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Abstract

Genome-wide association studies have found thousands of common genetic variants associated with a wide variety of
diseases and other complex traits. However, a large portion of the predicted genetic contribution to many traits remains
unknown. One plausible explanation is that some of the missing variation is due to the effects of rare variants. Nonetheless,
the statistical analysis of rare variants is challenging. A commonly used method is to contrast, within the same region (gene),
the frequency of minor alleles at rare variants between cases and controls. However, this strategy is most useful under the
assumption that the tested variants have similar effects. We previously proposed a method that can accommodate
heterogeneous effects in the analysis of quantitative traits. Here we extend this method to include binary traits that can
accommodate covariates. We use simulations for a variety of causal and covariate impact scenarios to compare the
performance of the proposed method to standard logistic regression, C-alpha, SKAT, and EREC. We found that i) logistic
regression methods perform well when the heterogeneity of the effects is not extreme and ii) SKAT and EREC have good
performance under all tested scenarios but they can be computationally intensive. Consequently, it would be more
computationally desirable to use a two-step strategy by (i) selecting promising genes by faster methods and ii) analyzing
selected genes using SKAT/EREC. To select promising genes one can use (1) regression methods when effect heterogeneity
is assumed to be low and the covariates explain a non-negligible part of trait variability, (2) C-alpha when heterogeneity is
assumed to be large and covariates explain a small fraction of trait’s variability and (3) the proposed trend and
heterogeneity test when the heterogeneity is assumed to be non-trivial and the covariates explain a large fraction of trait
variability.
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Introduction

Genome-wide association studies (GWAS) have found many

genetic variants associated with a wide range of traits [1–4]. There

is evidence that for most traits, common variants identified in

GWAS collectively explain a smaller fraction of phenotypic

variability than expected [2,5,6]. Consequently, a considerable

portion of the genetic contribution to phenotypic variability

remains unknown [7]. One possible explanation is that rare

genetic variation, which is poorly assayed or tagged by current

GWAS platforms, may account for much of that missing variation

[8]. There are a growing number of examples of rare variants

having large effects on complex traits [9–11].

Advances in short-read sequencing technology have made the

investigation of low frequency variants increasingly cost-effective.

In turn, the availability of large-scale sequencing studies are

spurring the development of statistical methodology for their

analysis. The first wave of methods applied to the analysis of rare

variation collapsed the genotypes for all rare variants (RVs) from

a defined genetic unit, e.g. a gene, into a single carriage status

variable. Subsequently, the frequency of RV carriers was

contrasted between cases and controls (or extreme tails of

a quantitative trait distribution) [12]. The collapsing method can

also be performed in a regression setting by treating the binary

trait as a dependent variable and regress it on carriage status or on

carriage status and covariates [13]. While these methods can

accommodate covariates, due to collapsing they lose power when

RV effects are heterogeneous. This is a concern since, we know

that the effects of RVs in many genes can be heterogeneous, e.g.

PCSK9 [14,15] and CASR [16].

The possibility of effect heterogeneity led researchers to

develop methods that can accommodate such a scenario. We

previously developed methods for quantitative traits which allow

for the heterogeneity of RV effects [17]. To accommodate the

fact that RVs in the same gene can result in increased or

decreased phenotypic values, our method tests if RV carriers

have increased square deviations of phenotype from its mean.

One of the first methods to test for association between binary

traits and RVs in the presence of both risk and protective

variants was the weighted sum approach of Ionita-Laza et al.

[18]. A somewhat similar approach is the C-alpha test that,

similar to the above weighted sum approach, accommodates

heterogeneity but does not accommodate covariates [19]. C-

alpha is a test of extra-binomial variance in the proportion of
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cases within each variant. Subsequently, kernel based adaptive

clustering (KBAC) was proposed to accommodate both hetero-

geneity and covariates [20]. A similarity regression approach was

proposed to jointly analyze common and rare variants in the

presence of heterogeneous effects [21]. Lately, there were also

proposals for methods which can test a wide range of statistical

models in the presence of covariates and effect heterogeneity.

Due to the wide range of models, these methods generalize many

previous approaches. One of the first of these general methods

was the Sequence Kernel Association Test (SKAT) [22]. SKAT

uses a kernel regression machine to model the genotype

phenotype association. A related general approach is the

Estimated REgression Coefficients (EREC) method [23]. EREC

uses a general linear model framework to generalize most RV

tests.

We extend the methods we previously developed for quantita-

tive traits to the analysis of binary traits in the presence of

covariates. The performance of the proposed and competing

methods is evaluated by a simulation design with varying

heterogeneity levels and covariate influence. Based on the results

Table 1. Simulation design parameters.

Parameter Name Parameter Design levels

Sample size n 1000 cases and 1000 controls

Prevalence K 0.1

Fraction of trait’s variability explained by covariate (%) Rsq [14]

True damage class Dt [30]

Effect size (SDs) d 0 to 1 in steps of 0.05

Heterogeneity parameter f {0.5, 0.8, 1}

Percentiles coding sequence lengths (coding base pairs) CDS {10, 50, 90} ({361,1209, 4057})

Number simulations at each design level m 250 for the empirical power (d.0) 25,000 for the size of the test (d= 0)

doi:10.1371/journal.pone.0042530.t001

Figure 1. Relative size of the test* for 1000 cases and 1000 controls at a type I error of 1023. The size of the test estimated empirically
from 25,000 simulations. Black, turquoise and red circles correspond to gene CDS equal to 10, 50, and 90 percentiles of the human gene CDS
distribution, respectively. Methods: RCS – (logistic) regression on carriage status, RCS-C – (logistic) regression on carriage status and covariates, CA –
C-alpha test, CA-P – C-alpha test with permutations, TH – test of trend and heterogeneity, SK – SKAT, SK-R – SKAT with (parametric bootstrap)
resampling, ER – EREC. *The ratio of the size of the test to the nominal type I error rate.
doi:10.1371/journal.pone.0042530.g001
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we make recommendations on how to choose the most desirable

method (or combination of methods) based on the influence of

covariates and the potential level of heterogeneity of RV effects.

Methods

We previously developed a trend and heterogeneity (TH) test

for quantitative traits which accommodates heterogeneity [17].

Such a test was developed because in practice the true causal

model realistically lies somewhere between homogeneity and

complete heterogeneity (the effect of the variant is equally likely to

be positive or negative). To develop a powerful test for such

circumstances, we start from the second moment equality:

E(Z2)~m2zs2, where m is the mean and s2 is the variance of

random variable Z. Therefore, the square of quantitative trait, Z,

naturally incorporates information about both the trend (i.e. the

mean), and the heterogeneity (i.e. the variance). Thus, assuming

Zi, i=1,…m, are the quantitative phenotypes of RV carriers, we

proposed the trend and heterogeneity statistic: TH~
Pm
i~1

Z2
i . The

statistical significance of TH is computed very fast empirically by

resampling Zi of the m RV carriers from the larger set of

quantitative values for the entire sample.

TH can be adapted to binary traits in a straightforward manner

by: (1) using a logistic regression of the binary trait on the

covariates to obtain Pearson’s residuals and (2) treating Pearson’s

residuals as a quantitative trait in a TH test (see [24] for a similar

treatment). However, by not analyzing covariates and carriage

status simultaneously, the straightforward TH adaption does not

fully use the information available.

To assess the performance of the proposed method we compare

its performance to the performance of several alternatives. In this

study we include simple regression, C-alpha (CA), SKAT and

EREC methods. The regression methods use a logistic regression

of the binary trait on carriage status (RCS) or on carriage status

and covariates (RCS-C). For CA (our implementation based on

code from Dr. Kathryn Roeder), we present the size of the test

based on i) asymptotic p-values (CA) and ii) permutation p-values

(CA-P). SKAT (version 0.72) performance was assessed at the

default settings (i.e. linear kernel, etc.) using i) asymptotic p-values

(SK) and ii) p-values derived from parametric bootstrap resam-

pling (SK-R). EREC (SCORE-Seq version 2.0) performance was

assessed at the default settings with the exception of the minimum

allele count. Because many variants had only a few minor alleles

and we wanted to include all variants in our analyses, we set

EREC’s minor allele count parameter to zero. EREC statistical

significance is assessed adaptively from up to one million

Figure 2. Empirical power at a type I error of 1023 for Scenario 1 under homogeneity (j=1). The power estimated from 250 simulations.
The covariate is assumed to be explaining a fraction (Rsq) equal to 0, 10 or 20% of the variability in binary trait. Power is presented for 10% (black),
50% (turquoise) and 90% (red) percentiles of CDS length. See Fig. 1 for background and abbreviation.
doi:10.1371/journal.pone.0042530.g002
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permutations. While KBAC should be able to accommodate

heterogeneity and covariates, the software implementing the

method was not available at the time we carried out our initial

simulations. Consequently, we did not include KBAC in this study.

We use a simulation design (Table 1) to compare the

performance of the above mentioned methods when they are

used for a gene level analysis of non-synonymous RVs. We assume

a sample of 1000 cases and 1000 controls for a binary trait with

a prevalence K=10%. A potentially relevant covariate was

assumed to explain a fraction (Rsq) equal to 0%, 15%, or 30%

of binary trait variability. We simulate data sets by (1) assuming

that the probability of carrying an RV is 1% per 500 bp of coding

sequence (i.e. the larger genes contain more RVs) [17,25] (2)

simulating a latent and normally distributed variable based on the

RVs in each subject (see [17]), (3) using the latent variable in

a threshold model to generate a binary trait with prevalence K and

(4) sampling the required number of cases and controls.

Similar to our previous work [17], we define RVs as having

a minor allele frequency less than 0.5%. Since the expected

number of rare alleles per subject depends on the length of the

coding sequence (CDS), in each simulation we generate variant

sites (SNPs) having their frequencies independently drawn from

a Wright’s distribution [18,26] until their cumulative minor allele

frequency is closest to the expected probability of carrying a rare

allele in the gene under investigation (i.e. 1% for each 500 CDS

bps [17]). For Wright’s distribution,

f pð Þ~kpbs{1 1{pð Þbn{1
es 1{pð Þ (where p is the mutation allele

frequency), ln bsð Þ is assumed to be uniform between ln(0:1) and
ln(3), ln(bn) uniform between ln 0:001ð Þ and ln 0:01ð Þ and s is

assumed to be 0 with probability 0.5 and distributed as a uniform

between 0 and 20 with probability 0.5 [26]. Large scale

sequencing studies show that the Wright formula with our choice

of parameters underestimates the occurrence of very rare variants

in human populations [27]. However, there is not a substantial

difference in frequencies of rarer variants between our simulations

and applied sequencing studies. Consequently, the conclusions

derived from our simulation design are likely to be very similar to

those derived from a design based on real sequencing data.

Let Dt be the (true) deleteriousness class of RVs, i.e. the

deleterious class of the RV a subject carries in a gene and zero

otherwise. (For the unlikely case of multiple RVs in the same gene

and subject, we retain only the most deleterious variant.) Dt is

assumed to be a numerical variable with integer levels of 0 (for

subjects not possessing RVs) to 3 (very deleterious). For each

variant, Dt is sampled from 0 to 3, with the probability vector

(0.26,0.16,0.36,0.22), as estimated from population genetics studies

[28] (see Table 4 of Boyko et al. [28] or Table S1 in

Supplementary Material). To facilitate the investigation of various

heterogeneity models, each variant was also assigned a sign,

U[f{1,z1g, for its effect on trait, i.e. each variant was simulated

Figure 3. Empirical power at a type I error of 1023 for Scenario 1 under heterogeneity (j=0.5). See Fig. 1 and 2 for background and
abbreviation.
doi:10.1371/journal.pone.0042530.g003
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to be either risk increasing (+1) with probability f[½1
2
,1� or risk

decreasing (21) with probability 1{f. f~1 corresponds to

homogeneity, f~ 1
2
corresponds to complete heterogeneity and

intermediate values of f correspond to varying levels of partial

heterogeneity. We note that bothDt and Uare variant specific, i.e.

they have the same value for all carriers of the variant. Let G be

the variable denoting RV carriage status, i.e. the indicator of the

deleterious class being nonzero 2 I[Dt.0]. With these assump-

tions we model the latent trait, Z, as follows:

Z~Uf(Dt)dza � Cze

where

U~
1 with probability f

{1 with probability 1{f

�

is the sign of the effect for the rare variant, f[½1
2
,1� is the

heterogeneity parameter controlling the relative frequency of

mutations increasing the trait levels, f(Dt)~Dt for linear

(Scenario 1) model in which the true damage class reflects effect

size and f(Dt)~G for homogeneity of the effect magnitude model

(Scenario 2). d is the difference in phenotype means between two

adjacent levels of the explanatory variable (in standard deviations).

The parameter a is the coefficient of the covariate, C, which

explains Rsq of the binary trait heritability. The error term, e, is
assumed to be normally distributed. A subject with a latent

variable, Z, is assigned to be a i) case if Z is above the threshold

defined by the 12K percentile (i.e. 90% for our choice of

prevalence) of the latent trait distribution and ii) control if Z is

below this threshold.

For every gene level analysis, the number of rare variants, and

therefore power, depends on the length of CDS. Consequently, the

power and size of the test for each method was estimating

assuming CDS are equal to the {10, 50, 90} percentile (i.e.

{361,1209, 4057} coding base pairs) of the CDS for human genes

as estimated [17] from RefSeq [29].

Results

Under the null hypothesis of no association between trait and

RVs, all methods with the exception of asymptotic distribution

CA control the type I error (Fig. 1). Methods that control the

type I error show a slight tendency to be more conservative at

short gene lengths, likely due to the discreteness of the

distribution. Thus, for a fair comparison between methods, we

estimate the power of CA, TH, SKAT and EREC under the

alternative hypothesis by using permutation (resampling for

SKAT) tests. Because they need to recompute the statistics for

Figure 4. Empirical power at a type I error of 10 for Scenario 1 under partial heterogeneity (j=0.8). See Fig. 1 and 2 for background and
abbreviation.
doi:10.1371/journal.pone.0042530.g004
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each permutation, the running time for permutation based

SKAT and EREC inference was almost two orders of

magnitude larger than the running time of TH and CA-P.

The power was assessed under three heterogeneity settings:

homogeneity (j=1, Fig. 2), heterogeneity (j=0.5, Fig. 3) and

partial heterogeneity (j=0.8, Fig. 4). The qualitative features of

power under the two scenarios (linear and magnitude homogene-

ity) are quite similar, which suggests that collapsing in a regression

framework is actually relatively robust to heterogeneity in the

magnitude of effects. Due to this similarity, we present only the

power under the scenario of effect linearity. Because RCS-C has

equal power to RCS when the covariate explains 0% (i.e.

Rsq= 0%) of the trait and it is greater than RCS when Rsq is

15% or greater, we omit RSC from the presentation of power

estimates.

As expected, RCS-C has the greatest power under homoge-

neity (j=1), except probably at the shorter gene lengths where

SK and ER perform better. The different behavior of RCS-C

at the shorter gene lengths is due its greater conservativeness at

these lengths. While the advantage of RCS-C over CA-P grows

with the increase in the proportion of the trait variance

explained by the covariate, its advantage over TH, SK and ER

decreases with the increase in the proportion of the trait

variance explained by the covariate.As expected, the power of

TH is close to zero when Rsq= 0%. This low power is the

direct result of the almost identical residuals obtained from

regressing the binary trait on an uncorrelated covariate. The

power of RCS-C, SK and ER increases with an increase in

Rsq. This is a result of the decreased mean square error of the

genetic coefficients induced by the increased fraction explained

by the biologically relevant covariate.

Under heterogeneity (j=0.5), CA-P performs best when

Rsq= 0%, i.e. when the covariate does not explain any fraction

of the variability in the binary trait. However, SK and ER

performs almost as well at Rsq= 0% and performs best for other

values of Rsq. At higher Rsq, TH performs better than CA-P and

almost as well as SK and ER. SK and ER have a very similar

performances with ER having, perhaps, a slight advantage at the

lower Rsq and SK at the larger Rsq. Under partial heterogeneity

(j=0.8), the relative performance of the methods is similar to the

one under heterogeneity. The only difference is that RCS-C and

TH performs improves somewhat relative to heterogeneity.

Discussion

Our findings have several implications for the choice of method

used to detect association between RVs and binary traits. First,

simple logistic regression has good performance when the

heterogeneity is not extreme. Second, SKAT and EREC methods

using permutations produce similar results and have good

performance under all scenarios we tested. However, with

permutations, the two methods are very computer intensive. If

the computational requirements for SK and ER are problematic,

the other three methods we tested (RCS-C, CA and TH) might be

useful for selecting ‘‘suggestive’’ genes to be further analyzed using

the permutation-based versions of SKAT and EREC. (SKAT with

asymptotic assumptions can also be used for selecting suggestive

signals, even though, in our experience, it can sometimes become

quite conservative - especially for binary traits at lower type I

errors and lower sample sizes.) The simple regression (RCS-C)

might be useful to select such genes, especially when one does not

expect a substantial heterogeneity of RV effects. C-alpha (CA)

without permutations (for increased speed) can be used to select

promising genes when the relevant covariates explain only a small

fraction of the trait variability. The trend and heterogeneity test

could be useful for selecting suggestive regions when the

heterogeneity of RV effects is expected to be high and the

relevant covariates are known to explain a large fraction of the

binary trait variability.

Supporting Information

Table S1 The conditional distribution of true deleteri-
ous classes (Dt ) given PolyPhen predicted classes (Dp)
in italics and their marginal distributions (last column
and row) in bold. s is the fitness effect.

(DOC)
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