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Phase-coherent quantum mechanical spin transport in a weakly disordered
quasi-one-dimensional channel
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Department of Electrical and Computer Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, USA
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A transfer matrix technique is used to model phase-coherent spin transport in the weakly disordered quasi-
one-dimensional channel of a gate-controlled electron spin interferometer@S. Datta and B. Das, Appl. Phys.
Lett. 56, 665 ~1990!#. The model includes the effects of an axial magnetic field in the channel of the interfer-
ometer ~caused by the ferromagnetic contacts!, a Rashba spin-orbit interaction, and elastic~nonmagnetic!
impurity scattering. We show that in the presence of an axial magnetic field, nonmagnetic impurities can cause
spin relaxation in a manner similar to the Elliott-Yafet mechanism. The amplitudes and phases of the conduc-
tance oscillations of the interferometer and the degree of spin-conductance polarization are found to be quite
sensitive to the height of the interface barrier at the contact, as well as the strength, locations, and nature
~attractive or repulsive! of just a few elastic nonmagnetic impurities in the channel. This can seriously hinder
practical applications of spin interferometers.

DOI: 10.1103/PhysRevB.69.045303 PACS number~s!: 72.25.Dc, 72.25.Mk, 73.21.Hb, 85.35.Ds

I. INTRODUCTION

In a seminal paper published in 1990, Datta and Das1

proposed a gate-controlled electron spin interferometer
which is an analog of the standard electro-optic light modu-
lator. Their device consists of a one-dimensional semicon-
ductor channel with ferromagnetic source and drain contacts
~Fig. 1!. Electrons are injected into the channel from the
ferromagnetic source with a definite spin, which is then con-
trollably precessed in the channel with a gate-controlled
Rashba interaction2 and finally sensed at the drain. At the
drain end, the electron’s transmission probability depends on
the relative alignment of its spin with the drain’s~fixed!
magnetization. By controlling the angle of spin precession in
the channel with a gate voltage, one can modulate the rela-
tive spin alignment at the drain end and, hence, control the
source-to-drain current~or conductance!. In this device, the
ferromagnetic source and drain contacts act as ‘‘spin polar-
izer’’ and ‘‘spin analyzer,’’ respectively.

There have been some studies of ballistic spin transport in
such a device,3–6 but they ignored two features that are al-
ways present in a real device structure. First, there is an axial
magnetic field along the channel caused by the ferromagnetic
contacts. This field dramatically alters the dispersion rela-
tions of the subbands in the channel, causes spin mixing, and
has a serious effect on spin transport. Second, even though
there have been reports of several microns long nearly
defect-free one-dimensional quantum wires formed in high-
quality modulation doped GaAs/AlGaAs heterostructures,7 it
is likely that in circuits involving a large number of spin
interferometers, some of them will have a few impurities in
the channel. We show that these impurities, even if they are
nonmagnetic, can cause spin relaxation in the presence of the
axial magnetic field. Thus, they can affect the conductance
modulation of the interferometer and the degree of spin po-
larization of the current.

This paper is organized as follows. In the next section, we
describe the Hamiltonian to model the gate-controlled elec-
tron spin interferometer depicted in Fig. 1. The Hamiltonian
includes potential barriers at the contact/channel interface
that are inevitably present, the axial magnetic field, and lo-
calized impurities in the channel. It does not include pertur-

FIG. 1. A schematic of the electron spin interferometer from
Ref. 1. The horizontal dashed line represents the quasi-one-
dimensional electron gas formed at the semiconductor interface be-
tween materials I and II. The magnetization of the ferromagnetic
contacts is assumed to be along the1x direction which results in a
magnetic field along thex direction. Also shown is a qualitative
representation of the energy dispersion of the two perturbed~solid
line! and unperturbed~broken line! bands under the gate—the per-
turbation is due to the axial magnetic field along the channel.
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bations due to phonons and other time-dependent scattering
potentials~we assume that the channel is shorter than the
phase breaking length so that transport is phase coherent!.
Using a truncated form of this Hamiltonian, we derive the
dispersion relations of the subbands in the channel. Because
of the presence of the axial magnetic field, the subbands are
not eigenstates of the spin operator. Therefore, no subband
has a definite spin quantization axis. Furthermore, eigens-
pinors in two subbands~at the same energy! arenot orthogo-
nal. As a result, elastic~nonmagnetic and spin-independent!
impurity scattering can couple two subband states with non-
orthogonal eigenspinors, causing elastic intersubband transi-
tions thatrelax spin. One should compare this mechanism of
spin relaxation with the Elliott-Yafet spin relaxation
mechanism8 in a bulk semiconductor. The Elliott-Yafet relax-
ation comes about because in a real crystal, the Bloch states
are not eigenstates of spin so that an ‘‘upspin’’ state has some
‘‘downspin’’ component and vice versa. As a result, nonmag-
netic impurity scattering can connect~mostly! up-spin and
~mostly! down-spin electrons, leading to a spin relaxation.
Our mechanism is very similar.

Section III contains numerical examples of the conduc-
tance modulation of a spin interferometer as a function of
applied gate potential, spin polarization of the current
through the channel, and effects of the interface barriers and
elastic ~nonmagnetic! impurity scattering. Finally, Sec. IV
contains our conclusions.

II. THEORETICAL MODEL

We first consider the quasi-one-dimensional semiconduc-
tor channel of a spin interferometer in the absence of any
impurities. The channel is along thex axis ~Fig. 1! and the
gate electric field is applied along they direction to induce a
Rashba spin-orbit coupling in the channel. This system is
described by the single-particle effective-mass
Hamiltonian9,10

H5~pW 1eAW !
1

2m* ~x!
~pW 1eAW !1VI~x!1V1~y!1V2~z!

2~g* /2!mBBW •sW 1
1

2 FaR~x!

\
ŷ•$sW 3~pW 1eAW !%1H.c.G ,

~1!

where H.c. denotes Hermitian conjugate. This form of the
Hamiltonian guarantees Hermiticity.9 Here,ŷ is the unit vec-
tor along they direction in Fig. 1 andAW is the vector poten-
tial due to the axial magnetic fieldBW along the channel (x
direction! caused by the ferromagnetic contacts. For quasi-
one-dimensional channels of submicron length, it is reason-
able to assume thatBW is homogeneous and directed along the
channel’s length~in other words fringing fields are not an
issue!. In Eq.~1!, mB is the Bohr magneton (e\/2m0) andg*
is the effective Lande´ g factor of the electron in the channel.
The quantityaR is the Rashba spin-orbit coupling strength
which depends on the gate electric field and can be varied
with the gate potential. The confining potentials along they

and z directions are denoted byV1(y) and V2(z), with the
latter being parabolic in space and the former will be ap-
proximately triangular. We assume thatV1(y) is strong
enough that only one subband along they direction is occu-
pied by electrons.

Since the potentialV2(z) is parabolic, it results in a spa-
tially varying electric field along thez direction. This electric
field might have contributed additional Rashba spin-orbit
coupling terms in Eq.~1!. However, since the potentialV2(z)
is symmetricabout the origin of the parabola, for every elec-
tric field at a coordinate pointz, there is an equal and oppo-
site electric field at coordinate2z. The Rashba coupling
constantaR is the product of a material-specific constanta46
~Ref. 11! and theexpectation valueof the electric field in the
z direction ~Ref. 12!. This expectation value is zero because
the spatial average of the electric field along thez direction
vanishes. Hence, there is no overall Rashba effect associated
with V2(z). Therefore, we have considered only the contri-
bution of the gate electric field~applied in they direction! to
the Rashba effect in the channel.

In Eq. ~1!, VI(x) represents an interfacial potential barrier
between the metallic ferromagnetic contacts and the semi-
conducting channel. This potential could come about from
several sources. For example, Scha¨pers et al.13 used a
d-function potential at the interface to represent a tunnel bar-
rier that can facilitate coherent spin injection across a metal-
lic ferromagnet and a semiconducting paramagnet
interface.14 Alternately, this potential could also represent a
very narrow contact potential associated with Ohmic con-
tacts. An Ohmic contact forms when the semiconductor ma-
terial in the neighborhood of the metal contact has a large
carrier concentration so that the Schottky barrier at the metal/
semiconductor interface becomes very narrow and electrons
from the contact tunnel easily through this into the semicon-
ducting channel, resulting in a very small contact resistance
or an Ohmic contact. Following Scha¨perset al.,13 we model
these interface barriers asd barriers given by

VI~x!5VLd~x!1VRd~x2L !, ~2!

whereVL andVR are assumed equal.
In Eq. ~1!, we have neglected a few effects for the sake of

simplicity. We have neglected the normal Elliott-Yafet
interaction8 because it is weak in quasi-one-dimensional
structures~where elastic scattering is strongly suppressed15!.
We have also neglected the Dresselhaus interaction16 since it
does not relax spin when the initial spin polarization is along
the axis of the wire17–20 ~this is the case with the gate-
controlled spin interferometer!. The Dresselhaus interaction
can, however, be easily included in the Hamiltonian and is
left for future work. Finally, we model localized nonmag-
netic impurities~i.e., which do not flip the spin! using a
standard model ofd scatterers. The scattering potential is
given by

Vimp5(
i 51

N

G id~x2xi ! ~3!

to represent N impurities in the channel at locationxi and
with strengthG i ~assumed to be spin independent!. In our
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numerical examples, we consider the case of both attractive
(G i negative! and repulsive (G i positive! impurities. While
Eq. ~1! represents a ballistic channel with no scattering, ad-
dition of the scattering potential in Eq.~3! to Eq. ~1! will
result in a Hamiltonian describing a weakly disordered chan-
nel in which impurity scattering takes place. The eigenstates
of this ~spin-dependent! Hamiltonian can then be found us-
ing a transfer matrix technique to extract the electron wave
function in the presence of impurity scatterers. From this
wave function, we can calculate the~spin-dependent! trans-
mission probability through the channel and ultimately the
~spin-dependent! channel conductance.

Let us now concentrate on the channel region betweenx
50 andx5L ~see Fig. 1!. The choice of the Landau gauge
AW 5(0,2Bz,0) allows us to decouple they component of the
Hamiltonian in Eq.~1! from thex-z component in the chan-
nel. Furthermore, if we ignoreVimp for the moment, the
solution of the Schro¨dinger equation in the channel can be
written as a linear superposition of left and right traveling
plane waves (Vimp will couple various wave vector states
which is handled by the transfer matrix technique described
later!. The two-dimensional Hamiltonian in the plane of such
a ballistic channel (x-z plane! is then given by

Hxz5
pz

2

2m*
1DEc1

1

2
m* ~v0

21vc
2!z21

\2kx
2

2m*
1

\2kRkx

m*
sz

2~g* /2!mBBsx2
\kRpz

m*
sx , ~4!

wherev0 is the curvature of the confining potential in thez
direction,vc5eB/m* , kR5m* aR /\2, andDEc is the po-
tential barrier between the ferromagnet and semiconductor.
We assume thatDEc includes the effects of the quantum
confinement in they direction.

A few words are in order regarding Eq.~4!. First, the
effective mass is spatially invariant within the channel which
is why the effective mass is treated as a constant in Eq.~4!.
Of course, there is a discontinuity in the effective mass at the
interface with the ferromagnetic contacts atx50 and x
5L. This has been taken into account in the boundary con-
ditions @see Eqs.~17! and~18!#. Second,aR is also spatially
invariant in the homogeneous channel because the material
constanta46 is invariant. Therefore,¹aR terms@arising from
the Hermitian conjugate terms in Eq.~1!# vanish in the chan-
nel and do not appear in Eq.~4!!. However, the discontinui-
ties in aR at the interfaces between the semiconductor chan-
nel and the ferromagnetic contacts will lead to two
d-function spin-orbit coupling terms atx50 and x5L.
These are like the interface potentialVI and have been ac-
counted for via the boundary conditions@see Eqs.~17! and
~18! later#.

A. Energy dispersion relations

We now derive the energy dispersion relations in the
channel of a ballistic interferometer using Eq.~4!. The first
five terms of the Hamiltonian in Eq.~4! yield shifted para-
bolic subbands with dispersion relations

En,↑5~n11/2!\v1DEc1
\2kx

2

2m*
1

\2kRkx

m*
,

En,↓5~n11/2!\v1DEc1
\2kx

2

2m*
2

\2kRkx

m*
, ~5!

wherev5Av0
21vc

2. In Eq. ~5!, the↑ and↓ arrows indicate
1z- and2z-polarized spins~eigenstates of thesz operator!
which are split by the Rashba effect@fifth term of the Hamil-
tonian in Eq. ~4!#. These are subbands with definite spin
quantization axes along the1z and2z directions since they
are eigenstates of thesz operator. Their dispersion relations
are shown as dashed lines in Fig. 1.

The sixth and seventh terms in Eq.~4! induce a perturba-
tion and mixing between the unperturbed subbands (1z- and
2z-polarized spins!. The sixth term originates from the mag-
netic field due to the ferromagnetic contacts and the seventh
originates from the Rashba effect itself. The ratio of these
two terms can be shown to be of the order of 104–106 for
typical values of the relevant parameters. Therefore, we can
neglect the seventh term in comparison with the sixth term
~for a very strong Rashba effect, much stronger than what
has been experimentally observed in semiconductor struc-
tures, the seventh term can also matter and introduce addi-
tional spin mixing effects21!.

To obtain an analytical expression for the dispersion rela-
tion corresponding to the first six terms in the Hamiltonian in
Eq. ~4!, we derive the two-band dispersion relation in a trun-
cated Hilbert space considering mixing between the two low-
est unperturbed subband states~namely, the1z and2z spin
states!. Straightforward diagonalization of the Hamiltonian
in Eq. ~4! ~minus the seventh term! in the basis of these two
unperturbed states gives the following dispersion relations:

E1~kx!5
1

2
\v1DEc1

\2kx
2

2m*
2AS \2kRkx

m* D 2

1S g* mBB

2 D 2

,

~6!

E2~kx!5
1

2
\v1DEc1

\2kx
2

2m*
1AS \2kRkx

m* D 2

1S g* mBB

2 D 2

,

~7!

where the indices 1 and 2 refer to the lower and upper sub-
bands. Their dispersion relations are plotted schematically as
solid lines in Fig. 1.

One can see from Fig. 1 that the magnetic field caused by
the ferromagnetic contacts couples the two unperturbed sub-
bands ~the original 1z- and 2z-polarized subbands! and
changes their dispersion relation, lifting the degeneracy at
kx50. While the unperturbed bands are shifted parabolas
with single minima atkx56kR ,1 the perturbed bands~in the
presence of a magnetic field! are not parabolic and are sym-
metric about the energy axis. One of them has a single mini-
mum at kx50, and the other has double minima atkx5
6kRA11(g* mBB/dR)2, where dR5\2kR

2/2m* . The mag-
netic field not only has this profound influence on the disper-
sion relations, but it also causesspin mixing, meaning that
the perturbed subbands no longer have definite spin quanti-
zation axes~they are no longer1z- and 2z-polarized sub-
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bands! because they are no longer eigenstates of the spin
operator. Spin quantization becomes wave vector dependent.
Furthermore, energy-degenerate states in the two perturbed
subbands no longer have orthogonal spins. Therefore, elastic
scattering between them is possible without a complete spin
flip.

The energy dispersion relations also show that the differ-
enceDkx between the wave vectors in the two subbands at
any given energy isnot independent of that energy. Since
Dkx is proportional to the angle by which the spin precesses
in the channel,1 the angle of spin precession in the channel of
a spin interferometer isno longer independent of electron
energy. Thus different electrons that are injected from the
contact with different energies~at finite temperature and
bias! will undergo different degrees of spin precession, and
the conductance modulation will not survive ensemble aver-
aging over a broad spectrum of electron energy at elevated
temperatures and bias. In Ref. 1, which did not consider the
effect of the axial magnetic field, a point was made that the
angle of spin precession is independent of electron energy so
that every electron undergoes the same degree of spin pre-
cession in the channel irrespective of its energy. As a result,
the conductance modulation of the spin interferometer is not
diluted by ensemble averaging over electron energy at el-
evated temperature and bias. Indeed this is true in the ab-
sence of an axial magnetic field, but when a magnetic field is
considered, this advantage is lost.

From Eqs.~6! and ~7!, we find that an electron incident
with total energyE has wave vectors in the two channel
subbands given by

kx65
1

\
A2m* S B6AB224C

2 D , ~8!

where

B52S E2
\v

2
2DEcD14dR , C5S E2

\v

2
2DEcD 2

2b2, ~9!

with b5g* mBB/2.
In Eq. ~8!, the upper and lower signs correspond to the

lower and upper subbands in Fig. 1 and are referred to here-
after askx,1 andkx,2 , respectively. The corresponding eigen-
spinors in the two subbands~at energyE) are, respectively,

FC1~kx,1!

C18~kx,1!G5F2a~kx,1!/g~kx,1!

b/g~kx,1! G5F2sin~ukx,1
!

cos~ukx,1
! G ,

FC2~kx,2!

C28~kx,2!G5F b/g~kx,2!

a~kx,2!/g~kx,2!G5F cos~ukx,2
!

sin~ukx,2
! G , ~10!

where the quantitiesa and g are functions ofkx and are
given by

a~kx!5
\2kRkx

m*
1AS \2kRkx

m* D 2

1b2, g~kx!

5Aa2~kx!1b2, ukx
5arctan@a~kx!/b#. ~11!

Note that the eigenspinors given by Eq.~10! are not a
1z-polarized state@1 0 #† or 2z-polarized state@0 1 #† if
the magnetic fieldBÞ0 ~i.e., bÞ0). Thus, the magnetic
field mixes spins and the1z- or 2z-polarized states are no
longer eigenstates in the channel@in other words, the sub-
bands in Eqs.~6! and~7! are not eigenstates of thesz opera-
tor unlike the subbands in Eq.~5! and hence they are not1z-
and 2z-polarized subbands#. Equations~10! also show that
the spin quantization~eigenspinor! in any subband is not
fixed and strongly depends on the wave vectorkx . Thus, an
electron entering the semiconductor channel from the left
ferromagnetic contact with1x-polarized spin will not
coupleequally to 1z and 2z states. The relative coupling
will depend on the electron’s wave vector~or energy!.

Most importantly, the two eigenspinors given by Eq.~10!
arenot orthogonal. Thus, a spin-independent elastic scatterer
~nonmagnetic impurity! can couple these two subbands in
the channel and cause elastic intersubband transitions. An-
other way of stating this is that the actual subband states are
not eigenstates of the spin operator; hence, scattering be-
tween them is possible via a spin-independent scatterer. This
is exactly similar to the Elliott-Yafet mechanism in a bulk
crystal. Such a scattering is of course harmful for the gate-
controlled spin interferometer since it introduces a random
component to the spin precession in the channel. In our
transfer matrix model~described later! this mechanism of
scattering is automatically included since we use the actual
eigenspinors in the channel given by Eq.~10! to construct the
wave function~see Sec. II B later!.

We model the ferromagnetic contacts by the Stoner-
Wohlfarth model. The1x-polarized spin~majority carrier!
and 2x-polarized spin~minority carrier! band bottoms are
offset by an exchange splitting energyD ~Fig. 2!. Since the
interface barriers for the two types of spin are different by
the amountD, the transmission amplitudes for the two types
will be different, leading to some degree of spin-polarized
injection and detection.22

B. Transmission through the interferometer

In this subsection, we calculate the total transmission co-
efficient through the spin interferometer for an electron of
energyE entering the semiconductor channel from the left
ferromagnetic contact~region I, x<0) and exiting at the
right ferromagnetic contact~region III, x>L). A rigorous
treatment of this problem would require an accurate model-
ing of the three-to one-dimensional transition between the
bulk ferromagnetic contacts~regions I and III! and the quan-
tum wire semiconductor channel~region II!.23,24 However, a
one-dimensional transport model to calculate the transmis-
sion coefficient through the structure is known to be a very
good approximation when the Fermi wave number in the
ferromagnetic contacts is much greater than the inverse of
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the transverse dimensions of the quantum wire.25,26 This is
always the case with metallic contacts.

In the semiconductor channel~region II, 0,x,L), thex
component of the wave function at a positionx along the
channel is given by

c II ~x!5AI~E!FC1~kx,1!

C18~kx,1!Geikx,1x1AII ~E!

3FC1~2kx,1!

C18~2kx,1!Ge2 ikx,1x1AIII ~E!FC2~kx,2!

C28~kx,2!Geikx,2x

1AIV~E!FC2~2kx,2!

C28~2kx,2!Ge2 ikx,2x. ~12!

For a1x-polarized spin~majority carrier! in the left fer-
romagnetic contact~region I,x,0), the electron is spin po-
larized in the@11#† subband and thex component of the
wave function is given by

c I~x!5
1

A2
F 1

1Geikx
ux1

R1~E!

A2
F 1

1Ge2 ikx
ux

1
R2~E!

A2
F 1

21Ge2 ikx
dx, ~13!

where R1(E) is the reflection amplitude into the
1x-polarized band andR2(E) is the reflection amplitude in
the 2x-polarized band for an electron incident with energy
E.

In the right ferromagnetic contact~region III, x.L), thex
component of the wave function is given by

c III ~x!5
T1~E!

A2
F 1

1Geikx
u(x2L)1

T2~E!

A2
F 1

21Geikx
d(x2L),

~14!

whereT1(E) andT2(E) are the transmission amplitudes into
the1x- and2x-polarized bands in the right contact. In Eqs.
~13! and ~14!, the wave vectors

kx
u5

1

\
A2m0E, kx

d5
1

\
A2m0~E2D! ~15!

are thex components of the wave vectors corresponding to
energy E in the majority (1x-polarized! and minority
(2x-polarized! spin bands, respectively.

If there are impurities in the channel, we must write a
solution to the Schro¨dinger equation in each ‘‘ballistic’’ seg-
ment of the channel between neighboring impurities in the
form given by Eq.~12! with different values for the coeffi-
cients Ai(E)( i 51,4). In addition to the continuity of the
wave function across each impurity in the channel, the fol-
lowing condition must be satisfied, which is obtained
through an integration of the Schro¨dinger equation across the
impurity:

dc

dx
~xi1e!5

dc

dx
~xi2e!1

2m* G i

\2
c~xi !. ~16!

Furthermore, because of the interfacial barrier at the two
ferromagnet/semiconductor contacts, the integration of the
Schrödinger equation across the left and right interface re-
gions leads to the following two boundary conditions:

At x50,

m
dc

dx
~2e!1

2m* V0

\2
c~0!5

dc

dx
~1e!1 ikR~1e!szc~1e!,

~17!

and, atx5L,

m
dc

dx
~L1e!2

2m* V0

\2
c~L !5

dc

dx
~L2e!

1 ikR~L2e!szc~L !,

~18!

whereV0 is determined byVI and DEc , m5ms* /mf* , and
ms* and mf* are the effective masses in the semiconductor
and ferromagnetic materials, respectively. Here, we have
made use of the fact thataR ~and thereforekR) is zero in the
ferromagnetic contacts so that terms containingkR(2e) and
kR(L1e) do not appear in Eqs.~17! and~18!. Equations~17!

FIG. 2. Energy band diagram across the electron spin interfer-
ometer. We use a Stoner-Wohlfarth model for the ferromagnetic
contacts.D is the exchange splitting energy in the contacts.DEc is
the height of the potential barrier between the energy band bottoms
of the semiconductor and the ferromagnetic electrodes.DEc takes
into account the effects of the quantum confinement in they andz
directions. Also shown as dashed lines are the resonant energy
states aboveDEc . Peaks in the conductance of the electron spin
interferometer are expected when the Fermi level in the contacts
lines up with the resonant states. The barriers at the ferromagnet/
semiconductor interface are modeled as simple one-dimensionald
potentials. The impurity potentials are also modeled asd potentials
at random locations~here we show attractive impurities because the
d potentials are negative!.
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and ~18! ensure continuity of the current density at the fer-
romagnetic contact/semiconductor interface.

For the case ofN impurities in the channel, the equations
above lead to a system of 4(N12) equations with 4(N
12) unknowns@R1(E), R2(E), T1(E), T2(E) and N11
sets of Ai(E)( i 5I,II,III,IV) for the N11 regions in the
channel demarcated by theN impurities#. This system of
equations must then be solved to find the transmission prob-
abilities T1(E) andT2(E). The problem is repeated for two
cases:~i! when the initial spin is1x polarized~i.e., the in-
coming electron is a majority carrier in the left contact! and
~ii ! when the incoming electron is2x polarized ~i.e., the
incident electron is a minority carrier in the left contact!.
Finally, the linear response conductance of the spin interfer-
ometer~for injection from either the1x- or 2x-polarized
bands in the left contact! is found from the Landauer formula

G1x-polarized5
e2

4hkTE0

`

dEuTtot~E!u2sech2S E2EF

2kT D ,

~19!

where

uTtot~E!u25uT1~E!u21~kx
d/kx

u!uT2~E!u2. ~20!

Similarly, the conductance of the minority spin carriers
(G2x-polarized) is calculated after repeating the scattering
problem for electrons incident from the minority spin band in
the contacts. Since the1x- and2x-polarized spin states are
orthogonal in the contacts, the total conductance of the spin
interferometer is given by

G5G1x-polarized1G2x-polarized. ~21!

C. Role of the interface potentials

The interface potentialsVI determineV0 and the solutions
of the Schro¨dinger equation and, therefore, the transmission
probabilities and conductance. To elucidate the role ofVI ,
we introduce the following parameter:

Z5
2mf* V0

\2
. ~22!

Typical values ofZ vary in the range of 0–2.13 Using
mf* 5m0 andkF51.053108 cm21, we get a barrier strength
V0516 eV Å for Z52. In the next section, we will show
how the conductance modulation of the spin interferometer
depends onZ.

III. NUMERICAL EXAMPLES

We consider a spin interferometer consisting of a quasi-
one-dimensional InAs channel between two ferromagnetic
contacts. The electrostatic potential in thez direction is as-
sumed to be harmonic@with \v510 meV in Eq.~4!#. We
assume ag* factor of 3 and an electron effective massm*
50.036m0 which is typical of InAs-based channels.12 We
also assume that the magnetic field along the channel is 1 T

based on an estimate given by Wr´obelet al.27 This leads to a
Zeeman splitting energyg* mBB of 0.34 meV in the channel.
The Fermi levelEf and the exchange splitting energyD in
the ferromagnetic contacts are set equal to 4.2 and 3.46 eV,
respectively.28

The Rashba spin-orbit coupling strengthaR is typically
derived from low-temperature magnetoresistance measure-
ments~Shubnikov–de Haas oscillations! in two-dimensional
electron gas~2DEG! created at the interface of semiconduc-
tor heterostructures.29 To date, the largest reported experi-
mental values of the Rashba spin-orbit coupling strengthaR
have been found in InAs-based semiconductor heterojunc-
tions. For a normal high electron mobility transistor~HEMT!
In0.75Al0.25As/In0.75Ga0.25As heterojunction, Satoet al. have
reported a variation ofaR from 30 to 15310212 eV m when
the external gate voltage is swept from 0 to26 V ~the total
electron concentration in the 2DEG is found to be reduced
from 5 to 4.531011/cm2 over the same range of bias!. For a
channel length of 0.2mm, this corresponds to a variation of
the spin precession angleu52kRL from aboutp to 0.5p
over the same range of gate bias.

In the numerical results below, we calculated the conduc-
tance of a spin interferometer with a 0.2-mm-long channel as
a function of the gate voltage at a temperature of 2 K.30

Tuning the gate voltage varies both the potential energy bar-
rier DEc and the Rashba spin-orbit coupling strengthaR
simultaneously.31 Both of these variations lead to distinct
types of conductance oscillations. The variation ofDEc
causes the Fermi level in the channel to sweep through the
resonant energies in the channel~resonant levels are caused
by the potential steps atx50 andx5L), causing the con-
ductance to oscillate. These are known as Ramsauer oscilla-
tions ~or Fabry-Perot-like resonances! and have been exam-
ined in the past by Matsuyamaet al.5 for two-dimensional
structures and by us32 for one-dimensional structures. The
variation ofaR , on the other hand, causes spin precession in
the channel, leading to the type of conductance oscillation
which is the basis of the spin interferometer, as originally
visualized by Datta and Das.1 In Ref. 32 we found that the
Ramsauer oscillations are much stronger and can mask the
oscillations due to spin precession, unless the structure is
designed with particular care to eliminate~or reduce! the
Ramsauer oscillations. In the calculations reported here, we
vary DEc over a range of 10 meV which allows us to display
several of the Ramsauer oscillations in the conductance. We
are restricted to this range because we can increaseDEc at
most by an amount equal to the Fermi energy in the channel.
At the end of this range, the Fermi energy lines up with the
conduction band edge in the channel which corresponds to
onset of complete pinch-off; i.e., the channel carrier concen-
tration falls to zero. Therefore, the maximum range ofDEc is
the Fermi energy, as long as we are applying a negative gate
voltage to deplete the channel as opposed to applying a posi-
tive gate voltage to accumulate the channel~we do not want
to accumulate the channel since a large carrier concentration
in the channel will lead to multiple subband occupation and
will also ultimately shield the gate potential resulting in loss
of gate control!. In one-dimensional semiconductor channels,
a realizable carrier concentration of;63105/cm, will cor-
respond to a Fermi energy of 10 meV which also happens to
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be the subband separation energy\v in our case. Therefore,
we restrict the Fermi energy to 10 meV in order to preserve
single-subband occupancy, and this dictated our choice for
the range ofDEc .

Over this range ofDEc , we assume that the Rashba spin-
orbit coupling strengthaR varies from 30310212 eV m
down to zero. This is consistent with experimentally ob-
served dependence ofaR on gate voltage. This variation of
aR corresponds to a variation of the spin precession angleu
from aboutp to 0 ~i.e., half a cycle of the oscillation ex-
pected from spin precession!.

A. Influence of the interfacial barrier

The results of the conductance modulation are shown in
Fig. 3 for different values of the parameterZ characterizing
the strength of the d barrier at the ferromagnet/
semiconductor interface~assumed to be the same for both
contacts!. Instead of plotting the conductance as a function
of gate voltage, we always plot it as a function ofDEc since
DEc directly enters the Hamiltonian in Eq.~4!. The exact
relationship betweenDEc and the gate voltage is compli-
cated by many factors~interface states, channel geometry,
etc.!, but for the sake of simplicity, we will assume thatDEc
depends linearly on gate voltage. Therefore, the plots in Figs.
3–9 can be effectively viewed as plots of conductance versus
gate voltage.

A value of Z51 corresponds to a value ofVL andVR in
Eq. ~2! equal to 8 eV Å. Figure 3 shows that the location of
conductance minima and maxima are only slightly shifted
along theDEc axis with the variation of the parameterZ. The
amplitudes of the oscillations increase withZ but then start
to decrease as the maxima of the conductance is reduced for
larger values ofZ. This reduction in amplitude is expected
since the conductance of the spin interferometer eventually
reduces to zero asZ→` ~no electron can enter or exit the
channel if there are infinite barriers at the contact interface!.
The maximum in the conductance amplitude modulation oc-
curs for Z50.25 in our numerical examples. In the subse-

FIG. 3. Conductance modulation of a ballistic electron spin in-
terferometer~for T52 K) as the gate voltage~or the energy barrier
DEc) is varied. We assume that the Rashba coupling strengthaR

varies from 30310212 eV m to 0 for the range ofDEc shown in the
figure. This should correspond to one-half cycle of conductance
oscillation due to spin precession. The separation between the two
ferromagnetic contacts is 0.2mm. The confinement energy\v
along thez direction ~direction transverse to both current flow and
the gate electric field! is 10 meV. The conductance oscillations in
this figure are caused by Fermi level sweeping through the resonant
levels in the channel of the interferometer~the so-called Ramsauer
effect! and arenot due to the spin precession in the channel as
shown in Ref. 32. The different curves correspond to different val-
ues of the parameterZ characterizing the strength of the interfacial
barrier between the ferromagnetic contact and semiconducting
channel. The semiconducting channel is assumed to be impurity
free and, hence, ballistic.

FIG. 4. Influence of a single impurity on the conductance modu-
lation of an electron spin interferometer. All other parameters are
the same as in Fig. 3. The interface potential at the ferromagnet/
semiconductor interface is 2 eV Å corresponding toZ50.25. The
impurity is modeled as a repulsived scatterer with strengthG i

indicated next to each curve in unit eV Å. The impurity is located
300 Å away from the left ferromagnetic contact/channel interface.

FIG. 5. Influence of a single impurity on the conductance modu-
lation of an electron spin interferometer. Again, all other parameters
are the same as in Fig. 3, andZ50.25. The impurity is modeled as
a repulsived scatterer with strengthG50.5 eV Å. Cases 1–4 cor-
respond to an impurity located 300, 750, 1000, and 1500 Å away
from the left ferromagnetic contact/channel interface.
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quent numerical simulations which investigate the influence
of impurity scattering on the conductance modulation, we
therefore usedZ50.25 throughout.

B. Impurity scattering

First, we consider the case of a single repulsive impurity
at a fixed location within the channel~300 Å from the left
ferromagnetic contact! but with varying strengthG i . Figure
4 shows that the size and location of the conductance peaks
and minima are affected by the strength of the impurity scat-
terer and more strongly affected at larger values ofDEc .
This is expected since the transmission probability through
the impurity diminishes as the channel approaches pinch-off.
Even though not shown here, the same trend was observed
when the impurity was assumed to be an attractive scatterer
~negative value forG i). Figures 5 and 6 illustrate the depen-
dence of the conductance of the interferometer on the exact
location of an impurity with a scattering strength ofG i
50.5 eV Å. Figures 5 and 6 correspond to the case of a
repulsive and attractive impurities, respectively. These fig-

ures clearly show that the conductance modulation of the
interferometer operating in a phase-coherent regime is af-
fected by the exact location and strength of a single scatterer.
In fact, Fig. 6 clearly shows that, if we change the location of
the impurity, then the value of the conductance at a fixed
value ofDEc changes by;e2/h which is reminiscent of the
phenomenon of ‘‘universal conductance fluctuations.’’33

Next, we consider the case of two impurities in the chan-
nel at two different locations~300, 1000 Å! and ~500, 1250
Å!. The results for the cases of attractive and repulsive im-
purities ~of equal strength! are shown in Figs. 7 and 8, re-
spectively. These figures accentuate even more the features
observed in Figs. 5 and 6—i.e., a strong dependence of the
oscillation amplitude and phase~even far from pinch off! on

FIG. 6. Same as Fig. 5 for the case of an attractive impurity with
strengthG520.5 eV Å. Cases 1–4 correspond to an impurity lo-
cated 300, 750, 1000, and 1500 Å away from the left ferromagnetic
contact/channel interface.

FIG. 7. Same as Fig. 5 for the case of two repulsive impurities
with strengthG50.5 eV Å. The curves labeled 1 and 2 correspond
to the case of two impurities located at~300, 1000 Å! and ~500,
1250 Å!, from the left ferromagnet/channel interface, respectively.

FIG. 8. Same as Fig. 5 for the case of two attractive impurities
with strengthG520.5 eV Å. The curves labeled 1 and 2 corre-
spond to the case of two impurities located at~300, 1000 Å! and
~500, 1250 Å!, from the left ferromagnet/channel interface, respec-
tively.

FIG. 9. Degree of spin-conductance polarizationP vs DEc . All
other parameters are the same as listed in Fig. 3. The quantityP is
plotted for the case of a ballistic channel with no impurity and also
for the four two-impurity configurations~attractive and repulsive!
considered in Figs. 7 and 8. The curves labeled 1 and 2 correspond
to the case of two impurities located at~300, 1000 Å! and ~500,
1250 Å!, from the left ferromagnet/channel interface, respectively.
The extra labelsr and a are to identify the case of repulsive and
attractive scatterers, respectively.
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the impurity type and configurations. This sensitivity is due
to the quantum interference between electron waves reflected
multiple times between impurities and also between each
impurity and the closest ferromagnetic contact. All these in-
terferences affect the overall transmission probability of an
electron through the interferometer and, hence, its conduc-
tance. These simulations show that, even if good
ferromagnetic/semiconductor contacts with large degree of
spin polarization can be realized through the use of an ap-
propriate interfacial barrier, perfect control of the location of
the conductance minima and maxima could still be elusive in
the presence of just a few impurities in the channel. Obvi-
ously, this will have a deleterious effect on device reproduc-
ibility.

The strong sensitivity to the presence of impurities in the
channel also has a profound influence on the spin-
conductance polarization which is defined as4

P5
G1x-polarized2G2x-polarized

G1x-polarized1G2x-polarized
. ~23!

This quantity is plotted in Fig. 9 as a function ofDEc . The
degree of spin polarizationP is shown for the case of an
impurity free channel and also for the four different two-
impurity configurations~attractive and repulsive! considered
in Figs. 7 and 8. This quantity takes both positive and nega-
tive values as the gate voltage is swept and reaches a maxi-
mum of 60% close to the threshold for channel pinch-off.
However, near pinch-off, our model of impurity scattering
should be modified to take into account the absence of
screening at low carrier density. Even for a more refined
model of impurity scattering, we believe that Fig. 9 is indica-
tive of what is to be expected in realistic samples; i.e, the
spin-conductance polarization is very sensitive to the nature
and location of the impurities in the channel. The spin polar-
ization therefore provides an actual fingerprint for each im-
purity configuration, a phenomenon similar to the universal
conductance fluctuations linked to the displacement of a
single impurity in mesoscopic samples.33

From an experimental point of view, the sensitivity of the
spin-conductance polarization to the actual impurity configu-
ration could be tested with experiments based on the Hanle
effect, pioneered by Johnson and Silsbee34 and later used by
several groups.35,36 For spin interferometers with very long
channels and containing many impurities, the Hanle effect,
which uses a small magnetic field perpendicular to the axis
of magnetization of the ferromagnetic contacts, could be
used to investigate the influence of the gate potential~via the
Rashba effect! on the spin relaxation timeT2 of carriers in
one-dimensional channels in the presence of an axial mag-
netic field.

IV. CONCLUSIONS

In this paper, we have developed a fully quantum me-
chanical approach to model-coherent electron spin transport
in a disordered semiconductor channel using a particular
model of impurity scattering. We have also shown how con-
ductance modulation of the gate-controlled spin interferom-
eters proposed in Ref. 1 is affected by the presence of inter-
facial barriers at the ferromagnetic contact/semiconductor
interfaces and by a few impurities in the semiconducting
channel. Quantum interference caused by multiple reflections
of electron waves between impurities and between the impu-
rities and the interfacial barriers can strongly affect the over-
all degree of spin polarization of the interferometer. The ex-
treme sensitivity of the amplitude and phase of conductance
oscillations to impurity location is reminiscent of the phe-
nomenon of universal conductance fluctuations of mesos-
copic samples. This will hinder practical applications of elec-
tron spin interferometers.
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