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Energy dispersion relations of spin-split subbands in a quantum wire and electrostatic
modulation of carrier spin polarization
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We numerically calculate the energy dispersion relations of the spin-split subbands in a quantum wire
subjected to a transverse magnetic field in the presence of Rashba and Dresselhaus spin-orbit interactions. The
spin splitting energy at zero wave vector is found to be neither equal to the bare Zeeman splitting nor linear in
the magnetic field in any subband. This happens because the expectation value of the spin angular momentum
operator varies along the width of the wire, causing a spatial modulation of the spin density. We also show that
spin splitting energy is subband dependent and has a complex dependence on the external magnetic field. In
some subbands, it can vanish entirely at nonzero values of the external magnetic field. The effective spin
polarization of carriers in any subband can be changed in both magnitude and sign with an external electro-
static potential, applied, for example, via a gate terminal. This has practical applications in quantum computing
and other areas.

DOI: 10.1103/PhysRevB.76.155325 PACS number�s�: 72.25.Rb, 72.25.Mk, 72.25.Hg, 72.25.Dc

I. INTRODUCTION

The subband structure of quasi-one-dimensional systems,
with strong spin-orbit interaction, has been extensively stud-
ied in the past.1–12 It is well known that in the absence of an
external magnetic field, the Rashba and Dresselhaus spin-
orbit interactions lift the spin degeneracy in any subband at
nonzero wave vectors �k�0�. Additionally, if an external
magnetic field �B� is present, then the spin degeneracy is
lifted at all wave vectors, including k=0, because of the
wave-vector-independent Zeeman splitting �=g�BB, where
g is the Landé g factor in the material and �B �=e� /2m0� is
the Bohr magneton. As a result, it is natural to expect that in
the presence of B, the zero-k spin splitting in any subband
will be given by the Zeeman term alone13 since the spin-orbit
interactions vanish at k=0. Analytical models based on ze-
roth order perturbation treatment,4–6 support this picture.

In this work, we report an exact numerical solution of the
nonrelativistic Pauli equation in a quantum wire subjected to
a transverse magnetic field in the presence of Rashba and
Dresselhaus spin-orbit interactions. We show that in the pres-
ence of a spin-orbit interaction, the zero-k spin splitting en-
ergy in any subband �i� is not equal to the Zeeman splitting
g�BB and �ii� is not even linear in B. Moreover, the zero-k
splitting depends on the spin-orbit interaction strength which
can be varied with an electrostatic potential.14,15 As a result,
the zero-k spin splitting in any subband can be modulated by
an external gate potential, allowing us to alter the spin polar-
ization of carriers in the quantum wire by electrostatic
means.

II. THEORY

Let us consider a semiconductor quantum wire with a
rectangular cross section, as shown in Fig. 1. The axis of the
wire is along x̂, while a symmetry-breaking electric field Eyŷ

and an external magnetic field Bŷ �B�0� act along ŷ. Since
the electric field breaks the spatial inversion symmetry along
ŷ, it induces a Rashba spin-orbit interaction16 in the quantum
wire. The strength of this interaction can be varied with an
electrostatic potential applied to a top gate terminal, which
changes the electric field Eyŷ. Additionally, if the wire mate-
rial is an inversion-asymmetric zinc-blende compound �e.g.,
III-V semiconductors such as GaAs�, then there is a bulk
inversion asymmetry present in the microscopic crystal
potential, which induces the Dresselhaus spin-orbit
interaction.17 The strength of the latter interaction depends
on the transverse dimensions of the quantum wire, which can
be varied with a side gate �or split gate� potential.15 Thus, the
strengths of both the Rashba and the Dresselhaus spin-orbit
interactions in the quantum wire can be varied with external
gate potentials. We will show that this will vary the zero-k
spin splitting energy in any subband.

For the sake of simplicity, assume that the quantum wire
axis is along the �100� crystallographic direction. In that

X

Y

Z

Ey
B

Wy

Wz

FIG. 1. Geometry of the quantum wire. For our numerical cal-
culations, we assumed that the width of the wire along the z direc-
tion is 100 nm and the thickness of the wire along the y direction is
much smaller so that only the lowest transverse subband in the y
direction is occupied. The y-directed electric field Ey induces a
Rashba spin-orbit interaction in the channel, and B is an external
magnetic field, also applied in the y direction.
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case, the single particle effective mass Hamiltonian describ-
ing an electron in the quantum wire is given by

H =
�p� + eA� �2

2m* + V�y� + V�z� −
g�BB� · ��

2
+ HR + HD, �1�

where HR is the Rashba interaction Hamiltonian, HD is the
Dresselhaus interaction Hamiltonian, m* is the effective mass

of an electron, and A� is the vector potential associated with
the external magnetic field Bŷ. The quantities V�y� and V�z�
are the electrostatic confinement potentials along the y and z
directions, respectively. We apply hard wall boundary condi-
tions,

V�y� = − eEyy for 0 � y � Wy

=� otherwise, �2a�

V�z� = 0 for 0 � z � Wz

=� otherwise, �2b�

where Wy and Wz are the dimensions of the quantum wire in
the ŷ and ẑ directions, respectively.

Using the Landau gauge A� = �Bz ,0 ,0�, the Rashba Hamil-
tonian HR can be written in the following form:

HR =
�R

�
ŷ · ��� 	 �p� + eA� �� =

�R

�
��z�px + eBz� − �xpz� ,

�3�

where �R is the Rashba spin-orbit coupling constant that can
be varied with the gate electric field Ey. Note that the poten-
tial discontinuities at the boundaries �y=0,Wy and z=0,Wz�
result in additional electric fields. However, as shown in Ref.
18, these electric fields at the edges of the quantum wire do
not contribute to spin-orbit coupling. If the quantum wire is
contacted by two metallic electrodes �as in transport experi-
ments�, an additional spin-orbit effect can originate in the
vicinity of the metal/semiconductor junctions due to
Schottky electric fields. Since we are not studying transport,
we ignore the presence of any metallic contacts, and hence
this effect is not relevant in the present case. As a result, we
can assume that the quantity �R depends only on Ey and is
independent of the spatial coordinate x, y, or z. Space charge
effects can still introduce some spatial variation in �R. In this
study, we ignore this effect since its inclusion adds consid-
erably to the computational burden. In any case, it would
have only made a quantitative �but no qualitative� difference
to the result.

The Dresselhaus Hamiltonian is given by

HD =
�D

�
�� · 
� , �4�

where �D is the Dresselhaus spin-orbit coupling constant
�which depends on Wy and Wz and, therefore, can be varied
with a split gate potential that controls Wz� and 
�
= �
x ,
y ,
z�. If we assume that Wy is so small that �py

2�

� �px
2� , �pz

2�, then we can write the components of 
� in a
simplified form,


x =
1

2
��px + eAx���py + eAy�2 − �pz + eAz�2�

+ ��py + eAy�2 − �pz + eAz�2��px + eAx��

=
1

2
��px + eBz��py

2 − pz
2� + �py

2 − pz
2��px + eBz��

	 �px + eBz�py
2, �5a�


y =
1

2
��py + eAy���pz + eAz�2 − �px + eAx�2�

+ ��pz + eAz�2 − �px + eAx�2��py + eAy��

= py�pz
2 − �px + eBz�2� , �5b�


z =
1

2
��pz + eAz���px + eAx�2 − �py + eAy�2�

+ ��px + eAx�2 − �py + eAy�2��pz + eAz��

	 − pzpy
2. �5c�

Thus, the Dresselhaus Hamiltonian can be approximated as

HD 	 ��D/��py
2��x�px + eBz� − �zpz� . �6�

Here, we have neglected the �y
y term since �py�=0.
The total Hamiltonian can be written as

H = H0I −
g

2
�BB�y +

�R

�
��z�px + eBz� − �xpz�

+ ��D/��py
2��x�px + eBz� − �zpz� , �7�

where I is 2	2 identity matrix and

H0 =
px

2 + py
2 + pz

2

2m* +
e2B2z2

2m* +
eBzpx

m* + V�y� + V�z� . �8�

We intend to calculate the energy eigenvalues �E� and
eigenfunctions ��� of the Pauli equation H�=E�, where H
is given by Eq. �7�. Since the entire Hamiltonian H is trans-
lationally invariant along the x coordinate, we can write
��x ,y ,z�=exp�iqxx�
�y���z�. Note that the total wave func-
tion ��x ,y ,z� must be a two-component spinor: ��x ,y ,z�
= ����x ,y ,z� ,���x ,y ,z��T, where the superscript T stands
for transpose.

Since the coefficients of the Pauli matrices in the
Hamiltonian H �Eq. �7�� do not involve the x and y coordi-
nates, we can write ��x ,y ,z�= ����x ,y ,z� ,���x ,y ,z��T


exp�iqxx�
�y�����z� ,���z��T, where ��z�= ����z� ,���z��T.
Normalization condition requires �−�

� �����z��2+ ����z��2�dz=1.
Spatially averaging both sides of the Pauli equation over x

and y coordinates, we get
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E��z� = 
H0
˜ I −

g

2
�BB�y + �R��qx +

eBz

�
��z + i�x

d

dz
�

+ �D��qx +
eBz

�
��x + i�z

d

dz
����z�

= �H0
˜ I + HS���z� , �9�

where

�D = �D�py
2�n,

H0
˜ =

�2qx
2

2m* −
�2

2m*

d2

dz2 +
eBz�qx

m* +
e2B2z2

2m* + �n + V�z� ,

HS = − �g/2��BB�y + �R
�qx +
eBz

�
��z + i�x

d

dz
�

+ �D
�qx +
eBz

�
��x + i�z

d

dz
� ,

�py
2�n = �

−�

�


n
*�y��− �2�2/�y2�
n�y�dy , �10�

and


−
�2

2m*

d2

dy2 + V�y��
n�y� = �n
n�y� , �11�

where V�y� is given by Eq. �2a� and n is the index of the
transverse subband in the y direction.

Equation �9� can be written compactly as

�Bqx + C���z� = Aqx
2��z� , �12�

where the 2	2 matrices A, B, and C are given by

A = −
�2

2m* I , �13�

B = eBz
�

m* I + �R�z + �D�x, �14�

and

C = 
−
�2

2m*

�2

�z2 + �n + V�z� +
e2B2z2

2m* − E�I −
g

2
�BB�y

+
eBz

�
��R�z + �D�x� + i

d

dz
��R�x + �D�z� . �15�

In order to find the energy dispersion relations of the spin-
split subbands in the quantum wire, we have to find the val-
ues of the wave vector qx that satisfy Eq. �12� for a given
value of energy E. We then repeat this procedure for various
values of E to find the dispersion relation �E versus qx�.
Unfortunately, this is not straightforward since Eq. �12� is
not an eigenequation in qx because it is nonlinear in qx. We
therefore have to convert Eq. �12� to an eigenequation in qx
using the following procedure.

Let

��z� = qx��z� = qx
���z�
���z� � . �16�

Using Eq. �16�, we can rewrite Eq. �12� as an eigenequation
in qx,


 0 I

�A−1C� �A−1B� �
��z�
��z� � = qx
��z�

��z� � . �17�

Equation �17� can be solved numerically �for any energy E�
subject to the boundary condition

��z = 0� = ��z = Wz� = 0

to find the corresponding values of qx in different subbands.
This procedure, adapted from Ref. 19, yields the dispersion
relation E versus qx in different subbands.

Using the above procedure, we have found qx
m, ��,m�z�,

and ��,m�z� for any arbitrary value of E in different subbands
m. The dispersion relations obtained from these solutions, for
various values of external magnetic field B and for fixed
Rashba and Dresselhaus interaction strengths �R=2�D

-0.1 0 0.1
0

5

10

15

20

25

Wavevector k (1/nm)

E
n
e
rg
y
(m
e
V
)

B = 0 T

FIG. 2. Energy dispersion relation �E-k plot� in a quantum wire
of width 100 nm for B=0 T. The material is assumed to be InAs
with electron effective mass 0.03 times the free electron mass and
the Landé g factor=−15. The Rashba and Dresselhaus interaction
strengths are �R=2�D=10−11 eV m.

-0.1-0.1 0 0.10.1
0
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1010
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Wavevector k (1/nm)

FIG. 3. E-k plot for B=0.01 T. The magnetic field is low
enough that the lower spin-split subband has a camelback shape. All
other parameters are the same as in Fig. 2.
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=10−11 eV m, are shown in Figs. 2–4 for a quantum wire of
width 100 nm. We plotted the dispersion relations as energy
E versus the shifted wave vector kx→qx+eBWz / �2��, so that
the dispersion relations are always centered around kx=0 for
arbitrary magnetic field strengths. We assumed that the quan-
tum wire material is InAs with electron effective mass
=0.03 times the free electron mass and the Landé g factor
equal to −15.

III. RESULTS AND DISCUSSION

From Figs. 2–4, we note that the dispersion relations are
strongly dependent on the externally applied magnetic field
B. For B=0 �Fig. 2�, we obtain two horizontally displaced
parabolas with spin degeneracy only at k=kx=0. For small
nonzero values of B �Fig. 3�, the spin degeneracy is lifted for
all k and the lower spin band develops a “camelback” shape
as long as B is less than a critical value.4–6,20 For larger
values of B, the camelback shape disappears, as shown in
Figs. 4�a� and 4�b�. Note that at very high values of B, the
dispersion curves have nearly flat bottoms which correspond
to states with virtually no translational velocity ��vx�	0�.
These correspond to the closed Landau orbits.

In Figs. 5�a� and 5�b�, we show the real and imaginary
parts of the two-component wave function ����z� ,���z��T for
an electron with arbitrarily chosen energy E0=15 meV. The
magnetic flux density B=5 T. In this case, only one spin-

split subband lies below E0 and the higher subbands are eva-
nescent. The corresponding wave vectors in the two �noneva-
nescent� spin-split levels are given by k1

±= ±0.3189 nm−1

�lower level� and k2
±= ±0.2773 nm−1 �upper level�. In Fig. 5,

we plot the two components ���z� and ���z� separately for
the wave vector values k1

± and k2
±. Note that the wave func-

tions are skewed to the left or right depending on the direc-
tion of the electron velocity. This happens because the Lor-
entz force associated with the magnetic field pushes moving
electrons toward either the left or the right edge of the quan-
tum wire depending on whether the electron is traveling for-
ward or backward along the length of the quantum wire. In
other words, these wave functions represent the well known
“edge states.”

Figure 5 also indicates that in the presence of a spin-orbit
interaction, the z component of the wave function,
���,m�z� ,��,m�z��T, in any subband m cannot be written as the
product of a space dependent part and an eigenspinor, i.e.,

-0.2 -0.1 0 0.1 0.2
0

10

20

30

kx (1/nm)

En
er
gy
(m
eV
)

B = 1T

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

20

40

60

80

En
er
gy
(m
eV
)

B = 5T

kx (1/nm)

(a)(a)

(b)(b)

FIG. 4. E-k plot for �a� B=1 T and �b� B=5 T. All other param-
eters are the same as in Fig. 2. The camelback shape has disap-
peared for these high magnetic fields, and at 5 T, the subband bot-
toms are flat, indicating the formation of closed Landau orbits in the
quantum wire.
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FIG. 5. Edge states in a quantum wire. The z dependence of the
real �denoted by “o”� and imaginary parts �denoted by “ *”� of the
two components of the wave function ����z� ,���z��T are shown. The
electron energy E0=15 meV and magnetic flux density B=5 T.
Only one spin-split subband in the quantum wire is below this en-
ergy. The wave vectors corresponding to this energy in the two
spin-split levels are k1

±= ±0.3189 nm−1 �lower level� and k2
±

= ±0.2773 nm−1 �upper level�. The wave functions are skewed to
the left or right edge of the quantum wire, depending on whether
the electrons are forward or backward traveling, because of the
Lorentz force that pushes electrons toward one or the other edge.
The horizontal axes in all figures are in nanometers.

PRAMANIK, BANDYOPADHYAY, AND CAHAY PHYSICAL REVIEW B 76, 155325 �2007�

155325-4




��,m�z�
��,m�z� � � �m�z�
�m

�m
� , �18�

where �m and �m are z independent. This implies that the
expectation value of the spin angular momentum operator is

z-dependent. The expectation value is defined as �� /2�S� ,
where

S� = Sxx̂ + Syŷ + Szẑ ,

S� i = ���
*�z�,��

*�z����i�����z�,���z��T,

Si =
S� i

��
i

S� i
2
, i = x,y,z . �19�

This spatial variation of spin angular momentum is shown in
Fig. 6. Here, we plot the expectation values of the spin com-
ponents �Eq. �19�� as a function of the z coordinate for the
four wave vector states k1

± and k2
± corresponding to E0

=15 meV and B=5 T. From this figure, we observe that the

expectation value of the spin angular momentum �� /2�S�
= �� /2��Sxx̂+Syŷ+Szẑ� indeed changes with the z coordinate,
resulting in a spatial modulation of the spin density along the
width of the wire. A similar phenomenon has also been dis-
cussed in Ref. 21.

According to Fig. 6, the spin of an electron, in the pres-
ence of a spin-orbit interaction and external transverse mag-
netic field B, is not only determined by its wave vector k but
also by its spatial location along z. This happens because the
spin-orbit Hamiltonian HS in Eq. �10� is z dependent. Con-
sequently, the pseudomagnetic field caused by spin-orbit in-
teraction is also z dependent. The net magnetic field that an
electron experiences is the vector sum of the pseudomagnetic
field and the external magnetic field. This net field varies
with the coordinate z. Since spins will align parallel or anti-
parallel to the net field, the spin orientation will vary with z.
In the following discussion, we will argue that as a result of
this spatial modulation effect, zero-k spin splitting �a� is no
longer equal to Zeeman splitting g�BB, �b� is not even linear

in B, and �c� depends on the spin-orbit coupling constants �R
and �D, which determine the strength of the pseudomagnetic
field.

If the two-component electron wave function could have
been expressed as the product of a spatially varying scalar
and a spatially invariant spinor, then the inequality sign in
Eq. �18� would have been replaced with an equality. In that
case, the expectation value of the spin angular momentum
would be z independent since the spinor is z independent.
For that situation, it can be shown from Eq. �9� that if we
neglect coupling between subbands �assuming that the
energy separation between subbands is large enough�, then
the zero-k spin splitting energy in the mth subband will be

�k=0
m = 2���R

2 + �D
2

�2 �
e2B2��zm� −
Wz

2
�2

+ �pz
m�2� −

4�D�ReB

�2 ��zm� −
Wz

2
��pz

m� + �g�BB

2
�2

. �20�

Here, �zm�=�−�
� dz�m

* �z�z�m�z�=Wz /2 �evaluated at kx=0� and
�pz

m�=�−�
� dz�m

* �z��−i��� /�z���m�z�=0 �due to the confine-
ment along the z direction�. Therefore, if Eq. �18� were an
equality instead of an inequality, then

�k=0
m = g�BB , �21�

which is the simple Zeeman splitting.
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FIG. 6. �Color online� The expectation values of the spin
components �see Eq. �19�� Sx, Sy, and Sz and S=�Sx

2+Sy
2+Sz

2

as functions of the z coordinate. We have plotted the spin
components in the four nonevanescent bands when the electron
energy E0=15 meV and B=5 T. For these values of E0 and B,
the corresponding wave vectors are k1

±= ±0.3189 nm−1 and
k2

±= ±0.2773 nm−1.
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However, since inequality �18� is valid �see Fig. 5�, which
makes the expectation value of the spin angular momentum
dependent on the z coordinate �see Fig. 6�, Eq. �21� will not
hold and the actual zero-k spin splitting must be calculated
from Eq. �9�.

It follows from Eq. �9� that if we neglect coupling be-
tween subbands, then the energy eigenvalues are given by

Em = �H̃0�m + �HS�m, �22�

where m is a composite subband index that labels subbands
formed due to confinement in both y and z directions, and

�H̃0�m = �
−�

�

���,m
* �z�,��,m

* �z��H̃0I���,m�z�,��,m�z��Tdz

= �
−�

�

���,m
* �z�H̃0��,m�z� + ��,m

* �z�H̃0��,m�z��dz ,

�HS�m = −
�D

�
��p�,m� − �p�,m�� +

�ReB

�
��z�,m� − �z�,m��

−
g�BB

2
�Sy� + �Rkx�Sz� + �Dkx�Sx�

−
�R

�
��p��,m� + �p��,m�� +

�DeB

�
��z��,m� + �z��,m��


 −
�D

�
��p�,m� − �p�,m�� +

�ReB

�
��z�,m� − �z�,m��

−
�R

�
��p��,m� + �p��,m��

+
�DeB

�
��z��,m� + �z��,m�� + �S�� · n�s, �23�

with

�p�,m��,m�� = �
−�

� ���,m��,m�
* �− i��

d��,m��,m�

dz
�dz , �24a�

�z�,m��,m�� = �
−�

�

���,m��,m�
* z��,m��,m��dz , �24b�

�p��,m���,m�� = �
−�

� ���,m��,m�
* �− i��

d��,m��,m�

dz
�dz ,

�24c�

�z��,m���,m�� = �
−�

�

���,m��,m�
* z��,m��,m��dz , �24d�

�Si� = �
−�

�

�†�z��i��z�dz 
 �
−�

�

S� i�z�dz, i = x,y,z ,

�24e�

n�s = �Dkxx̂ −
g�BB

2
ŷ + �Rkxẑ , �24f�

�S�� = �Sx�x̂ + �Sy�ŷ + �Sz�ẑ . �24g�

For kx=0, and in the limit of a weak spin-orbit interaction,

we can write �S�� ·n�s	 ± �g�BB /2�, where the “�” and “�”
signs correspond to upper and lower spin-split levels, respec-
tively.

Now, from Eq. �23�, we find that if we neglect coupling
between subbands, then, in the limit of a weak spin-orbit
interaction, the zero-k spin splitting energy will be given by

�k=0
m = −

�D

�
��p�,m�U − �p�,m�U� +

�ReB

�
��z�,m�U − �z�,m�U�

−
�R

�
��p��,m�U + �p��,m�U�

+
�DeB

�
��z��,m�U + �z��,m�U� +

�D

�
��p�,m�L − �p�,m�L�

−
�ReB

�
��z�,m�L − �z�,m�L� +

�R

�
��p��,m�L + �p��,m�L�

−
�DeB

�
��z��,m�L + �z��,m�L� + g�BB , �25�

where the subscripts U and L refer to the upper and lower
spin-split states in any subband m. Clearly, the zero-k spin
splitting energy �k=0

m �g�BB because of the first four terms
in the above equation, which are nonvanishing. Moreover,
since the �p�-s and the �z�-s depend on B, �k=0

m is not linear
in B. We emphasize that although we neglected coupling
between subbands to arrive at the analytical form in the pre-
ceding equation, we did not neglect this coupling when we
calculated the dispersion relations in Figs. 2–4. Those re-
sults, obtained by solving Eq. �17� numerically, are exact.
The quantities �R, �D, and B not only appear as coefficients
in Eq. �25�, but they also influence the quantities within the
square brackets.

In Fig. 7�a�, we plot the numerically computed zero-k spin
splitting energy �k=0�,m �normalized to g�BB� in the three low-
est subbands �m=1,2 ,3� as a function of B, for fixed values
of �R and �D. As discussed before, the zero-k spin splitting
energy is clearly not the bare Zeeman splitting g�BB and is
not even linear in B �except at very high values of B when
the Zeeman term dominates�. For subband 1, the spin split-
ting energy increases with increasing B. For subbands 2 and
3, the spin splitting energy decreases with increasing B,
crosses zero, and then changes sign to become negative. To
elucidate this strange behavior, we have plotted in Fig. 7�b�
how the spin-split subband bottom energies evolve with in-
creasing B. As �B� increases, the energy at the bottom of each
level increases because of the increasing magnetostatic con-
finement in the wire. The rate of this increase is, however,
different for different subbands �because their wave func-
tions are different� and also different for the two levels
within each subband because of spin-orbit interaction. It so
happens that for the chosen parameters �the wire dimension,
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the magnitude and sign of the g factor, and the effective
mass�, the energy at the bottom of the lower spin level in
subband 1 increases slower with the magnetic field �increas-
ing magnetostatic confinement� than the energy at the bottom
of the upper spin level. As a result, the spin splitting energy
continues to increase with increasing magnetic field. How-
ever, in subbands 2 and 3, the energy of the lower spin level
increases faster with increasing magnetic field than the en-
ergy of the upper spin level. Therefore, the lower spin level
soon overtakes the upper spin level �causing the zero cross-
ing�, and thereafter a role reversal takes place whereby the
lower level actually has higher energy than the upper level.
This makes the spin splitting energy negative. The designa-
tion “lower” or “upper” spin level is determined by which
level is lower at B→0.

IV. GATE CONTROL OF SPIN POLARIZATION

In Fig. 8�a�, we show the zero-k spin splitting �k=0�,m in the
three lowest subbands as a function of the Rashba interaction
strength �R for a fixed value of �D �0.5	10−11 eV m� and
B=1 T. Note that �k=0�,m is an even function of �R, meaning
that it does not depend on the direction of the symmetry-
breaking electric field inducing the Rashba interaction. Note
also that there are zero crossings here as well. To explain

that, we have plotted in Fig. 8�b� how the subband bottom
energies evolve with increasing �R. The solid and broken
lines denote the two spin-split levels. At �R=0, the spin split-
ting energy is nearly g�BB since �D is very small and can be
ignored. Because the g factor is negative, the spins in the
lower level are aligned antiparallel to the external magnetic
field �everywhere, independent of the z coordinate�, and
those in the upper level are aligned parallel to the external
magnetic field �also independent of the z coordinate� when
�R=0. As ��R� increases, the spin orientations change and
become z dependent. Interestingly, the original lower level
increases in energy while the upper level decreases. This is
shown clearly in Fig. 8�b�, which also shows the zero cross-
ings.

The zero-k spin splitting energy has a strong dependence
on �R, which can be varied by applying an electrostatic field
in the y direction with a top gate terminal. Now, let us as-
sume that the Fermi level in the quantum wire is well below
the lowest subband �m=1� so that the carrier population is
nondegenerate. The electrons will occupy the states in the
vicinity of subband bottom since the density of states in a
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FIG. 7. �Color online� Zero-k spin splitting vs the external mag-
netic flux density B. We assumed that �R=6�D=3	10−11 eV m.
Other parameters are the same as before. �a� This figure shows the
zero-k spin splitting energy ��m� �k=0�� of subband m as a function
of B. �b� Variation of the energy at subband bottom �i.e., Em�k=0��
with B. Spin-split levels of subband 1 do not cross each other at any
B. However, for subbands 2 and 3, such crossings occur at B
=2.65 T and B=4.45 T, respectively, as shown by the dotted verti-
cal arrows. At precisely these values of the magnetic flux density,
the zero crossings occur in the top panel.
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FIG. 8. �Color online� �a� The zero-k spin splitting energy ��k=0�,m�
in the lowest three subbands as a function of the Rashba interaction
strength �R. This quantity decreases and eventually flips sign as the
magnitude of the Rashba interaction strength ���R�� is increased.
The Dresselhaus constant �D has a fixed value of 0.5
	10−11 eV m, and the external magnetic flux density B=1 T. This
figure also shows that �k=0�,m is an even function of �R. �b� Variation
of the energy at the bottom of each spin-split level in the lowest
three subbands with �R. The two spin levels are denoted by solid
and broken lines. In each subband, the spin levels cross at some
value of ��R�, which gives rise to the zero crossings in the top panel.
�c� The equilibrium spin polarizations of carriers in the lowest three
subbands as functions of �R at temperature T=5 K.
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quasi-one-dimensional system has a van Hove singularity at
the subband bottom. Accordingly, the �spatially averaged�
spin polarization of the carriers in the mth subband can be
approximated as

Pm =
n↑ − n↓

n↑ + n↓
= tanh
 �k=0�,m

2kBT
� , �26�

where ↑ and ↓ refer to the �spatially averaged� eigenspinors
in the two spin-split bands in the mth subband at k=0 and kB

is the Boltzmann constant. Since �k=0�,m depends on the
strengths of the Rashba and Dresselhaus spin-orbit interac-
tion strengths, we can vary �k=0�,m—and therefore the spin po-
larization in any subband of the quantum wire—with exter-
nal gate potentials. In Fig. 8�c�, we show the spin
polarization Pm in the lowest three subbands of the quantum
wire as a function of �R. Clearly, we can vary Pm �and even
invert its sign� if we change �R with a gate potential. The
spin polarization can also be varied with the external mag-
netic field, but since an electric field can be switched much

faster than a magnetic field, the electrostatic control is al-
ways preferable.

V. CONCLUSION

In conclusion, we have calculated the energy dispersion
relations of the spin-split subbands in a quantum wire sub-
jected to a transverse magnetic field in the presence of spin-
orbit coupling. We have shown that the zero-k spin splitting
in any subband is not the bare Zeeman splitting and not
linear in the magnetic field. The zero-k spin splitting is also
subband dependent. Similar subband dependence has also
been reported in Ref. 7. Particularly, the magnetic field de-
pendence of the zero-k spin splitting is intriguing since it
could become zero in some subbands at a nonzero value of
the magnetic field. It can also exhibit sign changes as the
magnetic field is varied. Finally, we have shown that the
zero-k spin splitting in any subband can be modulated with
an external gate potential, which allows us to control the net
spin polarization in the wire by electrical means. The modu-
lation of the spin-splitting energy with a gate voltage has
applications in quantum computing.22
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