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Laboratory analyses of biological 
materials are ranked in order of 
magnitude and summed across ma­
terials to give a list of laboratory 
scores. Under the assumed hy­
pothesis that there is in fact no 
difference between laboratories, 
Monte-Carlo techniques are used to 
establish two-tailed 5 % rejection 
limits for various combinations of 
laboratories and materials. The hy­
pothesis that there is no difference 
between laboratories is rejected if 
any laboratory's score lies outside 
the 5 % limits. 

Suppose that one needs to run 
a group of tests on a particular set 
of materials (chemical or biolog­
ical), using a number of different 
laboratories, and wishes to insure 
before starting that the laboratories 
are reliable, i.e., that (a) they run 
the test according to required spec­
ifications or directions and (b) if 
they run the same test twice, they 
will get, within some tolerated in­
strument variation, the same results. 

I shall develop a statistical test 
here based on the ranked labora­
tory results which does not as­
sume that the data have any par­
ticular distribution. The basis for 
this work was done by Dr. W. J. 
Youden of the National Bureau of 
Standards (1963), but his work is 
done primarily with a view to in­
dustrial applications. 

I have endeavored here to sim­
plify the statistical procedures and 
to stress biological applications by 
way of examples. 

Experimental 

Suppose that we have a number 
of different materials, A, B, C, ... 
which we want to be analyzed by 

212 

a number of different laboratories, 
1, 2, 3, . .. Consider material A 
which will be analyzed quantita­
tively by all the laboratories; rank 
the results as follows: give the rank 
1 to that laboratory with the high­
est numerical result. Give the rank 
2 to the laboratory with the next 
highest result, and so on until the 
laboratory with the lowest result 
gets the highest rank. Repeat this 
same procedure for all the ma­
terials and record the results in a 
format similar to table 1. 

Example 1: There are seven pro­
tein materials to be analyzed by 15 
different laboratories. Each ma­
terial is analyzed quantitatively, and 
the laboratory with the highest re­
sult is given the rank 1, the next 2, 
and so on. The results are shown in 
figure 2. 

If a tie exists, e.g. two labora­
tories tie for third place, assign the 
rank of 3.5 to each. If three are 
tied for fourth place, assign the 
middle rank (here equal to 5) to 
all three. The ranks are then added 
across (i.e., a sum of ranks, or a 
score, is found for each labora­
tory). 

It is clear that the minimum pos­
sible score is 7 (highest every time) 
and the maximum score is 105 
(lowest every time). The average 
score (just halfway between the 
maximum and minimum) is 56. 

The obvious question that one 
should ask of the data is, "On the 
basis of the data shown, how can 
I judge which laboratories are con­
sistently too high or too low in 
their analysis?" It is clear that lab­
oratory 4 has a higher score than 
the others, and laboratory 13 has 
the lowest score, but are these dif­
ferences attributable to physical 

reasons, i.e., faulty analysis, or 
are they merely due to natural (or 
random) variation? After all, one 
laboratory must be first and one 
must be last. 

Statistical Analysis 

The development of the theory 
is as follows. If no real reason 
exists for one laboratory to be 
higher or lower than the others, 
then the ranks of the laboratories 
for a particular material are ran­
dom variables, and each laboratory 
is equally likely to get a particular 
rank. Furthermore, the scores of 
the laboratories will cluster around 
some central point (the mean) . To 
find what kind of result might be 
obtained if in fact the laboratories 
are not really different, I will simu­
late the scoring procedure with a 
method known to be random, viz. 
take 15 cards numbered 1 through 
15, shuffle them into a random or­
der. Taking the top card, write its 
number against laboratory 1, write 
the next card's number against lab­
oratory 2, and so on until all 15 
cards have been viewed. Repeat 
this until seven sets of ranks have 

TABLE I 

Materials 

A B c D 
I 
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·~ 3 
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been entered for each laboratory, 
then sum the ranks and obtain a 
score for each laboratory. If this 
process is repeated a large number 
of times, one will have an idea of 
how the scores are distributed. 

With the aid of a computer, this 
process was repeated 1,000 times, 
giving 1,000 sets of 15 laboratory 
scores, or 15,000 scores. Examina­
tion of these scores showed that 
there were 26 scores of 23 or less 
and 24 scores of 89 or more, mak­
ing a total of 50 lying outside the 
limits 23 to 89. These 50 make 
about one-third of 1 % of the 
15,000. There are 15 scores (lab­
oratories) in any particular test, so 
that the chance of a given test 
having one of these extreme scores 
is 15 times 1h % , or 5 % . 

Remember that the basic assump­
tion was that no laboratory was 
different from any other, and that 
differences in scores were due to 
random variation. Thus, we can 
say that if there is no underlying 
reason for laboratories to differ, 
then 5 % of the time we will have 
scores outside the range 23 to 89. 
Thus if one uses the limits 23 and 
89 as a criterion for judging the 
laboratories, and there is no dif­
ference between laboratories, one 
will record a difference (i.e., make 
a mistake) one time in twenty. 

Using these criteria, from table 
2 one can conclude that labora­
tory 4 has results which are not 
due to random variation, i.e., there 
is some physical reason for labora­
tory 4's high score. 

The numbers 23 and 89 are 
called the 5 % limits in the case of 
15 laboratories and seven materials. 
It would be convenient to have 
similar limits for various combina­
tions of materials and laboratories 
(table 3). 

If, more generally, we have L 
laboratories and M materials, then 
the sum of the ranks for any lab­
oratory is (1 + 2 + 3 + ... +L), 
or L(L + 1) / 2, and the mean sum 
of the rank for each laboratory is 
the sum of the ranks divided by 
L, i.e., (L + 1) / 2; thus, the mean 
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score for the sum of M rankings is 
M(L + 1) / 2. 

When no real differences exist 
between the laboratories, the ex­
pected sum of squares about the 
mean, of the scores for M rankings 
is 

s2 L {. [L + 1]}2 ML 1- ~-~ 
i ~ l 2 (I) 

ML(L 2 - l) 
12 

Denote by S12 the actual sum of 
squares about the mean of the 
scores for each laboratory. Fried­
man (1937) has shown that 

(L - l) (2) 

is distributed approximately as a 
x2 variate with L - 1 degrees of 
freedom. 

If there are no differences be­
tween laboratories, then S12 I S' 
should be close to unity, and if 
differences do exist, S12/ S' would be 
greater than unity. Thus, we com­
pare x'L-1 to the x' variate with 
L - 1 degrees of freedom and re­
ject the hypothesis that no real dif­
ferences exist for large values of 
' X TA • 

TABLE 2 

From the figures in table 2, S' 
= 1960, s12 = 3030, x'L--i = x'i. = 
21.56. Since the 90% limit for a 
x' variate with 14 degrees of free­
dom is 21.06, we reject the hy­
pothesis of all laboratories being 
the same at the 10 % level. 

In summary, formula (2) pro­
vides a quick method for evalu­
ating the data to see whether dif­
ferences between laboratories exist. 
To find which is the offending lab­
oratory, use of table 3 is required. 

Example 2: Suppose that a num­
ber of volunteers is required for a 
breathing experiment, and that for 
some reason or other it is neces­
sary to accept only those whose 
duration of apnea is average; 
neither too long nor too short. 

If there are 14 volunteers, one 
might check the duration of apnea 
three times each. Thus measure the 
duration of apnea for each of the 
14, rank them giving the one with 
the longest duration the rank 1, the 
next 2, and so on until the volun­
teer with the shortest duration is 
given the rank 14. Repeat this three 
times and sum the ranks for each 
volunteer. Table 3, with the verti­
cal column at 14, and the horizon­
tal at 3, gives the 5% limits, 4 and 

Laboratory Materials Analyzed 

A B c D E F G Sum 

1 8.0 4.0 11.5 12.0 1.5 1.0 13.5 51.5 
2 15.0 15 . 0 1.0 4.0 15.0 15.0 1.0 66 .6 
3 7.0 9.0 15.0 6.0 5.0 10.0 2.0 54.0 
4 14.0 13.0 14.0 15.0 13.0 14.0 9.0 92.0 
5 11.5 8.0 8.5 3.0 5.0 8.0 3.0 47.0 
6 6.0 2.5 6.5 13.5 9.5 11.0 10. 0 59.0 
7 3.0 5.5 13.0 1.0 7 .. 0 13.0 12.0 54.5 
8 11.5 10.0 11.5 13.5 14.0 12.0 5.0 77.5 
9 4.5 7.0 4.5 8.5 5.0 5.0 13.5 48. 0 

10 2.0 2.5 8.5 2.0 3.0 6.5 11.0 35.5 
11 4.5 11.5 3.0 10.0 1.5 2.0 15.0 47.5 
12 1.0 1.0 2.0 6,0 9.5 3.0 7.0 29.5 
13 9.0 5.5 4.5 11.0 8.0 4.0 6.0 48.0 
14 11.5 14.0 10.0 8.5 11.0 6.5 4.0 65.5 
15 11.5 11.5 6.5 6.0 12.0 9.0 8.0 64.5 

Average= 56 
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41. Thus if any volunteer's score 
falls outside of these limits, reject 
him as being non-average. 

Example 3: If, instead of testing 
for a difference between labora­
tories, one wishes to test for a dif­
ference between for example 10 
chemical analyzing machines using 
six different substances, then the 
routine is as before. Rank each 
substance by machine and add the 
totals for each machine. From 
table 3, the 5% limits are 14 and 
52. 

TABLE 3 

Discussion 

It would appear more profitable 
at first glance, to leave the labora­
tory analysis results in their raw 
state, rather than ranking them, 
and to perform a straightforward 
ANOV A. However, such an analy­
sis would have to assume the un­
derlying normality of the data and 
would at the same time not have 
the advantages of simplicity inher­
ent in this design. This ranking 
test appears to be a useful tool for 

Approximate 5% Probability Limits for Ranking Scores 

Number of Number of Materials 
Laboratories 
Participating 3 4 5 6 7 8 9 10 

3 4 5 7 8 10 12 13 
12 15 17 20 22 24 27 

4 4 6 8 10 12 14 16 
16 19 22 25 28 31 34 

5 5 7 9 11 13 16 18 
19 23 27 31 35 38 42 

6 3 5 7 10 12 15 18 21 
18 23 28 32 37 41 45 49 

7 3 5 8 11 14 17 20 23 
21 27 32 37 42 47 52 57 

8 3 6 9 12 15 18 22 25 
24 30 36 42 48 54 59 65 

9 3 6 9 13 16 20 24 27 
27 34 41 47 54 60 66 73 

10 4 7 10 14 17 21 26 30 
29 37 45 52 60 67 73 80 

11 4 7 11 15 19 23 27 32 
32 41 49 57 65 73 81 88 

12 4 7 11 15 20 24 29 34 
35 45 54 63 71 80 88 96 

13 4 8 12 16 21 26 31 36 
38 48 58 68 77 86 95 104 

14 4 8 12 17 22 27 33 38 
41 52 63 73 83 93 102 112 

15 4 8 13 18 23 29 35 41 
44 56 67 78 89 99 109 119 
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the statistically unsophisticated to 
determine departures from "aver­
ageness." 
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11 12 13 14 15 

15 17 19 20 22 
29 31 33 36 38 

18 20 22 24 26 
37 40 43 46 49 

21 23 26 28 31 
45 49 52 56 59 

23 26 29 32 35 
54 58 62 66 70 

26 29 32 36 39 
62 67 72 76 81 

29 32 36 39 43 
70 76 81 87 92 

31 35 39 43 47 
79 85 91 97 103 

34 38 43 47 51 
87 94 100 107 114 

36 41 46 51 55 
96 103 110 117 125 

39 44 49 54 59 
104 112 120 128 136 

42 47 52 58 63 
112 121 130 138 147 

44 50 56 61 67 
121 130 139 149 158 

47 53 59 65 71 
129 139 149 159 169 


