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There is significant current interest in spintronic devices fashioned after a spin analog of the
electro-optic modulator proposed by Datta and Das[Appl. Phys. Lett. 56, 665 (1990)]. In their
modulator, the “modulation” of the spin-polarized current is carried out by tuning the Rashba
spin-orbit interaction with a gate voltage. Here, we propose an analogous modulator where the
modulation is carried out by tuning the Dresselhaus spin-orbit interaction instead, using a split gate.
Additionally, the magnetization of the source and drain contacts in our device istransverseto the
channel, whereas in the Datta-Das device, it isalong the channel. Therefore, in the present
modulator, there is no magnetic field in the channel unlike in the case of the Datta-Das modulator.
This can considerably enhance modulator performance. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1790038]

In 1990, Datta and Das proposed a spintronic analog of
the electro-optic modulator.1 It consists of a quasi-one-
dimensional semiconductor channel with ferromagnetic
source and drain contacts[Fig. 1(a)]. Electrons are injected
with a definite spin orientation from the source, which is then
controllably precessed in the channel with a gate-controlled
Rashba spin-orbit interaction,2 and finally sensed at the
drain. At the drain end, the electron’s transmission probabil-
ity depends on the relative alignment of its spin with the
drain’s (fixed) magnetization. By controlling the angle of
spin precession in the channel with a gate voltage, one can
control the relative spin alignment at the drain end, and
hence control the source-to-drain current. This realizes the
basic “transistor” action. Because of this attribute, the Datta-
Das device came to be known as the ballistic spin field effect
transistor(SPINFET).

Despite the fact that the SPINFET was proposed more
than a decade ago, it has never been experimentally realized.
Recently, we found that one of the serious impediments to its
realization is the presence of a magnetic field in its channel
caused by the ferromagnetic source and drain contacts. This
field has been ignored in practically all past work, but has
crucial consequences. Based on available data for device
configurations that are similar to the SPINFET,3 we estimate
that in a 0.2mm long channel, the average magnetic field
may approach 1 T. This field has many deleterious effects.4,5

First, it results in a Zeeman spin splitting that affects the
dispersion relations of the Rashba spin split subbands in the
channel. Consequently, there is “spin mixing” in each sub-
band, so that no subband has a definite spin quantization
axis.4 As a result, nonmagnetic scatterers can flip spin,5

thereby making spin transport nonballistic in the presence of
normal impurities, surface roughness, etc., which otherwise
would not have affected spin transport. Second, the “phase
shift” of the spintronic modulator will be no longer indepen-

dent of energy4,5 (in Ref. 1, it was claimed to be independent
of energy because the channel magnetic field was ignored).
Therefore, ensemble averaging over electron energy will di-
lute the modulation effect. Suffice it to say then that it is
important to eliminate the magnetic field in the channel.

Although it is possible to engineer the Datta-Das device
to reduce the channel magnetic field, this field can never be
completely eliminated (unless complicated spin filter
devices6 are employed). The only other solution is to find an
alternate analogous device where the magnetic fields due to
the source and drain contacts aretransverseto the channel.
Here, we do precisely that and propose an alternate device,
based on the Dresselhaus spin-orbit interaction7 rather than
the Rashba interaction. In this device, the source-drain mag-
netization will be transverseto the channel, which vastly
reduces the channel magnetic field. The only channel field
that could be present is the fringing field at the edges adjoin-
ing the source and drain contacts. This is negligible.

Our device is schematically shown in Figs. 1(b) and
1(c). The one-dimensional(1D) channel is along the[100]
crystallographic direction(assume a cubic crystal such as
GaAs). Since the device has nostructural inversion asym-
metry, we can ignore the Rashba interaction. However, there
is a bulk inversion asymmetry in the channel material that
ensures the presence of a Dresselhaus interaction. The chan-
nel is strictly 1D (only the lowest subband is occupied by
carriers) in order to extract the best device performance. The
need for one dimensionality was already elucidated in Ref. 1.
Furthermore, since there is no Dyakonov-Perel’ spin relax-
ation in a strictly 1D channelin the absence of a channel
magnetic field,8 we can expect nearly ballistic spin transport
in the present device for reasonable channel lengths. Follow-
ing usual procedure, the 1D channel will be defined by split
gates9–11 on the surface of a quantum well heterostructure.

The single-particle Hamiltonian describing an electron in
the 1D channel of this device is

a)Author to whom correspondence should be addressed; electronic mail:
sbandy@vcu.edu
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where « is the lowest subband energy,a42 is the material
constant associated with the strength of the Dresselhaus
interaction,12 s is the Pauli spin matrix, andWy is the chan-
nel dimension in they direction. We assume the potential
profile in they direction to be a square well with hardwall
boundaries[see Fig. 1(b)] and the potential profile in thez
direction is parabolic since confinement in this direction is
enforced by split gates. The curvature of the parabolic poten-
tial is v, which can be tuned by varying the applied voltage
on the Schottky split gates. Thus, by varying the split-gate
voltage, we can tune the Dresselhaus interaction. This, in
turn, results in a conductance modulation, as explained in the
rest of this letter.

In this work, we have assumed a direct-gap semiconduc-
tor. The Dresselhaus spin-orbit interaction term has a subtle
dependence on the crystallographic orientation of the
channel,13 but it is notqualitatively important in the present
context. It may however assume importance in device opti-
mization.

The rest of the analysis is fashioned after Ref. 1. Diago-
nalizing the Hamiltonian in Eq.(1), we find that the eigens-
pinors in the channel aref1,1g† and f1,−1g† which are
+x-polarized and −x-polarized states. They have eigenener-
gies that differ by 2bkx, where b=2a42fm* v / s2"d
−sp /Wyd2g. Accordingly,

Es+ x pol.d = « + "2kx+
2 /2m* + bkx+,

Es− x pol.d = « + "2kx−
2 /2m* − bkx−. s2d

An electron incident on the channel with energyE will
have two different wave vectorskx+ or kx− if its spin were
either +x or −x polarized. Now, if we inject only
+z-polarized electrons into the channel from a spin-polarized
ferromagnetic source contact, the electron will couple
equally to the +x- and −x-polarized subbands since

F1

0
G = F1

1
G + F 1

− 1
G . s3d

At the drain end, the eigenspinor will befeikx+L

+eikx−L ,eikx+L−eikx−Lg†, whereL is the channel length. If the
drain is a ferromagnet magnetized in the +z direction, then
the transmission probability of the electron(and therefore the
linear response source to drain conductance) will be propor-
tional to uf1, 0gfeikx+L+eikx−L, eikx+L−eikx−Lg†u2=4 cos2fskx−

−kx+dL /2g=4 cos2fm* bL /"2g, where we have used Eq.(2)
to arrive at the last equality. We can modulate the quantityb
by changing the curvature of the confining potentialv along
the z direction, with the split-gate voltage. This will change
the phase shiftfs=2m* bL /"2d between the two orthogonal
spin states(+x and −x polarized), thereby changing the inter-
ference condition between them and resulting in a modula-
tion of the source-to-drain conductance. Once we are able to
modulate the source-to-drain conductance by changing the
split-gate voltage, we have realized basic “transistor” action.

It is obvious now that this device is an exact analog of
the device in Ref. 1. We point out that just as in Ref. 1, the
phase shiftf is independent of the electron wave vector(or
energy). In fact, it is more true of this device than the Datta-
Das device, since there is no channel magnetic field here, and
the channel magnetic field could make the phase shift
slightly energy dependent.5 Therefore, the interference be-
tween the two spin states causing the conductance modula-
tion survives ensemble averaging over the electron energy at
elevated temperatures. As a result, this device could operate
at reasonably elevated temperatures like the Datta-Das de-
vice.

There are two basic differences between this and the
Datta-Das device. First, the latter requires a “top gate” as
shown in Fig. 1(a), whereas this requires a “split gate” as
shown in Fig. 1(c). Second, and more importantly, the con-
tacts in the present device have to be magnetized in thez
direction (since we need to inject and detect +z polarized
electrons), whereas in the Datta-Das device, they are magne-
tized in thex direction. As a result, there is no significant
channel magnetic field here, unlike in the Datta-Das device.
Eliminating the channel magnetic field is a major advantage.

Before concluding this letter, we estimate by how much
we need to constrict the channel with the split gate in order
to change the phase shift between the two spin states byp
radians(this corresponds to turning the device from “on” to
“off,” or vice versa). In other words, we need to estimate the
changeDs"vd, caused by the split-gate voltage, that will
induce a phase shift ofp radians. This value is given by
"4p / s2m* 2La42d. In GaAs,a42<2.9310−29 eV m3.12 There-
fore, Ds"vd=6.83 meV if we assume the material to be
GaAs and the channel lengthL to be 10mm. As long as this
value is smaller than"v, we can turn the device on and off
while maintaining “single modedness,” meaning that at no
time is more than one subband occupied by carriers. In split-

FIG. 1. (a) Schematic of the spintronic modulator of Ref. 1.(b) Side view of
the spintronic modulator proposed in this work.(c) top view showing the
split gates.
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gate channels fashioned out of GaAs, subband separation"v
of 10 meV has been demonstrated.11 SinceDs"vd,10 meV,
we can switch the device from one state to another without
ever impairing single modedness.

Next, we compare the switching voltages required to
switch the Datta-Das modulator and the present modulator
from one conductance state to another. In the Datta-Das
modulator, a voltage is applied to a top gate to change the
strength of the Rashba interaction parameterh,1 whereas
here a voltage is applied to a split gate to change the strength
of the Dresselhaus interaction parameterb. The changeDh
required to induce a phase shift ofp radians=p"2/ s2m* Ld
=1.7310−13 eV m for a 10-mm-long GaAs channel. Al-
though no experimental data is available for Rashba effect in
GaAs channels, experiments on InAs channels have revealed
that h changes by approximately 1310−12 eV m for every
1 volt change in gate voltage.14 In GaAs channels, the
Rashba effect is weaker than in InAs, so that the above
would be a generous estimate for GaAs. Therefore the gate
voltage(or switching voltage) required to switch a Datta-Das
modulator of 10mm channel length is<170 mV. In com-
parison, data in Ref. 11 reveals that we can change"v in a
GaAs split-gate device by the required 6.83 mV with a gate
voltage swing of<70 mV. Therefore, everything else being
equal, the present modulator could have a smaller switching
voltage than the Datta-Das device, which would result in a
lower dynamic power dissipation during switching.

In conclusion, we have proposed a device which is
analogous to the spintronic modulator proposed in Ref. 1, but
has the advantage of having no channel magnetic field that
causes a number of deleterious effects. Furthermore, this de-
vice could have a smaller switching voltage than the device
of Ref. 1, resulting in lower power dissipation during switch-
ing. The fabrication of this device is no more difficult than

fabricating the 1D modulator of Ref. 1; in fact, it may be
somewhat simpler since we do not need a top gate(or back
gate) to induce the Rashba effect. We emphasize that we
make no claim whatsoever that this device will outpace con-
ventional state-of-the-art transistors in speed, power dissipa-
tion, gain, etc. Neither did Ref. 1 make such a claim. In fact,
we have reasons to believe that spin field effect transistors
may not be competitive with conventional transistors in logic
applications, but might have niche applications in memory.15

They may also have better noise margin since spin does not
easily couple to stray electric fields, unlike charge.
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