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A fuzzy set is one in which membership in a category is not Boolean, rather items 

have a degree of membership.  Fuzzy databases expand on this idea by storing fuzzy data 

and allowing data to be retrieved based on its degree of membership.  Determining the 

degree of membership that satisfies the largest number of users is difficult.  Five different 

methods of determining the membership function: the Direct Rating Method, the Random 

Method with step sizes of .02 and .03, the Steplock Method, and the Weighted Average 

Method, were compared on the basis of convergence and user satisfaction.  The results 

support use of the Direct Rating Method and the Steplock Method in conjunction with each 



x 

other, to produce the membership function in the least time and with the highest user 

satisfaction. 
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CHAPTER 1 INTRODUCTION  

 

 
 

1.1 Fuzzy Data 
 
It is easy to represent hard data, that is data that is specific and not subject to vagueness, 

e.g. everyone agrees that a rock is not an animal.  However, representing data which is not 

hard in nature; such as whether a bacteria an animal, is more complex.  Some people may 

consider a bacteria to be an animal, thus it becomes necessary to define to what extent a 

bacteria is an animal.  Zadeh introduced fuzzy sets in 1965 in an attempt to classify data 

that does not fall directly into sets [14].  

 

In classical sets, an element is mapped onto a set with a characteristic function (ƒA(χ)) 

which takes the values {0,1}.  Using this definition an element either belongs to a set (1) or 

does not belong to a set (0).  Consider the example of the rock, a rock is not an animal thus 

it has no belonging in the category of animal.  The characteristic function value for a rock 

being an animal would be 0.  However a rock is something which in non-living, thus it 

fully belongs to the set of inanimate things, giving the characteristic function for a rock as 

an inanimate object a value of 1.  Figure 1 shows a sample characteristic function for the 

set animal.    
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Figure 1.  A Characteristic Function for the Set Animal 

 

Animal 
1   if Animal   ƒ ( ) = 
0  if Animal

xx
x

⎧
⎪
⎨
⎪⎩

∈
∉

 

In fuzzy sets it is necessary to define a degree to which something belongs in the set.  The 

example of the bacteria illustrates this since bacteria has some degree of belonging in the 

set animal.  The characteristic function used for classical sets falls short in this area, thus it 

is necessary to define a different function to model belonging to a fuzzy set.     

 

1.2 The Membership Function 

In fuzzy sets, a membership function µF(x) is used to map an item onto the interval [0,1].  

The value of the membership function, or weight, is the extent to which an element 

belongs to a set [14].  The membership function below defines the degree to which a 

person belongs to the set old: 

 

Figure 2. A Membership Function for Old 
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A person who is 41 would have a lower degree of membership in the set of old people than 

a person who is 80.  The sample membership function in Figure 2 above maps a person, 

whose age is less than or equal to 40, to 0, meaning that person has no membership in the 

category old.  Someone in the age range of 41 to 90 would get some degree of membership 

in the category of old with this value increasing as the age increases.  For a person age 90 

or above the membership function is 1, meaning the person has full membership in the 

category old.  Figure 3 graphically displays this membership function as a gradual 

transition between no membership and full membership in the category old. 

 

Figure 3.  Membership Function for Old 
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While it may appear that this degree of membership is the probability that a person is old, 

this is not the case.  Membership in a fuzzy set is not a statistical value.   

 

1.3 Linguistic Modifiers 

Linguistic modifiers, also known as hedges, are adjectives such as slightly, medium, very, 

more, dark, light, and extremely, which are used to further define the membership function.  

Other words such as technically, almost, essentially and practically can also be used as 

hedges.  The effect of this second set of words on the membership function is more 

complicated and is dependant on the context of the membership function which they are 

modifying.  For this reason, modifiers are separated into two categories the first list of 

words are Type I modifiers and the second list are Type II modifiers as described by Zadeh 

[15].  

 

Thus far atomic membership functions have been discussed; however there exist composite 

membership functions which result from the concatenation of a linguistic hedge with a 

fuzzy set.  Thus slightly old is a valid membership function as are medium old and very 

old.  When membership functions are constructed using modifiers the values of the 

membership function are shifted as shown in Figure 4. 
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Figure 4. Membership Functions for Old with Linguistic Modifiers 

 

 

 

In this case the modifier slightly shifts the membership function down such that a person 

age 65 has full membership in the category old.  The membership function for very old is 

shifted to the right such that a person must be over age 100 before they have full 

membership in the category.   

 

Because linguistic modifiers have this effect on the membership function they can be used 

to describe the degree of ‘oldness’.  With this use of modifiers, the membership function is 

modified such that the weight of the membership function is mapped to a term, which 
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exemplifies the degree of membership.  Thus instead of having a person be old or not, with 

the use of modifiers a person can be categorized as slightly old, old or very old.  If the 

weight (the degree of membership) is lower, the person is put into the slightly old category, 

if the weight is higher the person is put into the old or very old category.  An example of 

weights with linguistic modifiers is shown in Table 1. 

 

Table 1. Linguistic Modifiers and Corresponding Ranges 

 

Linguistic Modifier Weight Range 

Not 0.0 - .02 

Slightly 0.0 – .35 

Medium 0.36 – 0.69 

Very 0.7 – 1.0 

 

Notice that Not is included as a modifier in this table.  The inclusion of not allows for the 

possibility that something does not belong to the set or that it has no membership in a set.  

The necessity of this modifier was experimentally determined in [4].  Using linguistic 

modifiers with the set old, divides the fuzzy set old into several fuzzy subsets: not old, 

slightly old, medium old, and very old.  This is graphically represented in Figure 5. 
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Figure 5. Membership Function for Old Split by Linguistic Modifiers 

 

 

 

The example shows a scheme where the membership function is split into exclusive sets, 

however this does not have to be the case.  Fuzzy sets have the ability to overlap.  Consider 

a scheme where there is a fuzzy set for old and one for young.  A person could have 

membership in both sets, e.g. be slightly old and slightly young, depending on ranges set 

for the modifiers.  It can be assumed that as membership in one set increases membership 

in the other set would decrease, e.g. someone classified as very old would most likely fall 

into a lower grade of membership in the category young as slightly or not young. 
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CHAPTER 2 DETERMINING THE VALUE OF THE 
MEMBERSHIP FUNCTION 

 
 
 

2.1 Fuzzification and Defuzzification  

Fuzzification is an operation which can be performed on a non-fuzzy or fuzzy set to make 

the set more fuzzy.  The operator ~ is a fuzzifier and represents that a set has been made 

more fuzzy.  Take for example the non-fuzzy value 5.  Thus the fuzzy value5  is the set of 

numbers which are approximately equal to 5.  Fuzzification can also be done on operators 

where the =  operator is approximately equal to and <  is approximately less than.  When 

eliciting the membership function from a community of users, fuzzification occurs as the 

users are polled for their input regarding the membership function [15].   

 

The process by which a crisp value is chosen to be indicative of the fuzzy membership 

function is called Defuzzification [9].  Methods of defuzzification include: Maxima 

Methods, methods which select the membership function with the maximum; Distribution 

Methods, methods which compute a probability distribution then select a value based on 

probability (this includes center of gravity calculations); and Area Methods, where the area 

under the membership function is used to determine the value of the membership function 

(this includes a center of area calculation).  Other miscellaneous methods can be used to 
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determine the value of the membership function, such as clustering.  The performance of a 

method used for defuzzification is dependant on the data and desired result of the system 

[9].  After users from a community have been polled, defuzzification is used to construct 

an optimal membership function which is returned as a crisp value.   

 

2.2 Constructing the Membership Function 

Determining the value of the membership function is not an exact science.  Consider the 

previous example of “old”.  A scheme could be created that would always map a person 

under 40 to a low degree of membership in the category old.  However, a person who is 8 

might say that a 40-year-old is very old.  Thus there is an element of fuzziness that comes 

from the community perceiving the data.   

 

There are several ways of determining the membership function.  The method used 

depends on the desired behavior of the system and the designer’s view of a membership 

function.  The validity of the value of the membership function is highly dependant upon 

the user community of the system.  Thus, it is important that the membership function be 

consistent with the perceptions of the users of the system.  Tashiro [13] proposes the idea 

of defining two membership functions in a fuzzy database.  The first is a universal 

membership function for all users, while the second is a membership function defined 

specifically for each individual user.  These membership functions are used in combination 

to cater the results of a query to a given user [13].   
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In the VCU fuzzy database system it is desirable that a single membership function return 

the same value for each query regardless of the user.  This requirement enables the system 

to be trained by users that are representative of the final user community, but are not 

necessarily the final users, eliminating the need for each user to train the system 

individually.  Thus the membership function must be representative of the views of the 

majority of the users.   

 

There are various ways of defining this membership function.  The database designer can 

separate the elements, fuzzy items which are stored in the database, into fuzzy sets and 

associate weights with the elements.  This gives the developer’s perspective of how the 

user community would set the weights.  This method of defining the membership function 

is undesirable because it does not take into account the opinions of the community of 

users.   

 

Another way to determine the function is to elicit information from the community of users 

during a training phase.  During this phase individual members of the user community are 

asked for their opinion regarding some fuzzy aspect of the set, for example, how old is 

Joe?  Fuzzification occurs during this training phase as several opinions about the value of 

the membership function are obtained.  The opinions are then used to construct the 

membership function stored in the database through defuzzification.  The training is 

considered complete when some form of convergence criteria is reached. 
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2.3 Methods of Eliciting the Membership Function 

There are several ways that information can be presented to the user in order to solicit data 

which is used in the construction of the membership function.  Bilgic and Turksen [1] 

discuss six different methods of questioning the user in order to gain information and build 

a membership function.  The following is a summary of their methods: 

 

2.3.1   Polling 

The polling method stems from the idea that fuzziness is a result of disagreements between 

individuals.  In polling, multiple people are asked a question of the general form, “Do you 

agree that element x is classification y?”  For example, when classifying a person (Tom) as 

old or young, the question would be “Do you agree that Tom is old?”  Answers to this 

question are used to create a membership value for Tom that best agrees with the majority 

of users.  This method for determining the membership function works well with the 

likelihood interpretation of the membership function, which says that µF(x) (the value of 

the membership function) equals the percentage of people who said that Tom is old. 

 

2.3.2 Direct Rating 

The direct rating method is inspired by the idea that fuzziness results from an individual’s 

inability to definitively assign an element to a category.  This rating method requires the 

same individual to answer the same question multiple times.  The training session is 

carefully designed so that the individual is not likely to remember their previous responses 

to the questions.  The questions are asked in the format how y is x, or “How old is Tom?”  
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The user then selects from a set of possible values, in this case slightly old, old or very old.  

This method can be improved by asking several users the repeated questions many times.  

The membership function is then constructed based on the frequency of particular 

responses. 

 

2.3.3 Reverse Rating 

In the reverse rating method, an individual is presented a degree of membership and asked 

to pick those elements that fit the membership value.  The question asked would be, “Out 

of these people, which are old?”  This same question can be presented to the same user 

multiple times, as in the direct rating method, or presented to multiple users, or both.  The 

votes are recorded and the value of the membership function is constructed based on all the 

votes [3]. 

 

2.3.4 Interval Estimation 

The interval estimation method of eliciting the membership function is based on the idea 

that the membership function represents the percentage of a population that feels an 

element x is in the category y.  For example a membership value of .75 for Tom being old 

represents that 75% of the population says that Tom is old.  A sample question would be 

presented in the format “Give the interval on which Tom’s age falls.”  In this case the 

answers would be old or young.  Linguistic modifiers could be included to make the set 

more descriptive.  The membership function is then constructed based on how many 

people put Tom into which category.  This method is especially useful when the attribute 
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in question is measured linearly such as age, height, or temperature.  Chameau and 

Santamarina [3] report that this method has advantages over methods such as direct rating 

and polling where the user responds with a crisp yes or no answer.  They also report that 

this method produces membership functions that have narrower spread (are more precise) 

than methods such as direct rating and polling. 

 

2.3.5 Membership Exemplification 

The membership exemplification method of determining the membership function is most 

like the example of the database designer assigning values without polling a group.  In this 

method a person is asked question of the general form, “To what degree does element x 

belong to category y?”  The specific form of this question for the case of Tom’s age is, “To 

what degree is Tom old?”  If the question is only asked to one person, as in the research of 

Hersh & Carmazza [7] the membership function is simply the value given by the subject.  

Because this question is asked to a sole user, they report that this method produces a 

membership function that varies from that obtained by polling or direct rating.  This further 

demonstrates the need for community involvement in determining the membership 

function.  This method of elicitation can be used in a community setting where some 

function is used to combine the results and construct the membership function. 

 

2.3.6 Pairwise Comparison 

In pairwise comparison multiple users are given two elements, x and y, and asked which 

element is more z and by how much.  If we have Bill and Tom the question becomes “Who 
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is older, Bill or Tom, and by how much?”  The results of these questions are recorded, 

combined and the membership function is created. 

 

2.4 Summary 

Fuzzification and defuzzification are important steps in constructing a membership 

function, which encompasses gaining user input and extracting a value of the membership 

function from that input.  Sections 2.3.1 – 2.3.6 discuss multiple methods of eliciting 

information to construct membership functions.  Modified forms of these methods were 

used in this experiment to gain user feedback and construct a membership function from 

the feedback. 



 15 

 

 

CHAPTER 3 VCU FUZZY DATABASE PROTOTYPE 

 

3.1 Current Fuzzy Database System 

The current database designed by the Database Research Group at VCU contains 

information about eye color [5].  Eye colors are categorized as Blue, Green or Brown.  

Within these categories the color is further categorized with the linguistic modifiers 

Slightly, Medium, and Very.  Thus two tables are used to return information stored in the 

database.  One contains the membership function for the eye color, Blue, Green or Brown 

(Table 2), and one contains the ranges of the membership function for which the given 

linguistic term applies (Table 3).  This table also includes a value for the midpoint of the 

range.  Note that the values chosen are not true midpoints, rather values near the center for 

that modifier range.  For example, the midpoint for the modifier “Not” is set to 0 while the 

actual midpoint of the range is .01.  The value 0 was chosen because it gives a better 

representation of the concept of “Not.” 
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Table 2. Membership Values (Weights) for Each Attribute of Image 1 

 

IMAGE_ID EYE_COLOR WEIGHT (µ) 

1 GREEN 0.8 

1 BLUE 0.3 

1 BROWN 0.0 

 

 

Table 3. Modifier Ranges and Midpoints 

 

Modifier Range_From Range_To Midpoint 

“Not” 0.00 0.02 0.00 

“Slightly” 0.03 0.35 0.20 

“Medium” 0.36 0.69 0.52 

“Very” 0.7 1.0 0.85 

 

The information in Table 2 represents an image with very green eyes and medium blue 

eyes.  Previously, the modifier “Not” was not included in the system [12].  Thus the range 

of slightly was from 0.00 to 0.35.  This created the problem that if the system was queried 

for people with slightly brown eyes this image was returned as having slightly brown eyes, 

although it is clear that the person in the image does not have brown eyes.  Thus the 
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previous scheme lacks a way to specify that an image does not have brown eyes.  “Not” 

was added as a modifier in the current version of the prototype to solve this problem.    

 

In the current database, information is retrieved using queries on both the eye color and the 

linguistic modifier.  The queries are constructed in the format: 

 SELECT (attribute list) 

 FROM (relation list) 

 WHERE (fuzzy conditions) 

SQLf, a modified query language, which introduces fuzziness into queryies is used on top 

of SQL Server to provide the extra querying capabilities needed for fuzzy query 

processing.  Thus a query such as: 

 SELECT IMAGE_ID 

 FROM Color 

 WHERE  EYE_COLOR = SLIGHTLY BLUE 

can be expressed and processed.  Additionally a natural language interface has been 

implemented which can parse queries in the form “Give me all the people with slightly 

blue eyes” [2]. 

 

3.2 Previous Research Contributions 

Research has been conducted as to the best way to initialize the membership function along 

with the best way of eliciting information from users to define the membership function.  

The work of Lee [8] compares several different methods of initializing the membership 
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function weights to determine which will most quickly lead to convergence in the training 

phase of a fuzzy database system.    In this study convergence is defined as the point where 

additional feedback from the user community have no effect on the value of the 

membership function.  In this case the user was the researcher and thus once the images 

were categorized correctly according to the researcher, training was complete.  These 

methods were evaluated by the speed of convergence, and Lee concludes that the best way 

to initialize the weights is in the midpoint of the modifier range.  However she states a 

concern that the stability of convergence within a community should be addressed in future 

research. 

 

Research by Sanghi tested various methods of eliciting the value of the membership 

function to determine which produced a membership function with a higher degree of user 

satisfaction [12].  The Random Method was compared to the Direct Rating Method.  For 

the training session, in which the membership function was determined, the Random 

Method membership weights are initialized to a random value between 0 and 1.  Users are 

then shown pictures that meet criteria such as EYE_COLOR = SLIGHTLY BLUE.  The 

users provided feedback on the color and if a user supported a weaker modifier the weight 

was decreased by 0.01.  Likewise, if a stronger modifier was supported the weight was 

increased by 0.01.   

 

In the Direct Rating Method the users were asked to rate the eye color as green, blue, or 

brown on a sliding scale.  A frequency distribution function was created and the 



19 

membership weight was set to whatever category within each color (e.g. slightly green, 

very green, or medium green) had the highest number of votes.  As stated previously, this 

scheme does not allow for a picture to be categorized as having eyes that are not a color 

(e.g not green).   

 

After membership functions were obtained for both methods, a testing session was 

conducted in which users were asked how satisfied they were with the result.  The goal 

was to obtain a membership function with the highest degree of user satisfaction.  Sanghi 

found that the Direct Rating Method produced a higher degree of user satisfaction than the 

Random Method. 

 

In addition a system is under development by Mastros [10] and McDermott [11] in which 

spatial information about images is stored with regards to nose length.  The fuzzy attribute 

“length of nose,” is categorized as short, medium, or long.  The length of the nose is 

known to the researcher and the initial membership function value is based on this length.  

The value of the membership function is then changed based on user input.  In this 

research it would be desirable if the actual length of the nose corresponded in some way to 

the value of the membership function after training.  This research is of particular interest 

because of the development of an alternative Steplock Method of changing the weights 

associated with the length of the nose [10].   
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3.3 Methods of Modifying the Membership Function 

Four different methods of modifying the membership function have been developed for 

use in determining the membership function in the VCU fuzzy database system.  These are 

the Direct Rating Method, the Random Method, the Steplock Method, and the Weighted 

Average Method.   

 

3.3.1 Direct Rating Method 

The Direct Rating Method was used in tests by Sanghi [12].  The goal of this method is to 

place an image in the category in which the most users place it.  It makes use of the polling 

method of eliciting the membership function discussed in section 2.3.1.  For this method 

users are asked whether an image has eyes that are slightly, medium, or very and a color.  

For example images would be displayed and a user would be asked: How Blue are these 

eyes?  They are given the choices: Slightly Blue, Medium Blue, Very Blue or Not Blue.  

The number of votes for each modifier are counted and the weight is set to the midpoint of 

the modifier range which had the most votes.  This is repeated for each color and each 

image. 

 

This method does not need to be initialized; however, other problems are introduced.  With 

this method it is possible to have a situation where two categories have nearly the same 

number of votes and there are additional votes for a different category.  Thus the 

membership weight chosen may not be suitable for the majority of users of the system. 

 



21 

3.3.2 Random Method 

Lee [8], Sanghi [12] and Mastros [10] all use a version of the random method in their 

research.  The goal of this method is to place all images in an initial category so that if 

necessary, queries can be run against the database before a training phase is conducted.  

With this method users gradually move images to an appropriate category.  In initial 

versions of this method membership values are randomly initialized (yielding the name 

Random Method).  Lee [8] discusses other methods of initializing the membership values 

including the Random Proportional Method, New Random proportional method, and 

Midpoint methods.  

 

In the Random Proportional method the membership value for one color is set to a 

randomly generated value M.  The membership value for the other colors was set to  

(1 - M) / 2.  This method is inspired by the idea that it is unlikely that all 3 colors have the 

same membership values rather the values are proportional.  The goal of this method is to 

speed convergence.  In the Random Proportional Method, the same color is always set to a 

value first; it was thought that this might create some bias towards the first color set.  Thus 

the New Random Proportional Method was developed in which the first color is rotated 

between the three colors.  In the Midpoint Method, the weights are initialized to the 

midpoint of the possible weight range, i.e. 0.5.  This method subscribes to the idea that at 

the midpoint it will take equal time to move to high or low extreme values.  In Lee’s 

comparison of these methods, she found that the Midpoint Method best facilitated 

convergence in a single user system [8].   
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After initialization, images are displayed for each color / modifier pair.  For example, all 

the images with slightly blue eyes will be displayed.  The users are then asked how well 

the images meet the criteria.  Answer Choices are: Meets Criteria, Less Blue, More Blue, 

or Not Blue. This questioning technique was adapted from the polling method of eliciting 

the membership function described in section 2.3.1.  If the vote is Meets Criteria, the 

weight is moved y steps either up or down towards the midpoint.  If the vote is for a higher 

category the weight would be increased by y.  If the vote is for a lower category, the 

weight would be decreased by y.  If it is for the current category it is moved towards the 

midpoint of that category by y.   

 

This method of modifying the weights is faulty because it linearly changes the weight of 

the images.  This method is not robust against data bursts.  For example, in the current 

implementation, if 300 users say that eyes are Slightly Blue another 30 (or so, depending 

on the step size used to change the weights) users voting for Very Blue could change the 

weight of the Blue attribute to be Very Blue, disregarding the fact that the majority of the 

users believe that the eyes are Slightly Blue.  Additionally when using this method the 

issue of how to appropriately initialize the membership function is raised. 

 

3.3.3 Steplock Method 

The Steplock Method was developed and tested by Mastros [10].  The goal of this method 

is to prevent the input of a few users from undoing the opinion of a larger group of 
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previous users.  The initial weights for each color are initialized the same as they were for 

the Random Method.  Questions are of the same format as they are for the Random 

Method.   However, the effect of votes is different.  If a vote is for the same range as the 

current weight, 1 is added to the step size out of that weight.  If a vote is outside of the 

range and the current step size is greater than 0 then the step size is decreased by 1.  When 

the step size is 0 and a vote is outside of the range, the weight is increased or decreased by 

.03 in the direction the vote indicates.  

 

By adding steps, this method makes it more difficult to change a weight that has been 

voted in the same category by many users.  This method is faulty because it does not take 

into account all votes placed over time.  Votes are essentially thrown away after steps are 

removed, so there is no record of several users having voted the same way for an image.  

The same issue of initialization is valid for this method as it is for the Random Method. 

 

3.3.4 Weighted Average Method  

The weighted average method was developed to address the issues of the current methods 

of modifying the weights [4].  The goal of the weighted average method is to include all of 

the previous votes into the weight calculation as opposed to throwing away votes after they 

have been used to calculate the weight.  Questions are asked in a similar format to the 

Direct Rating Method.  In this method the number of votes for each weight is counted.  

This number is multiplied by the midpoint for that particular weight.  The sum of these 
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calculations is then divided by the total number of votes to get the current value of the 

membership function.  A sample calculation for the Blue weight would be: 

 

(Votes Slightly)(.2) + (Votes Medium)(.52) + (Votes Very)(.85) + (Votes Not)(.0)µF(x) =
Total Votes

 

 

3.4 Preliminary Study 

A preliminary study was conducted to test the feasibility of the current methods along with 

the proposed weighted average method.  27 images were showed to 29 users for 

evaluation.  The user feedback was processed and membership functions were constructed 

for each image using each of the four methods for determining the membership function.  

In this study nearly all the methods placed the images in the same category.  The Direct 

Rating and Weighted Average methods had nearly the same number of users before 

reaching their final weight.  The Steplock and Random Methods took more user feedback 

to achieve their final weight. 

  

From this study it was concluded that the Weighted Average method is a viable option for 

determining the membership function.  However, were needed to determine the effects of a 

larger user base on the convergence and robustness of the membership function.  Finally, a 

testing phase should be conducted to determine which method produces a membership 

function which pleases the most users [4].   
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3.5 Summary 

The previous work by the Database Research Group set the stage for this current 

experiment.  Previous research left several unanswered questions regarding how to best 

construct the value of the membership function, as no work was done comparing all 

methods of modifying the membership function.  It is the goal of this research to compare 

these different methods and develop some conclusions as to the best way to construct the 

membership function. 
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CHAPTER 4 CURRENT PROJECT 

 

4.1 Goals 

The goal of this project is to determine the best method of collecting and  processing user 

opinions to construct an optimal membership function.  In future implementations of the 

Fuzzy Database System this information will be used to specify which method of 

determining the membership function should be used.   

 

4.2 Methodology 

An application similar to those used in prior experiments was developed, however this 

application was updated to work with multiple methods of modifying the membership 

function and written in C#.  Minor changes were made to the user interface for this 

application.  Six images per page were shown to users and they were asked various 

questions about the images, depending on which method of modifying the membership 

function was being used.  A total of 27 images were shown to each user for each method of 

evaluating the membership function.   

 

Both a training phase and a testing phase were conducted.  During the training phase users 

were asked their opinions of the eye color of images.  This feedback was evaluated using 
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multiple algorithms to determine the membership function, and membership functions for 

each image were constructed.   

 

After the training phase a testing phase was conducted.  In the testing phase images were 

presented to users in the category which they had been placed during the training phase.  

The category was the modifer range in which the weight of the membership value fell.  

The ranges for modifiers were as shown in Table 1, with the exception of the Weighted 

Average “Slightly”, and “Not” categories.  For “Not” the upper bound of the range was 

changed to .10, in accordance with the finding that increasing this value increases accuracy 

with this method [4].  Additionally, because of this change the lower bound for “Slightly” 

was changed to .11.  The users were asked whether they felt the image had been placed in 

the appropriate category.   

 

4.3 Experimentation 

Five different methods of determining the membership function were evaluated in this 

experiment: the Direct Rating Method as described in section 3.3.1, two versions of the 

Random Method as described in section 3.3.2; the Steplock Method, as described in 

section 3.3.3; and the Weighted Average Method as described in section 3.3.4.  The two 

versions of the Random Method were Random(.02) and Random(.03) where the step size 

(the value that is added and subtracted from the membership function based on the user 

response) was .02 and .03 respectively.  These two step sizes were chosen because a larger 
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step size is expected to move to a final answer sooner, however a smaller step size may 

create a membership function which is more robust.   

  

In the training phase, for each method of modifying the membership function, images were 

displayed to the users and the users were asked a question about the image.  For the Direct 

Rating and Weighted Average Methods, all images were displayed with each color (green, 

blue, brown) and the user was asked, “How <color> are these eyes?”  Answer choices 

were: “Slightly <color> Eyes,”  “Medium <color> Eyes,” “Very <color> Eyes,” and “Not 

<color> Eyes.”  For the Random(.02), Random(.03) and Steplock Methods, images 

currently in a category were shown to a user.  There were 9 categories, one for each color 

(green, blue, brown), modifier (slightly, medium, very) pair.  Images in the not category 

were returned with the images in the slightly category as had been done in previous 

research [8].  The user was told the category and asked their opinion about the eye color.  

For example: “Here are people with <modifier>, <color> eyes.”  Answer choices were: 

“Meets Criteria”, “More <color>”, “Less <color>”, “Not <color> Eyes.”  This was 

conducted with a minimum of 65 and maximum of 117 users per image.  

  

After the training phase was completed, a testing phase was conducted.  During the 

training phase the images were placed into a category.  This category was potentially 

different based on the method of modifying the membership function used.  In the testing 

phase, the images, which had been placed in each category (color, modifier pair, including 

not), were displayed to the user.  The user was then asked whether or not they were 
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satisfied with the image in that category.  A sample question was, “People with <modifier> 

<color> Eyes,” and answer options were “Satisfied,” “Not Satisfied.”  This experiment was 

conducted with either 50 or 51 users per image.  The overall satisfaction rating was the 

sum of the positive votes for each color, divided by the total votes the image received.  For 

example if Image 10 was in the Slightly Blue category, Medium Green category, and Not 

Brown category, the calculation was: 

 

SV(Slightly Blue) + SV(Medium Green) + SV(Not Brown)Satisfaction = 
Total Votes  

Where SV(x) is the number of satisfied votes for a category x. 

 

4.4 Evaluation 

The criteria for evaluating the membership functions were the length of time to get to the 

final membership function, robustness of the membership function and user satisfaction 

with the membership function.  The length of time to obtain the final membership function 

was defined as the number of votes needed to move the image into the last category it was 

moved to, which was assumed to be the best possible category.  The robustness of the 

algorithm used to calculate the membership function was also evaluated using this metric.  

The weight for number of votes was graphed to visualize robustness.  User satisfaction 

with the final membership function was evaluated in the testing phase.  The user 

satisfaction for each image was compared for different methods of modifying the 

membership function.   
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CHAPTER 5 RESULTS 
 

  

5.1 Direct Rating Method 

In the Direct Rating method 87 users were questioned for each image.  The number of 

votes needed to obtain the final value of the membership function for each color is 

summarized in Appendix A Table 5.  Each color is calculated separately then an average 

number of votes for each color was taken to determine the average number of votes needed 

for this method.  The number of votes needed for each attribute to reach a modifier which 

remained the same through the rest of the voting was defined as the number of votes 

needed to reach the final value or modifier.  This number was obtained by counting the 

number of votes obtained before the modifier no longer changed.  The votes needed for 

each attribute to reach its final value ranged from 1 to 86.  The average number of votes 

needed for the blue attribute to reach its final value was the highest at 16.70 votes followed 

by green with 9.88 votes and brown needing 1.63 votes.   

  

Assuming that all colors must reach their final value before the image has reached 

convergence, it was necessary to create an additional overall column for each image.  This 

column contains the number of votes needed for the color that took the maximum number 

of votes for each image.  The average of this column was used for comparison purposes 
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between the methods.  The average overall number of votes needed for the Direct Rating 

Method was 23.19.  

  

Because the value of the membership function is set to the midpoint of the current 

modifier, the value of the membership function remains constant over time until the 

number of votes for another category exceeds the votes for the current category and the 

value of the membership function is changed.  This trend is shown in Figure 6 where the 

weight for each attribute is graphed over the number of votes obtained for sample image 

10. 

 

Figure 6. The Direct Rating Method for Image 10 
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The percentage of users satisfied with the classification of each image is summarized in 

Appendix B Table 10.  Fifty or 51 votes were gathered per image in the testing portion of 

this experiment.  The percent of users satisfied with the classification of each image ranged 

from 60.93% to 91.39% with an average of 79.29% for the Direct Rating Method. 

 

5.2 Random Method (Step Size .02) 

For the Random Method with a step size of .02 between 65 and 117 users were polled for 

each image during the training phase.  The initial query for this range did not operate 

properly and thus not all images were returned for users to vote on.  Additional trials were 

done with this method to obtain a suitable number of users for all images.  The number of 

votes that were required for each image to reach its final weight for each color is 

summarized in Appendix A Table 6.  

 

The votes needed ranged from 0 to 116 for an image to reach its final modifier in a color 

category.  Zero votes are needed if the weight is initialized to a value that is within the 

range of the final modifier.  For example, the final modifier is medium and the value never 

is moved from the medium category then the number of votes needed would be 0.  The 

average number of votes needed for the blue attribute was the lowest, 22.96 followed by 

the brown attribute at 39.63 then the green attribute at 51.89 votes.  In most cases where 

the number of votes was high the image was moved from the not category to the slightly 
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category for a vote then moved back to the not category.  The average overall number of 

votes needed for each image was 68.11.        

 

Figure 7 shows the weight of each color graphed over the number of votes obtained for 

image 10.  In this chart, different numbers of votes were obtained for each attribute, 

resulting in different lengths of the lines for each attribute.  As shown, the weight for the 

Random Method moves linearly by a factor of .02 as users vote.  The line for brown shows 

an initial drop for the image to be moved to the not brown category.  This initial movement 

adds to the number of votes needed to achieve the final value of the membership function.  

The value for green moves more slowly to the slightly category, and the line for blue 

maintains consistently in the medium category. 

 

Figure 7.  The Random (.02) Method for Image 10 
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The percentage of users satisfied with the classification of each image is summarized in 

Appendix B Table 10.  Fifty or 51 votes were gathered per image in the testing portion of 

this experiment.  For the Random (.02) Method, the percent of users satisfied with the 

classification of each image ranged from 50.00% to 91.39% with an average of 78.97%.  

The low satisfaction value was for image 33 which had been placed in the Not Green 

category by most users; however, the last two users voted and moved it to the Slightly 

Green category. 

 

5.3 Random Method (Step Size .03) 

For the second Random Method implemented with a step size of .03 between 80 and 85 

users provided feedback for each image. The number of votes needed for an image to reach 

a final modifier is summarized in Appendix A Table 7.  This value ranged from 0 to 85, 

with 0 occurring in the same situation as described in section 5.3.  The average number of 

votes needed for blue was 44.26, followed by brown at 59.29, then green at 62.67.  In this 

case, like the Random (.02) method, higher numbers of votes were observed by images in 

the not category, as the images were moved from the not category to the slightly category 

then back.  More instances of this occurred for this method than the Random (.02) method 

because the threshold for Not was set at .03 and thus a single vote for Slightly could move 

the image out of the not category.  The average overall number of votes needed per image 

was 77.74.  The value placed in the overall category nearly always came from a color 

attribute with the final modifier Not. 
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Over the number of votes the Random (.03) method has a similar curve as the Random 

(.02) method, however the step size is larger so the slopes are steeper.  While the image 

takes fewer votes to reach an appropriate value, this method does not maintain a value 

well, especially in the case of the modifier Not.  Figure 8 is a graph of this method for 

sample image 10 displaying these trends. 

 

Figure 8. The Random (.03) Method for Image 10 
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The percentage of users satisfied with the classification of each image is summarized in 

Appendix B Table 10.  Fifty or 51 votes were gathered per image in the testing portion of 

this experiment.  The percent of users satisfied with the classification of each image ranged 
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from 56.67% to 91.39% with an average of 79.54% for the Random (.03) Method.  

Similarly to the Random (.02) method the low value was for image 33 which had been 

placed in the not green category by several users, however the last two votes moved it to a 

slightly category.    

 

5.4 Steplock Method 

For the Steplock Method, between 72 and 79 votes were obtained per image.   The number 

of votes needed for an image to reach a final modifier is summarized in Appendix A Table 

8.  This value ranged from 0 to 68 within each individual color group.  Zero occurred when 

the images remained in the initial category the as described in section 5.3.  The average 

number of votes needed for the image to reach its final membership weight was 18.81 for 

the blue attribute, followed by the brown category with 21.52 and the green attribute with 

23 votes.  The average number of votes needed overall, that is for each color to be placed 

in its final group, was 33.81.   

 

The main goal of the Steplock Method is to maintain a value over a period of time with 

less fluctuation if votes are for the same category.  This method was designed to be robust 

against data bursts and disagreeing users.  This effect is demonstrated in Figure 9, which 

shows the change in weights as users vote for image 10.   
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Figure 9. The Steplock Method for Image 10 
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The horizontal sections of the lines, for example the Green line between votes 13 and 29, 

are areas where users voted for the current category and the image resisted change.   

  

The percentage of users satisfied with the classification of each image is summarized in 

Appendix B Table 10.  Fifty or 51 votes were gathered per image in the testing portion of 

this experiment.  The satisfaction ranged from 63.33% to 91.39% with an average 

satisfaction rating of 79.66%.  This method maintained the Not modifier for image 33, 



38 

unlike the Random methods.  This demonstrates an advantage of the Steplock Method, that 

the method is robust against changes made by only a few users.   

 

5.5 Weighted Average Method 

A total of 87 votes per image were obtained for the Weighted Average Method.  The 

number of votes needed for an image to reach a final modifier is summarized in Appendix 

A Table 9.  The number of votes needed to obtain a final weight for each color with this 

method ranged from 1 to 85.  Green took the fewest votes with an average of 7.44 votes 

per image followed by Blue with 13.81 votes for image the finally by Brown at 15.40 votes 

per image.  The average overall number of votes needed was 29.37.   

  

Figure 10 shows the graph of the Weighted Average Method over the number of votes 

obtained.  The weight initially jumps around, but then becomes steadier as the number of 

votes increases and maintains a value over a period of time.  The more gradual change in 

behavior occurs as more votes are collected, because as more votes are included in the 

average, each vote has less influence on the weight.   
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Figure 10. The Weighted Average Method for Image 10 
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The percentage of users satisfied with the classification of each image is summarized in 

Appendix B Table 10.  Fifty or 51 votes were gathered per image in the testing portion of 

this experiment.  The percentage of users satisfied with the category an image was placed 

in with this method ranged from 48.00% to 91.39%.  The average satisfaction was 77.24%.  

This is slightly less than the other categories and it is important to note that this method 

often placed an image in the Slightly category when other methods placed the same image 

in the Not category. 
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CHAPTER 6 CONCLUSION 

 

6.1 Comparison of Methods 

The results of the different methods used to construct the membership function as 

described in sections 5.1 through 5.5 were compared on the basis of number of votes 

needed to reach the final membership function, and the number of users satisfied with the 

final membership function.  The number of votes needed to construct the final membership 

function for each method, for each color and overall is summarized in Figure 11.  Table 4 

shows the average number of votes needed to reach the final modifier. 

 

Table 4. Average Number of Votes Needed to Reach the Final Modifier 

Method Blue Green Brown Overall 

Direct Rating 16.7 9.89 1.63 23.19 

Random (.02) 22.96 51.89 39.63 68.11 

Random (.03) 44.26 62.67 59.3 77.74 

Steplock 18.81 23 21.52 33.81 

Weighted Average13.81 7.44 15.41 29.37 
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Figure 11. Average Number Votes Needed to Reach Final Modifier  
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As shown in Figure 11, the Direct Rating Method took the least number of votes to reach 

the final modifier for all colors except blue.  The final modifier was reached first in the 

Blue category by the Weighted Average Method.  The Random Method with step size of 

.03 took the most votes to reach a final value, followed by the Random Method with step 

size of .02 and then the Steplock Method.  This is consistant with the findings of Lee [8], 

that a smaller step size is more appropriate for facilitating convergence in a community, 

while a larger step size is more appropriate for convergence with one user. 
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In the overall category, the average number of votes needed for all three of the color 

attributes to reach their final weight the Direct Rating Method needed the fewest votes.  

The Weighted Average method took the next fewest, followed by the Steplock method.  

Both implementations of the Random Method took double the number of votes needed by 

the Steplock method. With the Random .03 method needing the most votes. 

 

A t-test was run on this data.  The results are summarized in Appendix C Table 11.  No 

statistically significant difference in the number of votes needed to reach the final modifier 

was found between the Direct Rating, Steplock and Weighted Average Methods at an 

alpha value of 0.05.  There was also no significant difference between the Random (.02) 

Method and the Random (.03) Methods.  There was however a significant difference in the 

number of votes needed to reach the final modifier between the Random Methods and the 

Direct Rating, Steplock, and Weighted Average Methods. 

 

In the Brown and overall categories, the Direct Rating Method produces the final modifier 

with the least user feedback.  It is possible that this is the case because both Random 

Methods and the Steplock Method require several initial votes to move them from the 

midpoint of the possible range to the correct modifier.  The Weighted Average Method, 

except in the case of the Green and Blue attributes, took more votes than the Direct Rating 

Method, but fewer than the other methods, to achieve its final membership value.  This 

value was often different from the membership value arrived at by other methods, 
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especially in the case of the Not and Slightly modifiers.  Often the Slightly modifier was 

used by this method where other methods used the Not modifier.  As suggested in [4] some 

of this is corrected by changing the upper bound of the Not modifier to be .10 instead of 

the .02 used in other methods. 

 

Even with this change in the range, there were still cases where the modifier Slightly was 

chosen with the Weighted Average Method when other methods selected Not.  It is 

possible that the range for Slightly and Not was set inappropriately and perhaps should be 

reworked for all the methods to produce more consistent results between the methods. 

 

How well the image was categorized by the different methods was determined in the 

testing phase by a user satisfaction value.  The user satisfaction rating only applies to the 

image overall, that is, a separate rating was not given to each color.  Figure 12 shows the 

average user satisfaction for each method for each image.   
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Figure 12. Average User Satisfaction for Each Method 
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The average user satisfaction ranged from 77.24% to 79.66% with the Weighted Average 

Method having the lowest user satisfaction and the Steplock Method having the highest 

user satisfaction.   

 

A t-test was done on this data and the results are summarized in Appendix C Table 12.  At 

an alpha value of .05 there was no statistically significant difference between the 

percentages of user satisfaction for each method.   
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It is of interest that the user satisfaction ratings for each method were very similar although 

the methods did not all produce the same final modifier for each image.  It would be 

expected that if the modifiers were different the percentage of satisfied users would be 

different.  There are several possible reasons for this discrepancy.  First, the way the 

questions were asked in the testing phase may not have elicited appropriate answers.  

Perhaps the term “satisfied” should have been replaced with “agree” to produce different 

results.  Agreement may have a stronger meaning for some users than satisfied. 

 

Additionally, many of the differences in the answers were in the Slightly and Not category.  

It is possible that these words are synonyms for each other for some colors.  Another 

possibility is that range between these two modifiers is not set appropriately.  It is possible 

that if Not is going to be its own category and not simply a cut off point, that it should be 

afforded a more sizeable portion of the modifier range, i.e. each modifier should get a 

quarter of the range.  This change may help improve the overall performance of the 

Weighted Average Method, which in the case of the Slightly and Not modifiers, tended not 

to produce the same modifier as other methods.   

 

Finally, although the Not modifier was added for each method, during the training phase, 

images in the Not category for a particular color were never presented to the user in the 

Random and Steplock Methods.  In these methods images were shown to the user with the 

statements “People with <Slightly, Medium, Very> <Color> eyes.” The images in the Not 

category were shown in the Slightly category.  Because the user was unaware that there 
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was a Not category, it would be impossible for them to detect an image was in the Slightly 

category that should have been in the Not category and thus vote to move the image more 

towards the Not category.   

 

6.2 Recommendations 

The goal of this experiment was to determine which method of modifying the membership 

function produced the most accurate result with the smallest number of votes.  Compared 

were the Direct Rating, Random with Step Size .02, Random with Step Size .03, Steplock 

and Weighted Average Methods.  The Direct Rating Method produced the final modifier in 

the least number of votes.  This method only differed from the highest percentage of user 

satisfaction by  .41%, making it an obvious choice for use in determining a membership 

function.   

  

This choice has two flaws, first the method did not have the highest satisfaction rating and 

second, the Direct Rating Method does not allow for changes after the initial membership 

function is converged.  With the Direct Rating Method, after the initial training phase, 

there is no mechanism in place for user feedback to change the value of the membership 

function.  Changing the value of the membership function after the training phase can be a 

valuable tool since the meaning of linguistic modifiers can change over time or with 

different user communities.  It can also be used to correct misclassifications that occurred 

in the training phase. 
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The Steplock and Random Methods allow for user feedback as the database is used.  If the 

system is queried for images with Slightly Blue Eyes, the user could give feedback as to 

whether they think individual images in that category are More Blue, Less Blue, or met the 

criteria.   This feedback could be used to change the value of the membership function as 

was done during the training phase of this experiment.  Additionally, the Steplock Method 

which has this feature, had the highest percentage of user satisfaction, meaning it achieves 

what the user feels is the best membership function for the image.  The Steplock Method 

also used significantly fewer votes than the Random Methods and only slightly more than 

the Direct Rating and Weighted Average Methods.   

  

It is recommended that two methods be used in conjunction to determine the value of the 

membership function.  The Direct Rating Method should be used in the training phase to 

initially determine the value of the membership function, then the Steplock Method should 

be used as queries are asked of the system to handle ongoing user feedback.  The step size 

in the Steplock Method should be appropriately small perhaps .01 or .005 to help prevent 

dramatic changes in the system should a data burst occur. 

  

This method of determining the membership function handles the issue with the Direct 

Rating Method where two categories have nearly the same number of votes and thus a 

majority of users may not be satisfied with the result as (mentioned in section 3.3.1) by 

allowing further changes in the membership function as the system is used.  Likewise, the 

issue of initialization of the Steplock Method mentioned in section 3.3.4 is handled by 
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already training the system before using this method.  The issue of throwing away votes 

with this method is not addressed; however, it is likely that over time this behavior could 

be desirable as the meaning of linguistic modifiers and the community or users changes. 
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CHAPTER 7 FUTURE WORK 

 

Much work remains to be done on this subject.  While this research aimed to answer 

several questions regarding constructing a membership function, several areas for further 

research were uncovered.  First and foremost, the recommendation regarding how the 

membership function should be determined is untested and experiments should be run to 

ensure that this method is truly appropriate.   

 

Further research should be done to determine where to set the ranges for the individual 

modifiers.  The current scheme was set arbitrarily and it is possible that more appropriately 

set modifier ranges could promote convergence and raise the user satisfaction rate.  It is 

possible that changing the ranges could have an effect on how the Weighted Average 

Method works and thus that method should be retested with new ranges. 

 

Experiments should be run to test if the prototype should be changed for the Random and 

Steplock Methods to return images in the not category during the testing phase.  This 

option could help decrease the number of images categorized as Not and Slightly by 

different methods.  Additionally, Not and Slightly should be evaluated to see if they are 

synonyms.   
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The percentage of user satisfaction was very similar for all the methods of modifying the 

membership function.  This raises several issues.  An experiment should be run to 

determine if using a different word besides satisfied would produce a different and more 

accurate result.  Tests should also be done to ensure that this metric is appropriate at all.  A 

test could be conducted with images placed in categories using the methods tested and the 

images placed in categories randomly.  Users would then be asked questions similar to the 

ones in the training phase for this experiment.  In theory the user satisfaction should be 

lower for the randomly initialized images.  If not it would suggest that user satisfaction 

determined this way is not an appropriate metric.   

 

Throughout testing, users complained that the images were blurry and small.  Testing 

should be done to determine if the prototype should be enhanced to allow for larger images 

or the ability to zoom in on the eyes.  Additionally users should be questioned to determine 

which question format they prefer, that used in the Random and Steplock method or that 

used in the Direct Rating and Weighted Average Method.  This can be used as a metric for 

determining an optimal method for modifying the membership function. 

  

Different fuzzy attributes may produce different results with regards to these methods.  It is 

possible that attributes such as nose length or face width could produce different results 

when these methods of modifying the membership function are used.  Experiments should 

be run with different fuzzy attributes. 
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Table 5. Number of Votes Needed to Reach Final Modifier for the Direct Rating 

Method 

Direct Rating 
Image ID Blue Green Brown Overall 

1 4 11 1 11
2 4 1 2 4
3 43 77 3 77
8 2 1 1 2
9 4 1 1 4

10 35 24 1 35
11 72 1 1 72
12 1 13 1 13
13 1 1 2 2
14 85 1 1 85
15 1 86 1 86
16 16 4 1 16
17 4 2 1 4
18 1 1 2 2
19 5 30 1 30
21 1 1 2 2
23 1 1 2 2
24 2 1 1 2
31 34 1 1 34
32 2 1 10 10
33 8 1 2 8
34 9 2 1 9
35 41 1 1 41
36 23 1 1 23
37 47 1 1 47
38 4 1 1 4
40 1 1 1 1

Average 16.7037 9.88889 1.62963 23.1852
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 Table 6. Number of Votes Needed to Reach Final Modifier for the Random Method 

Step Size .02 

 

Random (.02) 
Image ID Blue Green Brown Overall 

1 0 52 61 61
2 103 29 28 103
3 10 0 20 20
8 33 96 96 96
9 0 53 64 64

10 0 56 28 56
11 0 109 36 109
12 69 0 30 69
13 24 28 16 28
14 0 66 78 78
15 54 0 45 54
16 14 0 45 45
17 19 0 45 45
18 24 32 30 32
19 112 55 61 112
21 24 95 16 95
23 24 28 32 32
24 0 65 26 65
31 0 95 59 95
32 50 24 62 62
33 32 116 21 116
34 0 114 58 114
35 0 73 28 73
36 0 95 32 95
37 0 29 25 29
38 0 32 28 32
40 28 59 0 59

Average 22.963 51.8889 39.6296 68.1111
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Table 7. Number of Votes Needed to Reach Final Modifier for the Random Method 

Step Size .03 

 

Random (.03) 
Image ID Blue Green Brown Overall 

1 0 80 75 80
2 81 61 76 81
3 62 0 44 62
8 74 80 37 80
9 18 72 76 76

10 73 77 78 78
11 0 69 75 75
12 79 0 81 81
13 55 74 15 74
14 85 80 78 85
15 83 58 79 83
16 7 0 79 79
17 84 0 76 84
18 67 70 15 70
19 5 64 78 78
21 69 73 9 73
23 74 70 15 74
24 39 67 75 75
31 0 80 76 80
32 74 71 15 74
33 82 80 53 82
34 0 80 75 80
35 0 73 75 75
36 0 80 75 80
37 0 80 77 80
38 0 76 75 76
40 84 77 19 84

Average 44.2593 62.6667 59.2963 77.7407
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Table 8. Number of Votes Needed to Reach Final Modifier for the Steplock Method 

 

Steplock 
Image ID Blue Green Brown Overall 

1 0 24 24 24
2 20 0 18 20
3 20 0 25 25
8 18 24 43 43
9 15 60 22 60

10 0 68 18 68
11 15 20 22 22
12 20 0 28 28
13 20 18 7 20
14 58 29 26 58
15 20 0 18 20
16 19 62 22 62
17 66 0 26 66
18 16 18 21 21
19 5 29 22 29
21 18 18 15 18
23 18 18 21 21
24 58 22 18 58
31 0 24 22 24
32 18 18 39 39
33 42 30 22 42
34 0 34 22 34
35 0 20 20 20
36 0 22 20 22
37 24 20 18 24
38 0 20 22 22
40 18 23 0 23

Average 18.8148 23 21.5185 33.8148
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Table 9. Number of Votes Needed to Reach Final Modifier for the Weighted Average 

Method 

 

Weighted Average 
Image ID Blue Green Brown Overall 

1 18 48 24 48
2 22 5 5 22
3 9 27 4 27
8 5 1 63 63
9 7 49 1 49

10 31 3 1 31
11 2 1 1 2
12 25 1 1 25
13 1 1 29 29
14 4 24 28 28
15 85 3 1 85
16 2 5 15 15
17 16 2 44 44
18 1 1 25 25
19 10 5 1 10
21 1 1 34 34
23 1 1 35 35
24 4 14 1 14
31 4 1 20 20
32 14 1 9 14
33 16 1 6 16
34 78 1 1 78
35 4 1 1 4
36 4 1 1 4
37 4 1 1 4
38 4 1 1 4
40 1 1 63 63

Average 13.8148 7.44444 15.4074 29.3704
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APPENDIX B 

PERCENTAGE OF USER SATISFACTION 

 

Table 10. Percentage of Users Satisfied with Each Image 

Percent Of User Satisfaction 
Image ID Direct Rand_02 Rand_03 Steplock Weighted 

1 77.48% 82.78% 82.78% 82.78% 66.00% 
2 90.73% 90.73% 90.73% 86.67% 90.73% 
3 76.67% 76.00% 76.00% 76.00% 77.33% 
8 79.47% 79.47% 79.47% 79.47% 71.52% 
9 70.86% 68.21% 69.33% 70.86% 69.33% 

10 66.45% 68.21% 69.33% 66.45% 68.21% 
11 77.48% 77.48% 77.48% 81.58% 77.48% 
12 81.33% 77.33% 81.33% 77.33% 81.33% 
13 86.75% 86.75% 86.75% 86.75% 86.75% 
14 64.90% 64.67% 63.33% 63.33% 56.67% 
15 82.00% 75.33% 82.00% 75.33% 75.33% 
16 78.67% 78.00% 78.00% 78.00% 78.67% 
17 60.93% 74.00% 72.00% 72.00% 48.00% 
18 91.39% 91.39% 91.39% 91.39% 91.39% 
19 76.00% 76.00% 76.00% 76.00% 76.00% 
21 88.08% 88.08% 88.08% 88.08% 88.08% 
23 90.07% 90.07% 90.07% 90.07% 90.07% 
24 73.03% 73.51% 71.52% 73.51% 72.00% 
31 80.13% 79.47% 79.47% 79.47% 80.13% 
32 85.43% 85.43% 85.43% 85.43% 76.82% 
33 61.59% 50.00% 56.67% 70.86% 64.24% 
34 77.48% 77.48% 77.48% 77.48% 77.48% 
35 85.53% 88.74% 88.74% 88.74% 88.74% 
36 83.44% 83.44% 83.44% 83.44% 83.44% 
37 84.77% 84.77% 84.77% 84.77% 84.77% 
38 87.50% 87.42% 87.42% 87.42% 87.42% 
40 82.78% 77.48% 78.67% 77.48% 77.48% 
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Percent Of User Satisfaction 
Image ID Direct Rand_02 Rand_03 Steplock Weighted 
Min 60.93% 50.00% 56.67% 63.33% 48.00% 
Max 91.39% 91.39% 91.39% 91.39% 91.39% 
Average 79.29% 78.97% 79.54% 79.66% 77.24% 
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APPENDIX C 

t – Test Results 

 

Table 11. t-Test Results for The Average Number of Votes Needed to Reach the Final 

Modifier for Each Method 

 

Votes Needed to Reach Final Modifier, t-test Results 
Method 1 Method 2 t Significance 

Direct Rating Random_02 5.736 Significant 
Direct Rating Random_03 10.113 Significant 
Direct Rating Steplock 1.710  Not Significant 
Direct Rating Weighted Average 0.898  Not Significant 
Random_02 Random_03 1.651  Not Significant 
Random_02 Steplock 5.195 Significant 
Random_02 Weighted Average 5.356 Significant 
Random_03 Steplock 13.040 Significant 
Random_03 Weighted Average 10.793 Significant 
Steplock Weighted Average 0.816  Not Significant 
        

df = 52, α = .05, t = 2.403 for significance 
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Table 12. t-Test Results for The Average User Satisfaction for Each Method 

 

Percentage of Users Satisfied, t-test Results 
Method 1 Method 2 t Significance 

Direct Rating Random_02 0.133 Not Significant 
Direct Rating Random_03 0.107 Not Significant 
Direct Rating Steplock 0.166 Not Significant 
Direct Rating Weighted Average 0.787 Not Significant 
Random_02 Random_03 0.236 Not Significant 
Random_02 Steplock 0.301 Not Significant 
Random_02 Weighted Average 0.643 Not Significant 
Random_03 Steplock 0.051 Not Significant 
Random_03 Weighted Average 0.883 Not Significant 
Steplock Weighted Average 0.977 Not Significant 
        

df = 52, α = .05, t = 2.403 for significance 
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APPENDIX D 

FINAL WEIGHTS, MODIFIERS, PERCENT OF USERS SATISFIED 

AND VOTES NEEDED TO REACH FINAL VALUE FOR EACH 

IMAGE AND METHOD 
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Table 13. Final Weight, Modifier, Percent of Users Satisfied, and Number of Votes to Reach Final Value for Each Image  

      Final Weight  Final Modifier  
Percent 
Satisfied  Votes Needed to Reach Final Value 

Image Id Method   Blue Green  Brown  Blue Green Brown  Total  Blue Green Brown Average Max 
1 Direct   0.2 0 0  Slightly Not Not  77.48%  4 11 0 5 11
1 Random (.02)   0.52 0 0  Medium Not Not  82.78%  0 52 61 37.667 61
1 Random (.03)   0.5 0 0  Medium Not Not  82.78%  0 80 75 51.667 80
1 Steplock   0.5 0.02 0.02  Medium Not Not  82.78%  0 24 24 16 24
1 Weighted Avg   0.32 0.12 0.06  Slightly Slightly Not  66.00%  18 48 24 30 48

                      
2 Direct   0 0.85 0  Not Very Not  90.73%  4 0 2 2 4
2 Random (.02)   0 0.86 0  Not Very Not  90.73%  103 29 28 53.333 103
2 Random (.03)   0 0.83 0  Not Very Not  90.73%  81 61 76 72.667 81
2 Steplock   0.02 0.62 0.02  Not Medium Not  86.67%  20 0 18 12.667 20
2 Weighted Avg   0.06 0.73 0.03  Not Very Not  90.73%  22 5 5 10.667 22

                      
3 Direct   0 0.2 0  Not Slightly Not  76.67%  3 77 3 27.667 77
3 Random (.02)   0 0.52 0.12  Not Medium Slightly  76.00%  10 0 20 10 20
3 Random (.03)   0 0.5 0.15  Not Medium Slightly  76.00%  62 0 44 35.333 62
3 Steplock   0.02 0.41 0.08  Not Medium Slightly  76.00%  20 0 25 15 25
3 Weighted Avg   0.04 0.32 0.19  Not Slightly Slightly  77.33%  9 27 4 13.333 27

                      
8 Direct   0 0 0.85  Not Not Very  79.47%  2 1 1 1.3333 2
8 Random (.02)   0 0 0.84  Not Not Very  79.47%  33 96 96 75 96
8 Random (.03)   0 0 0.83  Not Not Very  79.47%  74 80 37 63.667 80
8 Steplock   0.02 0.02 0.71  Not Not Very  79.47%  18 24 43 28.333 43
8 Weighted Avg   0.04 0.04 0.69  Not Not Medium  71.52%  5 1 63 23 63

                      
9 Direct   0.2 0 0  Slightly Not Not  70.86%  4 1 1 2 4
9 Random (.02)   0.52 0 0  Medium Not Not  68.21%  0 53 64 39 64
9 Random (.03)   0.17 0.12 0  Slightly Slightly Not  69.33%  18 72 76 55.333 76
9 Steplock   0.23 0.02 0.02  Slightly Not Not  70.86%  15 60 22 32.333 60
9 Weighted Avg   0.16 0.12 0.06  Slightly Slightly Not  69.33%  7 49 1 19 49
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      Final Weight  Final Modifier  
Percent 
Satisfied  Votes Needed to Reach Final Value 

Image Id Method   Blue Green  Brown  Blue Green Brown  Total  Blue Green Brown Average Max 
10 Direct   0.85 0 0  Very Not Not  66.45%  35 24 1 20 35
10 Random (.02)   0.5 0.18 0  Medium Slightly Not  68.21%  0 56 28 28 56
10 Random (.03)   0.17 0.09 0  Slightly Slightly Not  69.33%  73 77 78 76 78
10 Steplock   0.62 0.02 0.02  Medium Not Not  66.45%  0 68 18 28.667 68
10 Weighted Avg   0.46 0.18 0.01  Medium Slightly Not  68.21%  31 3 1 11.667 31

                      
11 Direct   0.52 0 0  Medium Not Not  77.48%  72 1 1 24.667 72
11 Random (.02)   0.52 0 0  Medium Not Not  77.48%  0 109 36 48.333 109
11 Random (.03)   0.5 0 0  Medium Not Not  77.48%  0 69 75 48 75
11 Steplock   0.74 0.02 0.02  Very Not Not  81.58%  15 20 22 19 22
11 Weighted Avg   0.53 0.06 0.06  Medium Not Not  77.48%  2 1 1 1.3333 2

                      
12 Direct   0 0.52 0  Not Medium Not  81.33%  1 13 1 5 13
12 Random (.02)   0 0.52 0.1  Not Medium Slightly  77.33%  69 0 30 33 69
12 Random (.03)   0 0.5 0  Not Medium Not  81.33%  79 0 81 53.333 81
12 Steplock   0.02 0.44 0.02  Not Medium Not  77.33%  20 0 28 16 28
12 Weighted Avg   0.06 0.46 0.09  Not Medium Not  81.33%  25 1 1 9 25

                      
13 Direct   0 0 0.85  Not Not Very  86.75%  1 1 2 1.3333 2
13 Random (.02)   0 0 0.84  Not Not Very  86.75%  24 28 16 22.667 28
13 Random (.03)   0 0 0.83  Not Not Very  86.75%  55 74 15 48 74
13 Steplock   0.02 0.02 0.71  Not Not Very  86.75%  20 18 7 15 20
13 Weighted Avg   0.01 0.02 0.73  Not Not Very  86.75%  1 1 29 10.333 29

                      
14 Direct   0.2 0 0  Slightly Not Not  64.90%  85 1 1 29 85
14 Random (.02)   0.38 0.12 0  Medium Slightly Not  64.67%  0 66 78 48 78
14 Random (.03)   0 0.06 0  Not Slightly Not  63.33%  85 80 78 81 85
14 Steplock   0.02 0.14 0.02  Not Slightly Not  63.33%  58 29 26 37.667 58
14 Weighted Avg   0.25 0.15 0.17  Slightly Slightly Slightly  56.67%  4 24 28 18.667 28
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      Final Weight  Final Modifier  
Percent 
Satisfied  Votes Needed to Reach Final Value 

Image Id Method   Blue Green  Brown  Blue Green Brown  Total  Blue Green Brown Average Max 
15 Direct   0 0.2 0  Not Slightly Not  82.00%  1 86 1 29.333 86
15 Random (.02)   0 0.52 0  Not Medium Not  75.33%  54 0 45 33 54
15 Random (.03)   0 0.32 0  Not Slightly Not  82.00%  83 58 79 73.333 83
15 Steplock   0.02 0.41 0.02  Not Medium Not  75.33%  20 0 18 12.667 20
15 Weighted Avg   0.1 0.5 0.03  Not Medium Not  75.33%  85 3 1 29.667 85

                      
16 Direct   0.2 0.2 0  Slightly Slightly Not  78.67%  16 4 1 7 16
16 Random (.02)   0.14 0.52 0  Slightly Medium Not  78.00%  14 0 45 19.667 45
16 Random (.03)   0.14 0.5 0  Slightly Medium Not  78.00%  7 0 79 28.667 79
16 Steplock   0.08 0.38 0.02  Slightly Medium Not  78.00%  19 62 22 34.333 62
16 Weighted Avg   0.27 0.29 0.05  Slightly Slightly Not  78.67%  2 5 15 7.3333 15

                      
17 Direct   0 0 0  Not Not Not  60.93%  4 2 1 2.3333 4
17 Random (.02)   0.16 0.48 0  Slightly Medium Not  74.00%  19 0 45 21.333 45
17 Random (.03)   0 0.5 0  Not Medium Not  72.00%  84 0 76 53.333 84
17 Steplock   0.02 0.38 0.02  Not Medium Not  72.00%  66 0 26 30.667 66
17 Weighted Avg   0.14 0.27 0.14  Slightly Slightly Slightly  48.00%  16 2 44 20.667 44

                      
18 Direct   0 0 0.85  Not Not Very  91.39%  1 1 2 1.3333 2
18 Random (.02)   0 0 0.86  Not Not Very  91.39%  24 32 30 28.667 32
18 Random (.03)   0 0 0.83  Not Not Very  91.39%  67 70 15 50.667 70
18 Steplock   0.02 0.02 0.71  Not Not Very  91.39%  16 18 21 18.333 21
18 Weighted Avg   0.02 0.02 0.74  Not Not Very  91.39%  1 1 25 9 25

                      
19 Direct   0.2 0.2 0  Slightly Slightly Not  76.00%  5 30 1 12 30
19 Random (.02)   0.24 0.14 0  Slightly Slightly Not  76.00%  112 55 61 76 112
19 Random (.03)   0.2 0.2 0  Slightly Slightly Not  76.00%  5 64 78 49 78
19 Steplock   0.23 0.14 0.02  Slightly Slightly Not  76.00%  5 29 22 18.667 29
19 Weighted Avg   0.31 0.27 0.02  Slightly Slightly Not  76.00%  10 5 1 5.3333 10
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      Final Weight  Final Modifier  
Percent 
Satisfied  Votes Needed to Reach Final Value 

Image Id Method   Blue Green  Brown  Blue Green Brown  Total  Blue Green Brown Average Max 
21 Direct   0 0 0.85  Not Not Very  88.08%  1 1 2 1.3333 2
21 Random (.02)   0 0 0.84  Not Not Very  88.08%  24 95 16 45 95
21 Random (.03)   0 0 0.83  Not Not Very  88.08%  69 73 9 50.333 73
21 Steplock   0.02 0.02 0.74  Not Not Very  88.08%  18 18 15 17 18
21 Weighted Avg   0.01 0.01 0.72  Not Not Very  88.08%  1 1 34 12 34

                      
23 Direct   0 0 0.85  Not Not Very  90.07%  1 1 2 1.3333 2
23 Random (.02)   0 0 0.84  Not Not Very  90.07%  24 28 32 28 32
23 Random (.03)   0 0 0.83  Not Not Very  90.07%  74 70 15 53 74
23 Steplock   0.02 0.02 0.71  Not Not Very  90.07%  18 18 21 19 21
23 Weighted Avg   0.01 0.03 0.73  Not Not Very  90.07%  1 1 35 12.333 35

                      
24 Direct   0.85 0 0  Very Not Not  73.03%  2 1 1 1.3333 2
24 Random (.02)   0.52 0 0  Medium Not Not  73.51%  0 65 26 30.333 65
24 Random (.03)   0.83 0.09 0  Very Slightly Not  71.52%  39 67 75 60.333 75
24 Steplock   0.41 0.02 0.02  Medium Not Not  73.51%  58 22 18 32.667 58
24 Weighted Avg   0.58 0.13 0.01  Medium Slightly Not  72.00%  4 14 1 6.3333 14

                      
31 Direct   0.2 0 0  Slightly Not Not  80.13%  34 1 1 12 34
31 Random (.02)   0.42 0 0  Medium Not Not  79.47%  0 95 59 51.333 95
31 Random (.03)   0.5 0 0  Medium Not Not  79.47%  0 80 76 52 80
31 Steplock   0.56 0.02 0.02  Medium Not Not  79.47%  0 24 22 15.333 24
31 Weighted Avg   0.33 0.06 0.06  Slightly Not Not  80.13%  4 1 20 8.3333 20

                      
32 Direct   0 0 0.85  Not Not Very  85.43%  2 1 0 1 2
32 Random (.02)   0 0 0.84  Not Not Very  85.43%  50 24 62 45.333 62
32 Random (.03)   0 0 0.83  Not Not Very  85.43%  74 71 15 53.333 74
32 Steplock   0.02 0.02 0.71  Not Not Very  85.43%  18 18 39 25 39
32 Weighted Avg   0.04 0.03 0.6  Not Not Medium  76.82%  14 1 9 8 14
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      Final Weight  Final Modifier  
Percent 
Satisfied  Votes Needed to Reach Final Value 

Image Id Method   Blue Green  Brown  Blue Green Brown  Total  Blue Green Brown Average Max 
33 Direct   0 0 0  Not Not Not  61.59%  8 1 2 3.6667 8
33 Random (.02)   0.1 0.04 0.18  Slightly Slightly Slightly  50.00%  32 116 21 56.333 116
33 Random (.03)   0 0.06 0.5  Not Slightly Medium  56.67%  82 80 53 71.667 82
33 Steplock   0.02 0.02 0.53  Not Not Medium  70.86%  42 30 22 31.333 42
33 Weighted Avg   0.16 0.07 0.32  Slightly Not Slightly  64.24%  16 1 6 7.6667 16

                      
34 Direct   0.52 0 0  Medium Not Not  77.48%  9 2 1 4 9
34 Random (.02)   0.48 0 0  Medium Not Not  77.48%  0 114 58 57.333 114
34 Random (.03)   0.5 0 0  Medium Not Not  77.48%  0 80 75 51.667 80
34 Steplock   0.5 0.02 0.02  Medium Not Not  77.48%  0 34 22 18.667 34
34 Weighted Avg   0.37 0.09 0.08  Medium Not Not  77.48%  78 1 1 26.667 78

                      
35 Direct   0.85 0 0  Very Not Not  85.53%  41 1 1 14.333 41
35 Random (.02)   0.52 0 0  Medium Not Not  88.74%  0 73 28 33.667 73
35 Random (.03)   0.5 0 0  Medium Not Not  88.74%  0 73 75 49.333 75
35 Steplock   0.5 0.02 0.02  Medium Not Not  88.74%  0 20 20 13.333 20
35 Weighted Avg   0.63 0.04 0.03  Medium Not Not  88.74%  4 1 1 2 4

                      
36 Direct   0.52 0 0  Medium Not Not  83.44%  23 1 1 8.3333 23
36 Random (.02)   0.52 0 0  Medium Not Not  83.44%  0 95 32 42.333 95
36 Random (.03)   0.5 0 0  Medium Not Not  83.44%  0 80 75 51.667 80
36 Steplock   0.44 0.02 0.02  Medium Not Not  83.44%  0 22 20 14 22
36 Weighted Avg   0.48 0.06 0.05  Medium Not Not  83.44%  4 1 1 2 4

                      
37 Direct   0.52 0 0  Medium Not Not  84.77%  47 1 1 16.333 47
37 Random (.02)   0.52 0 0  Medium Not Not  84.77%  0 29 25 18 29
37 Random (.03)   0.5 0 0  Medium Not Not  84.77%  0 80 77 52.333 80
37 Steplock   0.38 0.02 0.02  Medium Not Not  84.77%  24 20 18 20.667 24
37 Weighted Avg   0.52 0.07 0.02  Medium Not Not  84.77%  4 1 1 2 4
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      Final Weight  Final Modifier  
Percent 
Satisfied  Votes Needed to Reach Final Value 

Image Id Method   Blue Green  Brown  Blue Green Brown  Total  Blue Green Brown Average Max 
38 Direct   0.85 0 0  Very Not Not  87.50%  4 1 1 2 4
38 Random (.02)   0.52 0 0  Medium Not Not  87.42%  0 32 28 20 32
38 Random (.03)   0.56 0 0  Medium Not Not  87.42%  0 76 75 50.333 76
38 Steplock   0.5 0.02 0.02  Medium Not Not  87.42%  0 20 22 14 22
38 Weighted Avg   0.59 0.04 0.02  Medium Not Not  87.42%  4 1 1 2 4

                      
40 Direct   0 0 0.85  Not Not Very  82.78%  1 1 1 1 1
40 Random (.02)   0 0.02 0.5  Not Not Medium  77.48%  28 59 0 29 59
40 Random (.03)   0 0.03 0.83  Not Slightly Very  78.67%  84 77 19 60 84
40 Steplock   0.02 0.02 0.59  Not Not Medium  77.48%  18 23 0 13.667 23
40 Weighted Avg   0.02 0.07 0.66  Not Not Medium  77.48%  1 1 63 21.667 63
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