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Magnetic properties of Al, V, Mn, and Ru impurities in Fe–Co alloys
B. V. Reddya) and S. C. Deevi
Research Center, Chrysalis Technologies Incorporated, P.O. Box 37310, Richmond, Virginia 23234

S. N. Khanna
Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000

~Received 23 July 2002; accepted 9 December 2002!

Theoretical studies on the magnetic properties of impurities in Fe–Co alloys have been carried out
using a molecular-orbital approach within a gradient corrected density functional formalism. The
defected alloy is modeled by a large cluster and the calculations on the ordered alloy are used to
show that a cluster containing 67 atoms can provide quantitative information on the local magnetic
moment. It is found that although bulk Al, V, and Ru are nonmagnetic, all the impurities carry finite
moments. While Al and V impurities couple antiferromagnetically, Ru impurities couple
ferromagnetically to the host sites. It is shown that the observed composition dependence of the rate
of increase of magnetic moment of FexCo12x alloys upon addition of Mn impurities is due to the
change in the magnetic moment of Mn impurities with composition. The reasons for this change and
the possibility of stabilizing a higher Mn moment at all concentrations are discussed. ©2003
American Institute of Physics.@DOI: 10.1063/1.1541109#

I. INTRODUCTION

Several problems in condensed matter physics require
knowledge of the local properties. This includes problems
such as impurities, vacancies, and voids in solids; atoms lo-
cated or adsorbed on surfaces, and disordered materials. One
is interested in knowing the local magnetic moment and the
density of states, location of the impurity, relaxations around
the impurity, and the effect on the local surroundings. While
many of these problems can be studied by using supercells in
the conventional band structure formalisms, an accurate
treatment of the defected region requires local relaxations
that can be computationally difficult.1 An alternate approach
that is gaining considerable attention is to model the solid by
a large cluster.2 The real space electronic structure schemes
adapted to clusters where the geometries can be optimized
without regard to symmetry or periodicity can be used to
obtain the desired information. Indeed, over the past few
years, numerous studies of the solid-state phenomena using
model clusters have been carried out. Since the surface sites
in a free cluster have fewer neighbors than the bulk, one of
the nagging questions facing such an approach has been the
smallest cluster size that is needed to model the local site.
The problem becomes more complex in the case of alloys
since one has to worry about the atomic composition in ad-
dition to the size. The limitations in the cluster size over
which ab initio cluster calculations could be carried out have
generally prevented a definite answer.

In this article, we propose to carry out theoretical studies
on pure and impurity doped FeCo alloys using cluster mod-
els. These alloys exhibit the highest saturation magnetization
~in transition metal systems! and are well known for appli-
cations as soft magnetic materials.3 While the highest satu-

ration magnetization occurs around 35% Co, the equiatomic
Fe–Co alloy has a higher permeability and a Curie tempera-
ture of around 1200 K and is widely used in magnetic appli-
cations. One of the most interesting aspects of the bulk alloy
is the behavior of the impurity atoms.4 It is found that while
Ti, V, and Cr impurities order antiferromagnetically, the Mn
and Ni order ferromagnetically. The case of Mn is particu-
larly interesting since bulk Mn exhibits complex antiferro-
magnetic arrangement while Mn clusters have been recently
found to exhibit ferromagnetic order.5 Experiments show that
while the addition of Mn leads to a decrease of the average
moment for alloys with higher Fe content than Co, the effect
is reversed for alloy compositions richer in Co. The increase
in average moment in Co rich alloys is particularly intriguing
since Mn impurities in pure Co order antiferromagnetically
to the host sites.4 How the Mn moment and coupling change
with the relative concentration of Fe and Co remains an open
issue. Since the cluster techniques are ideally suited to probe
local properties, it is interesting to study the magnetic behav-
ior of various impurities and their effect on local properties.

The main objective of the present work is to examine the
local magnetic moment of the various substitution impurities
in these alloys. We have chosen as impurities, a simple metal
Al, the 3d transition elements V and Mn, and the 4d transi-
tion metal Ru in this study. As we use a cluster model to
simulate the bulk behavior, the first issue we wish to address
is the minimum cluster size that can provide a quantitative
estimate of the local magnetic moment at the Fe or Co site in
an ordered FeCo alloy. By studying clusters containing 15,
35, and 67 atoms, we show that a cluster containing at least
up to several third nearest neighbors of the given site is
needed to obtain quantitatively converged local magnetic
moments. Accurate neutron diffraction experiments6 indicate
that while the Fe moment increases with Co concentration
from 2.2 mB in pure Fe to 2.92mB in the Fe–Co alloy, the
Co moment remains essentially constant. It is shown that the
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converged cluster results are close to the experimental val-
ues. These clusters are then employed to examine the loca-
tion of the impurities and their local properties. It is found
that all the impurities preferentially occupy the Fe sites. In
the case of Al, V, and Ru that are nonmagnetic in bulk, the
impurities carry local moments of 0.31, 0.62, and 1.43mB ,
respectively. While Al and V couple antiferromagnetically,
the Ru impurities couple ferromagnetically to the host polar-
ization. For the Mn impurities, we find that while they order
antiferromagnetically in pure Co, they order ferromagneti-
cally in Fe–Co alloys with a Mn moment that changes with
the relative concentration of Fe and Co.

The article is organized as follows. In Sec. II we give the
details of the electronic structure methods and the clusters
used to model the bulk behavior. Section III contains the
results of investigations on pure clusters and the magnetic
state of impurities in FeCo alloys. Finally, Sec. IV is dedi-
cated to final conclusions.

II. DETAILS OF CALCULATIONS

The theoretical calculations were carried out using a lin-
ear combination of atomic orbitals molecular orbital ap-
proach within a density functional formalism.7 Here, the mo-
lecular orbitals are formed by a linear combination of atomic
orbitals centered at the atomic sites. The exchange correla-
tion effects are incorporated through a gradient corrected
density functional.8 The actual calculations were carried out
using theDMOL code9 where the atomic orbitals are taken in
a numerical form over a mesh of points. All the calculations
were carried out at an all electron level using double numeri-
cal basis sets with 3d polarization functions for Al, 4p po-
larization functions for V and Mn, and 5p polarization func-
tions for Ru. In all cases, we examined the ferromagnetic and
antiferromagnetic solutions.

We start with the ordered Fe–Co alloy. We have carried
out studies on 15, 35, and 67 atom clusters shown in Fig. 1.
In each case we carried out calculations on clusters with a Fe
atom at the center and the reciprocal clusters with Co located
at the center. For convergence of the cluster results, we not
only looked at the convergence with respect to the increasing
size but also examined the moment at the Fe and Co sites in
the central core of the reciprocal clusters. The 15-atom clus-
ter contains all the nearest neighbors of the central site and
has eight Fe~Co! and seven Co~Fe! atoms. The 35-atom
cluster has all the nearest neighbors of the first neighbors of
the central site and has 27 Fe~Co! and eight Co~Fe! sites.
The next size that includes almost all the nearest neighbors
of the second neighbors contains 67 atoms. It has 27 Fe~Co!
and 40 Co~Fe! sites. For all the clusters, the interatomic
distances were optimized by moving atoms in the direction
of forces.

III. RESULTS AND DISCUSSION

A. Effect of size on the local magnetic moments in
FenCom clusters

In Table I we list the local magnetic moments at various
sites of the clusters shown in Fig. 1. We start with the results
on 15 atom clusters shown in Fig. 1~a!. The central Fe site is

surrounded by eight Co atoms that are further decorated with
six Fe atoms. In the optimized cluster, the distance between
the central Fe and the nearest Co is 2.32 Å. Our studies show
that the central Fe has a moment of 2.51mB while the sur-
rounding Co atoms have moments of 1.76mB each. The
outer Fe atoms have moments of 3.23mB . In the reciprocal
cluster with Co at the center, the central Co has a moment of
1.72mB , while the Fe sites have moments of 3.37mB . The
outermost Co had moments of 2.06mB . Note the consider-
able difference in the moment of Fe sites located at the cen-

FIG. 1. Geometries of 15, 35, and 67 atom FeCo clusters. The Fe sites are
shown by the dark circles while the lighter shades are the Co atoms. The
reciprocal clusters are obtained by interchanging Fe and Co sites.

TABLE I. The central Fe–Co distance~Å! and the magnetic moment at the
central and surrounding sites in Fe–Co clusters of various sizes. Sites A, B,
C, and D are marked in Fig. 1.

Cluster
Fe–Co
distance

Local magnetic moment (mB) at

A B C D

FeCo8Fe6 Bulk 3.01 2.14 3.37 ¯

2.32 2.51 1.76 3.23 ¯

FeCo8Fe26 Bulk 2.72 1.32 3.13 3.19
2.31 2.59 1.29 3.21 3.19

FeCo40Fe26 Bulk 2.91 1.70 2.89 3.12
2.40 2.71 1.53 2.79 3.07

CoFe8Co6 Bulk 1.74 3.38 2.04 ¯

2.39 1.72 3.37 2.06 ¯

CoFe8Co26 Bulk 1.38 2.65 1.87 2.15
2.35 1.45 2.54 1.93 2.16

CoFe40Co26 Bulk 1.60 2.93 1.56 1.81
2.41 1.63 2.91 1.56 1.78
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ter and at the first layer~Fig. 1!. This shows that one needs to
go to larger clusters in order to get converged moments at the
Fe or Co site.

The 35-atom cluster shown in Fig. 1~b! offers the next
bigger size. The distance between the central Fe and nearest
Co is 2.31 Å and Fe has a magnetic moment of 2.59mB . The
surrounding Co have moments of 1.29mB . The Fe–Co dis-
tance in bulk alloy is 2.47 Å and the corresponding moments
at the Fe and Co site in the cluster at the bulk spacing were
2.72 and 1.32mB , respectively. We also studied the recipro-
cal cluster. The central Co had a moment of 1.45mB while
the nearest Fe had moment of 2.54mB . The Co–Fe distance
was 2.35 Å. The corresponding moments at the central Co
and Fe site in reciprocal clusters with bulk lattice spacing
were 1.38 and 2.64mB , respectively. These results bring out
two important features. First, that the magnetic moment on
the Fe or Co change appreciably with size and location. The
calculated values are considerably different from the experi-
mental values6 of 2.92 and 1.62mB for the Fe and Co mo-
ment, respectively. Second, the moments seem to change
mildly with lattice relaxation.

We then examined 67 atom clusters shown in Fig. 1~c!.
The interatomic distances were optimized by moving atoms
in the direction of forces. In the cluster 1(c), the central Fe
had a moment of 2.71mB while the Co had a moment of 1.53
mB . In the reciprocal cluster, the central Co had a moment of
1.63mB while the Fe had a moment of 2.91mB . This shows
that the Fe and Co moments are not sensitive to whether Fe
or Co is at the central site, indicating a convergence with
respect to cluster size. The present calculated moments of
2.71 and 1.6mB are comparable to the corresponding
experimental6 moments of 2.92 and 1.62mB . It is interesting
to note that the recent band structure calculations10,11 re-
ported the Fe and Co moments of 2.69 and 1.67mB , respec-
tively, that are also close to the current values. To further
ascertain that 67 atom clusters do lead to quantitatively ac-
curate results, we carried out similar calculations on pure Fe
for which the spin magnetic moment is accurately known.
The central Fe in the pure Fe cluster had a moment of 2.03
mB compared to the experimental value of 2.11mB . All these
results indicate that in order to get quantitatively accurate
magnetic moments using cluster models, one needs to go to
cluster sizes including beyond second neighbors.

B. Magnetic moment of impurities in Fe–Co alloys

As mentioned before, our primary interest is to obtain
the location and the magnetic configuration of impurities in
Fe–Co alloys. As we have shown in a previous article,12

clusters containing smaller sizes can provide qualitative in-
formation as to the location of the impurity and the nature of
magnetic coupling. This suggests that a dual approach where
one carries out geometry optimization on smaller sizes to
obtain the location of impurities and their coupling and uses
this information in a bigger cluster to obtain accurate local
moments provides a viable alternative. This is the approach
we have used.

An impurity can occupy the Fe or the Co site. To find the
preferred site, we chose the clusters shown in Fig. 1~b! and

its reciprocal counterpart. To examine whether the impurity
will occupy the Fe or Co site, we calculated the change in
energy of the pure clusters when an impurity atom replaces
the central site. The preferential site then corresponds to the
case where either the energy is gained or where the energy
required to replace the central Fe~Co! site is lower. In each
case, all the atoms were relaxed and both ferromagnetic and
antiferromagnetic arrangements were examined.

In this work we have examined Al, V, Ru, and Mn im-
purities. Except for V, the binding energy was lowered as the
impurity was substituted at the central site. In the case of V,
the binding energy increased. This indicates that only for V,
the substitution is energetically favorable. A comparison of
the relative energies for occupying the Fe and Co sites indi-
cated that all impurities prefer to occupy the Fe sites. The
relative energy difference between the impurity occupying
the Co or the Fe site was 1.25, 1.03, 0.93, and 0.94 eV for Al,
V, Ru, and Mn, respectively. As mentioned before, we are
primarily interested in the magnetic state of the impurity and
its effect on the local magnetic moment. To this end, we
carried out calculations on 67 atom clusters with the central
Fe replaced by the impurity atoms. Table II presents our
results on the nature of coupling between the impurity and
the host atoms and the local magnetic moment at the impu-
rity and the surrounding sites. Note that since all the impu-
rities prefer Fe sites, the nearest surrounding atoms are al-
ways the Co atoms. Bulk Al and V are nonmagnetic.
However, the Al and V impurities have local moments of 0.3
and 0.62mB , respectively. Note that in both cases, the local
moments are aligned antiferromagnetically to the surround-
ing Co atoms whose moments are slightly reduced from the
pure cluster value of 1.53–1.46 and 1.38mB , respectively.
For the case of V, the antiferromagnetic coupling and the
reduction of the moment of the surrounding Co sites is in
agreement with experiments4 that indicate a large decrease in
magnetization upon addition of V impurities. The Ru atoms,
on the other hand, couple ferromagnetically to the host atoms
and carry a moment of 1.43mB .

As mentioned before, the case of Mn is particularly
interesting.4,5 For alloys with more than 50% Fe, the Mn
substitution leads to a decrease of the average magnetic mo-
ment while the average magnetic moment increases at equi-
atomic and higher Co content. Note that at equiatomic com-
position, the Mn site has only Co near neighbors. For Fe
concentrations of more than 50%, the nearest neighbors to
the Mn site would contain one or more Fe atoms. Since bulk
FeMn is antiferromagnetic, one could imagine that the pres-
ence of nearest Fe atoms leads to an antiferromagnetic cou-
pling of the Mn sites. Another possibility is that the coupling

TABLE II. Nature of magnetic coupling@ferromagnetic~FM!, antiferromag-
netic ~AFM!# and the local magnetic moment (mB) at the impuritym imp and
the nearest neighbor Co sitemCo in the 67 atom clusters.

Impurity Coupling m imp mCo

Al AFM 0.31 1.41
V AFM 0.62 1.38

Mn FM 3.11 1.50
Ru FM 1.43 1.60

2825J. Appl. Phys., Vol. 93, No. 5, 1 March 2003 Reddy, Deevi, and Khanna

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.172.48.58 On: Mon, 19 Oct 2015 18:17:16



remains ferromagnetic but the Mn moment gradually de-
creases and becomes smaller than the Fe moment, leading to
an overall decrease as the Mn occupies Fe sites. To examine
these possibilities, we have carried out calculations on
MnFe26Co8 , and MnFe30Co4 clusters. The former represents
a single Mn impurity in equiatomic alloy, while the later
corresponds to a Mn impurity in the Fe rich alloy. In each
case the ferromagnetic and antiferromagnetic solutions were
tried.

We start with the MnFe30Co4 cluster corresponding to a
low Co concentration in FexCo12x alloy and we find that the
Mn atoms exhibit local moments less than 0.1mB . Note that
the addition of Mn in these alloy compositions will lead to a
lowering of the overall moment since the Mn moment is
substantially smaller than the Fe moment. This is in agree-
ment with experiments. The cluster MnFe26Co8 correspond
to a Mn impurity in the equiatomic FeCo alloy and here the
Mn site is found to couple ferromagnetically with a local
moment of 3.06mB . Since the Mn moment is now higher
than the moment at the Fe site, any addition of Mn should
lead to an enhancement of the average magnetic moment.
This is in agreement with experiments4 that confirm an in-
crease of magnetic moment upon addition of Mn! Combined,
these results indicate that as opposed to the case of pure Co,
the Mn impurities always couple ferromagnetically to the
host sites even though the Mn has only Co near neighbors.
The magnitude of the Mn moment, however, changes with
composition and is responsible for the decrease/increase of
average moment with concentration.

In order to explore if the nature of coupling of Mn sites
can be understood at a rudimentary level, we have carried
out model calculations on MnFe8 and MnCo8 clusters con-
sisting of a central Mn surrounded by a cube of eight Fe~Co!
neighbors. In MnFe8 , the Mn and the Fe sites have local
moments of 0.48 and 3.32mB , respectively. We also found a
solution where the Mn is coupled antiferromagnetically with
a local moment of20.15 mB , to be 0.1 eV less stable than
the ferromagnetic solution. Anisimovet al.13 have studied
Mn impurities in bulk Fe using the linear-muffin-tin-orbital
Green’s function method and find two solutions with a local
magnetic moment on Mn of22.30 and 1.60mB , respec-
tively. These calculations were carried out at the experimen-
tal bulk lattice spacings and no relaxation of the local atoms
surrounding the impurity was permitted. It is therefore diffi-
cult to compare their results with present studies that include
relaxation. For MnCo8 , the present studies indicate that Mn

and Co have local moments of 2.05 and 2.12mB , respec-
tively. The key is to note that while in all cases, the Mn
moment is reduced from its free atom value, Mn has a higher
moment when attached to Co sites than when attached to Fe
sites. Almost all the magnetic moment is derived fromd
electrons and the reason for this difference can be roughly
understood within a simple bonding scheme involvingd
electrons. Note that Mn, Fe, and Co, all have filled majority
3d and 4s levels while the minority spin 3d levels have 0, 1,
and 2 electrons, respectively. As these atoms bond together,
the minorityd-bonding orbitals become more stable than the
majority d-antibonding orbitals. This results in a transfer of
the majority spins to the minority spins. When coupled to Fe
that has only 1 minority 3d spin electron and a 4s spin
electron, the transfer of majority 3d electrons on the Mn site
is more than in the case of Co which has two electrons in the
minority 3d and one in the 4s level. The free atom Mn
moment then undergoes enhanced quenching in Fe rather
than in the case of Co. This is clearly seen in Table III where
we have listed the eigenvalues with appreciabled contribu-
tion from the Mn site along with the Mulliken charge from
the Mn d electrons. Note that the minority spin has more
charge from Mn in the case of MnFe8 than in the case of
MnCo8 . We would like to add that the Mn impurities in pure
Co are known to couple antiferromagnetically while the Mn
impurities in high Co content FeCo alloys couple ferromag-
netically. The reason for this lies in the atomic arrangement.
Pure Co has a hexagonal closed packed structure and it is
possible that the Mn impurities in such an arrangement of Co
atoms couple antiferromagnetically to Co sites. Further stud-
ies to examine the effect of geometrical order on the local
coupling are in progress.

IV. CONCLUSIONS

To conclude, we examined various impurities in FeCo
alloys and have shown that the impurities prefer to occupy
Fe sites. Further, although bulk Al, V, and Ru are nonmag-
netic, their impurities in FeCo alloys do carry finite magnetic
moments. For the case of Al and V, the impurities order
antiferromagnetically but the Ru impurities order ferromag-
netically. For Mn, we have shown that the impurities order
ferromagnetically but the local moment changes with the
composition. For alloys with equiatomic and higher Co con-
tent, the local moment at the Mn sites is higher than the Fe
moment of 2.71 and is responsible for the increase in the

TABLE III. The one-electron eigenvalues in MnCo8(MnFe8) clusters with appreciabled contribution from the
Mn site. The corresponding representation, spin, and the Mulliken charge on the Mn sites are also listed.

MnCo8 MnFe8

Eigenvalues
~eV! Representation Spin

Charge
(e2)

Eigenvalues
~eV! Representation Spin

Charge
(e2)

27.32 Eg Up 0.57 27.16 Eg Up 0.49
23.81 Eg Up 1.08 23.58 Eg Up 1.15
27.05 T2g Up 1.15 26.68 T2g Up 0.87
23.50 T2g Up 1.00 23.24 T2g Up 0.72
25.70 Eg Down 0.58 25.37 Eg Down 0.83
25.71 T2g Down 1.20 25.46 T2g Down 1.56
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magnetization of FeCo alloys by adding Mn in low content
as observed in some previous works. What the present stud-
ies show is that the increase of magnetization via addition of
Mn could even continue at other concentrations provided the
Mn sites can be locally surrounded by Co nearest neighbors.
How to reduce this in practice, however, remains an open
issue.

1T. P. Das, inElectronic Properties of Solids Using Cluster Methods, edited
by T. A. Kaplan and S. D. Mahanti~Plenum, New York, 1995!, pp. 1–28.

2J. L. Whitten, inCluster Models for Surface and Bulk Phenomena, edited
by G. Pacchioni and P. S. Bagus~Plenum, New York, 1992!, p. 375.

3S.-Y. Chu, C. Kline, M.-Q. Huang, M. E. McHenry, J. Cross, and V. G.
Harris, J. Appl. Phys.85, 6031~1999!.

4Magnetism and Metallurgy of Soft Magnetic Materials, edited by C.-W.
Chen~North Holland, New York, 1977!.

5M. B. Knickelbein, Phys. Rev. Lett.86, 5255~2001!.
6E. Di. Fabrizio, B. Mazzone, C. Petrillo, and F. Sacchetti, Phys. Rev. B40,
9502 ~1989!.

7W. Kohn and L. J. Sham, Phys. Rev.140, A1133 ~1965!.
8A. D. Becke, Phys. Rev. A38, 3098~1988!; A. D. Becke, J. Chem. Phys.
88, 2547~1988!; J. P. Perdewet al., Phys. Rev. B46, 6671~1992!.

9B. Delley, J. Chem. Phys.92, 508 ~1990!.
10S. L. Qiu, P. M. Marcus, and V. L. Moruzzi, J. Appl. Phys.85, 4839

~1999!.
11J. M. MacLaren, T. C. Schulthess, W. H. Butler, R. Sutton, and M.

McHenry, J. Appl. Phys.85, 4833~1999!.
12B. V. Reddy, D. H. Sastry, S. C. Deevi, and S. N. Khanna, Phys. Rev. B

64, 224419~2001!.
13V. I. Anisimov, V. P. Antropov, A. I. Liechtenstein, V. A. Gubanov, and A.

V. Postnikov, Phys. Rev. B37, 5598~1988!.

2827J. Appl. Phys., Vol. 93, No. 5, 1 March 2003 Reddy, Deevi, and Khanna

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.172.48.58 On: Mon, 19 Oct 2015 18:17:16


	Virginia Commonwealth University
	VCU Scholars Compass
	2003

	Magnetic properties of Al, V, Mn, and Ru impurities in Fe–Co alloys
	B. V. Reddy
	S. C. Deevi
	S. N. Khanna
	Downloaded from


	tmp.1445278838.pdf.puliX

