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Spin relaxation of “upstream” electrons in quantum wires: Failure of the drift diffusion model
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The classical drift diffusion �DD� model of spin transport treats spin relaxation via an empirical parameter
known as the “spin diffusion length.” According to this model, the ensemble averaged spin of electrons drifting
and diffusing in a solid decays exponentially with distance due to spin dephasing interactions. The character-
istic length scale associated with this decay is the spin diffusion length. The DD model also predicts that this
length is different for “upstream” electrons traveling in a decelerating electric field than for “downstream”
electrons traveling in an accelerating field. However, this picture ignores energy quantization in confined
systems �e.g., quantum wires� and therefore fails to capture the nontrivial influence of subband structure on
spin relaxation. Here we highlight this influence by simulating upstream spin transport in a multisubband
quantum wire, in the presence of D’yakonov-Perel’ spin relaxation, using a semiclassical model that accounts
for the subband structure rigorously. We find that upstream spin transport has a complex dynamics that defies
the simplistic definition of a “spin diffusion length.” In fact, spin does not decay exponentially or even
monotonically with distance, and the drift diffusion picture fails to explain the qualitative behavior, let alone
predict quantitative features accurately. Unrelated to spin transport, we also find that upstream electrons
undergo a “population inversion” as a consequence of the energy dependence of the density of states in a
quasi-one-dimensional structure.

DOI: 10.1103/PhysRevB.73.125309 PACS number�s�: 72.25.Dc, 72.25.Rb, 73.21.Hb, 85.35.Ds

I. INTRODUCTION

Spin transport in semiconductor structures is a subject of
much interest from the perspective of both fundamental
physics and device applications. A number of different for-
malisms have been used to study this problem, primary
among which are a classical drift diffusion approach,1–3 a
kinetic theory approach,4 and a microscopic semiclassical
approach.3,5–11 The central result of the drift diffusion ap-
proach is a differential equation that describes the spatial and
temporal evolution of carriers with a certain spin polarization
n�. Reference 3 derived this equation for a number of special
cases starting from the Wigner distribution function. In a
coordinate system where the x axis coincides with the direc-
tion of electric field driving transport, this equation is of the
form

�n�

�t
− D

�2n�

�x2 − A
�n�

�x
+ Bn� = 0, �1�

where

D = �D 0 0

0 D 0

0 0 D
� , �2�

D is the diffusion coefficient, and A and B are dyadics �nine-
component tensors� that depend on D, the mobility �, and
the spin orbit interaction strength in the material.

Solutions of Eq. �1�, with appropriate boundary condi-
tions, predict that the ensemble averaged spin ��S� � �x�
=��Sx�2�x�+ �Sy�2�x�+ �Sz�2�x� should decay exponentially
with x according to

��S���x� = ��S���0�e−x/L, �3�

where

1

L
=

�E

2D
+�	�E

2D

2

+ C2. �4�

Here E is the strength of the driving electric field and C is a
parameter related to the spin orbit interaction strength.

The quantity L is the characteristic length over which ��S��
decays to 1/e times its original value. Therefore, it is defined
as the “spin diffusion length.” Equation �4� clearly shows
that spin diffusion length depends on the sign of the electric
field E. It is smaller for upstream transport �when E is posi-
tive� than for downstream transport �when E is negative�.

This difference assumes importance in the context of spin
injection from a metallic ferromagnet into a semiconducting
paramagnet. Reference 1 pointed out that the spin injection
efficiency across the interface between these materials de-
pends on the difference between the quantities Ls /�s and
Lm /�m, where Ls is the spin diffusion length in the semicon-
ductor, �s is the conductivity of the semiconductor, �m is the
conductivity of the metallic ferromagnet, and Lm is the spin
diffusion length in the metallic ferromagnet. Generally, �m
��s. However, at sufficiently high retarding electric field,
Ls�Lm, so that Ls /�s�Lm /�m. When this equality is estab-
lished, the spin injection efficiency is maximized. Thus,
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Ref. 1 claimed that it is possible to circumvent the infamous
“conductivity mismatch” problem,13 which inhibits efficient
spin injection across a metal-semiconductor interface, by ap-
plying a high retarding electric field in the semiconductor
close to the interface. A tunnel barrier between the ferromag-
net and semiconductor14 or a Schottky barrier15,16 at the in-
terface does essentially this and therefore improves spin in-
jection.

The result of Ref. 1 depends on the validity of the drift
diffusion model and Eq. �3� which predicts an exponential
decay of spin polarization in space. Without the exponential
decay, one cannot even define a “spin diffusion length” L.
The question then is whether one expects to see the expo-
nential decay under all circumstances, particularly in quan-
tum confined structures such as quantum wires. The answer
to this question is in the negative. Equation �1�, and similar
equations derived within the drift diffusion model, do not
account for energy quantization in quantum confined systems
and neglect the influence of subband structure on spin depo-
larization. This is a serious shortcoming since in a semicon-
ductor quantum wire, the spin orbit interaction strength is
different in different subbands. It is this difference that re-
sults in D’yakonov-Perel’ �DP� spin relaxation in quantum
wires. Without this difference, the DP relaxation will be
completely absent in quantum wires and the corresponding
spin diffusion length will be always infinite.17 The subband
structure is therefore vital to spin relaxation.

II. SEMICLASSICAL MODEL OF SPIN RELAXATION

In this paper, we have studied spin relaxation using a
microscopic semiclassical model that is derived from the
Liouville equation for the spin density matrix.18,21 Our model
has been described in Ref. 10 and will not be repeated here.
This model allows us to study D’yakonov-Perel’ spin relax-
ation taking into account the detailed subband structure in
the system being studied.

In technologically important semiconductors, such as
GaAs, spin relaxation is dominated by the D’yakonov-Perel’
�DP� mechanism.12 This mechanism arises from the
Dresselhaus19 and Rashba20 spin orbit interactions that act as
momentum dependent effective magnetic fields B�k�. An
electron’s spin polarization vector S precesses about B�k�
according to the equation

dS

dt
= ��k� � S , �5�

where ��k� is the angular frequency of spin precession and
is related to B�k� as ��k�= �e /m*�B�k�, where m* is the
electron’s effective mass. If the direction of B�k� changes
randomly due to carrier scattering which changes k, then
ensemble averaging over the spins of a large number of elec-
trons will lead to a decay of the ensemble averaged spin in
space and time. This is the physics of the DP relaxation in
bulk and quantum wells. In a quantum wire, the direction of
k never changes �it is always along the axis of the wire� in
spite of scattering. Nevertheless, there can be DP relaxation
in a multisubband quantum wire, as we explain in the next
paragraphs.

We will consider a quantum wire of rectangular cross-
section with its axis along the �100 crystallographic orien-
tation �which we label the x axis�, and a symmetry breaking
electric field Ey is applied along the y axis to induce the
Rashba interaction �refer to Fig. 1�. Then, the components of
the vector ��k� due to the Dresselhaus and Rashba interac-
tions are given by

�D�k� =
2a42

�
�	n�

Wy

2

− 	m�

Wz

2�kxx̂ �Wz 	 Wy�,

�R�k� =
2a46

�
Eykxẑ , �6�

where a42 and a46 are material constants, �m ,n� are the trans-
verse subband indices, kx is the wave vector along the axis of
the quantum wire, and Wz ,Wy are the transverse dimensions
of the quantum wire along the z and y directions. Therefore,

B�k� =
m*

e
��D�k� + �R�k�

=
2m*a42

e�
�− 	m�

Wz

2

+ 	n�

Wy

2�kxx̂ +

2m*a46

e�
Eykxẑ .

�7�

Thus, B�k� lies in the x-z plane and subtends an angle 

with the wire axis �x axis� given by


 = arctan� a46Ey

a42	m�

Wz
+

n�

Wy

	n�

Wy
−

m�

Wz

� . �8�

Note from the above that in any given subband in a quan-
tum wire, the direction of B�k� is fixed, irrespective of the
magnitude of the wave vector kx, since 
 is independent of
kx. As a result, there is no DP relaxation in any given sub-
band, even in the presence of scattering.

FIG. 1. A quantum wire structure of length L=1.005 �m with
rectangular cross section 30 nm�4 nm. A top gate �not shown�
applies a symmetry breaking electric field Ey to induce the Rashba
interaction. A battery �not shown� applies an electric field −Exx̂
�Ex	0�, along the channel. Monochromatic spin polarized elec-
trons are injected at x=x0=1 �m with injection velocity −vinj.
These electrons travel along −x̂ �upstream electrons� until their di-
rection of motion is reversed due to the electric field −Exx̂. We
investigate spin dephasing of these upstream electrons.
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However, 
 is different in different subbands because the
Dresselhaus interaction is different in different subbands.
Consequently, as electrons transition between subbands be-
cause of intersubband scattering, the angle 
, and therefore
the direction of the effective magnetic field B�k�, changes.
This causes DP relaxation in a multisubband quantum wire.
Since spins precess about different axes in different sub-
bands, ensemble averaging over electrons in all subbands
results in a gradual decay of the net spin polarization. Thus,
there is no DP spin relaxation in a quantum wire if a single
subband is occupied, but it is present if multiple subbands
are occupied and intersubband scattering occurs. This was
shown rigorously in Ref. 17.

The subband structure is therefore critical to DP spin re-
laxation in a quantum wire. In fact, if a situation arises
whereby all electrons transition to a single subband and re-
main there, further spin relaxation due to the DP mechanism
will cease thereafter. In this case, spin no longer decays, let
alone decay exponentially with distance. Hence, spin depo-
larization �or spin relaxation� cannot be parameterized by a
constant spin diffusion length.

The rest of this paper is organized as follows. In the next
section, we describe our model system, followed by results
and discussions in Sec. IV. Finally, we conclude in Sec. V.

III. MODEL OF UPSTREAM SPIN TRANSPORT

We consider a noncentrosymmetric �e.g., GaAs� quantum
wire with axis along �100 crystallographic direction. We
choose a three-dimensional Cartesian coordinate system with
x̂ coinciding with the axis of the quantum wire �refer to Fig.
1�. The structure is of length Lx=1.005 �m with rectangular
cross section: Wy =4 nm and Wz=30 nm. A metal gate is
placed on the top �not shown in Fig. 1� to induce the sym-
metry breaking electric field Eyŷ, which causes the Rashba
interaction. In a quantum wire defined by split Schottky
gates on a two-dimensional electron gas, Eyŷ arises naturally
because of the triangular potential confining carriers near the
heterointerface. We assume Ey =100 kV/cm.10 In addition,
there is another electric field −Exx̂ �Ex	0� which drives
transport along the axis of the quantum wire. Consider the
case when spin polarized monochromatic electrons are con-
stantly injected into the channel at x=x0=1 �m with injec-
tion velocities along −x̂. If these electrons occupy only the
lowest subband at all times, then there will be no
D’yakonov-Perel’ relaxation.17 Therefore, in order to study
multisubband effect on spin dephasing of upstream electrons,
we inject them with enough energy �E0� that they initially
occupy multiple subbands. We ignore any thermal broaden-
ing of injection energy3 since E0�kBT for the range of tem-
perature �T� considered, kB being Boltzmann constant.
Let Ei denote the energy at the bottom of ith subband
�i=1,2 , . . . ,n ,n+1, . . ., etc.�. We place E0 between the nth
and �n+1�-th subband bottoms as shown in Fig. 2. In other
words, En�E0�En+1. We assume that the injected electrons,
each with energy E0, are distributed uniformly over the low-
est n subbands. In other words, at time t=0, electron popu-
lation of the ith �1� i�n� subband is given by Ni�x , t=0�
= �N0 /n��x−x0��E−E0�, where N0 is the total number of

injected electrons and E denotes their energies. At any sub-
sequent time t, these distributions spread out in space
�x�x0�, as well as in energy, due to interaction of the in-
jected electrons with the electric field Ex and numerous scat-
tering events. Relative population of electrons among differ-
ent subbands will change as well due to intersubband
scattering events. Upstream electrons originally injected into,
say, subband i with velocity −vix̂ �vi	0�, gradually slow
down because of scattering and the decelerating electric
field. They change their direction of motion �i.e., become
downstream� beyond a distance �xi−x0� measured from the
injection point x0. Thus, no upstream electrons will be found
in the ith subband beyond xi. Note that the value of �xi−x0�
depends on three factors: the initial injection velocity into
subband i, the decelerating electric field, and the scattering
history. On the other hand, the “classical turning distance” of
monochromatic electrons injected into the ith subband with
energy E0 for a given electric field Ex is given by

E0 − Ei = �1/2�m*vi
2 = eEx�xi − x0� , �9�

where Ei is the energy at the bottom of the ith subband and vi
is the injection velocity in the ith subband. Note that xi does
not depend on scattering history and xi�xi in ballistic trans-
port.

Clearly vn�vn−1� ¯ �v2�v1 for a given E0 �see Fig.
2�. Thus, for a given channel electric field Ex, xn−x0
=min�xi−x0�, i=1,2 , . . . ,n. Hence we concentrate on the re-
gion �xn ,x0� where almost all injected electrons are upstream
electrons. In the simulation, velocity of every electron is
tracked and as soon as an electron alters direction and goes
downstream �i.e., its velocity becomes positive� it is ignored
by the simulator and another upstream electron is simulta-
neously injected from x=x0 randomly in any of the n lowest
subbands with equal probability. This process is continued
for a sufficiently long time until electron distributions over
different subbands, Ni�x , t�, i=1,2 , . . . ,n, no longer change
with time. Under this condition we say that steady state is

FIG. 2. Subband energy dispersion in the quantum wire.
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achieved for the upstream electrons. This steady state elec-
tron distribution is extended from x=xn to x=x0 and heavily
skewed near the region x=x0. This steady state distribution
of upstream electrons does not represent the local equilib-
rium electron distribution because of two reasons: �a� up-
stream electrons are constantly injected into the channel at
x=x0; this is the reason why the distribution is skewed near
x=x0 and �b� we exclude any downstream electron from the
distribution. At local equilibrium, there will be of course
both upstream and downstream electrons in the distribution.

The model above allows us to separate upstream electrons
from downstream electrons and therefore permits us to study

upstream electrons in isolation. Of course, in a real quantum
wire, both upstream and downstream electrons will be
present at any time, even in the presence of a strong electric
field, since there will be always some nonvanishing contri-
bution of back-scattered electrons to the upstream popula-
tion.

The semiclassical model and the simulator used to simu-
late spin transport have been described in Ref. 10. Based on
that model, at steady state, the magnitude of the ensemble
averaged spin vector at any position x inside the channel is
given by

��S���x� =

�	�
i=1

n

Ni�x��Six��x�
2

+ 	�
i=1

n

Ni�x��Siy��x�
2

+ 	�
i=1

n

Ni�x��Siz��x�
2

�
i=1

n

Ni�x�

. �10�

Here �Si���x�, �=x ,y ,z, denotes the ensemble average of � component of spin at position x. Subscript i implies that
ensemble averaging is carried out over electrons only in the ith subband. The above equation can be simplified to

��S���x� =

�	�
i=1

n

Ni�x���Si��x��
2

− 2 �
i,j=1

n

Ni�x�Nj�x���Si��x����S j��x��sin2
ij�x�
2

�
i=1

n

Ni�x�

, �11�

where �Sl��x�= �Slx��x�x̂+ �Sly��x�ŷ+ �Slz��x�ẑ and 
ij�x� is the
angle between �Si��x� and �S j��x�. Note that in absence of
any intersubband scattering event, ��Sl� � �x�=1 for all x �i.e.,
initial spin polarization of the injected electrons�.17 Simula-
tion results that we present in the next section can be under-
stood using Eq. �11�.

IV. RESULTS AND DISCUSSION

We examine how ensemble averaged spin polarization
of upstream electrons ��S� � �x� varies in space for different
values of driving electric field Ex and injection energy �E0�
for a fixed lattice temperature T. We vary Ex in the range
0.5−2 kV/cm for constant injection energy 426 meV and
T=30 K, where E0 is measured from the bulk conduction
band energy as shown in Fig. 2. The lowest subband bottom
is 351 meV above the bulk conduction band edge. To study
the influence of injection energy, we also present results cor-
responding to E0=441 meV with Ex=1 kV/cm and T
=30 K. In all cases mentioned above, injection energies lie
between subband 3 and subband 4. Injected electrons are
equally distributed among the three lowest subbands initially.
Obviously, this corresponds to a non-equilibrium situation.
All injected electrons are 100% spin polarized transverse to
the wire axis �i.e., either ŷ or ẑ�.

FIG. 3. Spatial variation of ensemble averaged spin components
for driving electric field Ex=0.5 kV/cm at steady state. Lattice
temperature is 30 K, injection energy E0=426 meV. Electrons
are injected with equal probability into the three lowest subbands.
Classical turning point of subband 3 electrons is denoted by x3

and xscat indicates the point along the channel axis where subbands
1 and 2 get virtually depopulated. Injected electrons are ŷ polarized
and x=x0=1 �m is the point of injection.
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Figures 3–8 show how ensemble averaged spin compo-
nents �Sx��x�, �Sy��x�, �Sz��x�, and ��S� � �x� of upstream elec-
trons evolve over space. Figures 3–6 show the influence of
the driving electric field on spin relaxation, Fig. 7 shows the
influence of initial injection energy, and Fig. 8 shows the
influence of the initial spin polarization. It is evident that
neither the driving electric field, nor the initial injection en-
ergy, nor the initial spin polarization has any significant ef-
fect on spin relaxation. Note that ��S� � �x� does not decay
exponentially with distance, contrary to Eq. �3�. Spatial dis-
tribution of electrons over different subbands is shown in
Figs. 9–13. The classical turning point of electrons in the
third subband �x3� has been indicated in each case. Figures
9–12 show the influence of the driving electric field and Fig.
13 shows the influence of initial injection energy on the spa-
tial evolution of subband population. As expected, �x0−x3�
decreases with increasing electric field in accordance with

FIG. 4. Spatial variation of ensemble averaged spin components
for driving electric field Ex=1 kV/cm at steady state. Other condi-
tions are same as in Fig. 3.

FIG. 5. Spatial variation of ensemble averaged spin components
for driving electric field Ex=1.5 kV/cm at steady state. Other con-
ditions are same as in Fig. 3.

FIG. 6. Spatial variation of ensemble averaged spin components
for driving electric field Ex=2 kV/cm at steady state. Other condi-
tions are same as in Fig. 3.

FIG. 7. Spatial variation of ensemble averaged spin components
for E0=441 meV, Ex=1 kV/cm, and lattice temperature T=30 K.
Injected electrons are ŷ polarized.

FIG. 8. Spatial variation of ensemble averaged spin components
for E0=426 meV, Ex=1 kV/cm, and lattice temperature T=30 K.
Injected electrons are ẑ polarized.
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Eq. �9�. Note that at low electric field �Figs. 9 and 10�
x3�x3 since all subbands are getting nearly depopulated of
“upstream” electrons at x�x3. Recall that x3=x3 only if
transport is ballistic; therefore we can conclude that up-
stream transport is nearly ballistic in the range �x0−x3� when
Ex�1 kV/cm. At high electric field, when Ex	1.5 kV/cm
�Fig. 12� �x3−x0 � 	 �x3−x0�. This indicates that there are
many upstream electrons even beyond the classical turning
point. It can only happen if there is significant scattering that
drives electrons against the electric field, making them go
beyond the classical turning point. We can also deduce that
most of these scattering events impart momentum to the car-
riers to aid upstream motion rather than oppose it, since there
are electrons beyond the classical turning point. This behav-
ior is a consequence of the precise nature of the scattering
events and would not have been accessible in drift-diffusion
models that typically treat scattering via a relaxation time
approximation.

Population inversion of upstream electrons

Note that even though electrons are injected equally into
all three subbands, most electrons end up in subband 3—the

highest subband occupied initially—soon after injection. Be-
yond a certain distance �x=xscat�0.9 �m� subbands 1 and 2
become virtually depopulated. This feature is very counter-
intuitive and represents a population inversion of upstream
electrons. It can be understood as follows: scattering rate of
an electron with energy E is proportional to the density of the
final state. In a quantum wire, density of states has 1/�E−Ei
dependence where Ei is the energy at the bottom of the ith
subband. As the injected electrons move upstream they
gradually cool down and their energies approach the energy
at the bottom of subband 3 �E3�. To visualize this, imagine
the horizontal line E0 in Fig. 2 sliding down with passage of
time. As E3 is approached, electrons will increasingly scatter
into subband 3 since the density of final state in subband 3 is
increasing rapidly. To scatter into a final state in subband 2 or
1 that has the same density of state as in subband 3 will
require a much larger change in energy and hence a much
more energetic phonon which is rare since the phonons obey
Bose Einstein statistics. Therefore, subband 3 is the over-

FIG. 9. Spatial variation of electron population over different
subbands at steady state for driving electric field Ex=0.5 kV/cm.
Other conditions are same as before.

FIG. 10. Spatial variation of electron population over different
subbands at steady state for driving electric field Ex=1 kV/cm.
Other conditions are same as before.

FIG. 11. Spatial variation of electron population over different
subbands at steady state for driving electric field Ex=1.5 kV/cm.
Other conditions are same as before.

FIG. 12. Spatial variation of electron population in different
subbands at steady state for driving electric field Ex=2 kV/cm.
Other conditions are same as before.

PRAMANIK, BANDYOPADHYAY, AND CAHAY PHYSICAL REVIEW B 73, 125309 �2006�

125309-6



whelmingly preferred destination and this preference in-
creases rapidly as electrons cool further. Consequently, be-
yond a certain distance, virtually all electrons are scattered to
subband 3 leaving subbands 1 and 2 depleted. This feature is
a peculiarity of quasi-one-dimensional system and will not
be observed in bulk or quantum wells. Exact values of x3 and
xscat depend on injection energy and electric field. In the field
range 0.5−1.5 kV/cm and injection energy 426 meV, �x3 �
	 �xscat�. However, for higher values of electric field �e.g.,
2 kV/cm� or smaller values of injection energies, electrons
reach classical turning point even before subbands 1 and 2
get depopulated.

Spin dephasing in the region �xscat ,x0� is governed by Eq.
�11�. We observe a few subdued oscillations in ��S� � �x� in
this region because of the “sine term” in Eq. �11�. However,
in the region �x3 ,xscat� subbands 1 and 2 are almost depopu-
lated. Therefore, there is no DP relaxation in the interval
�x3 ,xscat� since only a single subband is occupied.17 Conse-
quently, the ensemble averaged spin assumes a constant
value ��S3� � �1 and does not change any more. Thus in this
region, one can say that spin dephasing length becomes in-
finite. It should be noted that it is meaningless to study spin
dephasing in the region x�x3 because electrons do not even
reach this region.

V. CONCLUSION

In this paper, we have used a semiclassical model to study
spin dephasing of upstream electrons in a quantum wire, tak-
ing into account the subband formation. We showed that the
subband structure gives rise to rich features in the spin
dephasing characteristics of upstream electrons that cannot
be captured in models which fail to account for the precise
physics of spin dephasing and the fact that it is different in

different subbands. Because spin relaxation in a multisub-
band quantum wire is nonexponential �even nonmonotonic�
in space, it does not make sense to invoke a “spin diffusion
length,” let alone use such a heuristic parameter to model
spin dephasing.

Finally, we have found a population inversion effect for
upstream electrons. It is possible that downstream electrons
also experience a similar population inversion. This scenario
is currently being investigated.
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