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Atomic structure, binding energy, and magnetic properties of iron atoms
supported on a polyaromatic hydrocarbon

L. Senapati and S. K. Nayak
Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute,
Troy, New York 12180

B. K. Rao and P. Jena
Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284

~Received 12 December 2002; accepted 25 February 2003!

The atomic structure, energetics, and properties of gas-phase cluster complexes containing coronene
(C24H12) molecule and up to two iron atoms are studied for the first time using density functional
theory and generalized gradient approximation for exchange and correlation. The geometries of the
neutral and cationic iron–coronene complexes are optimized without symmetry constraint and by
examining the possibility that iron atoms could occupy various sites via individualp or bridging
interactions. In both neutral and cationic complexes a single Fe atom is found to preferentially
occupy the on-top site above the outer ring, while two Fe atoms dimerize and reside on the top of
center of the outer rings. The binding energy of neutral Fe2–coronene defined with respect to
dissociation into coronene and Fe2 is larger than that of Fe–coronene while reverse is true for the
corresponding cations. Although the ionization potentials of these complexes are not very sensitive
to the number of adsorbed Fe atoms, they are significantly reduced from those of the Fe atom or the
coronene molecule. The photodecomposition of cationic~Fen– coronene!1 complexes proceeds
through the ejection of either coronene1 or (Fe–coronene!1 cations while in the case of neutral
Fe2–coronene, the ejection of Fe2 is energetically preferred. The coupling between the Fe atoms
remains ferromagnetic although the magnetic moment/atom is reduced from the free-atom value.
The results compare well with recent mass ion intensity and photofragmentation experiments.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1568077#

I. INTRODUCTION

The field of organometallic chemistry has been a topic of
interest for a long time.1 Until recently most of these studies
were carried out in the solution phase. Consequently, quan-
titative understanding of the bonding of metal atoms to or-
ganic molecules had been difficult because of complications
introduced by the solvents. These problems, however, are
eliminated in gas phase studies where metal atoms produced
by laser vaporization can interact only with organic mol-
ecules. Metallo-organic clusters thus formed can be mass
isolated in a time of flight spectrometer and studied individu-
ally.

Considerable amount of work is available in the litera-
ture on the metal benzene (C6H6) complexes in the gas
phase.2 Mass ion spectroscopy and mobility experiments
have suggested the existence of novel geometries with
metal–benzene complexes forming either multidecker sand-
wich structures where metal atoms are separated by benzene
molecules or ‘‘rice ball’’ structures where metal clusters are
decorated with benzene molecules. Photodecomposition ex-
periments have provided the strength of bonding in these
systems while measurements of ionization potential and elec-
tron affinity illustrate their electronic structure. Comprehen-
sive theoretical calculations are also available3 that comple-
ment the experimental work and provide an understanding of

the interaction between metal atoms and clusters with ben-
zene molecules.

However, similar data on metal atoms adsorbed on pol-
yaromatic hydrocarbons such as coronene (C24H12) ~see Fig.
1! are rather scarce. The later group of organometallic com-
plexes is particularly interesting since polyaromatic hydro-
carbons are produced during combustion, and the interaction
of these molecules with metal atoms has been suggested as a
likely source of the unidentified infrared bands in the inter-
stellar dust.4 These molecules can also serve as a model for
graphite. Thus the interaction between metal atoms and the
polyaromatic hydrocarbons can shed light on the bonding of
metal atoms on graphite as well as in intercalation com-
pounds. It is only recently that monomer and dimer com-
plexes of coronene interacting with nontransition metal ions
such as Mg1, Al1, Si1, In1, Pb1, and Bi1, and transition
metal ions (M ) such as Sc1 and Mn1 were studied5 in the
gas phase using Fourier transform ion cyclotron resonance
~FT–ICR! ion trap mass spectrometer. The bond strengths of
the nontransition metal ions with coronene were found to be
larger than 1.5 eV. While transition metal ions readily formed
M1 (coronene!2 complexes, nontransition metal ions (Mg1,
Al1, Si1) did so poorly or not at all.

A detailed experimental study of the Fe–coronene com-
plexes containing multiple Fe atoms and coronene molecules
was recently carried out by Duncan and co-workers.6 These
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authors measured the mass ion intensities as well as disso-
ciation products during the photofragmentation process. Fol-
lowing is a summary of their findings:~1! The mass ion
intensities of (Fen– coronenem)1 clusters continuously de-
crease from (n,m)5(1,1) to (n,m)5(3,1). No
Fen– coronenem)1 complexes containing four or more Fe at-
oms were observed.~2! The mass ion intensity of
(Fen– coronenem)1 for (n,m)5(1,2) is higher than for any
other complexes. This suggests that (Fe–coronene2)

1 is the
most stable complex and probably has a sandwich structure
where the Fe atom is trapped between two coronene mol-
ecules.~3! The photodissociation of (Fe–coronene!1 pro-
ceeds via its fragmentation into Fe and coronene1 while
@Fe–~coronene!2#

1 dissociates into Fe–coronene and
coronene1. The former channel is consistent with the fact
that the ionization potential of coronene is less than that of
Fe.

Unfortunately these experiments do not provide any di-
rect information on the structure of these complexes. For
example, it is difficult to determine if the metal atoms guided
by p-bonding would reside above the central or outer ring or
would bind to bridge sites. It is also unclear if the structures
of neutral metal–coronene complexes are the same as those
of their cationic counterparts. Although it has been
suggested6 that metal atoms are dissociatively adsorbed on
coronene, the evidence is not conclusive. We note that much
of the structural information can only come from theoretical
work. No first-principles theoretical study of the structure
and properties of transition metal atoms on coronene sur-
faces is available to our knowledge.

In this paper we provide, what we believe to be for the
first time, theoretical results on the equilibrium geometries,
dissociation energies, ionization potentials, and magnetic
properties of neutral and cation complexes containing iron
atoms and coronene. The results are based on first-principles
calculations involving density functional theory and general-
ized gradient approximation for exchange and correlation. In
the following we give a brief description of our theoretical

procedure. In Sec. III we discuss our results. A summary of
our conclusions is given in Sec. IV.

II. THEORETICAL PROCEDURE

The equilibrium geometry and the total energy of coro-
nene, Fe–coronene, and Fe2–coronene complexes in both
neutral and cationic forms are calculated using density func-
tional theory and generalized gradient approximation for ex-
change and correlation. To find the ground state structure for
any given complex, many starting configurations were con-
sidered. Coronene is the smallest polyaromatic hydrocarbon
that resembles graphite and thus provides many sites where
metal atoms can reside. To demonstrate this we refer to the
structure of coronene molecule in Fig. 1. Note that a single
metal atom can reside on top of the central ring, on top of
any of the six outer rings, or on top of any of the four in-
equivalent bridge sites above a C–C bond marked bya, b, c,
andd in Fig. 1. Insertion of Fe atom into the coronene plane
would require major disruption of the strong C–C bond and
is therefore considered unlikely. For Fe2–coronene com-
plexes the choices are even larger as the Fe atoms can either
bind associatively~in the form of a dimer! or dissociatively
~in atomic form! in addition to binding on either side of the
coronene molecule. Note that for many of these structures,
there is very little symmetry, so it is necessary to carry out
the optimization procedure without any symmetry constraint
starting from a large number of configurations.

The total energies and forces are calculated using the
linear combination of atomic orbitals molecular orbital ap-
proach. We have used all electron double numerical basis
~DNP7! for the atoms augmented by polarization functions.
The DNP is comparable in quality to Gaussian 6-31G** ba-
sis set and usually yields the most reliable results. The total
energies are computed using the density functional theory
and generalized gradient approximation for exchange and
correlation. For the latter we have used the Perdew–Wang8

91 form, and the computations were performed using the
DMol3 code.9 The geometries are optimized without symme-
try constraint by minimizing the total energy and requiring
the forces to vanish at every atom site. The threshold for
these forces was set at 1023 a.u./Bohr. The spin multiplicities
were calculated using the aufbau principle. The calculations
are repeated for neutral and cationic complexes. The vertical
ionization potential is computed by calculating the energy
needed to remove an electron from the neutral ground state
without altering its geometry. The adiabatic ionization poten-
tial, on the other hand, represents the energy difference be-
tween the ground states of the neutral and corresponding
cation.

III. RESULTS

We present our results in four steps. First, we discuss the
geometry, ionization potential, and electron affinity of the
coronene molecule and compare these with experiment.
Similar comparisons are made for the Fe atom and the dimer.
This comparison is provided to assess the accuracy of our
theoretical procedure. Second, we discuss the effect of
chemisorption of a single Fe atom on the electronic structure

FIG. 1. Structure of coronene molecule identifying different C–C and C–H
bonds. See Table I for the bond lengths.
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and magnetic properties of coronene followed by results of a
Fe2 supported on coronene. Finally, we analyze the effect of
neglecting relaxation of coronene on the binding energies of
Fen– coronene complexes.

A. Coronene and iron

The equilibrium structure of neutral coronene molecule
as optimized in the present formulation is shown in Fig. 1.
Note that there are four different kinds of C–C bonds: Bond
a belongs to the inner ring where the first, second, and third
near neighbor atoms are carbon atoms, bondb is the radial
bond where the first two nearest neighbors are carbon atoms
while the third nearest neighbor is hydrogen, bondc is where
one of the nearest neighbor carbon atoms is bonded to hy-
drogen, and bondd is the remaining external bond where
both the carbon atoms have nearest neighbor hydrogen.
These bond lengths for the neutral and charged~cation or
anion! coronene are listed in Table I. Note that bondsa, b, c
have very comparable lengths namely 1.42 Å while bondd is
significantly shorter. It is worth noting that the bond lengths
of C2 forming single, double, and triple bonds are, respec-
tively, 1.54 Å, 1.33 Å, and 1.21 Å. Thus a bond length of
1.42 Å constitutes a bond intermediate between a single and
double bond. Our results compare well with available
experiment.10

The changes in these bond lengths as the coronene is
charged by either removing or adding an electron are rather
minimal. The effect of these minimal changes in both lengths
on total energies can be best described by studying the ver-
tical and adiabatic ionization potential of coronene. Note that
the vertical ionization potential~VIP! measures the energy
needed to remove an electron from the neutral species with-
out changing its geometry. The adiabatic ionization potential
~AIP!, on the other hand, is the energy difference between
the ground states of the neutral and~relaxed! cation. We see

in Table II that the VIP and AIP of coronene are, respec-
tively, 7.21 eV and 7.19 eV. Thus, the relaxation of the ge-
ometry following the electron detachment from neutral coro-
nene only reduces the ionization potential by 0.02 eV. We
will see later that similar differences exist when Fe is ad-
sorbed. The agreement between theoretical and experimental
ionization potential11 in Table I is certainly gratifying. How-
ever, the calculated adiabatic electron affinity~i.e., the dif-
ference between the ground state energies of anion and neu-
tral! differs from experiment12 by about 0.2 eV. It is possible
to achieve a more quantitative agreement in the electron af-
finity if more diffuse functions were added to the current
DNP basis. However, such addition will increase computa-
tional cost considerably. Judging from the above comparison,
the limit of the accuracy of our calculated energetics is about
0.2 eV.

To assess how well our results account for the properties
of Fe and Fe2, we have calculated the ionization potentials of
Fe and Fe2 as well as the binding energy and bond length of
Fe2. A considerable amount of theoretical and experimental
work on Fe and Fe2 is available13 in the literature. Our cal-
culated ionization potential of Fe atom of 7.64 eV agrees
well with the experimental value of 7.90 eV. Similarly, our
calculated binding energy and bond length of Fe2 are 1.02 eV
and 2.01 Å. Experimental values14 of the binding energies
and bond lengths of Fe2 range between 0.61–1.28 eV and
1.73 to 2.04 Å. Thus, the agreement between theory and
experiment is good, and our results on Fe–coronene com-
plexes should have predictive capability.

B. Fe–coronene complex

In Fig. 2 we plot the geometries of the ground state and
higher energy isomer of the neutral Fe–coronene complex.
The geometry with the Fe atom occupying the on-top site
above the outer ring@Fig. 2~a!# is the preferred structure
while geometries corresponding to the on-top site above the
central ring@Fig. 2~b!# is energetically higher by 0.56 eV. We
attempted to optimize the structure of other possible isomers
by placing the Fe atom on top of all four different bridge
sites lying above bondsa, b, c, andd ~see Fig. 1!. None of
these structures converged, and the Fe atom moved away
from the bridge site towards the center of the ring site indi-
cating that the bridge sites are unstable structures. We note
that the structural change of the coronene molecule follow-
ing Fe adsorption is rather minimal for all the structures
studied. The ring over which Fe is adsorbed experiences its
bonds stretching by only 0.02 Å. We will show later that this
structural relaxation of the coronene molecule bonded to Fe

TABLE I. Various C–C and C–H bond lengths~Å! of neutral and charged
coronene molecule as well as its ionization potential and electron affinity.

Bonds

Neutral

Cation AnionTheor. Expt.

a 1.424 1.425 1.416 1.428
b 1.426 1.433 1.428 1.436
c 1.420 1.415 1.422 1.421
d 1.376 1.346 1.382 1.382
e 1.092
IP ~eV! 7.21 7.29
EA ~eV! 0.73 0.4760.09

TABLE II. Total energies~a.u.! of Fen , coronene and Fen– coronene complexes corresponding to their ground
state configuration. Also listed are their vertical and adiabatic ionization potentials.

Atom/cluster Neutral Cation VIP~eV! AIP ~eV!

Fe 21263.816 261 21263.535 325 7.64 7.64
Fe2 22527.669 864 22527.429 112 6.77 6.55
Coronene 2921.861 420 2921.596 922 7.21 7.19
Fe–coronene 22185.699 060 22185.496 559 5.69 5.51
Fe2–coronene 23449.570 55 23449.366 859 5.69 5.54
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adds very little~<0.1 eV! to the binding energy and can be
neglected in future calculations involving multiple coronene
molecules in view of the enormous savings in computer
time.

Intuitively, one may not have predicted that Fe atom
would prefer to reside on top of the outer ring as opposed to
the central ring. To understand the origin of this preferred
binding site, we plot in Fig. 3~a! the total electron charge
density surface of neutral coronene corresponding to a den-
sity of 0.22 a.u. In Fig. 3~b!, we plot the contour of the
difference charge density surfaces corresponding to 0.005
a.u. by subtracting the superimposed atomic densities from
the self-consistent total electron density. The plot, therefore,
depicts the transfer of electrons from one region to another.
In Fig. 3~a!, we note that the electrons are confined along the
bridge sites as would be characteristic of a covalently bonded
system. In Fig. 3~b!, the red color represents regions of defi-

cit electrons while blue color represents regions rich with
electrons. We see that the regions connecting the centers of
outer rings are electron rich as is the region over the central
ring. We also looked at the charge distribution from Mulliken
analysis and found that the outer ring~six carbon atoms con-
nected to outer ring have total charge of20.18 amu! have
more electrons than that of central ring~six carbon atoms
connected to central ring have total charge of 0.108 amu!.
Since the ionization potential of Fe atom is higher than that
of coronene, Fe prefers to bind to electron rich region, as it
would be energetically favorable for Fe to accept rather than
donate electrons. There are no direct experiments that can
provide information on the equilibrium site of Fe on coro-
nene. However, as we will show in the following, our com-
puted energies corresponding to the ground state structures
agree with experiment providing indirect evidence of the cor-
rectness of the calculated atomic structure.

The binding energy and dissociation of neutral and cat-
ionic Fe–coronene complexes into various fragments can be
evaluated from the total energies corresponding to the
ground state geometries listed in Table II. The dissociation
energy of Fe–coronene, defined as the energy needed to dis-
sociate the complex into Fe and coronene@DE5
2E(Fe–coronene)1E(Fe)1E~coronene)], is given in
Table III. For the cationic complex there are two dissociation
channels. Energetically preferred channel is identified to be
the one for which the energy needed to dissociate is mini-
mum. The energy barrier against dissociation can also play a
role, but we have not considered this aspect in the present
paper. We note that the dissociation energy of the neutral
Fe–coronene corresponding to the ground state@Fig. 2~a!# is
0.58 eV. For the (Fe–coronene!1 cation, the complex can
dissociate into one of two channels: Fe and coronene1 or
Fe1 and coronene. To study the energetics associated with
these two channels we first had to optimize the geometry of
the (Fe–coronene!1 complex. We again examined all pos-
sible site occupancies for Fe as done in the neutral complex.
The preferred site given in Fig. 4~a! is the one where Fe is
bound on top of the outer ring just as in Fig. 2~a!. It lies 5.51
eV higher in energy than its neutral complex. The configu-
ration where Fe atom resides on top of the central ring of
coronene@see Fig. 4~b!# is 0.71 eV higher in energy than
ground state structure of the cation. Note that various C–C
bonds following the attachment of Fe change very little from
their values in Table I.

We note from Table III that (Fe–coronene!1 prefers to
dissociate into Fe and coronene1. This agrees with
experiment.6 The above channel is preferred because the ion-
ization potential of coronene is about 0.45 eV smaller than
that of Fe. It is important to note that the bond strength of
(Fe–coronene!1 is much larger than that of the neutral since
the energy needed to dissociate it is 2.27 eV while that of the
neutral is only 0.58 eV. There are no experimental values of
the dissociation energies of either neutral or cation Fe–
coronene complex available to compare with our calculation.
However, in a separate experiment Duncan and co-workers15

have noted that photodecomposition of benzene–Fe–
coronene cation yielded Fe–coronene cation. This suggests
that the binding energy of Fe–coronene cation must be larger

FIG. 2. ~a! Ground state structure of neutral Fe–coronene complex.~b!
Structure showing a higher energy isomer. The energy,DE is measured with
respect to the ground state~a!. The bond lengths~Å! following geometry
optimization are listed for each case. The spin multiplicities,M52S11 are
also listed.
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than that of Fe–benzene cation. Since the experimental dis-
sociation energy of Fe–benzene cation16 is 2.15 eV, one can
only conclude that the dissociation energy of Fe–coronene
cation must be larger than 2.15 eV. This is consistent with
our result in Table III. Second, it was noted experimentally6

that while Fe–coronene cation formed readily, it was difficult
to synthesize the neutral form which later could have been
ionized for detection in the mass spectrometer. This indicates
that the binding of neutral Fe–coronene is weaker than that
of its cation. This is again consistent with our result in Table
III.

It is worth emphasizing that the binding energy of Fe–
coronene cation is about four times larger than that of neutral
Fe–coronene. Similar results have been observed in metal–
benzene complexes. The dissociation energies of cationic 3d
metal–benzene complexes are consistently larger3,6 than
their neutral counterparts for all metal atoms from Sc to Ni.
In particular, the experimental dissociation energy6 of
(Fe–benzene!1 is 2.15 eV while that of neutral is estimated
to be greater than 0.7 eV. In the case of (Co–benzene!1 the
dissociation energy is 2.65 eV while that for the neutral is
only 0.34 eV. The increased binding of the cationic complex
over the neutral is due to the charge polarization caused by
the positive charge and is, thus, of electrostatic origin.

C. Fe2– coronene complex

The various optimized geometries of neutral
Fe2–coronene are shown in Fig. 5. Figure 5~a! depicts the
lowest energy structure where the two Fe atoms are bound to
the outer ring and reside above the center of the two outer
rings. The Fe–Fe distance here is 2.45 Å which is slightly
enlarged from the Fe2 dimer bond length of 2.01 Å. Thus,
one can conclude that the Fe atoms bind associatively rather
than dissociatively in the neutral Fe2–coronene complex.
The energetically next higher structure is where the two Fe
atoms again dimerize and bind on the outer ring over the
bridge sites@Fig. 5~b!#. This lies 0.16 eV above the ground
state and the Fe–Fe distance reduces to 2.22 Å. The structure
in Fig. 5~c! lies about 0.59 eV above the ground state and the
Fe–Fe bond length of 2.18 Å is slightly larger than that in
the Fe dimer. The structures where Fe atoms are truly disso-
ciated are exemplified by Figs. 5~d! and 5~f! which lie 0.89
eV and 0.98 eV above the ground state, respectively. The
other structure where Fe atoms are bound on top of the cen-
tral and outer rings@Fig. 5~e!# is nearly degenerate with Fig.
5~d!, but lies 0.90 eV above the ground state. We also note
from Fig. 5 that irrespective of whether Fe atoms are bound
associatively or dissociatively, the stretching of the C–C

FIG. 3. ~Color! ~a! Constant total electron density surfaces corresponding to a density of 0.22 a.u. on the coronene plane. The green corresponds to
electron-rich and red to electron deficient regions.
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bonds lying underneath the Fe atoms is minimal. We have
also considered the structure where coronene is sandwiched
between two Fe atoms and the estimated energy of this struc-
ture is;5.16 eV above the ground state structure~not bound
energetically!. This suggests Fe prefer to bind on the same
side of the coronene.

The dissociation energies of neutral Fe2– coronene are
given in Table III. Note that there are two channels for this
dissociation to occur—one in which the dissociation prod-
ucts are Fe2 and coronene while in the other the dissociation
products are Fe and Fe–coronene. We find that it is energeti-
cally preferable for neutral Fe2–coronene to dissociate into a
free Fe2 dimer and a coronene. No experimental result is
available to compare with this prediction. The ionization po-
tential of Fe2–coronene is 5.54 eV which is very close to the
value in Fe–coronene. Again, there are no experimental val-
ues to compare with our theory.

In order to study the photodissociation of

~Fe2– coronene!1, we have optimized its geometry in a man-
ner similar to that of its neutral complex, i.e., without any
symmetry constraint. The geometries of the ground state and
its higher energy isomers are given in Figs. 6~a!–6~f!, re-

TABLE III. Dissociation energy of Fen– coronene and (Fen– coronene)1

complexes as well as ionization potentials~vertical and adiabatic!. Only
results associated with the ground state configurations are given.

Complex Dissociation product Dissociation energy~eV!

Fe–Cor Fe1Cor 0.58
Fe–Cor1 Fe1Cor1 2.27

Fe11Cor 2.72
Fe2–Cor Fe21Cor 1.07

Fe1FeCor 1.50
Fe2–Cor1 Fe1Fe–Cor1 1.47

Fe2
11Cor 2.08

Fe21Cor1 2.72
Fe11Fe–Cor 3.60

FIG. 3. ~Color! ~b! Difference density surfaces giving charge transfer in neutral coronene. The blue color corresponds to 0.017 a.u. electron-rich and red
corresponds to 0.107 a.u. electron-rich and red corresponds to 0.107 a.u. electron deficient. The intermediate colors fall within these two values asshown in
~b!.
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spectively. The ground state geometry of the cation complex
is different from its neutral with only marginal changes in the
bond distances between carbon atoms and the Fe–C atoms.
The ground state structure, Fig. 6~a!, depicts the two Fe at-
oms forming a dimer and bound to the outer ring along the
bridge position. The structure in Fig. 6~b! with the Fe atoms
situated on top of the adjoining ring sites is only 0.01 eV
above the ground state. Thus, the structures in Figs. 6~a! and
6~b! are energetically degenerate. The other isomers lie from
0.43 eV to 0.68 eV above the ground state structures in Fig.
6~a!.

There are four possible channels along which
(Fe2–coronene!1 can fragment. The energetics of these
channels are given in Table III. The energetically most favor-
able path is through fragmentation into Fe and
~Fe–coronene!1. The energetically next favorable channel

which requires 0.61 eV more energy than the above channel
yields Fe2

1 and coronene. The remaining two channels in-
volving Fe2 and coronene1 or Fe1 and Fe–coronene are en-
ergetically much less preferable. We note that experimentally
the dissociation product is coronene1 and no signal corre-
sponding Fe2

1 was observed. This result, at first glance,
would appear to contradict our theoretical results as our cal-
culated energy for fragmentation into Fe2 and coronene1 is
1.25 eV higher than that for fragmentation into Fe and
(Fe–coronene)1. As mentioned earlier, our calculations are
accurate to within 0.2 to 0.3 eV. Therefore, a reason must be
found to explain the above apparent discrepancy affecting
photodissociation. We note that the ionization potential of
coronene is about 2.8 eV higher than that of Fe–coronene.
Thus, it is unlikely that the photodissociation of
(Fe2– coronene)1 would yield coronene1 instead of
(Fe–coronene!1. The likely source of this discrepancy is the
possibility of multiphoton processes. It is possible that the
first photon fragments (Fe2– coronene)1 to Fe and
(Fe–coronene!1 just as we predict, but the second photon
fragments (Fe–coronene!1 to Fe and coronene1. And it is
the latter process that is observed in the experiment.6

We also note that the dissociation energy of
(Fe2– coronene!1 is 0.80 eV lower than that of
(Fe–coronene!1. This implies that the strength of binding of
Fe2 to coronene in the cationic complexes diminishes com-
pared to that in (Fe–coronene!1. It is likely that as the num-
ber of Fen atoms increase, their binding energy to coronene
in the cationic complex will decrease until a critical limit is
reached where Fen would prefer to remain as a free cluster.
This is a likely explanation for the experimental observation
that no more than three Fe atoms could be bound to coronene
in the cationic configuration. Note that the neutral complexes
behave differently.

D. Magnetic properties

The study of the binding of transition metal atoms to
coronene brings out a feature that is not present in nontran-
sition metal–coronene complexes. This has to do with their
magnetic properties. Note that transition metal atoms, due to
their localizedd electrons, possess significant magnetic mo-
ments~i.e., unpaired spins!. It is of interest to learn how the
magnitude and coupling of magnetic moments of Fe atoms
change as they are adsorbed on coronene. We know that in
small clusters, the magnetic moment/atom of the clusters are
enhanced over their bulk value,17 although they are reduced
from the free atom value of 4mB . As Fe atoms are adsorbed
on metal substrates18 or benzene,3 their magnetic moments
are reduced. While their coupling remains ferromagnetic
when adsorbed on metal surfaces, they align
antiferromagnetically3 when sandwiched between benzene
molecules. We have investigated this effect in Fen– coronene
complexes by computing the spin multiplicities,M52S11
in both neutral and cationic Fe–coronene and Fe2– coronene
complexes. The spin multiplicities of Fe–coronene and
Fe2– coronene in their ground state configuration are, respec-
tively, 3 and 7. This leads to magnetic moments of 2mB in
Fe–coronene and 6mB in Fe2– coronene. The results on
Fen– coronene have both similarities as well as differences

FIG. 4. Structures of Fe–coronene cation corresponding to its~a! ground
state and~b! higher energy isomer.DE in ~b! corresponds to the energy by
which it lies above the ground state. The bond lengths are given in Å. The
spin multiplicities,M52S11 are also listed.

8677J. Chem. Phys., Vol. 118, No. 19, 15 May 2003 Iron atoms on a polyaromatic hydrocarbon

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.172.48.58 On: Wed, 14 Oct 2015 16:58:34



with those of Fen– benzene. The magnetic moment of a
single Fe atom is reduced to 2mB when adsorbed on
benzene3 just as what we have found for coronene. However,
the coupling between two Fe atoms sandwiched between
three benzene molecules is antiferromagnetic while it is fer-
romagnetic in Fe2– coronene. It will be interesting if mag-
netic deflection experiments using a Stern–Gerlach field
could be performed to verify our prediction.

E. Effect of relaxation of coronene on the energetics
of Fe adsorption

One of the advantages of using organic molecular tem-
plates over that of metal surfaces to support atomic clusters
is that metal surface atoms often relax significantly following
chemisorption making theoretical studies rather difficult.
Since organic molecules are characterized by covalent bond-

FIG. 5. Ground state and higher energy structures of neutral Fe2 coronene complexes showing different iron bonding sites. The bond lengths~Å! following
geometry optimization are listed for each case. The energies,DE measured with respect to the ground state~a! for higher energy isomers are given in~b!–~f!.
The spin multiplicities,M52S11 are also listed.
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ing that is stronger than metallic bonding, it is expected that
the relaxation of the atoms in the organic molecule will be
minimal. We have, indeed, seen this to be the case in Fe–
coronene and Fe2– coronene neutral and cation complexes.
To examine how much energy is gained by allowing all the
36 atoms of coronene to relax as Fe clusters are deposited,

we have recalculated the total energy of Fe–coronene be-
longing to its ground state@Fig. 2~a!# and higher energy iso-
mer @Fig. 2~b!# by only optimizing the Fe–coronene distance
while keeping all the atoms of coronene in their unperturbed
configuration shown in Fig. 1. The corresponding energy dif-
ferences are given in Table IV. Note that in both the ground

FIG. 6. Ground state and higher energy structures of Fe2– coronene!1 cation showing different iron bonding sites. The bond lengths~Å! following geometry
optimization are listed for each case. The energiesDE measured with respect to the ground state~a! for higher energy isomers are given in~b!–~f!. The spin
multiplicities, M52S11 are also listed.

8679J. Chem. Phys., Vol. 118, No. 19, 15 May 2003 Iron atoms on a polyaromatic hydrocarbon

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.172.48.58 On: Wed, 14 Oct 2015 16:58:34



state and higher energy isomer, the energy difference is only
about 0.1 eV which is indeed small. This result is important
as the full optimization of coronene is a very computer in-
tensive task. Certainly optimizing the geometry of metal-
clusters interacting with multiple coronene molecules at the
same level done here will be prohibitive and will thus limit
the size of the system one can study theoretically. The fact
that the relaxation of atoms in coronene is marginal and the
net resulting energy gain is minimal suggests that one can
use the structure of organic molecules as it appears in its
pristine configuration in obtaining geometries of larger met-
allocoronene complexes. This process will result in enor-
mous savings in computer time without significantly com-
promising the accuracy of the predicted results.

IV. CONCLUSIONS

Using first principles total energy calculations, we show
that in the neutral and cationic Fe–coronene complexes the
Fe atom isp bonded to the coronene molecule lying on top
of the outer ring while in the neutral and cationic Fe2 coro-
nene complexes, the Fe-atoms dimerize and bind preferen-
tially to the outer ring. The binding energies of these com-
plexes decrease with increasing Fe content in the cationic
complex while the reverse is true for the neutral. The ioniza-
tion potentials of these complexes are reduced substantially
from individual Fe atom or coronene molecule, but remain
insensitive to Fe content in Fen– coronene. The bond
strengths of (Fen– coronene)1 are substantially larger than
those in the corresponding neutral complexes and the decom-
position of ~Fen– coronene!1 yields either coronene1 or
(Fe–coronene!1 depending on whethern51 or n52. The
dissociation of neutral Fe2–coronene, however, yields differ-
ent products: It fragments to Fe2 and coronene.

The magnetic properties of Fen– coronene also exhibit
novel behavior. The magnetic moment of Fe is quenched to
2mB in Fe–coronene as is the case with Fe–benzene. The

coupling between Fe atoms in Fe2– coronene is ferromag-
netic with a total moment of 6mB . Note that it is antiferro-
magnetic in multidecker Fe–benzene complexes.

It will be interesting to see how the structure and prop-
erties of the above complexes evolve as one increases the
number of Fe atoms and/or coronene molecules. In particu-
lar, does the coupling between Fe atoms remain ferromag-
netic? We are currently studying these systems.
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