
Virginia Commonwealth University
VCU Scholars Compass

Electrical and Computer Engineering Publications Dept. of Electrical and Computer Engineering

2009

Correlated growth of organic material tris
(8-hydroxyquinoline) aluminum (Alq3) and its
relation to optical properties
Bhargava R. Kanchibotla
Virginia Commonwealth University

K. Garre
University of Cincinnati

Deeder Aurongzeb
Texas Tech University

Follow this and additional works at: http://scholarscompass.vcu.edu/egre_pubs
Part of the Electrical and Computer Engineering Commons

Kanchibotla, B. R., Garre, K., & Aurongzeb, D. Correlated growth of organic material tris (8-hydroxyquinoline)
aluminum (Alq3) and its relation to optical properties. Journal of Applied Physics, 106, 096101 (2009). Copyright ©
2009 American Institute of Physics.

This Article is brought to you for free and open access by the Dept. of Electrical and Computer Engineering at VCU Scholars Compass. It has been
accepted for inclusion in Electrical and Computer Engineering Publications by an authorized administrator of VCU Scholars Compass. For more
information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/egre_pubs/150

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/egre_pubs?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/egre?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/egre_pubs?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/egre_pubs/150?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


Correlated growth of organic material tris „8-hydroxyquinoline… aluminum
„Alq3… and its relation to optical properties

Bhargava R. Kanchibotla,1 K. Garre,2 and Deeder Aurongzeb3,a�

1Department of Electrical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, USA
2Department of Electrical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
3Department of Physics, Texas Tech University, Lubbock, Texas 79401, USA

�Received 29 June 2009; accepted 17 September 2009; published online 3 November 2009�

We report slow correlated growth mode in energetic cluster vapor deposited organic light emissive
material tris�8-hydroxyquinoline� aluminum from 5 to 100 nm. Phase modulated atomic force
microscopy shows very slow grain growth with thickness, with very small phase differences within
the film. Fractal dimension calculated from correlation function shows growth process above 10 nm
consistent with diffusion-limited aggregation. For low thickness �5 nm�, photoluminescence
measurement shows the emission peak is shifted by �0.4 eV toward lower wavelength.
© 2009 American Institute of Physics. �doi:10.1063/1.3247587�

Organic materials continue to attract scientific and tech-
nological interest due to their easy applicability to fabricate
light-emitting diodes and large area flexible display with
wide range of advantages such as fast response time, low
power consumption, and structural simplicity.1–4 With con-
tinued improvement in material and fabrication process
�FD�, the improvements are showing feasibility for panel
lighting. However, a wide range of fundamental issues needs
to be addressed in order to optimize any device structure.
From a materials point of view, formation/transport of spin,
singlet/triplet excited states, and effect of surface/interface
morphology remains a strong focus.5–7 The vapor deposition
process itself poses a wide range of methods and in this
context, identification of the relevant diffusion mechanisms
and parameters is critical for optimal performance as devices
become in the order of nanometers.

Recently, organic light-emitting diode �OLED� based on
aluminum tris�8-hydroxyquinolinate� �Alq3�, gained consid-
erable interest due to its properties such as relative stability,
easy synthesis, good electron transport, and emitting
properties.8–12 Systematic investigations of the structural and
optical properties of Alq3 in the solid state, as well as of the
influence of the preparation conditions and deposition rate on
these properties were carried out.13,14 Curioni et al.15 showed
using ab initio calculations the coexistence in the thin film of
two geometrical isomers, meridianal Alq3 and facial Alq3.
According to the above results, the facial isomer is less
stable in energy than the meridianal.16 Along with the well-
known three crystalline phases of Alq3 �� ,� ,��, the exis-
tence of � phase showing blueshifted luminescence was
reported.17 While most of the studies are available on true
device structure, few studies are available on surface proper-
ties of this material with thickness dependence,18 especially
with high-resolution phase contrast surface microscopy.
Therefore, understanding surface evolution and its correla-
tion to optical properties requires further studies.

In this paper, we report surface evolution and optical
properties of Alq3 deposited by an energetic cluster mask19

that is very similar to a previously reported system.20 We
identified typical surface growth mode of this organic mate-
rial by calculating fractal dimension.21–23 We show that using
this method, very high quality film can be deposited with
very uniform phase distribution. We also report very high
blueshift and infrared transmission measurement for low
thickness percolation type cluster showing wide tunability of
this material with surface conditions.

Alq3 �Alfa Aesar, 99.9% purity� with varying thick-
nesses have been thermally evaporated on indium tin oxide
�ITO� substrates. The rest of the impurities do not affect the
results. ITO of about 1200-A-thick coated onto glass sub-
strates with dimension of 1.1-mm-thick and 2�3 in.2 in
area have been purchased from Delta Technologies Ltd. The
resistance of the substrates is about �60� /�. The substrates
are then cut into smaller dimensions about 1�0.5 in.2 with
the help of a diamond scribe. The substrates are scribed on
the glass side to minimize contamination of the ITO surface
from the glass particles. The cut substrates are then cleaned
by ultrasonic agitation in a detergent solution, thoroughly
rinsed in de-ionized water and UV radiated. The substrates
are then heated on a hot plate to about 80 °C for 30 min to
remove the moisture on the surface and loaded into the
vacuum chamber. The deposition of Alq3 is carried out in
high vacuum �2�10−6 Torr by heating the source. The
deposition rate is maintained between 0.2 and 1.0 Ǻ/s by
accurately controlling the current passing through the evapo-
ration source with the help of SQC122 deposition controller
from Sigma Instruments, Colorado. The surface was charac-
terized with atomic force microscopy �AFM�24,25 in a phase
imaging mode �Digital Instruments� and normal mode. In
phase imaging, a variant of tapping mode AFM imaging, the
phase lag of the cantilever �Si, 5 N/m stiffness, �10 nm
apex� oscillation relative to the signal sent to the cantilever’s
piezodriver is used as a basis for image generation. Phase
images can be generated as a consequence of variations in
material properties such as adhesion or friction thus shows
superior contrast and a qualitative compositional variation in
the surface. Photoluminescence data were taken ex situ in a
matrix form using xenon lamp as an excitation source with
autocorrection for reflection. A thermocouple near the
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sample showed consistent room temperature during measure-
ment. Infrared transmission measurements were taken at
room temperature using Bruker equipment. The thickness of
5, 10, 20, and 100 nm were chosen to obtain surface proper-
ties, which is widely studied3,4,7,8,13,14,26 in a true OLED de-
vice format over two decades.

Figure 1 shows AFM image of 5, 10, 20, and 100-nm-
thick films in phase contrast mode. At 5 nm the films are
uniform with no grain formation but percolation boundaries
with small pinholes/nanovoids are seen.7 Influences of nano-
voids on photoluminescence properties were previously re-
ported but clear picture of density/size was not reported. At
this thickness the nanovoids are uniformly distributed
throughout the film. For all thicknesses the phase contrast is
20° indicating unchanged film physical properties over all
thickness, compared to 90° with wide variation seen in other
system.27

Figures 2�a� and 2�b� show the three-dimensional �3D�
images of 5 and 100-nm-thick film. Consistent with phase
imaging data from Fig. 1, at low thicknesses, we observe
several grain size distributions. At higher thickness, a single
size distribution is prominent. This is also seen in height-
height correlation function �HHCF�, shown in Fig. 2. HHCF

is defined as HHCF�r , t�=���h�r−r��−h�r���2	,20,22 where
h�r� is the surface height at position r�=�x ,y�� on the surface
relative to the average surface height. For any arbitrary sur-
face, the HHCF scales as HCF�r� and the fractal dimension
is given by D=d−�. Figure 2�c� shows fractal dimension of
the surfaces for all thicknesses except for 5 nm. Figure 2�d�
shows fractal dimension of the film at 5 nm. The bump at the
lower window length is consistent with the image in Fig.
2�a�, where wide distributions of grains are seen. For
thicknesses�10 nm, the fractal dimensions have wide dis-
tribution but consistent with diffusion-limited aggregation
process.23 This implies that the surface has very low sticking
coefficient and molecules diffuse on the surface randomly
and forms planer surface without forming mounds or
pyramids28 due to formation of potential barriers. At 5 nm
the fractal dimension can imply a different growth mode
where thickness-dependent transition is observed.21 The cor-
relation to FD to photoluminescence shift shows that the
shift is very likely to be surface state and growth mode re-
lated and increases in maximum peak intensity is intrinsic,
related to interface and orientation/phase as discussed in the
last paragraph.

The classification in terms of fractal growth mode has
mathematical correlation to the photoluminescence data. Fig-
ure 3�a� shows photoluminescence data in matrix form for
5-nm-thick film. The peak luminescence is shifted toward the
lower wavelength compared to the other thicknesses, as seen
in Fig. 3�b� �10 nm� and Fig. 3�d� �100 nm�. The approxi-
mate shift is calculated to be 0.4 eV. It is possible to have
similar effect at 5 nm due to distribution of grain formation,
as seen in the image and HHCF of Figs. 3�a� and 3�d� In one
of the previous studies, Braun et al.17 shown that �-Alq3
formation at the surface at high temperature can exhibit blue-
shift of �0.2 eV, which is lower than what we have ob-
served. Recently, Levichkova et al.7 showed that for isolated
molecules in solid state matrix, blueshift of up to 0.3 eV can
be observed. A similar trend is also observed for simple
thickness-dependent study.8

Figure 4 shows increase in peak intensity with thickness
after 10 nm and shift in peak location after 5 nm. The shift in

FIG. 3. �Color online� 2D photoluminescence emission-excitation map of
the samples at various thicknesses at room temperature. �a� 5, �b� 10, �c� 20,
and �d� 100 nm. The true intensity is scaled down by 10 000 for all cases.

FIG. 1. �Color online� Phase modulated AFM image at various thicknesses.
�a� 5, �b� 10, �c� 20, and �d� 100 nm.

FIG. 2. �Color online� �a� 3D AFM image at 5 and �b� 100 nm to show
surface evolution. �c� Correlation function for 10, 20, and 100 nm. �d� Cor-
relation function for 5 nm. The bump at lower window length capturing
small size grain distribution in the surface for 5 nm.

096101-2 Kanchibotla, Garre, and Aurongzeb J. Appl. Phys. 106, 096101 �2009�

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.172.48.59 On: Fri, 30 Oct 2015 18:31:37



peak location corresponds to fractal dimension calculation.
Therefore it is likely that some surface effect is mainly re-
sponsible for peak shift. The increase in intensity with thick-
ness is observed and reported before for other organic mo-
lecular system.18 The trend in the peak intensity and increase
in peak intensity are similar to our observation, however, the
thickness range they have studied ranges from 55 to 210 nm.
The dipole method simulation based on transfer matrix for-
malism predicts their observation. One point we should men-
tion is that temperature and postenvironmental conditions
can change the optical and electronic properties6 of Alq3.
Our samples were secured ex situ and measured inside a
clean room. AFM scan showed no surface roughness change
before and after measurement. Therefore, observed trend is
morphology formed due to growth conditions. Since we ob-
serve consistent phase at the surface, one possibility is exci-
tons confinement effect.5 Change in porosity and nanoscale
surface roughness can account for observed shift.

To further verify any consistent trend based on thickness
and find out any unusual absorption peaks, we performed
infrared transmission measurement of all the thicknesses as
seen in Fig. 5. Interestingly, 5 nm is less transmissive than
the other thicknesses. The vibrational feature at 3000 cm−1

is not consistent in terms of thickness since it reappears for
100 nm. From phase contrast image, it is clear the surface
has more voids and separated grain boundaries. Disorder can

induce dipole moment in the cavities causing more absorp-
tion in the film.29

In conclusion, we observe thickness-dependent lumines-
cence shift in a widely used organic material. We show a
good correlation between the blueshift and intrinsic scaling
property by calculating fractal dimension of the surface. Us-
ing phase contract AFM we have shown clear formation of
nanovoids and grain growth. The results add to the fact that
growth conditions and surface structure can be tuned to fab-
ricate highly stable OLED device. Further study in terms of
interface and transient electroluminescence can help explain
some of the observations.
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