and applications.

I. INTRODUCTION

LOCATION-BASED applications on modern smartphones
have received widespread usage in today’s society—to

the point where it can even be said that many have become
reliant on these types of applications. Location information
is used to geotag posts on social media websites, to deliver
the local weather and news, to help users navigate to a desired
location, and to provide information on nearby restaurants and
stores. However, users often have to balance the convenience
and functionality of these location-based applications with a
smartphone’s battery life.

Modern smartphones typically offer two main forms
of determining a user’s location: 1) the GPS and 2) a
network-based method that uses features like Wi-Fi and the
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cellular radio. The tradeoff between these two comes down
to accuracy versus energy. Applications that require fine-
grained location information opt to use the power-hungry GPS,
while applications with more coarse requirements may use
the network-based provider, which is less accurate, but has
greater energy savings. The user is often given the ability to
toggle location services on or off and, with Android phones,
can also selectively enable or disable the previously mentioned
two methods to fine-tune their phone’s accuracy/energy trade-
off. However, in most cases, the average user will not pay
much attention to these options due to forgetfulness, not know-
ing such options are available, or a lack of knowledge on the
energy costs.

On the other hand, developers of location-based applica-
tions can reduce energy consumption by smartly choosing
between using the GPS or the network provider depend-
ing on application requirements or other context. However,
developers cannot always predict when to dynamically switch
between methods. In other cases, locations returned by
the network-based method will not be accurate enough for
proper functionality of some applications (e.g., navigational
applications)—in this case, the GPS will always be invoked
regardless of environment or context. As a result, this leads
to a waste of energy in situations where the GPS is unavail-
able or inaccurate, such as in indoor environments or “urban
canyons.”

It must also be considered that a user’s actions will affect
all installed location-based applications, while a developer’s
actions only occur on a per-app basis. Thus, a mechanism
that can make decisions regarding location services based on
context and also affect all installed location-based applications
will result in significant energy savings.

We provide an analysis of the two localization methods
available to modern smartphones and conjecture that the
addition of an indoor localization method as well as the abil-
ity to detect indoor or outdoor context can improve battery
life and increase location accuracy. To test this, we imple-
ment an indoor/outdoor detection service and a simple indoor
localization method into the location services framework of
the Android operating system. In our design, we implement
an indoor/outdoor detection system modified from another
author’s previous work and implement Wi-Fi RSS ranging
as the prototype indoor localization method. In practice, any
such indoor localization method can be used to infer the user’s
location and future work can focus on this aspect to further
increase location accuracy.

2327-4662 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Our contributions are as follows.
1) Provide an energy consumption analysis between

Android’s existing localization methods (GPS and
network-based) and our proposed solution.

2) Implement a previous indoor/outdoor detection system
as a full system service in the Android operating system.

3) Create a new location provider in the operating sys-
tem into which an indoor localization method can be
implemented to infer the user’s location in a quick and
energy-efficient manner.

4) Modify the FusedLocationProvider API to dynamically
switch between the GPS and an indoor-based location
provider depending on indoor/outdoor status.

This paper is organized as follows. Section II reviews
related work on context sensing, energy-efficient location
sensing, indoor localization, and Android operating system
modifications. Section III provides background information
on Android’s location framework. Section IV provides our
energy consumption analysis of Android’s existing localization
method as well as our proposed approach. Section V discusses
our modifications to the operating system. Section VI presents
our experimental results. Section VII discusses future research
directions and, finally, Section VIII provides the conclusion.

II. RELATED WORK

Our solution spans four main areas: 1) environmental con-
text; 2) energy-efficient location sensing; 3) indoor localiza-
tion; and 4) Android operating system modifications. Inferring
information about the user’s activity or the environment has a
variety of applications on smartphones—an example of which
is using contextual information as a trigger for energy-efficient
mechanisms. Improving energy efficiency of smartphones will
always be an ongoing research area. Additionally, the high
energy costs of utilizing location services make it an attractive
area for energy-efficient improvements. Research on mobile
devices can occur at the application level, as in creating
energy-efficient applications or prototypes, or by direct imple-
mentation into the Android operating system and lower levels,
such as the Linux kernel.

The ever-increasing number of hardware (and software)
sensors shipped in modern smartpones provide great poten-
tial to sense external context. In our solution, we adopt the
indoor/outdoor detection service proposed by Zhou et al. [1].
In their work, indoor/outdoor context is classified into
“indoor,” “semi-outdoor,” and “outdoor” and is determined by
using a combination of cell tower RSS, and the light, mag-
netometer, accelerometer, and proximity sensors. Additional
details are provided in Section III. They also provided a case
study on using their detection system as criteria for invoking
the GPS. In this paper, we first analyze the potential energy
savings by combining their service with an indoor localiza-
tion method. Our experimental solution expands on this idea
by implementing their service into the operating system itself
and using the indoor or outdoor status as a switch for indoor
localization.

Other past work on external context sensing includes
detecting user activity and/or environmental context. Using a

smartphone’s sensors to infer a user’s walking direction has
been explored in many previous works, most utilizing the
accelerometer or related inertial motion sensors. A recent
example is given by Roy et al. [2]. In addition to simply inter-
preting acceleration as walking, Roy et al. [2] also considered
other patterns of motion that occur during walking, such as
arm sway and bounce. Nath [3] presented ACE, a middleware
that aimed to infer a user’s activities and their environment.
ACE aimed to detect coarse-grained user activities includ-
ing jogging, driving, or being in the workplace. Another such
example was given by You et al. [4] with their CarSafe sys-
tem. CarSafe utilized both the front and back cameras of a
smartphone to monitor the user and road conditions during
a drive with the intent of detecting unsafe driving behaviors.
Finally, Bisio et al. [5] utilized the context-aware and activity
monitoring capabilities of smartphones to develop a remote
heart monitoring system.

Energy-efficient location sensing is a popular smartphone
research area. Zhang et al. [6] proposed SensTrack, a sys-
tem that used a smartphone’s sensors to determine when
location services actually need to be invoked (for exam-
ple, when the user changes direction). Their system also
dynamically switched to a network-based location provider
when GPS signals are not available and Wi-Fi is connected.
Kjærgaard et al. [7] presented their EnTracked system, which
also used a user’s movement to optimize invocations of the
GPS. A final example comes from Zhuang et al. [8], in which
a variety of different techniques were used to reduce the usage
of the GPS. These techniques included swapping the GPS for
the network-based method, bundling location requests together
in time, and considering the mobility state of the phone (for
example, moving or not moving).

Because of the widespread use of mobile devices and
location-based applications, indoor localization is becoming
a top research priority. Indoor localization research typically
focuses on using wireless technologies or computer vision and
image processing techniques to infer a user’s location. In fact,
some companies are already starting to commercialize indoor
localization technologies—such as IndoorAtlas [9] which uses
magnetic field sensors to create a fingerprint database of a
building. The use of magnetic fields for localization can also be
seen in [10] and [11]. Chintalapudi et al. [12] discussed a sim-
ilar method that focused on reporting Wi-Fi RSS values and
the occasional GPS fix to a server. These collected readings
are then returned by the server to localize users at a later time.
However, there are some potential issues with fingerprinting
approaches. Li et al. [13] discussed the location privacy issues
associated with Wi-Fi fingerprinting and proposed a privacy-
protection scheme for fingerprint-based localization. Another
issue with fingerprinting is that it typically requires an offline
“surveying” phase. As a result, indoor localization without the
fingerprinting or the required additional infrastructure is also
another possible area. Kumar et al. [14] proposed Ubicarse,
which aimed to let mobile devices act as large antenna arrays
in order to localize themselves indoors. They also implemented
computer vision technologies to geotag everyday objects.

The Android operating system is open-source and
freely modifiable, allowing researchers to implement their
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experiments directly into the OS. This allows for smartphone
research in the areas of security, performance, privacy, as
well as energy efficiency. The previously mentioned work by
Zhuang et al. [8] implemented their energy-efficient location
sensing solution as a modification of the Android framework.
Enck et al. [15] proposed TaintDroid, an Android OS mod-
ification to study, in realtime, the misuse of users’ private
information by third-party applications. Finally, Yan et al. [16]
presented a large-scale modification of the Android OS in
order to make it acceptable for applications with realtime
requirements.

Our presented solution focuses on an Android OS modifi-
cation that uses indoor and outdoor context as a switch for
energy-efficient indoor localization methods.

III. BACKGROUND

Before presenting our analysis of Android’s localization
methods and our experimental solution, we first describe the
unmodified location services framework within the Android
operating system. Then, we also discuss the indoor/outdoor
detection system from a previous work [1], which we adapt
into our solution. Our reasoning for selecting their detection
system is also given.

A. Android Location Services Framework

Traditionally, Android application developers could request
location information from the operating system by explicitly
specifying a location provider (typically either the GPS or
the network-based provider) and providing timing and dis-
tance requirements. For example, it is as if saying “I would
like to receive location information from the GPS, at a mini-
mum interval of 5 seconds and only if the change in distance
if greater than 50 meters.” Note: the timing and distance
requirements were only “suggestions” to the operating sys-
tem and may not be honored depending on other applications’
location requirements. Fig. 1 illustrates a simplified inter-
nal representation of this process. LocationManager instances
receive location requests from applications and forward them
to the associated LocationManagerService. The service man-
ages location information requests and handles communication
with the system’s location providers (GPS and network). The
native and kernel services are omitted for simplicity.

In addition to explicitly naming a location provider to use,
developers can use the more-recent FusedLocationProvider
API, provided as a part of Google Play Services, which is
a proprietary library to access Google-specific services (e.g.,
Google Maps, Drive, Wallet, etc.). Google Play Services is
installed on most Android devices and also now includes
the network-based location provider, as the network provider
determines a user’s location via a network request to Google’s
servers.

The FusedLocationProvder API works as follows: instead
of explicitly naming a location provider, applications sim-
ply deliver their accuracy, and power requirements to the
FusedLocationProvider, which then automatically returns the
most appropriate location information based on the underly-
ing location providers. Using this API helps to simplify and

Fig. 1. Simplified view of explicitly specifying a location provider.

Fig. 2. Simplified view of requesting the fused provider.

abstract the process for the developer as well as improves
location accuracy and energy consumption. Fig. 2 illustrates
the process of making a location request using the fused
provider.

B. Indoor/Outdoor Detection Service

The design of our solution includes the implementation of
the indoor/outdoor detection service proposed in [1] as a true
system service in the Android operating system. We chose
their system for a variety of reasons. Although there is a
large amount of research done in the field of indoor navi-
gation, most make the assumption that the user is in an indoor
environment when they begin navigating. There has not been
much research, especially not for smartphones, on the dynamic
detection of indoor versus outdoor environments. Additionally,
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TABLE I
POWER DRAW OF RELEVANT HARDWARE COMPONENTS

the detection service proposed in [1] also advertised their sys-
tem as a “generic service,” implying it was portable to other
formats (such as an operating system service). Finally, their
prototype system was developed for Android devices and uti-
lized sensors which are commonly available on most Android
phones. Therefore, to the best of our knowledge, it was the
best candidate system to utilize in our solution design.

In short, their system uses the following five hardware com-
ponents to determine if a smartphone is in one of three possible
states: 1) indoors; 2) semi-outdoors; or 3) outdoors.

1) Accelerometer—step-detection to trigger the
indoor/outdoor detection.

2) Cellular radio—variance of nearby cell towers’ RSS over
time.

3) Light sensor—measures environmental brightness;
detection based on time-of-day.

4) Magnetometer—measures fluctuations in the local mag-
netic field.

5) Proximity sensor—phone-in-pocket detection; used to
validate light sensor readings.

Depending on the user’s mobility, the collected data (as
well as the current status) is aggregated to update the
indoor/outdoor status. Their prototype system was developed
as an Android application, but the properties of their algorithm
allow it to be implemented as a true system service without
affecting the detection accuracy.

IV. ANALYSIS

In this section, we present an in-depth study of each of
Android’s localization methods and the indoor/outdoor detec-
tion service from [1]. Table I lists the current draw of each
relevant hardware component, obtained from the manufacturer-
supplied power_profile.xml file extracted from our prototype
device, an LG Nexus 5. The current draw for the final three
sensors are obtained via API calls through the sensor service.

Next, we analyze each of the localization methods and the
indoor/outdoor detection service to determine how often each
hardware component is used in order to calculate how long
the battery life will last under each. To determine the hard-
ware usage for each test, we use a combination of analyzing
available OS source code and monitoring the hardware usage

TABLE II
CALCULATED BATTERY LIFE UNDER EACH TEST

as reported to Android’s battery service (using the dump-
sys command). Information reported to the battery service
includes how long Wi-Fi scans last and when the GPS or
sensors turn on or off. In the case of the now-proprietary
NetworkLocationProvider, we rely more on monitoring the
battery service, but also analyze older source code available
online since its function has likely not changed significantly.

To evaluate the battery life for an indoor localization
method, we consider a Wi-Fi RSS ranging method which
collects RSS readings every 5 s (i.e., 12 times per minute).
For the location providers, we analyze their hardware usage
while requesting location information at the fastest setting
(i.e., a sensing interval suitable for a navigational application).
Table II displays the hardware component usage of each of
these tests in the breakdown column. In our monitoring of
the battery service, we found that the network provider, by
default, makes a Wi-Fi scan every 20 s (3 times per minute)
if one has not already occurred and, upon a new Wi-Fi scan
or a change in cellular state, also makes a network request to
update the location. In the case of the GPS and sensors, we
found that these components constantly draw current while in
use. We also include the estimated battery life for our proposed
solution, which combines the indoor/outdoor detection with an
indoor localization method. In regards to the breakdowns, if
a component is not always active, a multiplier is present to
indicate the number of seconds per minute (roughly) that the
given component is active.

To calculate the battery life values shown in the table, we
divide the battery capacity of our device (2300 mAh) by the
current drawn by each of the tests, based on their hardware
component breakdown. This yields the estimated number of
hours the battery will last. We estimate the average current
drawn per minute with the following equation:

∑n
i=1 ti ∗ pi

60
(1)

where i is a hardware component, t represents how many
seconds per minute the component is used for, and p represents
the current draw for that component. In addition, to consider
a more “normal” usage scenario, we factor in the follow-
ing hardware components into the battery life calculation and
assume they are always active: screen.full, wifi.on, radio.on,
and cpu.active (full brightness, active CPU usage, with both
the Wi-Fi and the cellular radio on, but idle). For example, the
“NetworkLocationProvider” test involves the following hard-
ware components: {wifi.scan, wifi.active, screen.full, wifi.on,
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TABLE III
CALCULATED BATTERY LIFE OVER TIME SPENT INDOORS

radio.on, cpu.active} with the following respective current
draws p {75.48, 73.24, 221.90, 3.5, 2.15, 57.9} and usage
times t {3, 3, 60, 60, 60, 60}. The result of applying (1)
yields an average current draw of 292.886 mA and dividing
our battery capacity by this yields our 7.853 estimated hours
of battery life.

Due to this type of analysis, our estimations reflect the upper
bound of the energy consumption for each test. These calcu-
lations do not take into consideration idle versus active CPU
time. However, in practice, the NetworkLocationProvider and
the Wi-Fi ranging will have more idle CPU time in-between
Wi-Fi scans. We also assume, for simplicity, that Wi-Fi scans
or network requests take 1 s—in reality, they are much shorter.
For Wi-Fi RSS ranging, we consider a scanning interval of
5 s to collect RSS values, but this number can be adjusted
for an accuracy/energy tradeoff; future work can, of course,
choose more accurate or energy-efficient localization meth-
ods. Finally, we expect the indoor/outdoor detection to use
relatively more computation time (i.e., active CPU time) from
constantly analyzing sensor data—thus, its placement in the
table below Wi-Fi RSS ranging. In other words, we expect
the indoor/outdoor detection to perform worse and the Wi-Fi
RSS ranging to perform better, in reality.

As mentioned, also listed in Table II is our proposed location
provider: indoor localization (in this case, Wi-Fi RSS ranging)
triggered by indoor/outoor context. Because of the hardware
involved, we expect its energy consumption to be bounded
more by the indoor/outdoor detection, rather than by the RSS
ranging. Currently, Android does not consider indoor/outdoor
context when sensing location. Table III illustrates the energy
savings of the GPS versus our proposed method depending on
the amount of time a user is indoors in an hour. To calculate the
battery life in this case, the average current draw per minute
is calculated as follows:

m ∗ pp + (1 − m) ∗ pg

60
(2)

where m represents the minutes spent indoors and p repre-
sents the average current draw [from our proposed method
(pp) and the GPS (pg)]. As previously, the battery capacity is
divided by the yielded number to get the estimated battery life
in hours.

Following from this table, we predict the amount of time
it will take the battery to reduce by 1% under our proposed
method to range from 3.668 to 4.330 min (so, a 10% drop in
battery life after 36–43 min) depending on how long the user
spends indoors.

Another consideration is the indoor/outdoor detection accu-
racy, as we propose this to be the trigger for energy-efficient

TABLE IV
CALCULATED BATTERY LIFE—PROPOSED APPROACH (e = 0.25)

indoor location providers. Because of the design of the
indoor/outdoor detection service in [1], if the system fails to
detect the “transition” between an indoor and outdoor envi-
ronment, it may not be able to correct itself for some time.
For our analysis, we will assume that the system will not
correct itself in-between indoor/outdoor transitions. Thus, the
previous equation can be modified to account for the percent
error, e

ti ∗ [
(1 − e) ∗ pp + e ∗ pg

] + to ∗ [
(1 − e) ∗ pg + e ∗ pp

]

60
(3)

where t represents the time spent indoors (ti) or outdoors (to),
e represents the percent error, and p represents the aver-
age draw for our proposed method (pp) and the GPS (pg).
As an example, Table IV displays the hours of battery life
when indoor/outdoor detection has an error rate of 25%. The
“without error” column comes from the previous table.

Although it seems that the battery life would improve
in cases with less time spent indoors, incorrectly sensing
the indoor/outdoor context would lead to inaccurate location
information. The challenge here is to effectively determine
indoor/outdoor context without sacrificing energy efficiency by
using too many hardware components or computational power.

If the indoor/outdoor detection is fairly accurate, the hours
of battery life will approach the values presented in Table III.
Under this situation, the average user can expect our method
to increase battery life by up to an hour or more across the
course of the day. In addition to these energy savings, the
location accuracy indoors can be greatly improved depending
on the implemented indoor localization method.

V. DESIGN

This section describes our development environment and
our modifications to the Android operating system for our
experiment. Our experiment involves the implementation of
an indoor/outdoor detection service, a new indoor-based loca-
tion provider, and a modification of the FusedLocationProvider
API to take the new provider into consideration.

A. Development Environment

We develop our experimental solution by integrating it into
the Android Open Source Project (AOSP)—Android version
4.4.2 (KitKat). Although we also would like to directly modify
the FusedLocationProvider API, Google Play Services is pro-
prietary and thus, its source code is unavailable. As a result, we
settle for modifying the open-source FusedLocation package
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bundled with the AOSP—which may be older, but pro-
vides the same functionality: allowing applications to specify
accuracy and power requirements, then selects the most appro-
priate location information based on the underlying location
providers.

Our solution is tested on the LG Nexus 5 smartphone,
which features a 2.3 GHz quad-core processor, 2 GB of RAM,
a 2300 mAh battery, and all the sensors required by the
indoor/outdoor detection. The device is on a cellular plan with-
out data, but network requests can still be made over Wi-Fi.

B. Operating System Modifications

The main feature of our experiment is the implementation
of an indoor localization method into the OS to sense indoor
locations in an energy-efficient way. Pairing such a local-
ization method with indoor/outdoor detection ideally should
improve a device’s energy efficiency and accuracy, as shown
in Section IV.

First, we adapt the solution from [1] as a system service in
the Android operating system using source code supplied by
the authors. Our implementation utilizes a “manager” class to
serve as intermediary between applications (clients) and the
actual service. We also follow the Observer pattern, whereby
multiple clients can receive updates when indoor/outdoor con-
text changes. As a result, our design for the service mirrors the
structure of standard Android system services and also would
provide application developers with a familiar way to access
indoor/outdoor context.

Next, we have opted to create a new location provider,
called the InferredLocationProvider, as the platform into which
any smartphone-compatible indoor localization method can
be implemented (to infer the user’s location while indoors).
As mentioned, we chose to implement a simple localiza-
tion method based on Wi-Fi RSS ranging. Using the Android
APIs, RSS to all in-range APs can be obtained via a Wi-Fi
scan, which occurs automatically a few times per minute and
can also be manually requested. The implementation of the
InferredLocationProvider also follows a similar structure as
the other location providers, GPS and network. This involves
modifications to the location services framework (Section III)
to allow our new provider to be accessed via the
same APIs.

Because of the type of indoor localization method we chose
to implement, we assume the absolute locations of the APs
can be known a priori or can be looked up via an online
database. Using the APs’ locations and relative distances to
the smartphone determined via RSS, we use ranging to deter-
mine the smartphone’s location. Although RSS-based ranging
has been proven to be inaccurate, we are merely using it
to evaluate the potential energy saved by using an indoor
localization method while the smartphone is detected to be
indoors. Our modifications to the operating system are shown
in Fig. 3.

Our implementation of the InferredLocationProvider allows
application developers to explicitly request location from it in
the same fashion as the other providers. However, Android
also provides the FusedLocationProvider API to streamline

Fig. 3. Simplified view of our modifications to the location framework.

the process, as mentioned in Section III. Thus, we also
present a modification of the API as included in the AOSP.
In our modifications, when the FusedLocationProvider pre-
pares to invoke the GpsLocationProvider according to an app’s
requirements, it also registers to receive contextual updates
from the indoor/outdoor detection service. If the smartphone
is detected to be indoors, the FusedLocationProvider will
switch any current location requests from the GPS to the
InferredLocationProvider and will swap back if the context
changes to outdoors. Because of this design, all applications
that rely on the FusedLocationProvider API will correspond-
ingly be affected, which is desired.

In regards to performance, the indoor/outdoor detection ser-
vice is instantiated upon system boot, but performs no work
unless invoked by the FusedLocationProvider as mentioned
previously (or unless it is explicitly invoked by a developer).
Following our analysis from Section IV, both the detection ser-
vice and the InferredLocationProvider should cause a smaller
performance hit than invoking the GPS.

In short, our modifications serve as a mechanism for choos-
ing between location providers, on behalf of the user, based
on indoor or outdoor context. Because Google advises that
application developers use the FusedLocationProvider API
to improve location accuracy and reduce energy consump-
tion, our system can target a large subset of location-based
applications running on a user’s phone.

We expect our solution to greatly reduce energy con-
sumption. However, the accuracy (and part of the energy
consumption) depends on the implemented indoor localization
method. As we have chosen a relatively simple localization
method, we expect that better methods can be implemented to
improve indoor location accuracy.
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VI. EVALUATION

Our evaluation is divided into three sections: 1) evaluation
setup; 2) experimental results; and finally 3) our discussion of
the results.

A. Evaluation Setup

To test our analysis from Section IV, we choose to exper-
imentally evaluate our solution by monitoring the battery
percent change over time and calculating the average time
to decrease by 1%. Then, we compare our solution with
the average battery drain over time for the stock localiza-
tion methods (GPS and network-based) and also our stan-
dalone implementation of the indoor/outdoor detection service.
A further discussion of the accuracy and energy usage of the
indoor/outdoor detection system can be found in [1].

In order to correctly test the battery drain and match
the same settings as our analysis in Section IV, there is a
need to keep all noninvolved factors constant—these include
screen brightness, CPU, and networking activity. In conduct-
ing our experiments, we hold the screen brightness constant
and with networking active and connected (for the network-
based provider). All auto-update features and data sync are
disabled and, with a fresh installation of the AOSP, not many
applications are installed in the first place. To keep the CPU
energy draw constant, we fix the frequency to its lowest sup-
ported speed and disable the system suspend—details on this
process can be found in [17].

To run the experiment, the smartphone is charged to 100%
battery life and then the time taken to decrease by 1% is
recorded and averaged. We let the battery drain from 100%
to 90% in each test. The localization methods are set to
return location fixes as fast as possible. Additionally, the
InferredLocationProvider is set to perform a Wi-Fi scan every
5 s if one has not already been performed by another appli-
cation or the operating system—again, matching our analysis
settings for Wi-Fi RSS ranging.

Finally, we test our modifications to the
FusedLocationProvider (i.e., combined indoor localization
with indoor/outdoor detection) while completely remaining
indoor to ensure: 1) the accuracy of the indoor/outdoor detec-
tion is not a factor (i.e., only the initial indoor environment
needs to be detected) and 2) to represent a user being indoor
for 60 min, whereas the GPS test will represent a user being
inside for 0 min (refer back to Table III for our predicted
battery life depending on how much time is spent indoors).
Our testing application is shown in Fig. 4.

In order to utilize, in an app, our created location provider
and indoor/outdoor service, we exposed APIs to these services
and compiled an updated Android SDK.

B. Experimental Results

The results of our experiment are shown in Table V.
The “baseline” test shows the battery drain when no
localization method is being executed (i.e., screen at
constant brightness and networking enabled and con-
nected). The “InferredLocationProvider” test displays the
results of the standalone Wi-Fi RSS ranging, while the

Fig. 4. Testing application.

TABLE V
EXPERIMENTAL RESULTS

FusedLocationProvider displays the overall battery drain of
our modifications—the combined Wi-Fi RSS ranging and the
indoor/outdoor detection. We also include the battery drain of
the standalone indoor/outdoor detection.

1) Comparison to Analysis: The results in Table V are
sorted in descending order of battery efficiency. Recall, in
Section IV, we ranked these same methods in Table II
by estimated battery life. In Table II, the “Wi-Fi RSS
Ranging” test corresponds to the InferredLocationProvider
test in Table V and “Proposed Method” corresponds to
“FusedLocationProvider.” We noted in Section IV that, in real-
ity, we expect the indoor/outdoor detection to perform worse
than predicted, due to computational complexity and thus
higher CPU utilization.

In our theoretical analysis, we made the note that idle
versus active CPU time was not considered due to the
dynamics involved (CPU usage is dependent on the actual
implementation). However, in performing the actual exper-
iment, we can see the effects of CPU utilization on the
battery life. Of note, both the InferredLocationProvider and
the NetworkLocationProvider perform very similarly—this
is due to both methods using mainly Wi-Fi and no other
extra hardware components. As mentioned in Section IV, we
assumed each Wi-Fi scan or network request to take one
second, when in reality it may be half a second or less,
which accordingly reduces energy consumption (by allow-
ing for more idle CPU time). Because of this, the energy
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efficiency of the FusedLocationProvider becomes bounded
by that of the indoor/outdoor detection, which uses multiple
sensors and relatively higher computational time as shown
by its lower energy efficiency result. Finally, as expected,
the GpsLocationProvider performs the worst. Going by these
results, the InferredLocationProvider saves an extra hour of
battery life, while the modified FusedLocationProvider saves
about 35 min.

As mentioned, the indoor/outdoor detection performs worse
in reality due to the constant energy draw from the sensors as
well as higher computational time (or, alternatively, less idle
CPU time). Taking this into consideration, although the battery
lasted longer than we predicted in all cases, the experimen-
tal results match the relative order of energy consumption as
shown in Table II.

It should be repeated that these tests were done indoors. In
reality, a user will move between indoor and outdoor envi-
ronments. Thus, the hours of battery can be expected to lie
somewhere between the GpsLocationProvider’s result (8.65 h)
and the FusedLocationProvider (9.23 h) (similar to the behav-
ior shown in Section IV in Tables III and IV). Realistically,
the factors that affect the battery life are far more dynamic
in normal operation, but the relative differences will still
persist.

2) Indoor/Outdoor Detection: If the energy efficiency
of the indoor/outdoor detection can be improved, it
would also improve the energy efficiency of our mod-
ified FusedLocationProvider. In our tests, we found the
indoor/outdoor detection accuracy to be about 80%, however
we are using a different device and are in a different environ-
ment than what was tested in [1] (thus, additional tweaking
of the detection process was required). We also attempted to
improve the accuracy of the indoor/outdoor detection by con-
sidering Wi-Fi-based metrics (such as Wi-Fi RSS variance
and the number of in-range access points over time), how-
ever, these were not feasible due to the dense deployment of
wireless access points in populated areas.

3) Location Accuracy and Performance: Although the pri-
mary purpose of this paper concerned energy efficiency, there
are some notes to be made about location accuracy and per-
formance. Wi-Fi RSS ranging is not a new concept and RSS
is often disputed for its accuracy in regards to localization.
We found this to be true in our case as well, with the loca-
tion accuracy often being off by a few meters. Generally, in
indoor locations, such inaccuracies can be overlooked if the
localization is quick. Additionally, we chose RSS ranging for
its simple implementation in order to prove the point that
indoor localization methods triggered by indoor/outdoor con-
text could lead to battery savings. With this fact shown, we
leave improvements to indoor localization to future work as
location accuracy was not intended to be the key focus of this
paper.

In regards to performance, performance is naturally propor-
tional to battery consumption. For example, lower performance
implies greater CPU utilization which, in turn, lowers energy
efficiency. As a result, Table V also reflects relative perfor-
mance. In this case, it can be said that all of our modifications
perform better than the GpsLocationProvider. Generally, the

GPS is criticized for its energy consumption, not for its perfor-
mance hit, leading us to conclude that our modifications would
not affect usability of a device hosting our modifications to the
operating system.

VII. FUTURE WORK

Future work can focus on improving a few areas. First, the
accuracy and energy efficiency of the indoor/outdoor detec-
tion can be improved. In this case, the detection restricts the
energy efficiency of our modified FusedLocaitonProvider. The
detection accuracy also has an large effect on the energy con-
sumption under practical use, as we had stated in Section IV.
As mentioned, we had attempted to improve the detection
accuracy using Wi-Fi-based metrics and future work can refine
these techniques or explore new options that present them-
selves as new sensors are integrated into smartphones. Finally,
localization accuracy can be improved by exploring additional
smartphone-compatible indoor localization techniques which
can be implemented similarly to our Wi-Fi RSS ranging.

An interesting direction could also focus on location pri-
vacy. In our solution design, we change applications’ location
requests between the GPS and our InferredLocationProvider.
This implies that it is also possible to control how location
information is ultimately delivered to user applications. Thus,
location privacy is also a possible thrust.

VIII. CONCLUSION

In this paper, we presented an analysis of the energy con-
sumed by Android’s localization methods and proposed a
modification to the Android operating system to consider
indoor/outdoor context and make smarter decisions on which
localization method to use on behalf of the user or application
developer. In particular, we modify the FusedLocationProvider
API to switch between the GPS and an indoor localiza-
tion method depending whether or not the phone is detected
to be indoors. Our results have shown that the combined
indoor/outdoor detection and an indoor localization method
will drain less energy than the GPS and can also be more accu-
rate in indoor environments. Future work can look into more
energy efficient ways to determine indoor/outdoor context and
implementing more accurate indoor localization methods on
the smartphone platform.
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