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Electroreflectance spectroscopy in self-assembled quantum dots: lens symmetry
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Modulated electroreflectance spectroscopy �R /R of semiconductor self-assembled quantum dots is investi-
gated. The structure is modeled as dots with lens shape geometry and circular cross section. A microscopic
description of the electroreflectance spectrum and optical response in terms of an external electric field �F� and
lens geometry have been considered. The field and lens symmetry dependence of all experimental parameters
involved in the �R /R spectrum have been considered. Using the effective mass formalism the energies and the
electronic states as a function of F and dot parameters are calculated. Also, in the framework of the strongly
confined regime general expressions for the excitonic binding energies are reported. Optical selection rules are
derived in the cases of the light wave vector perpendicular and parallel to F. Detailed calculation of the
Seraphin coefficients and electroreflectance spectrum are performed for the InAs and CdSe nanostructures.
Calculations show good agreement with measurements recently performed on CdSe/ZnSe when statistical
distribution on size and shape are considered, explaining the main observed characteristic in the electroreflec-
tance spectra.

DOI: 10.1103/PhysRevB.72.045304 PACS number�s�: 73.21.La, 78.67.Hc, 78.66.Hf, 73.22.�f

I. INTRODUCTION

Modulation spectroscopy is a technique based on the
changes of the reflectivity of a sample when a periodic per-
turbation is applied. Due to its nature, this technique pro-
vides derivativelike spectra related to the optical transitions
in the structure under consideration. Since its early stages
in the 1960s1–5 this technique has been providing valuable
information about the properties of bulk/thin film semicon-
ductors, reduced dimensional systems such as quantum
wells and superlattices,6,7 and semiconductor device
structures.8,9 In spite of the versatility and success of modu-
lation spectroscopy few works have been done using this
technique for the analysis of quantum wires10 and quantum
dot �QD� structures.11,12 The optical properties of self-
assembled QDs �SAQD� have been widely studied using
photoluminescence,13,14 photoluminescence excitation spec-
troscopy,13,14 and time resolved photoluminescence.15 How-
ever, the information obtained is restricted to lower energy
states and does not allow to study the shape of the QD po-
tential or the coupling effects in stacked structures. Even
though modulation spectroscopy allows to perform studies of
lower and higher energy transitions in QD structures very
little work has been performed on this subject.11,12

Reference 11 reported contactless electroreflectance
�CER�, which is a modulated technique that measures the
changes in the optical reflectance of the material with respect
to a modulating electric field, at room temperature in CdSe
QDs with ZnSe barriers. The studied structure consists of a
GaAs buffer layer followed by GaAs/AlAs short-period su-
perlattice and CdSe QDs with ZnSe barriers �see inset in Fig.
1�. The corresponding spectrum shows a profile related to the
buffer layer, superlattices, QD region, wetting layer, and bar-
riers. In the spectral region ���2.2 eV the typical Franz

Keldysh oscillations are present, which are fit using Lorent-
zian broadened electro-optical functions.6 Also, the struc-
tures originating above 2.6 eV were fit using the first deriva-
tive of a Gaussian line shape.16 As shown in Fig. 1 the
electroreflectance spectrum coming from the confined QDs
region presents a broad structure which cannot be fit using

FIG. 1. �Color online� Contactless electroreflectance spectrum
�R��� ,F� /R��� ,0� for a CdSe quantum dot structure. Solid line
corresponds to the spectral measurement. Dashed lines in the spec-
tral region ���2.2 eV represent fit using standard electro-optical
functions, while for the region above 2.6 eV a fit using the first
derivative of a Gaussian lineshape. The QDs spectral region ad-
dressed in this paper is 2.2����2.5. The inset shows a typical
CdSe/ZnSe sample studied.
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standard electro-optical functions.1 It is clear that a reliable
theoretical model for any modulation spectroscopy technique
applied to quantum dots should include the primordial geo-
metric factor. The modulation spectroscopy reflects doubtless
the inherent quantum dot geometries.

In this paper we present a modulation spectroscopy study
of quantum lens �QL� structures, based on CER. By full
incorporation of the elements entering these experiments,
namely, the effects of the geometry and electric field on ex-
citonic states confined in the dot, the oscillator strengths,
exciton energies, and Seraphin coefficients involved in the
dielectric function, we provide the basis for quantitative
analysis of CER in SAQD with lens symmetry. We study the
effects of lens parameters on the electroreflectance spectrum
�R /R and the optical response. We found that the lens sym-
metry has strong and clear signatures in the modulation spec-
troscopy, photoluminescence, and photoluminescence excita-
tion spectroscopy. Moreover, we show that a detailed
analysis of the optical response could provide information on
the lens geometry and effective mass of the carriers, since
they affect strongly the general features and overall peak
distribution and amplitudes of the �R /R profiles. Since the
modulation spectroscopy data had played a prevalent role in
the study of III-V and II-VI semiconductors compounds, and
because of its intrinsic interest, we present a detailed analysis
of a model for a SAQD, which captures the essential physics
of the problem. In fact, the lens symmetry is likely to be a
good model of SAQDs, where the characteristic dimensions,
height/diameter�1 are typical in these systems and our
model should provide a good description.

The remainder of the paper is organized as follows. Sec-
tion II deals with the general trends of the theory for �R /R
applied to the case of a quantum lens, discussing the nature
of the excitonic states in these structures and taking into
consideration the external electric field effects. Section III
presents theoretical calculations for the InAs/GaAs system,
as well as the CdSe/ZnSe system. Section IV contains a fit to
the �R /R data in CdSe/ZnSe SAQD structures. Finally, Sec.
V is devoted to the conclusions. In the appendixes, we
present the behavior of the Seraphin coefficients for
InAs/GaAs and CdSe/ZnSe quantum lenses and some tech-
nical details of the calculations.

II. BASIC RELATIONS

A precise knowledged of the interband transition energies
in a semiconductor can be traced by measuring the electrore-
flectance spectra.1 This spectroscopy technique is based on
the modulation of an ac external electric field which modifies
the shape of the dielectric function �����.4 For normal inci-
dence of the light the modulated electroreflectance �R /R is
related to the real �1 and imaginary �2 parts of the dielectric
function by

�R���,F�
R���,0�

= �������1���,F� + �������2���,F� , �1�

where ��i=�i��� ,F�−�i��� ,0� �i=1,2�, F is the intensity
of the electric field, �� is the photon energy, and � ,� are the
Seraphin coefficients �see Appendix A�.

Using the standard semiclassical approach to describe the
interaction between light and matter, the imaginary part of
the dielectric function for direct allowed transitions takes the
form

�2 = 16	
aB

3

V0

Ry
2

����2m0
�

�e,�h

�� 
�e,�h
�r,r�d3r�2

��ê · pcv�2
��e,�h

��� − E�e,�h
�2 + ��e,�h

2 , �2�

where aB is the Bohr radius, Ry is the Rydberg constant, V0 is
the effective volume taking place in the process, m0 is the
free electron mass, ê is the polarization vector of the incident
light, pcv is the interband optical matrix element between
conduction c and valence v bands, ��e,�h

is the broadening
parameter of the Lorentzian function. In the above equation
��
�e,�h

�r ,r�d3r�2 are the oscillator strengths for the allowed
interband transitions to the states 
�e,�h

with energies E�e,�h
.

The Kramers-Kronig relations provide the real part of di-
electric function �1, i.e.,

�1 = 1 + 16	
aB

3

V0

Ry
2

����2m0

� �
�e,�h

�� 
�e,�h
�r,r�d3r�2

�ê · pcv�2L���,E�e,�h
� ,

�3�

where

L���,E�e,�h
� =

E�e,�h
− ��

��� − E�e,�h
�2 + ��e,�h

2

+
E�e,�h

+ ��

��� + E�e,�h
�2 + ��e,�h

2 −
2E�e,�h

E�e,�h

2 + ��e,�h

2 .

�4�

Two independent optical configurations are possible by
choosing properly the direction of the light wave vector 
with respect to the applied electric field. �i�  �F � ẑ and the
vector of polarization ê� ẑ which is the typical configuration
used in CER experiments. Here, the three valence bands,
light hole �lh�, split off �so�, and heavy hole �hh� can couple
to the incident light. �ii�  perpendicular to F � ẑ chosen along
the quantum lens growth direction and the vector polariza-
tion ê � ẑ. In this case the lh and so valence bands will con-
tribute to the optical spectrum.

A. Electronic structure

We will consider a typical SAQD with lens symmetry that
presents a circular cross section of radius a and height b.
Electron-hole pairs �EHPs� are confined in the SAQD do-
main under an electric field F parallel to its z axial symmetry
axis. The exciton wave functions are taken as solutions of
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	−
�2

2me
*�e

2 −
�2

2mh
*�h

2 − eF�re − rh� −
e2

��re − rh�

�e,�h
�re,rh�

= �E − Eg�
�e,�h
�re,rh� , �5�

where Eg is the gap energy, � is the dielectric constant, and
mi

* �i=e ,h� is the quasiparticle effective mass. In the strong
spatial confinement �electron-hole Coulomb interaction can
be considered as a perturbation� and according to the axial
symmetry of the quantum lens, the electron-hole pair wave
function 
�e,�h

is given by a product of electronic wave
functions 
i��i�exp�imi�i�. Here, mi is the z component of
the orbital angular momentum and functions 
i satisfy a
bidimensional Schrödinger equation for quantum dots with
lens-shape geometry in an electric field. Closed solutions of
one-particle wave functions 
N,m and energy levels EN,m �N
enumerates, for a fixed value of m, the electronic levels by
increasing value of the energy� as a function of the applied
electric field and lens shape geometry have been published
elsewhere.17,18 The excitonic correction, appearing in Eq. �5�
has been considered in first-order perturbation theory. It is
possible to identify two cases.

�i� me=mh=0, where the EH states are not degenerate and
the excitonic correction is directly given by

�E0 = −
2e2

�
�
l=0

�
Il�me = 0,mh = 0;m� = 0�

2l + 1
. �6�

�ii� If me=mh�0 fourth-fold degeneracy of the EHP lev-
els has to be considered and a 4�4 matrix for the exciton
eingenvalue is obtained. By symmetry it follows that the
total z component of the EHP angular momentum M =me
+mh is preserved under the electron-hole correlation. For ex-
ample, if me ,mh= ±1 the states with M = ±2 are degenerate
with an energy equal to

�E0 = −
2e2

�
�
l=0

�
Il�me = ± 1,mh = ± 1;m� = 0�

2l + 1
. �7�

While the states with M =0 are decupled with energies

�E+ = �E0 +
2e2

�
�
l=0

�
Il�me = 1,mh = − 1; �m�� = 2�

2l + 1
, �8�

�E− = �E0 −
2e2

�
�
l=0

�
Il�me = 1,mh = − 1; �m�� = 2�

2l + 1
. �9�

Il are dimensionless functions given in the Appendix B. The
energetic order �E−��E0��E+ is preserved for any value
of the applied electric field or lens geometry �see Fig. 2�.
Notice that the same behavior and equations are obtained for
any values of the quantum numbers me ,mh�0.

In Fig. 2 the first calculated excitonic energies
Eex�Ne ,me ;Nh ,mh�−Eg for CdSe quantum lens as a function
of the dimensionless electric field F /F0 are plotted �F0
=E0 / ��e�a�, E0=�2 / �2me

*a2��. For the calculations we have
used the values given in Table I. Two types of quantum lens
are considered representing the weak �Fig. 2�a�, b /a=0.91�
and the strong �Fig. 2�b�, b /a=0.51� lens confinement do-

mains, respectively. Excitonic states with me=mh=0, 1, and
2 are shown by solid, dashed, and dotted lines, respectively.
In both calculations the excitonic correction represents a very
small contribution to the total energy and the effect of the F
on �E is practically negligible. The splitting of the EHP
levels, due to the electron-hole correlation, diminishes as the
confinement increases. In the case of weak spatial confine-
ment the electric field effect upon energetic levels is stronger
as shown in Fig. 2�a� in comparison to Fig. 2�b�. The inter-
play between F and the ratio b /a determines the peculiarities
of the excitonic energy as a function of F in particular on the
excited states �for details see Ref. 18�. Also, due to the lens
geometry, the electronic energies present an asymmetric
Stark shift with the external applied field.

III. ELECTROREFLECTANCE

In the following, we analyze the electroreflectance spec-
trum �R /R for the case of InAs/GaAs and CdSe/ZnSe

FIG. 2. Excitonic energy levels Eex�Ne ,me ;Nh ,mh�−Eg for
CdSe quantum lenses as a function of the electric field. Excitonic
branches are labeled by Ne ;Nh for the allowed optical transitions
�m=me−mh=0. �a� Lens domain with a=15 nm, b=13.65 nm. �b�
a=20 nm, b=10.2 nm.
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SAQDs. This measurement gives rise to sharp, differential-
like spectra in the region of the transitions. In the figures the
main excitonic transitions are denoted by numbers �1,2,…�,
which correspond to a particular set of quantum numbers
�Ne ,me ;Nh ,mh�. Due to the axial symmetry, the interband
selection rules correspond to excitonic branch with �m=me
−mh=0. The allowed transitions are resolved in the �R /R
spectrum as different “effective gaps” and the peak positions
are directly proportional to the lens geometry. In the case of
me=mh�0 the EHP degeneracy is broken and additional
structure appears in the electromodulation spectrum. We
have only considered the incoming frequency in the range
below the energy barrier, according to the material param-
eters listed in Table I. A full analysis of the electroreflectance
response in each system provides complementary informa-
tion to photoluminescence and photoluminescence excitation
spectra to characterize the nanostructures involved and the
quantum lens geometry.

A. InAs/GaAs

Figure 3 displays the electroreflectance spectra of InAs
dots embedded in GaAs barriers for the cases of two inde-
pendent optical configurations: �a�  �F and ê� ẑ and �b�
�F and ê � ẑ. For the calculation the value of Eg=1.51 eV
for GaAs has been used. Solid vertical arrows show the ex-
citonic transitions for a lens geometry with a=16.0 nm and
b=14.56 nm �solid lines�, while dashed vertical arrows cor-
respond to a QL with a=20.5 nm, b=10.46 nm. For the case
of Fig. 3�a� we used the corresponding Seraphin coefficient
� and � displayed in Fig. 6�a�, where the spatial confinement
effect it can be noticed. Also for closely spaced peaks, the
interference between different resonant levels increases and
the �R /R signal is not simply the result of single contribu-
tions.

Due to the relative oscillator strength of the hh and lh
valence bands, the electroreflectance features appear as rela-
tively large resonant peaks in the case of  �F �Fig. 3�a�� in

comparison to the spectrum for the optical configuration
�F, ê � ẑ �Fig. 3�b��. Labels 1 and 2 for all graphs corre-
spond to the transitions between Nh=1, mh=0→, Ne=1, me
=0 and Nh=1, mh=1→, Ne=1, me=1, respectively. Notice in
particular that in Fig. 3�a� the transitions involving the hh
exciton are substantially stronger and the light hole oscillator
strength is about 10 times smaller than that corresponding to
the heavy hole. In the configuration where �F � ẑ and ê � ẑ
�Fig. 3�b�� the heavy hole excitonic branches are forbidden
and labels 1 and 2 represent the light hole contributions.

B. CdSe/ZnSe

To illustrate the role of the II-VI materials that compose a
QL, Fig. 4 shows the electroreflectance spectrum as a func-
tion of the photon energy for CdSe dots with ZnSe barriers.
A value of Eg=2.7 eV for ZnSe is used for the numerical
evaluation. The obtained spectra correspond to the cases of
Fig. 2, solid line for a QL with a=15.0 nm b=13.65 nm,
while dashed lines to the geometry with a=20.0 nm, b
=10.20 nm. To calculate �R /R we used the � and � param-
eters shown in Fig. 6�b�. The stronger oscillation strength is
due to the excitonic branch Ne=Nh and me=mh, the rest of
the allowed transitions are too weak to be resolved in ER
spectrum. According to this, the exciton dispersion relations
calculated in Fig. 2 closely follow the calculated �R /R struc-
ture. In general the spectra show the same general trend with
respect to the InAs case. Nevertheless, two main differences
are present: �i� Due to the heavy hole mass and for a given
geometry the electroreflectance spectrum of CdSe has more
structure that in the InAs QL. �ii� The exciton degeneracy is
broken for me=mh�0 �displayed in Fig. 4 as a circle for the
case of weak confined b /a=0.91�. Excitonic binding ener-
gies �E, for II-VI semiconductors are larger than the III-V

TABLE I. Parameters used in calculations.

Parameters InAs CdSe

Eg �eV� 0.45a 1.692b

� 14.6a 9.3a

me
* /m0 0.023a 0.11b

mhh
* /m0 0.34a 0.44b

mlh
* /m0 0.027a -

�Ec �%� 40%a 85%b

�Ev �%� 60%a 15%b

n� 3.517c 2.5d

P2 /m0 �eV� 10.0c 11.1c

�hh �meV� 3 3

�lh �meV� 5

aRef. 21.
bRef. 11.
cRef. 22.
dAn average of the values reported in Ref. 22.

FIG. 3. Electroreflectance spectrum for InAs quantum lenses.
Solid lines correspond to the lens domain a=16 nm, b=14.56 nm
and dashed lines to a=20.5 nm, b=10.46 nm. Optical configura-
tions �a� �F � ẑ and ê � ẑ. �b�  �F � ẑ and ê� ẑ. In the calculation a
value of F=50 kV/cm is used. Allowed excitonic optical transitions
are indicated by arrows
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ones and consequently, the exciton degeneracy can be easily
resolved by a spectroscopy technique.

IV. APPLICATION TO CADMIUM SELENIDE/ZINC
SELENIDE QUANTUM LENS

Figure 1 shows the experimental CER spectrum of
CdSe/ZnSe SAQD at room temperature.11 We have per-
formed calculations of the �R /R within the framework of
the model developed in this paper, in order to compare its
ability to reproduce the experimental data. A typical QD
structure is shown in the inset of Fig. 1. Details about the
growth conditions of the CdSe/ZnSe QD samples are pro-
vided elsewhere.11 The CER spectra of these structures have
been obtained using a condenserlike system16 consisting of a
front wire grid electrode with a second metal electrode sepa-
rated from the first electrode by insulating spacers, which are
approximately 0.1 mm larger than the sample dimension.
The sample was placed between these two capacitor plates
and the electromodulation was achieved by applying an ac
voltage of 1.2 kV, 200 Hz across the electrodes. In Fig. 1 we
can identified the differential-like spectra originating from
the QDs in the region 2.2����2.5 eV. In Fig. 5 electrore-
flectance data for the CdSe QD are displayed as solid circles.
To fit the transitions originating from the QDs with QL ge-
ometry we took a0=11.98 nm and b0 /a0=0.24. The solid
line corresponds to the evaluation of Eq. �1� for a single
quantum lens in presence of an electric field equal to F
=50 kV/cm and a constant exciton broadening parameter
��e,�h

=8 meV. The sharp differential-like structure matches
very well with the measured QL allowed optical transitions.
These peaks correspond to electron-heavy hole transitions
Ne=1, me=0→Nhh=1, mhh=0 and Ne=1, me=1→Nhh=1,
mhh=1.

Self-assembled quantum dots have a distribution on size
and shape. For a given photon energy �� we have to take
into account the contribution of all quantum lenses that fulfil
the resonance conditions ��=E�e,�h

and evaluate the average

CER. In our calculation we have considered two independent
statistical distribution. In the first one, we fixed the ratio
a0 /b0 and performed an average over the size a. In the sec-
ond one, the radius a0 was fixed and we average over the
ratio a0 /b0. The corresponding expressions for the average
electroreflectance ��R /R� are written as

�R

R
� =� F�a�

�R

R
da or �R

R
� =� Fb

a
��R

R
d

b

a
, �10�

where a Gaussian size distribution function F�a��F�b /a��
with mean value a0�a0 /b0�, and FWHM �a0

��b0/a0
� is as-

sumed. Figure 5 displays our theoretical calculations for the
average ��R /R� spectrum of an ensemble of CdSe quantum
lens with average ratio b0 /a0=0.24, a0=11.98 nm. Dashed
lines indicate the average spectrum by radius a with �a0
=0.4 nm, while dash dotted lines represent the distribution
by ratio b /a and �b0/a0

=3%. In this particular case we ob-
serve that there are not significative difference in the ��R /R�
spectrum if we consider a distribution by the radius a or by
the ratio b /a. It can be seen that the observed measured
broad spectrum is explained by size distribution of the QDs.
Hence, the �R /R signal of Fig. 5 is the contributions of QDs
in different resonance regimes, i.e., those excitonic transi-
tions fulfilling the condition ��=Ene,me;nh,mh

�a ,b�. Reso-
nances with higher exciton states occur for larger a and b
values but are quenched by the size distribution function F
present in Eq. �10�.

V. CONCLUSIONS

The present theoretical description can be used to evaluate
the modulated electroreflectance spectra of III-V and II-VI

FIG. 4. Electroreflectance spectrum for CdSe quantum lenses
for the optical configuration  �F � ẑ and ê� ẑ. Solid lines corre-
spond to the lens domain a=16 nm, b=14.56 nm and dashed lines
to a=20 nm, b=10.2 nm. F=50 kV/cm is used and the allowed
excitonic optical transitions are indicated by arrows.

FIG. 5. �Color online� Contactless electroreflectance spectrum
�R��� ,F� /R��� ,0� for the CdSe/ZnSe quantum dot structure
shown in Fig. 1. Dots are the experimental data. The solid line
represents the calculation for a QL with radius a0=11.98 nm and
height b0=2.88 nm, while dashed lines and dash dotted lines corre-
spond to average size calculation by radius a and ratio b /a of
�R��� ,F� /R��� ,0�, respectively.
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SAQD with lens shape geometry. Optical responses and elec-
troreflectance spectra as a function of the electric filed have
been calculated for incoming photon energy above the fun-
damental effective gaps in QDs semiconductors. The
Seraphin coefficients present a series of thresholds according
to the excitonic �Ne ,me ;Nh ,mh� branch and the allowed op-
tical transitions in the lens. The ER for InAs and CdSe dots
show sharp differential-like spectra which identify the inter-
band excitonic transitions of the QDs. The calculated �R /R
dependence on �� reproduce quite well the experimental
data available for CdSe/ZnSe quantum dots. This fact indi-
cates that the present theoretical model through out this pa-
per contains the main ingredients of the electroreflectance
spectroscopy in SAQD with lens geometry, and thus can be
used, in combination with experimental data, to obtain infor-
mation on the lens shape and other physical parameters re-
lated to the growth conditions of the sample. An important
outcome of the work is that by fitting experimental data to
this model we can estimate the size distribution of the QDs
in the capped structures, which is a parameter not easily
determined by other means.
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APPENDIX A: SERAPHIN COEFFICIENTS

These coefficients are related to the dielectric constant at
zero electric field. Their spectral dependences are obtained
by the expressions

����� =
2n

n2 + k2

n2 − 3k2 − 1

��n + 1�2 + k2���n − 1�2 + k2�
, �A1�

����� =
2k

n2 + k2

3n2 − k2 − 1

��n + 1�2 + k2���n − 1�2 + k2�
. �A2�

The refractive index n and the extinction coefficient k are
functions of �1 and �2 according to

n =���1
2 + �2

2 + �1

2
+ n�, k =���1

2 + �2
2 − �1

2
, �A3�

where n� is the refractive index at high frequency. Inserting
Eqs. �2�–�4� at F=0 into Eqs. �A1�–�A3� we obtain the val-
ues of the Seraphin coefficients for the optical geometry
 �F � ẑ and ê � x̂. Coefficients � and � as a function of the
photon energy for the InAs/GaAs and CdSe/ZnSe QLs are
shown in Figs. 6�a� and 6�b�, respectively. We have consid-
ered the same lens geometries indicated in Figs. 3 and 4.
Weak and strong spatial confinement regimes are indicated
by solid and dashed lines, respectively. Labels 1 and 2 rep-
resent the optical transitions between states Nh=1, mh=0 to
Ne=1, me=0 and Nh=1, mh=1 to Ne=1, me=1. From the
figures the strong influence of the lens geometry on the
Seraphin coefficients and in consequence, on the electrore-
flectance, is clear.

APPENDIX B: EXCITON MATRIX ELEMENTS

In Eqs. �6�–�9� the matrix element Il has an explicit ex-
pression �see Refs. 18 and 20�:

Il�me,mh;m�� = �
i,j,i�,j�

�

Ci�Ne,me�Cj�Nh,mh�Ci��Ne,me�

�Cj��Nh,mh��f i,me

�0� f j,mh

�0� �
r�

l

r�
l+1 Pl

�m���cos �e�

�Pl
�m���cos �h��f i�,me

�0� f j�,mh

�0� � , �B1�

where coefficients Ci�N ,m� and functions f i,m
�0� are defined in

Ref. 18. Il depends on the lens deformation b /a and dimen-
sionless electric field F /F0. The excitonic correction inte-
grals in Eq. �B1� were obtained by a Monte Carlo algorithm
over the two-dimensional lens domain.

FIG. 6. Seraphin coefficients � and � for a quantum lens in the
optical configuration  �F � ẑ and ê� ẑ. The allowed excitonic opti-
cal transitions are indicated by arrows. �a� InAs/GaAs. �b�
CdSe/ZnSe.
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