Evolutionary relationships in Afro-Malagasy Schefflera (Araliaceae) based on nuclear and plastid markers

Morgan Gostel
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

Part of the Biology Commons

© The Author

Downloaded from
https://scholarscompass.vcu.edu/etd/122

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
EVOLUTIONARY RELATIONSHIPS IN AFRO-MALAGASY SCHEFFLERA
(ARALIACEAE) BASED ON NUCLEAR AND PLASTID MARKERS

A thesis submitted in partial fulfillment of the requirements for the degree of M.S. Biology at Virginia Commonwealth University.

by

MORGAN ROBERT GOSTEL
B.S. Biology, Virginia Commonwealth University, 2008

Director: DR. GREGORY M. PLUNKETT
AFFILIATE RESEARCH PROFESSOR, DEPARTMENT OF BIOLOGY, VIRGINIA COMMONWEALTH UNIVERSITY AND DIRECTOR, CULLMAN PROGRAM FOR MOLECULAR SYSTEMATICS, THE NEW YORK BOTANICAL GARDEN

Co-Director: DR. RODNEY J. DYER
ASSOCIATE PROFESSOR, DEPARTMENT OF BIOLOGY

Virginia Commonwealth University
Richmond, Virginia
July 2010
Acknowledgements

I have been tremendously fortunate in my life to be taught by truly gifted teachers – assets that are simultaneously the most important and undervalued in our world. I would like to extend my deepest gratitude to my friend and advisor, Dr. Gregory M. Plunke tt, who has taught me that patience and diligence together with enthusiasm are necessary to pursue what we are most passionate about and who has provided me with the most exciting opportunities in my life. Thanks also to Dr. Rodney J. Dyer who was kind enough to offer me a good home in his lab here at VCU which provided me with the workspace I needed to complete this project and good laughter and spirits. I also thank the rest of my committee, Dr. James M. Turbeville and Dr. David J. Edwards for their time and assistance throughout this thesis. Special thanks go to Dr. Porter P. Lowry II of the Missouri Botanical Garden for sharing his expertise in Araliaceae and the flora of Madagascar in general throughout this project while in the herbarium in Paris, during fieldwork in Madagascar, and remotely via telephone or email and also for providing his home for lodging during my work in Paris. Additional thanks to Dr. Antoine N. Nicolas for sharing his laboratory expertise and his assistance in the lab. I would also like to thank Bernard J. De Villiers from the University of Johannesburg for providing me with African materials and Carlos Rodrigues at the Campus Universitaire de Jussieu in Paris for his assistance with herbarium materials at the Muséé Nationale d’Histoire Naturelle. Thanks to Missouri Botanical Garden employees in Madagascar for their assistance in field collections, including Richard Razakamalala, Charles Rakotovao, Desiré Randrianasolo, Patrice Andrianjafy, Roger Bernard, Ornella, Jaqueline, and Roger. Institutional thanks to the New York Botanical Garden, the Missouri Botanical Garden, the Muséé Nationale d’Histoire Naturelle in Paris, the Jardin
Botanique Nationale de Belgique, and the National Science Foundation for funding. Finally, I would like to thank my friends and family for their continuing love and support.
Table of Contents

Acknowledgements.. ii

List of Tables.. v

List of Figures... vi

Abstract .. 1

Introduction .. 3

Materials and Methods.. 10

Results .. 14

Discussion ... 18

Literature Cited... 28

Tables .. 34

Figures .. 40

Vita .. 66
List of Tables

Table 1: Species used for DNA samples used in this study, including geographic range and voucher information.. 34

Table 2: Oligonucleotide primers used for PCR amplification and DNA sequencing........ 39
List of Figures

Figure Legends: ..40

Figure 1: The strict consensus of 51,600 trees resulting from the maximum parsimony (MP) analysis of 123 sequences from the nuclear ETS rDNA spacer. Tree length = 279 steps, CI = 0.675, RI = 0.954. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. Parsimony bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<” ..45

Figure 2: The strict consensus of 96,600 trees resulting from the maximum parsimony (MP) analysis of 123 sequences from the nuclear ITS rDNA spacer. Tree length = 271 steps, CI = 0.708, RI = 0.959. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. Parsimony bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<” ..46

Figure 3: The strict consensus of 100,000 trees resulting from the maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers. Tree length = 565 steps, CI = 0.665, and RI = 0.951. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. Parsimony bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<” ..47

Figure 4: The strict consensus of 87,700 trees resulting from the maximum parsimony (MP) analysis of 123 sequences from the combined plastid markers, trnK-rps16, rpl32-trnL, and ndhF-rpl32. Tree length = 655 steps, CI = 0.612, RI = 0.918. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. Parsimony bootstrap percentages are
provided above the branches; bootstrap values less than 50% are recorded as “<”.

Gray arrows indicate specimens whose placement has moved considerably from other analyses.

Figure 5: The strict consensus of 94,200 trees resulting from the maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers and combined plastid markers, \textit{trnK-rps16}, \textit{rpl32-trnL}, and \textit{ndhF-rpl32}. Tree length = 1,238 steps, CI = 0.608, RI = 0.929. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. Parsimony bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Figure 6: The best tree (log likelihood = –2,279.056) based on maximum likelihood (ML) analysis of 123 sequences from the nuclear ETS rDNA spacer. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. ML bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Figure 7: The best tree (log likelihood = –2,612.7117) based on maximum likelihood (ML) analysis of 123 sequences from the nuclear ITS rDNA spacer. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. ML bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Figure 8: The best tree (log likelihood = –5,075.1868) based on maximum likelihood (ML) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. ML bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Figure 9: The best tree (log likelihood = –8,530.1115) based on maximum likelihood (ML) analysis of 123 sequences from the combined plastid markers, \textit{trnK-rps16}, \textit{rpl32-trnL}, and \textit{ndhF-}
Figure 10: The best tree (log likelihood = –14,328.1040) based on maximum likelihood (ML) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers and combined plastid markers, trnK-rps16, rpl32-trnL, and ndhF-rpl32. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. ML bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Figure 11: The majority-rule tree based on the Bayesian-inference (BI) analysis of 123 sequences from the nuclear ETS rDNA spacer. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. BI posterior probabilities are provided above the branches.

Figure 12: The majority-rule tree based on the Bayesian-inference (BI) analysis of 123 sequences from the nuclear ITS rDNA spacer. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. BI posterior probabilities are provided above the branches.

Figure 13: The majority-rule tree based on the Bayesian-inference (BI) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. BI posterior probabilities are provided above the branches.

Figure 14: The majority-rule tree based on the Bayesian-inference (BI) analysis of 123 sequences from the combined plastid markers, trnK-rps16, rpl32-trnL, and ndhF-rpl32. Brackets to the
right of taxon labels correspond to informal clade names discussed in the text. BI posterior probabilities are provided above the branches. Gray arrows indicate specimens whose placement has moved considerably from other analyses.

Figure 15: The majority-rule tree based on the Bayesian-inference (BI) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers and combined plastid markers, *trnK-rps16*, *rpl32-trnL*, and *ndhF-rpl32*. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. BI posterior probabilities are provided above the branches.

Figure 16: The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with geographic locality mapped onto branches using MacClade (version 4.08). DIVA (version 1.1a) output is provided above branches to indicate ancestry for divergence nodes. “A” corresponds to continental Africa and “B” corresponds to Madagascar.

Figure 17: The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with carpel number states mapped onto branches.

Figure 18: The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with leaf composition character states mapped onto branches.

Figure 19: The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with inflorescence arrangement states mapped onto branches.
Figure 20: The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with pedicel lengths mapped onto branches..64

Figure 21: The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with bract persistence mapped onto branches..65
Abstract

EVOLUTIONARY RELATIONSHIPS IN AFRO-MALAGASY SCHEFFLERA (ARALIACEAE) BASED ON NUCLEAR AND PLASTID MARKERS

By Morgan Robert Gostel, M.S. Biology

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2010.

Thesis Director: Dr. Gregory M. Plunkett, Affiliate Research Professor, Department of Biology and Director, Cullman Program for Molecular Systematics, The New York Botanical Garden
Thesis Co-Director: Dr. Rodney J. Dyer, Associate Professor, Department of Biology

The genus Schefflera is the largest in Araliaceae, with approximately 900 species. Recent studies have shown that Schefflera is polyphyletic and represents no fewer than five distinct clades, each corresponding to a specific geographic region including Asia, continental Africa and Madagascar, Melanesia, the Neotropics, and a small clade distributed throughout several islands in the insular Pacific Ocean. The Afro-Malagasy clade contains nearly 50 species distributed throughout tropical, sub-Saharan Africa, Madagascar, the Comoros, and the Seychelles islands. Previous studies have suggested that this group is monophyletic, identifying two smaller subclades within Afro-Malagasy Schefflera corresponding roughly to informal groups identified as “Meiopanax” and “Sciodaphyllum” on the basis of morphology. Using sequence data from nuclear rDNA spacers and plastid markers derived from 32 of the 48 currently circumscribed species of Afro-Malagasy Schefflera, this study tested the monophyly of Afro-Malagasy Schefflera and of each of its two proposed subclades. Trees based on this molecular data were used to examine patterns of morphological evolution and biogeography among species in the clade. Results support the monophyly of Afro-Malagasy Schefflera and both subclades, which
correspond closely to “Meiopanax” and “Sciodaphyllum” which are herein referred to as *Neocussonia* and *Astropanax*, respectively. Additional interspecific relationships were examined, which provides evidence for hybridization among several species. *Schefflera myriantha*, the most widely distributed species of Afro-Malagasy *Schefflera*, is paraphyletic with respect to two other species, *S. humblotiana* and *S. monophylla*. Many morphological features historically used to distinguish species of Afro-Malagasy *Schefflera* appear to be evolutionarily labile, with a history of gains and losses (e.g., reduction in leaflet number, which occurs independently in both subclades). Biogeographic analyses suggest an African ancestry for the entire Afro-Malagasy *Schefflera* clade, and for both subclades, with two independent divergence events to Madagascar.
INTRODUCTION

Taxonomic History. The genus *Schefflera* represents the most speciose of the 41 genera currently recognized in the angiosperm family Araliaceae (Frodin and Govaerts 2003). Current estimates of species diversity in Araliaceae indicate greater than 1,600 species, with *Schefflera* comprising at least half of those (Plunkett et al. 2005). The taxonomic history of *Schefflera* dates back to the type collection of *S. digitata*, an endemic of New Zealand, from Forster & Forster (1775). Since its original description, *Schefflera* has been subject to a turbulent taxonomic history. The generic definition has been modified several times, primarily to place emphasis on different morphological features and often to include (or “lump”) previously distinct genera that share morphological characteristics. The early efforts to broaden the circumscription of the genus were undertaken by Baillon (1878, 1879), Harms (1894-1897) and Viguier (1906, 1909). More recently, similar approaches have been undertaken by Frodin (1975), who greatly expanded the genus to include all woody araliads having palmately compound leaves, ligulate stipules, and valvate petal aestivation, while lacking armaments and articulated pedicels (Frodin 1975). Since its implementation, this most recent definition of *Schefflera* has resulted in explosive growth of the genus, due in large part to inclusion of segregate genera and supplemented by focused studies in the field and herbaria.

Molecular phylogenetic studies of *Schefflera* have advanced the understanding of this complex genus. Recent, phylogenetic analyses of Araliaceae and, more specifically, *Schefflera* have uncovered extensive polyphyly in the genus (Plunkett et al. 2004, 2005). Investigations by Plunkett et al. (2005) identified five large, distinct clades of *Schefflera*, distributed across the phylogenetic tree of Araliaceae. These five clades correspond strongly to particular geographic areas, and have been informally named Asian *Schefflera*, Neotropical *Schefflera*, Melanesian (or
Pacific) *Schefflera*, Afro-Malagasy *Schefflera*, and *Schefflera* sensu stricto (Plunkett et al. 2005). Reconstruction of these relationships was based on a representative but somewhat limited sampling of species from throughout the genus designed to test the monophyly of *Schefflera*, to identify subclades, and, once identified, to initiate more extensive studies of relationships within each clade. To that end, several research projects focused on recircumscription of these clades are currently under study (e.g., Melanesian and Neotropical *Schefflera*). The goal of the present study is to clarify relationships within the Afro-Malagasy *Schefflera* clade.

Evidence from the most recent studies of *Schefflera* (Plunkett et al. 2005) suggest that the Afro-Malagasy clade is part of a large basal polytomy in Araliaceae. Eight additional small lineages have also been placed in this basal polytomy, and include: *Seemannaralia + Cussonia*, *Cheirodendron + Raukaua, Schefflera* sensu stricto, *Osmoxylon, Harmsiopanax, Astrotricha, Cephalaralia*, and *Motherwellia* (Plunkett et al. 2005), together with three much larger clades (*Aralia-Panax, the Polyscias-Pseudopanax clade, and the Asian Palmate clade*). One of the smaller clades, comprising *Cussonia* and the monotypic *Seemannaralia*, is endemic to Africa. At present, a phylogenetic study is underway for *Cussonia*, a genus of approximately 20 species (De Villiers and van Wyk 2006; De Villiers unpublished), but resolution of Afro-Malagasy *Schefflera* relative to other clades in the basal polytomy is beyond the scope of this study, which is focused exclusively on relationships within the clade itself.

The early taxonomic history of Afro-Malagasy *Schefflera* dates to the 19th Century, to Seemann’s (1865) study, which initially described African collections in the genera *Astropanax* and *Sciadophyllum*. It was not until the end of the 19th Century that Harms (1894) began placing African araliads in *Schefflera* based on an expanded definition that encompassed the morphological features of several segregate genera. Much later, in the mid-20th Century,
Bernardi and Bamps revisited the African and Malagasy species of this genus. Bernardi’s (1969) work focused on endemics from Madagascar and the nearby Comoro islands. His treatment of the genus described three new species as well as two new varieties of Schefflera and moved ten other species to Schefflera from Cussonia. Two species (S. umbellifera and S. bojeri) had been previously assigned to Schefflera by Baillon (1878) and Viguier (1906), respectively. By contrast, Bamps’ (1974) study of Schefflera focused exclusively on representatives from continental Africa. In Bamps’ work, two new species were described, adding to the two already recognized in Schefflera. Together, these studies resulted in the recognition of a total of 29 species of Afro-Malagasy Schefflera. It is from this foundation that the contemporary systematic studies of Afro-Malagasy Schefflera now emerge. The past three decades have brought the number of hypothesized species of Afro-Malagasy Schefflera to 48 according to Lowry (pers. comm.).

Presently, Frodin (in Plunkett et al. 2005) places the species of Schefflera from Africa and Madagascar within two subgenera on the basis of morphological characteristics, informally named “Meiopanax” and “Sciodaphyllum”. By contrast, Bernardi (1969) identified three series of Malagasy Schefflera, namely Racemosae, Myrianthae, and Anticipes. The nine representatives sampled in Plunkett et al. (2005) provided evidence for two subgroups, but this sampling was too limited to draw more detailed conclusions. The first clade corresponds closely with Frodin’s “Meiopanax” group, which is here referred to as Neocussonia based on a genus recognized by Hutchinson (1967) for Malagasy species formerly placed in Cussonia (Schefflera bojeri, S. monophylla, and S. myriantha) and one from Africa (S. umbellifera). The second clade corresponds to Frodin’s widespread “Sciodaphyllum” group, which he recognized on the basis of a “generalized” or “unspecialized” morphology. However, “Sciodaphyllum” itself is
polyphyletic and the type species belongs to another clade (Neotropical *Schefflera*), therefore species of Afro-Malagasy *Schefflera* belonging to this group are referred to as *Astropanax* based on a generic group established by Seemann (1865). Currently, 32 species are recognized in the *Neocussonia* clade, while 16 have been placed in *Astropanax* (Lowry, pers. comm.).

Geography. The geographic distribution of these species raises questions regarding the origin and diversification of Afro-Malagasy *Schefflera*. Madagascar, the fourth largest island in the world, is the primary center of diversity of Afro-Malagasy *Schefflera*, with 33 of the 48 species. The island is separated from the African continent by the Mozambique Channel and lies approximately 400 km to the east of Mozambique and Tanzania. The Comoros are a small network of islands and islets that lie between Africa and the northern tip of Madagascar, having a single species of *Schefflera* (*S. myriantha*, which is also found in both Madagascar and continental Africa). The Seychelles, another small network of islands located to the north of Madagascar in the Indian Ocean, also has a single species of *Schefflera* (*S. procumbens*). Another 15 species are distributed across the African continent’s sub-Saharan tropics. Both subgroups, *Neocussonia* and *Astropanax*, contain species endemic to both the continent and the islands to the east. *Neocussonia*, however, is more diverse in Madagascar, whereas *Astropanax* is better represented in Africa. The geographic origin of these groups, either in Africa or Madagascar, remains a fundamental question in understanding the diversification in this clade.

Originally part of Gondwanaland, present-day Madagascar, India and the Seychelles are estimated to have separated from Africa between 165 and 175 mya (Besse & Courtillot 1988, Schettinot & Scotese 2005, Ali & Aitchison 2008) and tectonic movement between the two landmasses has been shown to have largely stopped approximately 125 mya (Rabinowitz et al.)
Later separation of India and what now comprises the Seychelles from Madagascar has been dated to roughly 88 mya (Storey et al. 1995). The ability to test hypotheses regarding biogeographic divergence among related plant groups has been facilitated by an abundance of paleomagnetic and geophysical data and has contributed to a growing interest in phytogeography (Schatz 1996, Yuan et al. 2005). Recent molecular phylogenetic reconstruction has provided evidence for both vicariance and dispersal events in the floras endemic to landmasses once a part of Gondwanaland and this has fueled debate regarding patterns of biogeography (Crisp & Cook 2007, Donoghue & Smith 2004, McGlone 2005). Historically, phylogenetic divergence in many elements of the southern hemisphere flora and fauna has been attributed to Gondwanan vicariance, but more recent studies have challenged these conclusions (Sanmartín & Ronquist 2004). In particular, the application of molecular-dating techniques suggests long distance dispersal or a combination of vicariance and dispersal events is often responsible for much of the diversity once attributed to the appearance of geological barriers (Cook & Crisp 2005, Barker et al. 2007, Weeks et al. 2005, Zerega et al. 2005).

Broader phylogenetic connections between species of *Schefflera* from Africa-Madagascar to those species from Malesia and the Pacific can be largely ruled out based on previous studies, which demonstrate that these taxa belong to three unrelated clades (see Plunkett et al. 2005). A better point of comparison within Araliaceae for the biogeography of Afro-Malagasy *Schefflera* can be found in the study of *Polyscias* by Plunkett et al. (2004), which focused on phylogenetic relationships among the species from the Indian Ocean Basin (IOB). IOB *Polyscias* is distributed across a region that includes continental Africa, Madagascar, the Comoros, and the Mascarene islands. Of particular note is one clade identified as the “*Polyscias fulva* group”, representing 10 species endemic to Madagascar (3 spp.), the Comoros (1 sp.) and Africa (6 spp.) (Plunkett &
Lowry 2010, Plunkett et al. 2004). Within the *Polyscias fulva* clade, it was suggested that multiple dispersal events between Africa and Madagascar were likely responsible for its diversity (Plunkett & Lowry 2010); similar hypotheses will be tested in the present study among species of Afro-Malagasy *Schefflera*.

Habit & Morphology. Afro-Malagasy *Schefflera* have been described as trees, shrubs, or lianas, often epiphytic, with some species reaching heights of 30 m (Tennant 1961, Bamps 1974). Historically, Afro-Malagasy *Schefflera* have been identified by a mixture of morphological features including both umbellate and racemose inflorescence arrangement, 2–3, 4–5, or 6–9 carpels, simple or palmately compound leaves, as well as other combinations of leaf and inflorescence characters (Bamps 1979, Bernardi 1980). Many combinations of states for these characters are present in species informally grouped in both *Neocussonia* and *Astropanax*.

Assignment of the morphological character states listed above has, in several cases, failed to reflect reliable species definitions for some taxa in *Astropanax* and *Neocussonia*. Bernardi (1974) noted problems with species delimitations in his treatment of the group, which emphasized leaf shape. In particular, Bernardi noted the great variation in the leaf shape of *Schefflera longipedicellata* not only among distinct specimens, but also in the same individual. Bernardi (1969) also suggested the possibility that hybridization between two Malagasy species, *S. longipedicellata* and *S. monophylla*, may have produced the character states exhibited by *S. staufferana*. A survey of morphological characters among the species of Afro-Malagasy *Schefflera* will help to identify the sources of confusion leading to these ambiguous determinations and may assist in revising species circumscriptions that reflect the full range of variation in each operational taxonomic unit.
Character-state mapping may help to identify morphological features defining subclades and to test whether some character states share a single evolutionary origin (e.g., the reduction of digitately compound to simple leaves) or if these features arose multiple times during the evolutionary history of the clade. A deeper understanding of other character states, even if homoplasious, may prove useful as features for the construction of species-identification keys.

Objectives & Scope. The findings outlined in Plunkett et al. (2005) suggest that the species of Schefflera from Africa and Madagascar form a monophyletic group. The current study employs a greatly expanded sampling of the species from this region to test this finding and to explore further species-level phylogenetic relationships. Previous studies have demonstrated the utility of molecular data in phylogenetic reconstruction among the species and genera of Araliaceae, using multiple molecular markers from both the nuclear (ITS and ETS) and plastid (notably, trnL-trnF) genomes (e.g., Eibl et al. 2001; Plunkett et al. 2004, 2005; Tronchet et al. 2005; Nicolas & Plunkett 2009). A repeated problem in species-level molecular phylogenetics of plants has been the scarcity of informative plastid markers, resulting in poorly resolved trees at this level (Miller et al. 2009). In response to this deficit, recent studies have identified several plastid sequence regions that accumulate mutations rapidly enough to resolve relationships among taxa at the species level in many groups of angiosperms (Shaw et al. 2005, 2007; Miller et al. 2009). Several of these plastid markers were selected as candidates for this study, but three intergenic spacers were ultimately chosen for sequencing across all sampled taxa, trnK-rps16, ndhF-rpl32, and rpl32-trnL. In addition to these three markers, two nuclear spacers (ITS and ETS) have been identified in previous studies that exhibit sufficient variation to help resolve interspecific relationships in Araliaceae (e.g., studies of Polyscias and Meryta; see Eibl et al.
2001, Plunkett & Lowry 2010, Tronchet et al. 2005) and these were also used in the present study. Sequences for all five of these markers were derived from a representative sample of 18 of the 48 currently recognized species of Afro-Malagasy *Schefflera*, with a primary objective to test the presumed monophyly of Afro-Malagasy *Schefflera* under the current system of classification, to explore patterns of interspecific relationships, to test biogeographic hypotheses regarding ancestral origins, and to identify morphological features that can be used in diagnosing subgeneric and interspecific groups of taxa.

Methods & Materials

Sampling. Comprehensive sampling of all 48 species of Afro-Malagasy *Schefflera* was attempted, but the lack of material from 16 species (viz., *Schefflera abyssinica* (Hochst ex. A. Rich) Harms, *S. ambrensis* Lowry ined., *S. decaryi* Lowry ined., *S. gentryi* Lowry ined., *S. evrardii* P. Bamps, *S. hierniana* Harms, *S. kalambatrensis* Lowry ined., *S. lewisiae* Lowry ined., *S. masoalensis*, *S. perieri* Lowry ined., *S. procumbens* (Hemsl.) F. Friedmann, *S. ranomafanensis* Lowry ined., *S. sainteucei* Lowry ined., *S. stuhlmannii* Harms, *S. urostachya* (Engl.) Harms, and *S. weibeliana* Bernardi) resulted in an incomplete but still representative sampling. Of the 16 species left unsampled, ten are currently known only from the type specimen. A total of 160 accessions representing the remaining 32 species were included in this study (see Table 1). Most material was available from fresh field collections, dried on silica gel, but 25 of the 160 samples were derived from older herbarium specimens. Many taxa are represented by multiple specimens to test for monophyly and/or the potential for interspecific hybridization. Outgroup taxa were selected on the basis of relationships observed in previous
studies (i.e., Plunkett et al. 2005) and included species of *Cussonia, Schefflera* sensu stricto, *Osmoxylon, Astrotricha*, and the monotypic *Seemannaralia*.

Extraction, amplification and sequencing. For each accession, total DNA was extracted using the DNeasy Plant extraction kit (QIAGEN Inc.) or a modification of the protocol described by Alexander et al. (2007). Selected DNA regions were amplified using the polymerase chain reaction (PCR) for each accession with a combination of existing and newly developed primers for each spacer (see Table 2 for list of primers). PCR reaction conditions included 0.5 µL of both forward and reverse primers (5 µM), 0.5 µL spermidine (4 mM), 2 µL total DNA, and 5 µL of either the Jumpstart REDTaq ReadyMix (SigmaAldrich) or the GoTaq Green Master Mix (Promega Corp.) Taq polymerase mixes. With the exception of three modifications for *trnK-rps16* and *ndhF-rpl32*, all thermocycler protocols for PCR amplification included a pre-soak step of 4 min at 94°C, followed by 35 cycles of 30 sec at 94°C (denaturation), 1 min at 52°C (annealing), and 50 sec at 72°C (extension), and then a single post-soak of 72°C for 4 min. Due to lower primer melting temperatures, thermocycler protocols were slightly modified for both *ndhF-rpl32* and *trnK-rps16* by lowering the annealing temperature to 48°C (for *trnK-rps16*) or 50°C (for *ndhF-rpl32*) and by extending the annealing time to 90 sec (for both markers). In addition, the extension time was modified to 135 sec for *ndhF-rpl32* due to the increased length of this marker. PCR products were purified using 1.5 µL exonuclease I and 3 µL shrimp alkaline phosphatase per 5 µL of product (USB Corp.). Purified PCR products were sequenced directly using a thermocycler program of 20 sec at 94°C, 15 sec at 55°C, and 1 min at 60°C for 30 cycles. Sequencing reactions were carried out using DYEnamic ET Terminators (GE Healthcare, Inc.) or BigDye Terminator (vers. 3.1, Applied Biosystems Corp.) and then purified using the
MultiScreen384 SEQ filtration system (Millipore Corp.) or the BigDye XTerminator purification kit (Applied Biosystems Corp.). Capillary gel electrophoresis of cleaned products was performed on a MegaBACE 1000 DNA Sequencing System (GE Healthcare, Inc.) or an ABI 3730 DNA Analyzer (Applied Biosystems Corp.) and then assembled and edited using the Sequencher 4.7 software package (Gene Codes Corp.). Sequence alignment was adjusted manually following an initial alignment using ClustalX (Thompson et al. 1997). Informative indels resulting from sequence alignment were coded as binary (presence/absence) characters according to the method provided by Giribet and Wheeler (1999). All sequences will be deposited in the GenBank database.

Phylogenetic Analyses. Three distinct approaches to phylogenetic analysis were used in this study, including maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI). Five separate datasets were used, including (1) ITS, (2) ETS, (3) combined ITS + ETS, (4) the plastid markers (treated together), and (5) a set combining sequences from the two nuclear and three plastid markers. To test for congruence among the separate datasets, the incongruence length difference (ILD) test of Farris et al. (1995) was performed using the partition homogeneity test in PAUP* 4.0b10 (Swofford 2002). Three partitions were established, representing the ITS, ETS, and combined plastid markers. An ILD test was performed comparing all three partitions simultaneously, as well as separate, pairwise ILD tests. For model based approaches (ML & BI), jModelTest (Posada 2008) was used to select the most appropriate model of sequence evolution and to maximize computational accuracy.

Maximum parsimony analyses were performed using PAUP* and a two-step protocol modified from Plunkett et al. (2005). In the first step, a heuristic search of 1,000 replicates was
generated by random, stepwise addition and TBR branch swapping, but saving no more than 100
trees per replicate. The strict consensus from this initial search was then loaded as a topological
constraint for a second heuristic search that was performed following the same protocol as the
first step (1,000 reps, saving 100 trees per replicate) but saving only shortest-length trees that did
not agree with the topological constraint. If no additional shortest-length trees were recovered,
the strict consensus from the first analysis was used as a conservative estimate of phylogenetic
relationships. Bootstrap values were calculated from 1,000 replicates using PAUP*.

The model-based analyses were performed using either GARLI (version 0.96; Zwickl
2006) for ML or MrBayes (version 3.2.1; Huelsenbeck and Ronquist 2001) for BI. ML analyses
were performed applying mostly the default parameters in GARLI and MrBayes, namely the
GTR + Γ + I model using four variable rate categories. For ML analyses, the maximum number
of generations was set to 5,000,000, saving the ML tree with the best score. ML bootstrap values
were also calculated using GARLI (with the same parameters). Bayesian inference used model of
sequence evolution closest to that indicated by jModelTest as selected by the Akaike information
criterion (AIC), with chains run for 10 million generations for the combined nuclear + plastid
dataset and 4 million generations for all other datasets. Markov Chain Monte Carlo (MCMC)
was implemented using four chains, sampling every 1,000 generations.

Morphological character assessment. Morphological data were collected from
specimens deposited at Musée National d’Histoire Naturelle in Paris (P) and the Jardin
Botanique National de Belgique (BR). The following five characters were coded as binary states:
inflorrescence arrangement (0: umbellate, 1: racemose), number of carpels (0: 2–3, 1: 4–5, and 2:
≥ 6), leaf morphology (0: exclusively unifoliolate, 1: 1–3 leaflets, 2: >3 leaflets), pedicel length
(0: absent, 1: 0.1–5mm, 2: ≥ 5mm), and retention of bracts (0: bracts persistent, 1: bracts caducous). Other characters (e.g., bract size and petiole length) were identified as potentially informative, but omitted from formal character analysis due to limited access to herbarium materials. Morphological character states were mapped onto the combined ITS + ETS tree using MacClade version 4.08 (Maddison & Maddison 2005).

DIVA. Biogeographic relationships were explored using DIVA 1.1a (Ronquist 1996, 1997), which assigned ancestral areas to internal nodes on a fully resolved ML phylogeny produced from a reduced sample set (decreasing the number of terminals, but maintaining the basic topology), using two areas of endemism (continental Africa and Madagascar). Presence or absence of taxa in each area of endemism was coded as a binary character.

RESULTS

Sequence characteristics. A total of 160 accessions was sequenced for each of the five DNA spacer regions employed in this study, although four specimens did not amplify for the \textit{ndhF-rpl32} marker and one specimen did not amplify for the \textit{trnK-rps16} marker. After examining the sequences for redundancy, 37 samples were removed because they shared identical sequences with others in the dataset. The remaining 123 accessions were used for phylogenetic analyses. Uncorrected pairwise distances were calculated between all sequences for each molecular marker (treating the three plastid markers separately). Pairwise distances were also calculated for plastid markers using datasets with and without coded gaps.

The length of the ETS sequences ranged from 375 to 449 nucleotides, with a total aligned length of 474 characters (103 of which were parsimony informative). Nucleotide percentages for ETS were A = 17.7%, C = 28.6%, G = 24.5%, and T = 29.1%. Average pairwise distance among
ingroup taxa was 4.1% for ETS sequences, the greatest distance between two ingroup taxa was 9.7% (between *Schefflera goetzenii* 3503 and *S.* “vohimenensis” 2378), while 204 pairwise combinations provided distance values of zero.

The length of the ITS sequences ranged from 594 to 662 nucleotides, with a total aligned length of 675 characters (95 of which were parsimony informative). The nucleotide composition for ITS was A = 21.8%, C = 30.9%, G = 28.8%, and T = 18.5%. Average pairwise distance among ingroup taxa was 2.5% for ITS sequences, the greatest distance between two ingroup taxa was 5.5% (between *Schefflera myriantha* 1498 and *S.* vantsilana 152), while 124 pairwise combinations provided distance values of zero.

Aligned plastid sequences produced fewer parsimony-informative characters relative to the nuclear spacers. The length of the *trnK-rps16* sequences ranged from 818 to 1,099 nucleotides and produced an aligned total of 1,188 nucleotide characters and 6 coded indels (for a total of 36 parsimony-informative characters). Nucleotide percentages for *trnK-rps16* sequences were A = 41.9%, C = 14.9%, G = 14.6%, and T = 28.6%. Average pairwise distance among ingroup taxa was 0.5% for *trnK-rps16* sequences, the greatest distance between two ingroup taxa was 3.8% (between *Schefflera tessmannii* 2107 and *S.* “floretii” 7172), while 1,262 pairwise combinations provided distance values of zero. One specimen (*Schefflera “floretii”* 7160) did not amplify for *trnK-rps16* and this missing data was coded as ambiguous (N).

Length of the *rpl32-trnL* sequences ranged from 664 to 895 nucleotides and an aligned total of 944 nucleotide characters and 4 coded indels (for a total of 47 parsimony-informative characters). Nucleotide percentages for *rpl32-trnL* sequences were A = 35.7%, C = 14.7%, G = 12.5%, and T = 37%. Average pairwise distance among ingroup taxa was 0.6% for *rpl32-trnL* sequences, the greatest distance between two ingroup taxa was 2.5% (between *Schefflera*
monophylla 409 and S. fosbergiana 3337), while 2,016 pairwise combinations provided distance values of zero.

Sequence lengths for ndhF-rpl32 ranged from 779 to 1,250 with a total of 1,389 aligned nucleotide characters and 13 coded indels (for a total of 68 parsimony-informative characters). Nucleotide percentages for ndhF-rpl32 sequences were A = 39.6%, C = 12.6%, G = 12.4%, and T = 35.5%. Average pairwise distance among ingroup taxa was 0.8% for ndhF-rpl32 sequences, the greatest distance between two ingroup taxa was 2.4% (between Schefflera staufferana 7082 and S. myriantha 4988), while 639 pairwise combinations provided distance values of zero. Four specimens did not amplify for ndhF-rpl32 and this missing data was coded as ambiguous (N) (including Schefflera humboltiana 3883, S. stolzii 3577, S. barteri 5208, and S. barteri 16998).

Significant incongruence among the three partitions established in this study could not be rejected based on results of the ILD test (p = 0.01), suggesting that the partitions may not be combinable. Nonetheless, to explore the effects of combining the datasets, all three partitions were concatenated and analyzed simultaneously. The combined ITS + ETS datasets consisted of 1,149 aligned characters, 198 (~17.2%) of which were considered parsimony informative.

MP analysis of ETS sequences produced 51,600 total trees, each of 279 steps (CI = 0.675, RI = 0.954, Fig. 1). MP analysis of the ITS dataset produced 96,600 trees, each of 271 steps (CI = 0.708, RI = 0.959, Fig. 2). The combined ITS + ETS dataset produced a total of 100,000 best trees, each of 565 steps in length (CI = 0.665, RI = 0.951, Fig. 3). The greatest resolution among all datasets in this study was provided by this combined ITS + ETS dataset and for this reason the strict consensus tree from this dataset will be used for most of the discussions and for character-state mapping.
Given the low sequence variation of the three plastid markers (all linked on the non-recombining plastid genome), the three plastid spacers were analyzed together. They yielded a total of 3,521 characters, 168 (≈4.7%) of which were parsimony-informative, including 23 indels that were identified as potentially informative and coded as binary characters in the MP analyses (these indels were omitted from model-based analyses). MP analysis of the combined plastid dataset produced 87,700 best trees, each of 633 steps (CI = 0.612 excluding uninformative characters, RI = 0.918, Fig. 4).

The dataset combining all nuclear (ITS + ETS) and plastid sequences yielded a total of 4,693 characters, 366 (≈7.8%) of which were parsimony informative when coded indels were included. MP analysis of the combined nuclear + plastid dataset resulted in 94,200 best trees, each of 1,238 steps in length (CI = 0.608, RI = 0.929, Fig. 5).

Comparison of the 88 models tested in jModeltest resulted in the selection of the TIM + Γ + I model of sequence evolution based on the AIC. Both model-based approaches (ML and BI) produced the same topology with only minor variation in branch support. Likelihood for the ML trees were –2,279.056 for ETS (Fig. 6), –2,612.7117 for ITS (Fig. 7), –5,075.1868 for combined ITS + ETS (Fig. 8), –8,530.1115 for plastid (Fig. 9), and –14,328.1040 for combined nuclear + plastid markers (Fig. 10). No variation among tree topologies was found across the 10 runs conducted using GARLI for any of the datasets. The trees resulting from the Bayesian analyses were highly similar to the topologies from the ML searches (Fig. 11–15).

Morphological Character Mapping: Results of morphological character state mapping are provided in Figures 16–21. Morphological characters were mapped on to the phylogeny
resulting from the ML analysis of the combined nuclear (ITS + ETS) dataset. No clear patterns of morphological evolution emerge as a result of this character mapping.

DIVA: Results from the DIVA analysis favored a two-dispersal scenario, with continental Africa being assigned as ancestral for both subgroups *Neocussoria* and *Astropanax* (Fig. 16).

DISCUSSION

Afro-Malagasy Schefflera Clade. This study helps to advance the recommendations set forth by Plunkett et al. (2005), whose findings first illustrated extensive polyphyly in the genus *Schefflera* as currently circumscribed. Due to the size and complexity of *Schefflera*, they suggested that recircumscription of the genus should proceed by testing relationships in each of the five geographically distinct clades individually, beginning with in-depth studies of the smaller clades, including Pacific *Schefflera* (approx. 40-50 spp.), Afro-Malagasy *Schefflera* (approx. 48 spp.), and *Schefflera § Schefflera* (8 spp.), and broad surveys of the larger Asian and Neotropical clades (c. 200–400 species each). This paper explores relationships among the African and Malagasy species of *Schefflera* with an enhanced sampling that represents nearly 70% of the species diversity of this clade. This study confirms the monophyly of the species from Africa and Madagascar in a single clade of Afro-Malagasy *Schefflera* and this monophyly is strongly supported (BS = 100%, PP = 1.0). Since the publication of most recent studies of Afro-Malagasy *Schefflera* (Bernardi 1979, Bamps 1974), no fewer than 17 new species have been proposed (Lowry, pers. comm.) and of these, seven new species have been included here. Within the Afro-Malagasy clade, additional interspecific relationships are also evident.
Bernardi’s (1969) treatment of three series (Racemosae, Myrianthae, and Anticipes) is not supported, but Frodin’s (see Plunkett et al. 2005) suggestion that African and Malagasy Schefflera represent two morphologically distinct groups is maintained by the presence of two monophyletic groups corresponding to Frodin’s “Sciodaphyllum” and “Meiopanax” (BS = 100%, PP = 1.0). These groups will be referred to as Astropanax and Neocossonia throughout the rest of this paper. In the discussions below, the infrageneric system developed by Frodin for species belonging to this clade will be used as a point for comparison for results from the current study.

Neocossonia Clade. Phylogenetic reconstruction placed 22 of the 48 species of Afro-Malagasy Schefflera tested in this study in the Neocossonia subclade (Figs. 1–3, 5–8, and 10, BS = 100%, Figs. 11–13 and 15, PP = 1.0). This subclade corresponds closely to the “Meiopanax” group of Baillon (1880) and Frodin (see Plunkett et al. 2005). The generic name Neocossonia was first used by Hutchinson (1967) to describe several species of Schefflera endemic to Madagascar and this name is applied here because it has taxonomic priority over “Meiopananx” at the generic and subgeneric level. Of the species in Neocossonia, only two are African endemics (S. lukwangulensis and S. umbellifera), while the remaining species are all endemic to Madagascar. Resolution among the species in this clade varies by both markers and, in some cases, by analysis type.

Within Neocossonia, two large clades are resolved in most topologies, which are referred to as the “Anticipes” clade and the “Palmate-Vantsilana” clade (Figs. 1–3, 5–8, 10–13, and 15). Both of these clades as well as the remaining, less resolved species in Neocossonia are placed in a large polytomy at the base of the clade, sister to Schefflera umbellifera (Fig. 3, BS = 66% and
Fig. 15, BS = 0.94). In several cases, different samples of the same species are found in more than one subclade, and this pattern (together with other lines of evidence) suggests the possibility of interspecific hybridization.

Schefflera umbellifera is resolved as sister to the rest of *Neocussonnia* in the parsimony trees (Fig. 1, BS = 77%, Fig. 3, BS = 66%, Fig. 6, BS = 62%, Fig. 8, BS = 60%, Fig. 11, PP = 0.69, Fig. 13, BS = 0.81, Fig. 15, BS = 0.94). Morphologically, this species is distinct from others in *Neocussonnia* in its leaflet margins, which are serrated margins rather than entire or crennate. Similarities exist between the umbellate inflorescence in *Schefflera umbellifera*, which has long, narrow axes, and the inflorescences of three other species in *Neocussonnia* (*S. lukwanguensis*, *S. frodiniana*, and *S. rainaliana*). Geographically, *S. umbellifera* is distinct from other species in *Neocussonnia* with the exception of *S. lukwanguensis*, which is also endemic to continental Africa. The two model-based analyses of combined plastid datasets place *S. umbellifera* further within *Neocussonnia* but branch support for this placement is low (Fig. 9, BS = 55% & Fig. 14, PP = 0.71).

The “Palmate-Vantsilana” clade is so named because of the shared tendency of palmately compound leaves among its species together with the inclusion of *S. vantsilana*, whose epithet is also the vernacular Malagasy name for most *Schefflera* species. Within this clade, there are several subclades containing more than one species, which is evident in the clades containing specimens identified as *Schefflera longipedicellata* and *S. vantsilana* as well as those combining both *S. “floretii”* and *S. “vohimenensis”*. A third species, *S. “rabenantoandroi”*, is also found in the “Palmate-Vantsilana” clade with consistently high support (Fig. 3, BS = 86%, Figs. 12, 13, and 15, PP = 1.0). *Schefflera “rabenantoandroi”* has been elevated to the species level by Lowry (pers. comm.) from a variety recognized by Bernardi (*S. vantsilana var. litoralis*) due to its
distinctive morphology (e.g., large palmately compound leaflets, long petiole and retuse leaflet apex) and distribution in low-elevation littoral forests (compared to other species of the “Palmate-Vantsilana” clade, which are typically found at altitudes greater than 1,000 m).

Bayesian inference places the “Palmate-Vantsilana” clade within a larger monophyletic group (Fig. 15, PP = 0.84) comprising subclades containing *S. macerosa* (PP = 1.0) and other specimens identified as *S. longipedicellata* (PP = 1.0).

In assessing the apparent polyphyly of some of the species of the “Palmate-Vantsilana” clade several factors must be considered, including sympatric distributions and overlapping morphological character states. For example, samples of *S. “vohimenensis”* and *S. “floretii”* appear together in two separate clades with low to moderate branch support (Fig. 3, BS = 62%, Fig. 13, PP = 1.0). These two “hypothesized species” are sympatric but were considered distinct because *Schefflera “floretii”* has palmately compound leaves with 3–5 obdeltoid leaflets, whereas *Schefflera “vohimenensis”* has unifoliate or palmately compound leaves with no more than three leaflets, which are larger, more coriaceous, and have different leaf shapes (obovate) than *S. “floretii”*. There are three possible explanations for this polyphyly, (1) hybridization between the two species which may have blurred species distinctions, (2) faulty species circumscriptions that do not correctly capture the full range of character states for each putative species, thus separating them erroneously, or (3) incorrect species identifications for some of the samples included in this study.

Additional polyphyly in the “Palmate-Vantsilana” clade is shown for a subclade including specimens identified as *S. longipedicellata* and *S. vantsilana* (Fig. 3, BS = 68%, Fig. 13, PP = 0.99). All specimens identified as *S. longipedicellata* in this clade come from the same locality, while the specimens identified as *S. vantsilana* cover a much wider geographic range.
Sympatry between the two suggests possible hybridization, or perhaps that the definition for *S. vantsilana* should be expanded to include greater variation in leaflet shape. As currently circumscribed, *S. vantsilana* has larger leaflets than *S. longipedicellata* with a strongly retuse apex and an overall obdeltoid leaf shape.

The other subclade nested within *Neocussonia* is labeled “Anticipes”, a reference to the similarities of this clade to the composition of species comprising Bernardi’s (1974) series of the same name. This clade is not well resolved in MP analyses but morphological features and BI analyses provide moderate to strong support (Fig. 12, PP = 0.96, and Fig. 15, PP = 0.97). Within “Anticipes”, a subclade containing three species, *Schefflera halleana*, *S. favargeri*, and *S. “humbertii”*, is supported in the majority of topologies, with moderate to strong support (Fig. 3, BS = 60%, Fig. 5, BS = 76%, Fig. 13, PP = 0.96, and Fig. 15, PP = 1.0). Elements of this clade are also supported by plastid data (Figs. 4, 9, and 14). In most trees, the “Anticipes” clade includes six additional species, *Schefflera bojeri*, *S. staufferana*, and *S. antoetrensis* (Figs. 3, 8, 10, 12, 13, 15), as well as *S. capuroniana*, *S. moratii*, and *S. andohahelensis* (Figs. 8, 10, 13, 15). The majority of these species (all but *S. bojeri*) share unifoliolate leaves.

Three proposed new species also fall within the “Anticipes” clade, including *Schefflera “humbertii”*, *S. “andohahelensis”*, and *S. “antoetrensis”*. There does not appear to be sufficient evidence to retain *S. “humbertii”* as separate from *S. favargeri* since these two species are both sympatric and not morphologically distinct, but there is strong support for maintaining the two remaining new species in this clade. *Schefflera “andohahelensis”* is the southernmost species in this clade, with a distribution limited to the Vohimena mountain range near Madagascar’s southern coast. This species, along with *S. “antoetrensis”*, produces copious amounts of thick, milky latex when cut. *Schefflera “antoetrensis”* is distinct from *S. “andohahelensis”* in its more
limited range to a single locality much further north near Antoetra in central Madagascar. The original collection for this species came from a single specimen collected by Capuron, which was placed in the morphologically similar S. favargeri, but Capuron’s notation on the specimen regarding the abundance of sap suggested a potential distinction from that species.

The remaining five species in Neocussonia, Schefflera rainaliana, S. frodiniana, S. “purpuristyla”, S. bracteolifera, and S. lukwangulensis, are not well resolved in either the “Anticipes” or “Palmate-Vantsilana” clades. Schefflera rainaliana and S. frodiniana are resolved together in most analyses (Fig. 3, BS = 70%, Fig. 8, BS = 84%, Fig. 13, PP = 1.0). Both S. rainaliana and S. frodiniana have an umbellate inflorescence with long, narrow axes, although S. rainaliana is unifoliolate and S. frodiniana has palmately compound with 3–5 leaflets. Similarly, S. bracteolifera and S. “purpuristyla” are resolved together in many topologies (Fig. 3, BS = 78%, Fig. 8, BS = 87%, Fig. 13, PP = 1.0). The formation of a clade between S. bracteolifera and S. “purpuristyla” is surprising as the two species differ considerably in their morphologies. S. bracteolifera is unifoliolate, while S. “purpuristyla” is palmately compound with 5–7 leaflets.

Astropanax clade. Ten species were placed in the Astropanax clade (Figs. 1–3 and 5–10, BS = 100%, Figs. 11–13 and 15, PP = 1.0) and of these, all but three are endemic to continental Africa. This clade corresponds closely to the African elements of Frodin’s “Sciodaphyllum”, but Plunkett et al. (2005) demonstrated that “Sciodaphyllum” was polyphyletic. Frodin (see Plunkett et al. 2005) recognized the group on the basis of a “generalized” morphology that includes terminal paniculate inflorescences, leaves crowded at the end of stems, limited branching, and non-ruminate endosperm, features shared among many geographically diverse species of Schefflera in Africa, Asia, and the Neotropics and also across many other Araliaceae. Before
being transferred to *Schefflera*, several of these species were placed in the genus *Astropanax* by Seemann (1865). Because the type species of “Sciodaphyllum” is placed among species in the Neotropical *Schefflera*, Afro-Malagasy species of this group are referred to using Seemann’s original *Astropanax*. Of the Afro-Malagasy species that Frodin placed in “Sciodaphyllum”, only *S. moratii* does not fall in the *Astropanax* clade, but is placed instead among the species of the *Neocussonia* clade. This finding is consistent with the morphological characteristics of *S. moratii*, which has a racemose inflorescence arrangement and strictly unifoliolate leaves.

Perhaps most surprising in this clade is the paraphyly of *Schefflera myriantha* with respect to two Malagasy species, *S. monophylla* and *S. humblotiana*. Of these, *S. monophylla* represents the most morphologically diverse species in this clade, but is geographically restricted to Madagascar. Conversely, *S. myriantha* has the broadest geographic range (continental Africa, Comoro islands, and Madagascar) among species of Afro-Malagasy *Schefflera*, but morphologically, the specimens from Africa are nearly indistinguishable from those distributed throughout the Comoros and Madagascar. Both the separate and combined analyses of the nuclear and plastid datasets indicate paraphyly in *S. myriantha* with strong branch support (Fig. 3, BS = 96%, Fig. 8, BS = 95%, Figs. 12–15, PP = 1.0). Lower branch support in plastid and combined nuclear + plastid topologies appears to result from inconsistent placement of a single specimen of *S. monophylla* (Fig. 5, BS = 58%, Fig. 10, BS = 65%). The lack of morphological differences in *S. myriantha* from Africa vs. Madagascar suggests the need for a more comprehensive study of specimens in light of the molecular divergence demonstrated by this study. The morphological distinction between *S. monophylla* and *S. humblotiana* is clear. *Schefflera monophylla*, despite its epithet, is typically not truly unifoliolate, but instead has a large central leaflet with two much smaller lateral leaflets that are sometimes scarcely evident.
but only rarely absent. Morphologically, *S. humblotiana* is the most distinctive of these three species, possessing extremely long, narrow leaflets. Due to the molecular divergence among species belonging to what are labeled the “myriantha-monophylla” and “African myriantha” clades, African *S. myriantha* may warrant recognition as a new species, but this decision must be delayed until specimens from the Comoros (currently lacking) can be included in a formal study.

There is strong support for another clade in *Astropanax* referred to as the “Goetzenii” clade, which includes three species, *Schefflera goetzenii*, *S. barteri*, and *S. tessmannii* (Fig. 5, BS = 96%, Figs. 13 and 15, PP = 1.0). Resolution is poor within the clade, and while there are subclades, they vary in topology across datasets. In some cases, *S. goetzenii* is sister to *S. barteri* and *S. tessmannii* (Fig. 5, BS = 80%), while other trees place specimens of each species in a polytomy (Fig. 3, BS = 90%, Figs. 13 and 15, PP = 1.0). Each of the three species in the “Goetzenii” clade is highly distinct morphologically. *Schefflera goetzenii* has caducous bracts and flowers with six-carpellate ovaries, palmately compound leaves with 6–7 narrowly obovate leaflets and a racemose inflorescence arrangement. Both *S. barteri* and *S. tessmannii* have long, persistent bracts but differ in carpel number (*S. barteri* is 7–9 carpellate, *S. tessmannii* is 5–6 carpellate) and number of leaflets (*S. barteri* has 5–8 leaflets, *S. tessmannii* has 6-8 leaflets), however, *S. barteri* and *S. tessmannii* both share inflorescence arrangement features with *S. goetzenii* with a paniculate-racemose inflorescence. Geographically these species represent a large portion of tropical Africa from western sub-Saharan Africa and São Tomé to east-central sub-Saharan Africa. Poor sampling in this clade is likely attributable to the lack of resolution.

The remaining four species in the *Astropanax* clade form a basal polytomy with the *Schefflera myriantha-S. monophylla* complex and the “Goetzenii” clade, and include *S. volkensii*, *S. mannii*, *S. kivuensis* and *S. stolzii*. Differences in resolution among species belonging to
Astropanax may be due to missing data from ndhF-rpl32 for Schefflera humblotiana, S. stolzii, and two samples of S. barteri. On the basis of morphology (and to some degree geography) several additional species may also belong to Astropanax, but these species (Schefflera abyssinica, S. evrardii, S. hierniana, S. procumbens, S. stuhlmannii, and S. urostachya) were not available for sampling. Despite this limitation, sampling of Astropanax relative to Frodin’s Afro-Malagasy “Sciodaphyllum” resulted in ≈62% species coverage and differed only in the placement of Schefflera “moratii”.

Geography. Results of the DIVA study suggests an African origin for the entire Afro-Malagasy Schefflera clade and an African origin for both the Neocussonia and Astropanax clades (Fig. 16). In Neocussonia, the African species, Schefflera umbellifera, is sister to the remaining members of the clade. A second Neocussonia species, S. lukwangulensis, is also endemic to continental Africa, but its placement in a polytomy renders biogeographic inference equivocal. Two scenarios are possible – either a single divergence from continental Africa to Madagascar or a divergence to Madagascar followed by a secondary dispersal back to Africa. In Astropanax, the ancestral area is continental Africa. A single divergence event in Astropanax appears to have led to the presence of S. humblotiana, S. monophylla and Malagasy representatives of Schefflera myriantha. Conclusions regarding biogeographic hypotheses for the Comoro Islands were not possible due to the unavailability of material representing specimens of S. myriantha from the Comoros.

Morphological patterns. All species in the Neocussonia clade share either 2–3 or 4–5-carpellate ovaries, whereas species in the Astropanax clade share 4–5 or 6 or more carpels (Fig.
A trend towards increases in carpel number is evident in each clade. In *Astropanax* there is a single increase from the ancestral state of 4–5 carpels to 6 or more carpels, but this is restricted to the “Goetzenii” clade. In *Neocossonia*, there are multiple independent increases in carpel number from 2–3 (the ancestral state) to 4–5 carpels in *S. staufferana*, in *S. frodiniana*, and again in *S. moratii*. Palmately compound leaves are ancestral in both *Neocossonia* and *Astropanax*, with reduction in leaflet number arising independently in each clade. There is a single reduction (*S. monophylla*) in *Astropanax* (Fig. 18), but several reductions of leaflet number in the *Neocossonia* clade. There are nine instances of leaflet reduction from plurifoliolate to unifoliolate leaves, and in at least one case what appears to be reduction to simple leaves due to loss of the leaflet articulation between the petiole and the petiolule (*S. antoetrensis*).

Inflorescence structure is highly labile in both *Neocossonia* and *Astropanax* (Fig. 19). Umbellate inflorence arrangement appears ancestral in *Neocossonia*, with racemose inflorescences common among several species. Species in *Astropanax* have a primarily racemose inflorescence arrangement with the large exception found in the “African myriantha” and “myriantha-monophylla” clades. Three species in *Astropanax* (*Schefflera stolzii*, *S. volkensii*, and *S. mannii*) possess spikes, having completely lost the pedicels in their flowers, and this trait is shared with outgroup members in the genus *Cussonia*. Other species in *Astropanax* have longer pedicels, primarily among species of *S. myriantha* and *S. monophylla* (Fig. 20). Species in *Neocossonia* appear to have undergone several reductions in pedicel length, although no species in this clade have completely lost this character. The persistence or loss of bracts in mature inflorescences is also highly labile in both *Neocossonia* and *Astropanax* (Fig. 21).
Conclusions. All phylogenetic trees produced as a result of this study confirm previous findings of monophyly among species of Afro-Malagasy Schefflera (Plunkett et al. 2005). The study of this clade represents part of a larger effort to recircumscribe all five clades that comprise the polyphyletic genus Schefflera, and a parallel effort to recircumscribe Polyscias, the second largest genus in Araliaceae. However, unlike Schefflera, which is polyphyletic, Polyscias is paraphyletic with respect to six other genera, and thus it has been expanded to include all the species from Arthrophyllum, Cuphocarpus, Gastonia, Munroidendron, Reynoldsia, and Tetraplasandra (Plunkett & Lowry 2010, Lowry & Plunkett 2010). By contrast, the polyphyly of Schefflera will ultimately require the recognition of several separate genera. Only the species belonging to the small Schefflera § Schefflera clade (8 spp.) will retain that generic name, while the species belonging to the remaining four clades in Schefflera will require taxonomic transfers to several new or reinstated genera. The task of recircumscribing species belonging to Afro-Malagasy Schefflera could proceed in one of two ways, either recognition of a single genus comprising all species in the clade, or two separate genera comprising species assigned to either Neocussonia or Astropanax.

Future studies should focus on sampling from the 16 species left unsampled here and perhaps a morphometric approach to delimiting species in the Afro-Malagasy Schefflera clade, particularly for difficult species-complexes, including several in the Astropanax clade (e.g., Schefflera humblotiana, S. monophylla, and S. myriantha) and species belonging to the “Palmate-Vantsilana” clade in Neocussonia. The present study provides the foundation for such future work, and makes a considerable contribution to the realignments necessary in both Schefflera sensu lato and Araliaceae.

in the Indian Ocean basin resulted from long distance dispersal and extensive radiation.

Zwickl, D. J. 2006. GARLI. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Austin: University of Texas, unpublished Ph.D. dissertation
Table 1: Species used for DNA samples used in this study, including geographic range and voucher information.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Geographic locality</th>
<th>Source and accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgroups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrotiricha pterocarpa Benth.</td>
<td>Australia</td>
<td>Queensland, Australia Plunkett 1527 (NY)</td>
</tr>
<tr>
<td>Cussonia holstii Harms ex. Engl.</td>
<td>Southern Africa</td>
<td>Tanzania, Lowry 4986 (MO)</td>
</tr>
<tr>
<td>Cussonia paniculata Eckl. & Zeyh.</td>
<td>Southern Africa</td>
<td>South Africa, Phillipson 5263 (MO)</td>
</tr>
<tr>
<td>Cussonia thyrsiflora Thunb.</td>
<td>Southern Africa</td>
<td>South Africa, Phillipson 5110 (MO)</td>
</tr>
<tr>
<td>Osmoxylon pectinatum (Merr.) Phillipson</td>
<td>Taiwan</td>
<td>Green Is., Taiwan Huang 756 (HAST)</td>
</tr>
<tr>
<td>Schefflera digitata J.R. Forst. & G. Forst.</td>
<td>New Zealand</td>
<td>North Island, New Zealand Plunkett 2190 (NY)</td>
</tr>
<tr>
<td>Seemannaralia gerrardii (Seem.) R. Vig.</td>
<td>South Africa</td>
<td>South Africa, Phillipson 5471 (MO)</td>
</tr>
<tr>
<td>Ingroup, Neocussonia subclade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schefflera “andohahelensis” Lowry ined.</td>
<td>Madagascar</td>
<td>Andohahela, Madagascar RBE 1505 (MO)</td>
</tr>
<tr>
<td>Schefflera “antoetrensis” Lowry ined.</td>
<td>Madagascar</td>
<td>Ivorona, Madagascar Lowry 7164 (MO)</td>
</tr>
<tr>
<td>Schefflera “antoetrensis” Lowry ined.</td>
<td>Madagascar</td>
<td>Ivorona, Madagascar Lowry 7169 (MO)</td>
</tr>
<tr>
<td>Schefflera “antoetrensis” Lowry ined.</td>
<td>Madagascar</td>
<td>Ivorona, Madagascar Lowry 7171 (MO)</td>
</tr>
<tr>
<td>Schefflera bojeri (Seem.) R. Vig.</td>
<td>Madagascar</td>
<td>Antoetra, Madagascar Lowry 7088 (MO)</td>
</tr>
<tr>
<td>Schefflera bracteolifera Frodin</td>
<td>Madagascar</td>
<td>Antoetra, Madagascar Lowry 7091 (MO)</td>
</tr>
<tr>
<td>Schefflera bojeri (Seem.) R. Vig.</td>
<td>Madagascar</td>
<td>Fianarantsoa, Madagascar Lowry 5818 (MO)</td>
</tr>
<tr>
<td>Schefflera bojeri (Seem.) R. Vig.</td>
<td>Madagascar</td>
<td>Antsirabe, Madagascar Lowry 7071 (MO)</td>
</tr>
<tr>
<td>Schefflera “floretii” Lowry ined.</td>
<td>Madagascar</td>
<td>Antsirabe, Madagascar Lowry 7109 (MO)</td>
</tr>
<tr>
<td>Schefflera capuroniana (Bernardi) Bernardi</td>
<td>Madagascar</td>
<td>Mahajanga, Madagascar Lowry 5327 (MO)</td>
</tr>
<tr>
<td>Schefflera favargeri Bernardi</td>
<td>Madagascar</td>
<td>Antananarivo, Madagascar Bernardi 11118 (P)</td>
</tr>
<tr>
<td>Schefflera favargeri Bernardi</td>
<td>Madagascar</td>
<td>Ankazobe, Madagascar Plunkett 2328 (MO)</td>
</tr>
<tr>
<td>Schefflera favargeri Bernardi</td>
<td>Madagascar</td>
<td>Ambatovy, Madagascar Gostel 33 (MO)</td>
</tr>
<tr>
<td>Schefflera favargeri Bernardi</td>
<td>Madagascar</td>
<td>Mahajanga, Madagascar Callmander 384 (MO)</td>
</tr>
<tr>
<td>Schefflera favargeri Bernardi</td>
<td>Madagascar</td>
<td>Mahajanga, Madagascar Callmander 444 (MO)</td>
</tr>
<tr>
<td>Schefflera favargeri Bernardi</td>
<td>Madagascar</td>
<td>Antsiranana, Madagascar Ratovoson 476 (MO)</td>
</tr>
<tr>
<td>Schefflera favargeri Bernardi</td>
<td>Madagascar</td>
<td>Mahajanga, Madagascar Lowry 5344A (MO)</td>
</tr>
<tr>
<td>Schefflera favargeri Bernardi</td>
<td>Madagascar</td>
<td>Ivorona, Madagascar Lowry 7160 (MO)</td>
</tr>
<tr>
<td>Schefflera favargeri Bernardi</td>
<td>Madagascar</td>
<td>Ivorona, Madagascar Lowry 7162 (MO)</td>
</tr>
<tr>
<td>Species</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Schefflera fosbergiana (Bernardi) Bernardi</td>
<td>Madagascar</td>
<td></td>
</tr>
<tr>
<td>Schefflera froidiniana Bernardi</td>
<td>Madagascar</td>
<td></td>
</tr>
<tr>
<td>Schefflera haleana Bernardi</td>
<td>Madagascar</td>
<td></td>
</tr>
<tr>
<td>Schefflera “humbertii” Lowry ined.</td>
<td>Madagascar</td>
<td></td>
</tr>
<tr>
<td>Schefflera longipedicellata (Lecomte) Bernardi</td>
<td>Madagascar</td>
<td></td>
</tr>
<tr>
<td>Schefflera lukwangelensis (Tennant) Bernardi</td>
<td>Tanzania</td>
<td></td>
</tr>
<tr>
<td>Schefflera macerosa Bernardi</td>
<td>Madagascar</td>
<td></td>
</tr>
<tr>
<td>Schefflera moratii Bernardi</td>
<td>Madagascar</td>
<td></td>
</tr>
<tr>
<td>Schefflera “purpuristyla” Lowry ined.</td>
<td>Madagascar</td>
<td></td>
</tr>
<tr>
<td>Schefflera “rabenantoandroi” Lowry ined.</td>
<td>Madagascar</td>
<td></td>
</tr>
<tr>
<td>Schefflera rainaliana Bernardi</td>
<td>Madagascar</td>
<td></td>
</tr>
</tbody>
</table>

Additional locations:
- Ivorona, Madagascar: Lowry 7172 (MO)
- Andohahela, Madagascar: RBE 1485 (MO), RBE 1487 (MO), RZK 4558 (MO), RZK 4941 (MO), Schmidt 4322 (MO), RBE 1486 (MO), Lowry 5386 (MO), RBE 1499 (MO), RBE 1509 (MO), RSE 31 (MO), RSE 34 (MO), Callmander 432 (MO), McPherson 14791 (MO), Tolagnaro, Madagascar: Lowry 7148 (MO), Lowry 7149 (MO), McPherson 14791 (MO), Lowry 4444 (MO)
| **Schefflera staufferana** Bernardi | Madagascar | Tolagnaro, Madagascar Lowry 7151 (MO)
| | | Antsiranana, Madagascar McPherson 17219 (MO)
| | | Toamasina, Madagascar Ratovoson 170 (MO)
| | | Ambatovy, Madagascar Gostel 24 (MO)
| | | Ambatovy, Madagascar Gostel 25 (MO)
| | | Ambatovy, Madagascar Gostel 26 (MO)
| | | Antoetra, Madagascar Lowry 7082 (MO)
| | | Southern Africa, Goldblatt 11950 (MO)
| | | Phillipson 5494 (MO)
| **Schefflera umbellifera** (Sond.) Baillon | Southern Africa |
| **Schefflera vantsilana** (Bak.) Bernardi | Madagascar | Toamasina, Madagascar Lowry 6225 (MO)
| | | Toamasina, Madagascar Randrianasolo 152 (MO)
| | | Ambatovy, Madagascar Gostel 32 (MO)
| | | Antoetra, Madagascar Lowry 7103 (MO)
| | | Ivorona, Madagascar Plunkett 2378 (MO)
| | | Bemangedy, Madagascar Lowry 7156 (MO)
| | | Ivorona, Madagascar CR 4710 (MO)
| **Schefflera “vohimenensis”** Lowry ined. | Madagascar |
| | | Ingroup, **Astropanax subclade**
| **Schefflera barteri** (Seem.) Harms | Western sub-Saharan Africa and São Tomé | Cameroon, Etuge 5208 (P)
| | | Gabon, McPherson 16998 (P)
| | | Cameroon, Thomas 6782 (NY)
| **Schefflera goetzenii** Harms | Central and Eastern sub-Saharan Africa | Zimbabwe, Lowry 4807 (MO)
| | | Rwanda, Auquier 3503 (BR)
| | | D.R. Congo, Cephas 358 (BR)
| **Schefflera humblotiana** Drake | Madagascar | Toamasina, Madagascar Schatz 3883 (P)
| **Schefflera kivuensis** P. Bamps | Central sub-Saharan Africa | Belgian Congo, Gutzwiller 2145 (BR)
| **Schefflera mannii** (Hook. f.) Harms | Western sub-Saharan Africa | Equitorial Guinea, Cavalho 4406 (BR)
| | | ?, s.n.?
| **Schefflera monophylla** (Baker) Bernardi | Madagascar | Antsiranana, Madagascar Randrianasolo 409 (MO)
| | | Toamasina, Madagascar Randrianasolo 131 (MO)

37
<table>
<thead>
<tr>
<th>Schefflera myriantha (Baker) Drake</th>
<th>Eastern sub-Saharan Africa, Comoro Islands, & Madagascar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schefflera stolzii Harms</td>
<td>Central-Eastern sub-Saharan Africa</td>
</tr>
<tr>
<td>Schefflera tessmannii Harms</td>
<td>Western sub-Saharan Africa</td>
</tr>
<tr>
<td>Schefflera volkensii (Engl.) Harms</td>
<td>Eastern sub-Saharan Africa</td>
</tr>
<tr>
<td>Schefflera sp.</td>
<td>Madagascar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antoetra, Madagascar</td>
<td>Lowry 7087 (MO)</td>
</tr>
<tr>
<td>Antoetra, Madagascar</td>
<td>Lowry 7097 (MO)</td>
</tr>
<tr>
<td>Ivorona, Madagascar</td>
<td>Lowry 7173 (MO)</td>
</tr>
<tr>
<td>Andohahela, Madagascar</td>
<td>RBE 1492 (MO)</td>
</tr>
<tr>
<td>Tanzania, Lowry</td>
<td>4988 (MO)</td>
</tr>
<tr>
<td>Antananarivo, Madagascar</td>
<td>Lowry 5808 (MO)</td>
</tr>
<tr>
<td>Antananarivo, Madagascar</td>
<td>Lowry 5812 (MO)</td>
</tr>
<tr>
<td>Antananarivo, Madagascar</td>
<td>Lowry 5816 (MO)</td>
</tr>
<tr>
<td>Mahajanga, Madagascar</td>
<td>Lowry 5347 (MO)</td>
</tr>
<tr>
<td>Mahajanga, Madagascar</td>
<td>Lowry 5445 (MO)</td>
</tr>
<tr>
<td>Anjavokely, Madagascar</td>
<td>Lowry 5796 (P)</td>
</tr>
<tr>
<td>Anjavokely, Madagascar</td>
<td>Lowry 5798 (MO)</td>
</tr>
<tr>
<td>Toamasina, Madagascar</td>
<td>Lowry 6117 (MO)</td>
</tr>
<tr>
<td>Tanzania, Mwangelango</td>
<td>501 (MO)</td>
</tr>
<tr>
<td>Rwanda, P. Bamps</td>
<td>3050 (BR)</td>
</tr>
<tr>
<td>Ethiopia, Danish-Ethiopian Exp.</td>
<td>1885 (BR)</td>
</tr>
<tr>
<td>Malawi, Van der Linden L365</td>
<td>(BR)</td>
</tr>
<tr>
<td>Antsiranana, Madagascar</td>
<td>Ratovoson 470 (MO)</td>
</tr>
<tr>
<td>Andohahela, Madagascar</td>
<td>RBE 1498 (MO)</td>
</tr>
<tr>
<td>Gereau 3577 (P)</td>
<td></td>
</tr>
<tr>
<td>Gabon, Reitsma 2107</td>
<td>(P)</td>
</tr>
<tr>
<td>Tanzania, Lowry</td>
<td>4987 (MO)</td>
</tr>
<tr>
<td>Tanzania, Phillipson</td>
<td>5129 (P)</td>
</tr>
<tr>
<td>Makirovana, Madagascar</td>
<td>RD 3332 (MO)</td>
</tr>
<tr>
<td>Makirovana, Madagascar</td>
<td>RD 3333 (MO)</td>
</tr>
<tr>
<td>Makirovana, Madagascar</td>
<td>RD 3334 (MO)</td>
</tr>
<tr>
<td>Makirovana, Madagascar</td>
<td>RD 3335 (MO)</td>
</tr>
<tr>
<td>Makirovana, Madagascar</td>
<td>RD 3336 (MO)</td>
</tr>
<tr>
<td>Marojejy, Madagascar</td>
<td>RD 3342 (MO)</td>
</tr>
<tr>
<td>Marojejy, Madagascar</td>
<td>RD 3344 (MO)</td>
</tr>
<tr>
<td>Marojejy, Madagascar</td>
<td>RD 3345 (MO)</td>
</tr>
<tr>
<td>Marojejy, Madagascar</td>
<td>RD 3347 (MO)</td>
</tr>
<tr>
<td>Marojejy, RD 3348</td>
<td>(MO)</td>
</tr>
</tbody>
</table>
Marojejy, RD 3349 (MO)
Marojejy, RD 3351 (MO)
Marojejy, RD 3352 (MO)
TABLE 2: Oligonucleotide primers used for PCR amplification and DNA sequencing.

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Primer Region</th>
<th>Primer Sequence (5’ – 3’)</th>
<th>Primer Length</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITS5-F</td>
<td>ITS</td>
<td>GGA AGT AAA AGT CGT AAC AAG G</td>
<td>22 bp</td>
<td>White et al., 1990</td>
</tr>
<tr>
<td>C26A-R</td>
<td>ITS</td>
<td>TTT CTT TCT CTC CGC T</td>
<td>16 bp</td>
<td>Wen and Zimmer, 1996</td>
</tr>
<tr>
<td>ETS-400F</td>
<td>ETS</td>
<td>GTT GGT CGG ATC CCT GCT TGT</td>
<td>21 bp</td>
<td>Fiaschi & Plunkett (in press)</td>
</tr>
<tr>
<td>18S-2L (-r)</td>
<td>ETS</td>
<td>TGA CTA CTG GCA GGA TCA ACC AG</td>
<td>23 bp</td>
<td>Linder et al., 2000</td>
</tr>
<tr>
<td>Plastid:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndhF-rpl32-F</td>
<td>ndhF-rpl32 IGS</td>
<td>GCA TAT TGA TAT GTC TGT TCC AT</td>
<td>23 bp</td>
<td>Plunkett (unpubl.)</td>
</tr>
<tr>
<td>ndhF-rpl32-R</td>
<td>ndhF-rpl32 IGS</td>
<td>AAG AGA TTT CCC TAA TGA CAA CGC</td>
<td>24 bp</td>
<td>Plunkett (unpubl.)</td>
</tr>
<tr>
<td>ndhF-rpl32-MF</td>
<td>ndhF-rpl32 IGS</td>
<td>GAG TAC TTG ATT CTG ATA TGA ATC</td>
<td>24 bp</td>
<td>Gostel (unpubl.)</td>
</tr>
<tr>
<td>ndhF-rpl32-MR</td>
<td>ndhF-rpl32 IGS</td>
<td>AGA ATC CGC CGT TAT GCC ATG</td>
<td>22 bp</td>
<td>Gostel (unpubl.)</td>
</tr>
<tr>
<td>trnK-(rps16)_NF</td>
<td>trnK-rps16 IGS</td>
<td>AGC CGA GTA CTC TAC CGT TGA</td>
<td>21 bp</td>
<td>Nicolas (unpubl.)</td>
</tr>
<tr>
<td>(trnK)-rps16_NR</td>
<td>trnK-rps16 IGS</td>
<td>GAG CGG TCT ATC GAA TCG TTG CAA</td>
<td>24 bp</td>
<td>Nicolas (unpubl.)</td>
</tr>
<tr>
<td>trnK-rps16-MF</td>
<td>trnK-rps16 IGS</td>
<td>GCA CGG AAA TAA ATC GAT CCG C</td>
<td>22 bp</td>
<td>Plunkett (unpubl.)</td>
</tr>
<tr>
<td>trnK-rps16-MR</td>
<td>trnK-rps16 IGS</td>
<td>CGT TGG AAC TTT ACT AAC ACG</td>
<td>21 bp</td>
<td>Plunkett (unpubl.)</td>
</tr>
<tr>
<td>rpl32/trnL_F</td>
<td>rpl32-trnL IGS</td>
<td>GCG TTG TCA TTA GGG AAA TCT CTT</td>
<td>24 bp</td>
<td>??</td>
</tr>
<tr>
<td>rpl32/trnL_R</td>
<td>rpl32-trnL IGS</td>
<td>GCT TCC TAA GAG CAG CGT GTC T</td>
<td>22 bp</td>
<td>??</td>
</tr>
<tr>
<td>rpl32-trnL MF</td>
<td>rpl32-trnL IGS</td>
<td>CTA TCT CTA TAT CTA TAG AAG GGC AAA</td>
<td>27 bp</td>
<td>Gostel (unpubl.)</td>
</tr>
<tr>
<td>rpl32-trnL MR</td>
<td>rpl32-trnL IGS</td>
<td>TGA TTG GGT TGA AAG CAG GAG ATA TAT GGG AGA</td>
<td>38 bp</td>
<td>Gostel (unpubl.)</td>
</tr>
</tbody>
</table>
FIGURE LEGENDS

Fig. 1. The strict consensus of 51,600 trees resulting from the maximum parsimony (MP) analysis of 123 sequences from the nuclear ETS rDNA spacer. Tree length = 279 steps, CI = 0.675, RI = 0.954. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. Parsimony bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Fig. 2. The strict consensus of 96,600 trees resulting from the maximum parsimony (MP) analysis of 123 sequences from the nuclear ITS rDNA spacer. Tree length = 271 steps, CI = 0.708, RI = 0.959. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. Parsimony bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Fig. 3. The strict consensus of 100,000 trees resulting from the maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers. Tree length = 565 steps, CI = 0.665, and RI = 0.951. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. Parsimony bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Fig. 4. The strict consensus of 87,700 trees resulting from the maximum parsimony (MP) analysis of 123 sequences from the combined plastid markers, *trnK-rps16, rpl32-trnL*, and *ndhF-rpl32*. Tree length = 655 steps, CI = 0.612, RI = 0.918. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. Parsimony bootstrap percentages are
provided above the branches; bootstrap values less than 50% are recorded as “<”. Gray arrows indicate specimens whose placement has moved considerably from other analyses.

Fig. 5. The strict consensus of 94,200 trees resulting from the maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers and combined plastid markers, trnK-rps16, rpl32-trnL, and ndhF-rpl32. Tree length = 1,238 steps, CI = 0.608, RI = 0.929. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. Parsimony bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Fig. 6. The best tree (log likelihood = -2,279.056) based on maximum likelihood (ML) analysis of 123 sequences from the nuclear ETS rDNA spacer. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. ML bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Fig. 7. The best tree (log likelihood = -2,612.7117) based on maximum likelihood (ML) analysis of 123 sequences from the nuclear ITS rDNA spacer. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. ML bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Fig. 8. The best tree (log likelihood = -5,075.1868) based on maximum likelihood (ML) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. ML bootstrap
percentages are provided above the branches; bootstrap values less than 50% are recorded as “<”.

Fig. 9. The best tree (log likelihood = –8,530.1115) based on maximum likelihood (ML) analysis of 123 sequences from the combined plastid markers, trnK-rps16, rpl32-trnL, and ndhF-rpl32. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. ML bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<“. Gray arrows indicate specimens whose placement has moved considerably from other analyses.

Fig. 10. The best tree (log likelihood = –14,328.1040) based on maximum likelihood (ML) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers and combined plastid markers, trnK-rps16, rpl32-trnL, and ndhF-rpl32. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. ML bootstrap percentages are provided above the branches; bootstrap values less than 50% are recorded as “<“.

Fig. 11. The majority-rule tree based on the Bayesian-inference (BI) analysis of 123 sequences from the nuclear ETS rDNA spacer. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. BI posterior probabilities are provided above the branches.

Fig. 12. The majority-rule tree based on the Bayesian-inference (BI) analysis of 123 sequences from the nuclear ITS rDNA spacer. Brackets to the right of taxon labels correspond to
informal clade names discussed in the text. BI posterior probabilities are provided above the branches.

Fig. 13. The majority-rule tree based on the Bayesian-inference (BI) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers. Brackets to the right of taxon labels correspond to informal clade names discussed in the text. BI posterior probabilities are provided above the branches.

Fig. 14. The majority-rule tree based on the Bayesian-inference (BI) analysis of 123 sequences from the combined plastid markers, *trnK-rps16, rpl32-trnL,* and *ndhF-rpl32.* Brackets to the right of taxon labels correspond to informal clade names discussed in the text. BI posterior probabilities are provided above the branches. Gray arrows indicate specimens whose placement has moved considerably from other analyses.

Fig. 15. The majority-rule tree based on the Bayesian-inference (BI) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers and combined plastid markers, *trnK-rps16, rpl32-trnL,* and *ndhF-rpl32.* Brackets to the right of taxon labels correspond to informal clade names discussed in the text. BI posterior probabilities are provided above the branches.

Fig. 16. The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with geographic locality mapped onto branches using MacClade (version 4.08). DIVA (version 1.1a) output is provided
above branches to indicate ancestry for divergence nodes. “A” corresponds to continental Africa and “B” corresponds to Madagascar.

Fig. 17. The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with carpel number states mapped onto branches.

Fig. 18. The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with leaf composition character states mapped onto branches.

Fig. 19. The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with inflorescence arrangement states mapped onto branches.

Fig. 20. The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with pedicel lengths mapped onto branches.

Fig. 21. The strict consensus tree resulting from maximum parsimony (MP) analysis of 123 sequences from the combined nuclear ITS + ETS rDNA spacers with bract persistence mapped onto branches.
Figure 2: MP, ITS
Figure 3: MP, Nuclear, combined

Schefflera favargeri 384
Schefflera favargeri 5344
Schefflera favargeri 444
Schefflera sp. with 3339
Schefflera sp. 3332
Schefflera sp. 3334
Schefflera sp. 476
Schefflera "humbertii" 476
Schefflera halleana 4261
Schefflera halleana 3343
Schefflera halleana 3340
Schefflera sp. 3333
Schefflera sp. 3342
Schefflera sp. 3344
Schefflera sp. 3345
Schefflera bojeri 7071
Schefflera bojeri 7109
Schefflera bojeri 6181
Schefflera staufferana 17219
Schefflera staufferana 170
Schefflera "antoeotrensis" 7088
Schefflera "antoeotrensis" 7091
Schefflera staufferana 7082
Schefflera capuroniana 2328
Schefflera capuroniana 11118
Schefflera sp. 3335
Schefflera sp. 3338
Schefflera morati 31
Schefflera morati 54
Schefflera longipedicellata 6264
Schefflera sp. nov. 7169
Schefflera sp. nov. 7171
Schefflera sp. nov. 7164
Schefflera "endohalensis"
Schefflera cf. capuroniana 28
Schefflera staufferana 24
Schefflera staufferana 26
Schefflera longipedicellata 24
Schefflera longipedicellata 23
Schefflera cf. longipedicellata 33
Schefflera vantsilana 6225
Schefflera vantsilana 182
Schefflera vantsilana 32
Schefflera vantsilana 7103
Schefflera "vohimenensis" 2378
Schefflera "floriti" 4841
Schefflera "floriti" 7160
Schefflera "floriti" 7162
Schefflera "floriti" 7172
Schefflera "vohimenensis" 7156
Schefflera "floriti" 4558
Schefflera sp. 4710
Schefflera "raebanaandrol" 7148
Schefflera "raebanaandrol" 7149
Schefflera "floriti" 1485
Schefflera "floriti" 1487
Schefflera longipedicellata 6220
Schefflera longipedicellata 7098
Schefflera longipedicellata 7104
Schefflera longipedicellata 6153
Schefflera sp. 7185
Schefflera macerata 1699
Schefflera macerata 1696
Schefflera macerata 3347
Schefflera macerata 3352
Schefflera sp. 3351
Schefflera fossbergiana 4322
Schefflera fossbergiana 3350
Schefflera cf. fossbergiana 3337
Schefflera rainallana 4444
Schefflera rainallana 14791
Schefflera rainallana 7151
Schefflera frondiniana
Schefflera "purpurista"
Schefflera bracteolifera
Schefflera lukeanguniensis
Schefflera umbrellifera 11959
Schefflera umbrellifera 3594
Schefflera myrianthia 5347
Schefflera myrianthia 5445
Schefflera myrianthia 470
Schefflera myrianthia 5796
Schefflera myrianthia 5808
Schefflera myrianthia 5798
Schefflera myrianthia 5810
Schefflera myrianthia 5812
Schefflera cf. myrianthia 6117
Schefflera humboldtiana
Schefflera monophylla 7087
Schefflera monophylla 7097
Schefflera monophylla 7173
Schefflera monophylla 1492
Schefflera monophylla 409
Schefflera sp. 3348
Schefflera monophylla 131
Schefflera myrianthia 1498
Schefflera myrianthia 501
Schefflera myrianthia 3505
Schefflera myrianthia 4988
Schefflera myrianthia 1855
Schefflera myrianthia L. 365
Schefflera goetzenii 398
Schefflera fessmannii
Schefflera barteri 5208
Schefflera barteri 16998
Schefflera barteri 6752
Schefflera goetzenii 4807
Schefflera goetzenii 3593
Schefflera volkensii 5128
Schefflera volkensii 4987
Schefflera manni s.n.
Schefflera manni 4406
Schefflera kivensis
Schefflera stolzii
Cussonia lyrata clade
Cussonia paniculata
Cussonia holzlii
Seemannaralla gerrardii
Astrotricha pterocarpa
Osmoxylon pectinatum
Schefflera digitata
Figure 5: MP, Nuclear + Plastid, combined
Figure 6: ML, ETS

Schefflera sp. 3333
Schefflera favargeri 476
Schefflera sp. 3332
Schefflera “humbari”
Schefflera halleana 3343
Schefflera halleana 3349
Schefflera sp. 3344
Schefflera favargeri 444
Schefflera favargeri 384
Schefflera favargeri 5344a
Schefflera sp. 3342
Schefflera halleana 4261
Schefflera sp. 3345
Schefflera cf. halleana 3339
Schefflera sp. 3333
Schefflera “purpuristyla”
Schefflera bracteolifera
Schefflera “antoetrensis” 7068
Schefflera “antoetrensis” 7091
Schefflera staufferana 170
Schefflera sp. 3349
Schefflera longipedicellata 6153
Schefflera cf. staufferana 25
Schefflera longipedicellata 7098
Schefflera longipedicellata 7104
Schefflera longipedicellata 6220
Schefflera staufferana 17219
Schefflera staufferana 7082
Schefflera sp. nov. 7171
Schefflera froidiniana
59 Schefflera sp. 3336
Schefflera capuroniana 2328
Schefflera capuroniana 11118
Schefflera lukwangulensis
Schefflera longipedicellata 6264
59 Schefflera rainalliana 14791
Schefflera rainalliana 4444
Schefflera rainalliana 7151
61 Schefflera maceresa 1499
Schefflera maceresa 1599
66 Schefflera “floreti” 4941
66 Schefflera “vohimenensis” 2378
Schefflera “vohimenensis” 7160
66 Schefflera “floreti” 7162
Schefflera “floreti” 7169
66 Schefflera “floreti” 7172
Schefflera “vohimenensis” 7156
Schefflera sp. 4715
66 Schefflera “floreti” 4558
Schefflera “floreti” 1485
66 Schefflera “floreti” 1487
Schefflera vantsilana 6225
Schefflera vantsilana 7103
59 Schefflera vantsilana 32
Schefflera longipedicellata 23
Schefflera longipedicellata 21
Schefflera vantsilana 152
Schefflera cf. longipedicellata 33-
59 Schefflera bojeri 7071
Schefflera bojeri 5818
Schefflera bojeri 7109
Schefflera sp. nov. 7169
Schefflera “motarli” 31
Schefflera “andohahelenis”
59 Schefflera staufferana 24
Schefflera staufferana 26
Schefflera cf. capuroniana 28
Schefflera sp. nov. 7164
Schefflera “motarli” 34
65 Schefflera sp. 3351
Schefflera sp. 3347
Schefflera sp. 3352
Schefflera fosbergiana 3350
Schefflera fosbergiana 4322
Schefflera cf. fosbergiana 3337
Schefflera umbellifera 5494
Schefflera umbellifera 11959
Schefflera myriantha 5796
Schefflera myriantha 5347
Schefflera myriantha 4710
Schefflera myriantha 5810
Schefflera myriantha 5812
Schefflera myriantha 5445
Schefflera myriantha 5798
Schefflera myriantha 5808
Schefflera cf. myriantha 6117
81 Schefflera umbellifera 3863
Schefflera monophylla 7173
Schefflera monophylla 7097
Schefflera monophylla 7087
Schefflera monophylla 1492
81 Schefflera cf. myriantha 5816
81 Schefflera myriantha 1498
81 Schefflera sp. 3348
Schefflera monophylla 131
Schefflera monophylla 409
81 Schefflera myriantha L435
Schefflera myriantha 3505
Schefflera myriantha 1885
Schefflera myriantha 4988
Schefflera myriantha 501
81 Schefflera kivunsensis
81 Schefflera barteri 9208
Schefflera goetziani 4897
Schefflera barteri 6782
Schefflera goetziani 398
Schefflera tessmannii
Schefflera barteri 16998
Schefflera goetziani 3563
Schefflera volkensii 4957
Schefflera volkensii 5129
Schefflera stdzii
Schefflera mannii 4406
Schefflera mannii s.n.
88 Cussonia thysifolia
Cussonia paniculata
86 Seemannaralia gerrardii
86 Schefflera digitata
Osmoxylon pectinatum
Astrotricha pterocarpa
Figure 14: Bayesian, Plastid
Figure 20: Pedicel length

- > 5 mm
- 0–5 mm
- Absent
- Missing Data

Anticipes clade

Neocussonia subclade

Palmate-Vantsiliana clade

myriantarh-monoiphylla clade

African myriantarh clade

Goetzenii clade

Outgroup
Morgan Robert Gostel was born on January 30, 1985 in Henrico County, Virginia. He received his High School Diploma in 2003 from Douglas Southall Freeman High School in Henrico Country, Virginia. Morgan attended Virginia Commonwealth University as an undergraduate student and received his Bachelor of Science in Biology in 2008.