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Physics Department, University of Michigan, Ann Arbor, Michigan 48109

F. Yun and H. Morkoç
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Electric-field-induced heating is studied using noise measurements inn-type GaN grown on
sapphire substrates. The measured electron temperature is found to be an order of magnitude higher
than what is expected based on calculations of electron–phonon coupling via acoustic deformation
potential scattering processes in GaN. The discrepancy may be explained by a large thermal
boundary resistance between the GaN film and the sapphire substrate. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1571982#

The use of GaN and GaN-based heterostructures in high-
power applications has a considerable, if recent, history.1,2

The study of energy flow between hot electrons and their
surroundings is therefore of particular interest in the GaN
system. As electrons gain energy through the application of
an electric field, they cease to be in equilibrium with the
phonons, but equilibrate with each other via electron–
electron interactions. This forms a hot electron system whose
temperature may significantly exceed that of the lattice
phonons.3,4 The emission of acoustic and optical phonons by
a hot electron gas sets the energy relaxation time, which in
turn determines the characteristic time for hot electrons to
relax to the lattice temperature. At low temperatures, we ex-
pect the dominant method of cooling to be the emission of
acoustic phonons through acoustic deformation potential
scattering. At higher temperatures~above 100 K!, we expect
the faster emission of polar optical phonons to dominate
electron cooling. Energy then flows from the GaN lattice
phonons to the phonons in the sapphire substrate before
flowing to the bath. Knowledge of the energy relaxation time
is of fundamental importance and is also relevant to device
design. In high-power devices in particular, understanding
the processes that govern the cooling of hot carriers is useful
in accessing device performance. Measurements of
luminescence,5 measurements of white noise,6 Shubnikov-de
Haas measurements,7 and blackbody radiation
measurements8 are commonly used in the GaAs/AlGaAs het-
erostructure system to determine the temperature of an elec-
tron gas in excess of the lattice temperature. Such measure-
ments have not previously been performed for the nitride
system.

In this work, we have used the Johnson noise~up to 100
kHz! in a patterned GaN film as an intrinsic thermometer of
the electron temperature, while the substrate was held in a
4.2-K liquid helium bath. In addition to the study of excess
high-frequency noise, we have examined the low frequency,
or 1/f noise, and compared its value between samples with
different electron densities.

All the GaN samples we have studied were grown by

molecular-beam epitaxy on sapphire substrates using rf-
generated active nitrogen. We present results for three
samples: A1, A2, and B. Samples A1 and A2 are patterned
from a high-electron-density GaN film grown onc-plane
sapphire substrate, with a 40-nm AlN buffer layer. The 1.1-
mm-thick film is intentionally doped with Si. Sample B, also
grown onc-plane sapphire, has a more elaborate buffer layer
structure consisting of 40-nm AlN, 200-nm GaN, followed
by a multiple layer GaN/AlGaN composite. Finally a 0.8-mm
GaN layer grown at 800 °C contains the electron gas.

Hall bar patterns with dimensions of 25mm3250mm
for samples A1 and B, and 50mm3500mm for sample A2,
were defined by photolithography. Reactive ion etching with
BCl3 etched the exposed region down to the substrate. The
original thicknesses of the GaN layers of samples A and B
are 1.11 and 1.17mm, respectively, but after processing their
thicknesses were reduced to 0.68 and 0.60mm, respectively.
Metallization of the Ti/Al/Ti/Au contacts was followed by
rapid thermal annealing at 90 °C to form good ohmic contact
to the GaN. Low-temperature~4.2 K! Hall measurements of
the samples revealed electron densities of 4.7531018 and
4.031017 cm23 for samples A and B, respectively. The re-
sults are summarized in Table I.

The diagram of our noise measurement is shown in Fig.
1. The large~'150mF! capacitor after the bias stage acts as
a short circuit to all ac signals, including the voltage noise of
bias resistors. In addition to those elements shown, there are
parasitic line capacitances that we have not included in our
diagram. The preamplifier used in this setup was made using
low-noise junction field-effect transistors~Toshiba 2SK162!
in its input stages and had a voltage noise of 4nV/AHz. The

a!Electronic mail: eckhause@umich.edu

TABLE I. The electron density, the mobility, the resistance per square, the
GaN film thickness, and the number of electrons in the GaN Hall bar, are
listed for the three samples. The density and mobility are measured at 4.2 K
using Hall measurements.

Sample
Density
~cm23!

m
~cm2/V s! Rh(V)

Thickness
~mm! N

A1 4.7531018 89.0 217 0.68 2.0231010

A2 4.7531018 89.0 217 0.68 8.0831010

B 4.031017 143 1817 0.60 1.53109

APPLIED PHYSICS LETTERS VOLUME 82, NUMBER 18 5 MAY 2003

30350003-6951/2003/82(18)/3035/3/$20.00 © 2003 American Institute of Physics
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.172.48.58 On: Tue, 21 Apr 2015 17:46:52



sample noise amplified by the preamplifier was fed into a
Stanford Research 830 spectrum analyzer for Fourier analy-
sis. Each noise spectrum was obtained by averaging 32 000
traces.

The voltage noise spectrum of a sample will generally
include both the low-frequency 1/f noise and the frequency-
independent Johnson noise, proportional to the electron tem-
perature and the sample resistance. The 1/f noise in the ni-
tride system has been studied recently by various groups.9–13

In most of the samples for which we have measured the
excess noise, the difference between the noise spectrum at a
finite dc bias and the spectrum at zero bias, was dominated
by the 1/f noise for frequencies less than 100 kHz. Only in a
sample with high carrier density was the 1/f noise suffi-
ciently small that we were able to observe white-noise com-
ponents of the excess noise arising from electron heating.
Sample B is a representative of several low-electron-density
samples, all of which showed large excess low-frequency
noise. Typical excess noise spectra obtained from different
samples are shown in Figs. 2 and 3.

The magnitude of 1/f noise is in general quantified by a
dimensionless Hooge parameter,a5DSVf N/V2, whereDSV

is the excess noise spectral power density,V is the bias volt-

age,f is the frequency, andN is the number of electrons in
the GaN Hall bar, as listed in Table I. We calculatea51.5
31022, 1.231024, and 1.631023 for samples B, A2, and
A1, respectively. The trend that we observe ofa, decreasing
with increasing density of electrons, is consistent with other
studies of 1/f noise in GaN.13,14

In high-electron-density samples A1 and A2, the excess
1/f noise was sufficiently small such that the excess
frequency-independent Johnson noise could be observed.
From the excess noise of samples A1 and A2, we have ex-
tracted an excess electron temperature,DT5DSV/4kBR, us-
ing the excess noise data above;30 kHz, where 1/f noise is
small in these samples. The resistance of the samples are
independent of bias over the range of voltages that we apply.
In Fig. 4, we plot the excess electron temperature versus the
Joule power dissipated per electron for sample A1, the
smaller Hall bar, and sample A2, the larger Hall bar. To
verify that the measured increase in Johnson noise is due to
an increase in electron temperature, we scale the power dis-
sipated in the Hall bar to the number of electrons in each
Hall bar ~as in Fig. 4!. We observed that the excess tempera-
ture is independent of the number of electron, as we expect.

FIG. 1. Block diagram of the noise measurement circuit.R1 is 5 kV; Vdc is
32 V; C is 150mF andR2 was set to obtain a useful range of bias currents.
The samples are four-probe Hall bars.

FIG. 2. The excess voltage noise spectra of three samples. The bias currents
are 9, 440, and 89mA for samples B, A2, and A1, respectively. The noise
spectra scale approximately as 1/f for sample B and for samples A1 and A2
below ;10 kHz. Excess Johnson noise is dominant above;30 kHz in
samples A1 and A2.

FIG. 3. Measured excess noise at 4.2 K in sample A1 at dc bias currents of
0.13, 0.49, 0.97, and 1.33 mA. Increasing excess noise corresponds to in-
creasing bias current. The bias resistor,R2 in Fig. 1, is 22 kV. Above
frequencies of 30 kHz, white noise dominates the low-frequency noise.

FIG. 4. The excess temperature,DT5Te,GaN24.2 K, as a function of power
dissipated per electron in samples A1 and A2. The solid line is the calculated
temperature difference between the GaN electron and the GaN phonons. The
inset shows a schematic diagram of the heat flow from the electrons at
Te,GaN to the phonons atTph,GaN to the sapphire substrate atTph,sapphire

'4.2 K.
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We compare our data with the expected heat flow from
electrons to the lattice via deformation potential electron–
phonon coupling. The average power per electron dissipated
to the GaN phonons is

~Pdisc!e5
3m* «def

2

2p2\r S 2m*

\2 D 3/2

AEFkB~Te,GaN2Tph,GaN!,

where «def is the deformation potential constant,r is the
density, EF the Fermi energy,Te,GaN is the GaN electron
temperature, andTph,GaN is the GaN phonon temperature.15

For GaN, we use«def58.54 eV andr56.1 g/cm3, and in our
samples we calculate the Fermi energy from the density
listed in Table I and an effective mass of 0.22m0 . We calcu-
late in our samples A1 and A2 that the power, in Watts,
dissipated per electron is (Pdiss)e52.5310214(Te,GaN

2Tph,GaN). If this electron–phonon coupling were limiting
the heat flow, we would expect data to fall on the solid line in
Fig. 4. Instead, the heating of the electron gas is strikingly
larger than is predicted by energy relaxation based on acous-
tic deformation potential scattering of the hot electrons. The
discrepancy can arise from a poor thermal coupling between
GaN and sapphire. If the thermal boundary resistance for the
GaN–sapphire interface is large, we cannot assumeTph,GaN

'4.2 K. To estimate the thermal boundary resistance for this
interface, we use a simple model, whereTe,GaN.Tph,GaN

.Tph,sapphire54.2 K, shown in the inset of Fig. 4. We first
extractTph,GaNusing the measuredTe,GaN and the theoretical
calculation for power dissipation via phonon emission. Then,
assumingTph,sapphire'4.2 K, we extract a thermal boundary
resistance ofRB51.05 K/(W/cm2) for this interface.

When an interface is smooth and without voids, acoustic
mismatch theory provides an estimate of the value of the
boundary resistance between dissimilar materials at low
temperatures.16 Such a theory gives a thermal resistance of
3.331023 K/(W/cm2) at 4.2 K between GaN and sapphire.
This value is much smaller than indicated by the data. It has
been observed in other metal–sapphire interfaces that mea-
sured thermal resistances can greatly exceed prediction of
acoustic mismatch at temperatures above;10 K. This dis-
crepancy is attributed to highly disordered interfaces that can
strongly scatter phonons.16 Bulk GaN thermal conductivity
has been predicted to depend strongly on the number of dis-
locations at densities above 1012 cm22 at room
temperature.17 At lower temperatures as well, the large lattice
mismatch between sapphire and GaN introduces a high de-
gree of interface disorder in the GaN and may contribute to
the large thermal boundary resistance evidenced by our data.

We have observed two effects in GaN electron gases
grown on sapphire substrates. First, excess low-frequency

noise in the bulk of the electron gas varies strongly from
sample to sample. Second, we have observed excess noise
due to electron heating in high-electron-density samples,
where 1/f is smaller. The observed large electric-field-
induced heating of electrons in GaN indicates that the energy
flow is not limited by the acoustic deformation potential
electron–phonon scattering. The large heating may instead
be due to an additional thermal boundary resistance between
the sapphire substrate and the GaN film. This would imply
that limiting GaN disorder near the interface may be impor-
tant in high-power applications, in which increasing heat
flow from GaN to a thermal bath is crucial to device perfor-
mance.
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