Fixed + Flexible: a Mixed-Use Celebration of Richmond's Creative Culture

Kate Magee
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

Part of the Art and Design Commons

© The Author

Downloaded from
https://scholarscompass.vcu.edu/etd/2410

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Fixed + Flexible

a mixed-use celebration of Richmond's creative culture

Kate Magee MFA Thesis 2011
acknowledgements

for my family's unrelenting love and support...
for my professors' unyielding guidance and encouragement...
for my studio-mates' unlimited supply of inspiration, motivation, and laughter...

thank you.
This mixed-use space was designed to celebrate Richmond, Virginia’s arts and design communities. By creating a contemporary Richmond experience in a historic trolley shed, it is a space to create, relax, and inspire. This dynamic platform will showcase Richmond’s talented new creatives, from painters and sculptors to fashion designers and graphic artists.

A central retail space featuring the wares of local designers is adjoined by an exclusive art gallery with exhibitions and live performances that change on a regular basis. The space also includes a sit-down restaurant and a smaller, more casual café, where patrons can dine with friends or chat over coffee.

This project explores the idea of flexibility as it pertains to architecture and interior design. Strategies such as overlap versus separation, public versus private access, and the use of materiality to delineate hierarchy were all employed in the journey to create a space that remains flexible in both the organization of and interactions amongst its internal occupants and purposes to also serve as a venue for external events.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td></td>
</tr>
<tr>
<td>manifesto</td>
<td>9</td>
</tr>
<tr>
<td>thesis questions</td>
<td>10</td>
</tr>
<tr>
<td>project goals</td>
<td>11</td>
</tr>
<tr>
<td>site documentation</td>
<td>13</td>
</tr>
<tr>
<td>case studies</td>
<td>21</td>
</tr>
<tr>
<td>concept development</td>
<td>47</td>
</tr>
<tr>
<td>schematic design</td>
<td>61</td>
</tr>
<tr>
<td>design development</td>
<td>67</td>
</tr>
<tr>
<td>works cited + image credits</td>
<td>86</td>
</tr>
</tbody>
</table>
In design, I believe in sparkle. Sparkle stems from simplicity. A facet, layered against another facet, struck with the right light in the right moment. The perfect combination of elements leads to a moment I call “The Discovery.” Much like seeing the sun hit a prism for the first time, this moment takes an ordinary object and elevates it irrevocably in the viewer’s eyes.

In design, sparkle grows with an appreciation of intent and recognition of thoughtfulness behind a decision. Something that sparkles not only speaks to but also augments a bigger picture, and an understanding of this parallel conversation between the micro and macro is what keeps this initial flash of brilliance from burning out.
What are the differences between a mixed-use and a flexible space?

Can a building with very specific programmatic requirements allow its uses to successfully overlap or must these areas be compartmentalized?

Can this same space remain flexible enough in the organization and interactions amongst its internal occupants and purposes to serve as a successful venue for external events?

I moved to Richmond, Virginia, on July 6, 2009, and into the studio fourteen days later. Subsequently, despite almost two years in my new city, I often feel like a newcomer here. When asked to choose a building and breathe new life into it in the form of a unique design solution for my thesis project, I decided to do so by selecting a historic building integral to its establishment as an international industrial and economic powerhouse. In an ambitious attempt to explore as many areas of interior design as possible while still in an academic environment, under the watchful eye of professors and in the company of my encouraging studio-mates, I opted to design a mixed-use space that included retail, exhibit, hospitality and corporate areas.

Eager to give back to the community with which I have recently assimilated, my space was designed to celebrate Richmond’s local artists and designers.

My primary goal was to design an environment to create, relax, and inspire that remains flexible enough for both its internal users and purposes to flourish, while also serving as a venue for externally hosted events.

Conducting case studies for my thesis research exposed me to incredible local and international work. Taking cues from such architectural greats as Mies Van der Rohe and Gerrit Rietveld, I strove to reinterpret traditional ideas of flexible design and invent one all my own. This exploration of flexibility and fixedness lead to the creation of a design language allowing me to challenge the universally-accepted, ambiguous white-box art gallery-turned event venue and incorporate light, form, materials, and even color into the space.

I moved to Richmond, Virginia, on July 6, 2009, and into the studio fourteen days later. Subsequently, despite almost two years in my new city, I often feel like a newcomer here. When asked to choose a building and breathe new life into it in the form of a unique design solution for my thesis project, I decided to do so by selecting a historic building integral to its establishment as an international industrial and economic powerhouse. In an ambitious attempt to explore as many areas of interior design as possible while still in an academic environment, under the watchful eye of professors and in the company of my encouraging studio-mates, I opted to design a mixed-use space that included retail, exhibit, hospitality and corporate areas.

Eager to give back to the community with which I have recently assimilated, my space was designed to celebrate Richmond’s local artists and designers.

My primary goal was to design an environment to create, relax, and inspire that remains flexible enough for both its internal users and purposes to flourish, while also serving as a venue for externally hosted events.

Conducting case studies for my thesis research exposed me to incredible local and international work. Taking cues from such architectural greats as Mies Van der Rohe and Gerrit Rietveld, I strove to reinterpret traditional ideas of flexible design and invent one all my own. This exploration of flexibility and fixedness lead to the creation of a design language allowing me to challenge the universally-accepted, ambiguous white-box art gallery-turned event venue and incorporate light, form, materials, and even color into the space.
Lot G is the 15,975 square foot paint and auto body shop at the Greater Richmond Transit Company’s former headquarters in Richmond, Virginia’s historic Fan District. Located at the corner of Cary and Robinson Streets, Lot G is one of ten buildings on a 6.8-acre lot that originally housed the nation’s first electric street cars. Buses replaced the trolleys by 1949, and the GRTC occupied the facility until February 2010, when it moved to a new location on the Southside of Richmond.

Lot G is Type III B Construction, or Unprotected Combustible. It has brick masonry walls, a concrete floor slab, and a wooden roof assembly that is not protected against fire.

I chose this building because of its integral role in Richmond’s history. I am drawn to its industrial look, especially the numerous factory windows along its Northern and Southern facades and the large aluminum garage doors on the East and West sides. The building is currently unoccupied, which allowed my imagination to run free when considering a new life for its interior.

“Lot G”
Former GRTC Headquarters
101 S. Davis Avenue
Richmond, Virginia 23220
Opposite page, clockwise from top: Existing Floor Plan, East Exterior Elevation, West Exterior Elevation, South Exterior Elevation, North Exterior Elevation.

Below: Interior Sections.
A considerable amount of natural light floods into the building, primarily through the West and South-facing factory windows as well as through 42 overhead skylights (pictured left). While accessibility to natural light was one of Lot G’s most appealing characteristics, it required special attention when developing a design solution to protect artwork, offices, etc.

Lot G is comprised of 3 structures. The original building is a 7,058 square foot, double-height area with a pitched wooden roof and steel truss system. A flat, L-shaped secondary structure was later wrapped around the original building. Once-exterior-turned-interior walls served as a great challenge off of which important design decisions were based.

Lot G’s double-height structure is supported by 7 steel trusses that run into 14 brick masonry columns. The flatter, secondary structure is supported via a system of wooden beams. These structural elements form a grid off of which I organized the building’s utility spaces.

An NBA/NCAA regulation-sized basketball court is 94’ long x 50’ wide, or 4,700 square feet. 3.4 regulation-sized courts could fit into Lot G’s 15,975 square-foot floor plan.
Mies van der Rohe understood that a building’s functional requirements could often change over time, while form, once rigidly established, could not be modified as easily. Subsequently, he would develop a structural system in relation to the magnitude of a space’s functional requirements as a whole rather than to their individual and specific needs.

Van der Rohe’s notion of “Universal Architecture” can best be described as a single interior space, uninterrupted by structural elements, that provides maximum flexibility for both initial layouts and future modifications. By fixing only what he considered the “essentials” in his buildings (water closets, HVAC, etc.), Van der Rohe aimed for entirely flexible, neutral spaces that often visually integrated an interior with its exterior surroundings.

Commissioned to develop a new master plan for the Illinois Institute of Technology, Mies Van der Rohe designed twenty buildings for the university’s campus between 1939 and 1956. A 24’ x 24’ x 12’ grid, whose dimensions were based off of the three primary activities taking place in each building (classroom, drafting, laboratory work) allowed Mies to organize and locate columns and, subsequently, the campus buildings themselves. A reverse planning process, evolving from the basic furniture elements, to the room, to the building, and, ultimately, to the campus, allowed for later modifications and expansions to be made without disrupting the fundamental characteristics of Mies’ original intent.

"While the conventional master plan would define the direction of growth in the campus, the Mies plan merely defined the direction of growth in the campus" (Blaser, 9).

IIT’s S. R. Crown Hall was Van der Rohe’s first large-scale realization of universal space. The column-free open plan of the building’s main floor provides ultimate flexibility for collaboration amongst students and professors and can be infinitely adapted to changing uses. A straightforward expression of materiality and use, the 120’ x 220’ x 18’ rectangular plan is attached to the underside of exposed trusses. Free-standing oak partitions delineate areas in which different activities can take place within the building’s interior.
When Truus Schröder commissioned Gerrit Rietveld to design her Utrecht, Germany, home in 1924, she challenged the architect to create a space with utmost flexibility - “a machine for living.” The home’s interior can be altered daily according to the changing needs of the occupant, requiring him/her to pull out sliding walls and partitions to delineate spaces like the bathroom and sleeping quarters.

The home’s ground floor is more traditional, divided into several, small rooms for activities such as studying, working and cooking. The upper floor, however, was considerably more innovative with its single, open space that can be divided into smaller volumes via sliding screens and partitions. When describing how she ended up with this large, flexible space, Schröder recounts an exchange with Rietveld:

After being shown a preliminary sketch of the rooms, she asked him, “Can those walls go too?” To which he answered, “With pleasure, away those walls!”

The only fixed areas of the upper floor are the staircase, stove, and chimney column. These fixed elements create a central core around which the transformable spaces are organized. While primarily unrestricted, the flexible upper level is not simply a large, undifferentiated space. Even at “maximum openness,” with all of the sliding walls pushed back, the occupant can experience a “rich variety of spatial experiences: open-shut, infinite-finite, and vertical-horizontal” (Brown, 48).

Composed of simple, reductive forms, the Schröder House is a unique architectural manifestation of the principles of De Stijl. The use of red, yellow, blue, black, white, and gray is used in a way to articulate space and also emphasize the home’s distinctiveness.
No one had ever looked at this little lane before this house was built here. There was a dirty crumbling wall, where anyone who wanted to pee just did it against this wall. It was a deserted place, where anyone who wanted to pee just did it against this wall. And we said, ‘Yes, this is just right, let’s build it here... And we took this plot of ground and made it into a place with a reality of its own’.” (Overy, 52).

Rietveld’s above quote struck a chord with me as I considered my project site, a run-down, unoccupied building at the GRTC’s former headquarters.

While the ground floor of the Schröder House could be considered “traditional,” the upper floor is a dynamic and changeable open zone due to a system of sliding and revolving panels. When entirely partitioned, the upper floor is divided into three bedrooms, a bathroom and living room. A variety of different spatial experiences can be achieved when the upper floor is just partially divided.
1. Lower Level Floor Plan
 - Multi-Use Space
 - Single-Use Space

2. Upper Level Floor Plan
 - Multi-Use Space
 - Single-Use Space

3. "Closed" Upper Level Floor Plan
 - Fixed Space
 - Flexible Space
 - Moving Partitions

4. Cross-section southeast side
 Above left: living-dining area
 Above right: boy's room
 Below, L to R: kitchen, wc, main entrance, study

5. Cross-section of the side adjoining the next property
 Above, L to R: girls' room, wc, Mrs. Schröder's bedroom
 Below, L to R: studio, workroom, house hold help's room

6. Cross-section northeast side
 Above left: Mrs. Schröder's bedroom
 Above right: living-dining room
 Below left: the household help's room
 Below right: kitchen

7. Cross-section southwest side
 Above left: boy's room
 Above right: girl's room
 Below left: study
 Below right: studio

8. Structure Diagram: Lower Floor

9. Structure Diagram: Upper Floor

10. Circulation Diagram, Lower Floor

11. Circulation Diagram, "Closed" Upper Floor

12. Circulation Diagram, "Open" Upper Floor
Case Study

Completed by Boston architecture firm 3SIX0 in February 2008, Architectural Record describes The Achilles Project, a multi-purpose space set in a narrow, 8,900 square foot warehouse in Boston’s Fort Point Channel District, as a “chic fusion of fashion, art, food, and music” (Ward). The Achilles Project includes a restaurant, bar and lounge area, a space for fashion retail, a kitchen, stock room, offices, and rest rooms. The space’s exposed brick walls also serve as a gallery, featuring the work of local artists. Developing several strategies to increase the flexibility of each individual programmatic area allows the different activities to overlap, instead of keeping them entirely separate from one another.

In the fashion retail area, twenty-eight glass and steel merchandise cases are suspended from steel rails mounted to the ceiling. These cases roll open during retail hours and can slide into “clustered vaults by night, transforming the space into an extension of the bar and lounge area” (Ward).

The retail area’s shoe section showcases another moveable merchandise case. During the day, shoes are on display for patrons to try on and admire. At night, translucent panels slide across the shelves, and the shoes become wall décor behind the DJ booth in the lounge.

Fielding a request from the restaurant’s head chef for a dining area flexible enough to accommodate both large and small parties, 3SIX0 designed dining tables mounted upon a rail system, so the tables can slide apart for intimate dining experiences, or be grouped together for family-style eating.
Inspired by the strength of the warehouse’s concrete and steel industrial shell, 3SIXO designed this system of merchandise display cases. Suspended from floor-to-ceiling steel rails, the cases can slide apart during retail hours or together when not in use to make room for events or when not in use.

33.1: Upper Level Floor Plan with Merchandise Display Cases Open
33.2: Upper Level Floor Plan with Merchandise Display Cases Closed
33.3: View of Merchandise Display, Lounge
"The cases roll open during the retail hours and agglomerate into clustered vaults at night, transforming the retail space into the extension of the bar/lounge beyond." (www.3six0.com)
36.1 View of Footwear Display at DJ Booth
37.1 Bar and Lounge Area with View of Patio Space
37.2 Enlarged Floor Plan calling for Steel Tracks Embedded in Finished Floor for 28 Sliding Walnut Table Tops
37.3 Flexible Dining Tables and View Into Kitchen
Completed by wHY Architecture in 2007, Royal/T is a “playful collision of art gallery, café and retail shop” set in a 10,000-square-foot warehouse in Culver City, California. Playfully jabbing at traditional notions of restaurant, retail, and gallery design, wHY Architecture challenges the “white box” space by leaving the warehouse’s masonry walls exposed and enclosing the art and retail merchandise in ten foot high acrylic walls. These acrylic “architectural vitrines” allow patrons to dine in close proximity to a multimillion dollar art collection. The café ceiling is also acrylic, allowing the existing bowstring trusses to remain visible.

Royal/T is a highly conceptualized space, inspired by the underground ‘okaku’ (geek) culture of Japan and Tokyo’s Maid Cafés. During the day, Royal/T is open to schools, and staff members speak with children regarding the art on display and the influence of Japanese culture on the American art scene. In the evening, the space transforms from gallery/café into a lounge that plays host to an ongoing series of events for various art organizations.

A retail store near the space’s main entrance sells original and reproduced art and designer merchandise. The Royal/T concept and overall branding were developed by Goto Design in Chelsea, New York (www.why-architecture.com).
It is these vitrines that allow for the juxtaposition of disparate programs that yields a whole that is greater than the sum of its parts. Patrons can dine in close proximity to the multi-million dollar art collection, the only barrier being the hyper-clear, butt-glazed cast acrylic. Diners become voyeurs and participants in the architectural vision of pop culture and high-end design.

www.why-architecture.com

Royal/T Floor Plan

<table>
<thead>
<tr>
<th>Programmatic Square Footage Break-Down</th>
<th>Total Area: 9,714.07 Square Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail - 1,041.38 SF (11%)</td>
<td>Total Square Footage Used: 4,507.30 (47%)</td>
</tr>
<tr>
<td>Café - 1,929.70 SF (20%)</td>
<td>Service Spaces - 1,368.50 SF (14%)</td>
</tr>
<tr>
<td>Exhibit/Art Display - 1,368.50 SF (14%)</td>
<td>Back of House - 167.72 SF (2%)</td>
</tr>
<tr>
<td>Service Spaces - 1,221.50 SF (13%)</td>
<td>Total Package Used: 5,007.30 (51%)</td>
</tr>
</tbody>
</table>
Concept development

Venn diagram sketches illustrate various levels of flexibility and fixedness through an exploration of overlap between the three major programmatic areas: Gallery, Retail, and Café.
concept models
This first trio of concept models represents the six major walls of Lot G’s original floor plan. Considering such factors as construction, materiality, loads borne and fenestrations, I determined the importance, or “weight,” of each wall in relation to the building, and ranked them in terms of fixedness and flexibility; 1 being the most fixed and 6 being the most flexible.

Using a cube, a basic form with which I was comfortable, to represent my building, I assigned 1 wall of my space to each of the cube’s six faces. The most fixed wall is represented by a solid, thick piece of basswood. The wood grows thinner and spacing between pieces grows larger to represent the increasing flexibility of each ranked wall.

After my first iteration (pictured far left), I began to explore alternatives to the traditional six-sided box, yet still read as a “cube.” Doing so allowed me to explore the relationships between my walls more deeply, as I could better investigate questions such as intersections, transitions, and overlap three-dimensionally.
In a second round of concept models, I switched my focus from Lot G’s existing structure to the program I planned to introduce to its interior. Based on the square footage I intended to allocate to each major programmatic space, I developed a diagram (pictured right), that illustrates the sizes of each area in relation to one another.

At 2,292 square feet, the Retail space is the smallest, represented as “X.” The Restaurant component, which includes both the dining room and the coffee shop, is 1.5 times larger than the Retail space at 3,056 square feet. It is represented as “1.5X” on the diagram. The Art Gallery is twice as large as the Retail space at 4,583 square feet, and is represented as “2X.”

Each model represents a different degree of overlap between the Gallery, Restaurant, and Retail Shop. My definition of “overlap” is a bit ambiguous, as it pertains not only to the transitions from space to space, but also circulation between them, and overall importance to the building’s function as a whole.
In this final round of concept models, I narrowed my focus from all three major programmatic areas to just the dining component. The elements included in each model are a public dining space, a private dining area, built-in booths and free-standing tables and chairs, a server wait station, the bar, coffee shop, commercial kitchen, and rest rooms. Similarly to how I ranked the walls of my building during the first phase of concept modeling, I ranked each of the dining components based on their fixedness and/or flexibility. Fixedness was determined by each component’s ability (or inability) to be moved throughout the building. Wet spaces, like the kitchen and bathroom, are considerably more fixed than free-standing tables and chairs and are, thus, represented by thicker pieces of basswood.

Adjacencies were also taken into account when modeling the dining area. Special connections and purposeful separations are marked in blue.
Concept model detailed illustrating the dining area’s rest room facilities. The blue bass wood articulates a purposeful separation of the most fixed space from the other, more flexible components. This “connected-yet-separate” treatment of the bathroom was a major milestone in the conceptual development of my project. Finding a purposeful and beautiful way to connect the essential, utility spaces in my building became my focus.
Total Square Footage
15,975 Square Feet

Means of Egress
Egress Capacity: 1,065 / 1.5 inches per person
= 213 inches of exit width
= 6 doors of 36" width required

Construction Type
IBC 632.2 Type IV B: Unprotected Ordinary
Brick walls
Wooden roof assembly not protected against fire
Often found in warehouse districts of older cities
2-hour exterior walls

General Height + Area Limitations
Limited to Height of 2 Stories and Area of 9,500 SF*
*Installation of an NFPA13 automatic sprinkler system allows a
300% increase in area for a single story building

Use + Occupancy Classification
A-2 Assembly
Banquet Hall/Event Space
Night Club
Bar/Tavern
Restaurant

Plumbing Requirements
IBC 2902.1
1 toilet per 125 men = 5 minimum
1 toilet per 65 women = 9 minimum
1 lavatory per 200 = 6 minimum
1 drinking fountain per 500 = 3 minimum

Means of Egress
Egress Capacity: 1,065 / 1.5 inches per person
= 213 inches of exit width
= 6 doors of 36" width required

Support Spaces
Commercial Kitchen + Food Storage
1,019 SF

Occupancy Load
IBC 1004.1.1: Assembly Unconcentrated
Requi res 60 net square feet per person
Resulting Occupancy Load: 1,065

Primary Spaces
Gallery
4,583 SF
Dining Area
3,056 SF Total
a. Restaurant
2,037 SF
b. Coffee Shop
1,019 SF
Retail Area/Clothing Boutique
2,392 SF

Offices
Owner/CEO
200 SF
Event Coordinator
150 SF
Gallery Contact
150 SF
Marketing Office
150 SF
HR/Administrator
150 SF
Employee Break/Lunch Rooms [3]
300 SF (150 x 2)
Conference Room
450 SF

Storage
Gallery Storage (art)
120 SF
Event Storage (table, chairs, etc.)
120 SF
Retail Stockroom
215 SF
Office Storage
25 SF

Miscellaneous
Server Room
25 SF
Mechanical Room
50 SF (25 x 2)
Janitor Closets (2)

Means of Egress
Egress Capacity: 1,065 / 1.5 inches per person
= 213 inches of exit width
= 6 doors of 36" width required

Construction Type
IBC 632.2 Type IV B: Unprotected Ordinary
Brick walls
Wooden roof assembly not protected against fire
Often found in warehouse districts of older cities
2-hour exterior walls

Means of Egress
Egress Capacity: 1,065 / 1.5 inches per person
= 213 inches of exit width
= 6 doors of 36" width required

General Height + Area Limitations
Limited to Height of 2 Stories and Area of 9,500 SF*
*Installation of an NFPA13 automatic sprinkler system allows a
300% increase in area for a single story building

Use + Occupancy Classification
A-2 Assembly
Banquet Hall/Event Space
Night Club
Bar/Tavern
Restaurant

Plumbing Requirements
IBC 2902.1
1 toilet per 125 men = 5 minimum
1 toilet per 65 women = 9 minimum
1 lavatory per 200 = 6 minimum
1 drinking fountain per 500 = 3 minimum

Means of Egress
Egress Capacity: 1,065 / 1.5 inches per person
= 213 inches of exit width
= 6 doors of 36" width required

Support Spaces
Commercial Kitchen + Food Storage
1,019 SF

Occupancy Load
IBC 1004.1.1: Assembly Unconcentrated
Requi res 60 net square feet per person
Resulting Occupancy Load: 1,065

Primary Spaces
Gallery
4,583 SF
Dining Area
3,056 SF Total
a. Restaurant
2,037 SF
b. Coffee Shop
1,019 SF
Retail Area/Clothing Boutique
2,392 SF

Offices
Owner/CEO
200 SF
Event Coordinator
150 SF
Gallery Contact
150 SF
Marketing Office
150 SF
HR/Administrator
150 SF
Employee Break/Lunch Rooms [3]
300 SF (150 x 2)
Conference Room
450 SF

Storage
Gallery Storage (art)
120 SF
Event Storage (table, chairs, etc.)
120 SF
Retail Stockroom
215 SF
Office Storage
25 SF

Miscellaneous
Server Room
25 SF
Mechanical Room
50 SF (25 x 2)
Janitor Closets (2)
Adjacency Matrix

<table>
<thead>
<tr>
<th>Space</th>
<th>Use</th>
<th>Size (SF)</th>
<th>Privacy</th>
<th>Plumbing</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallery</td>
<td>1</td>
<td>4,583</td>
<td>H</td>
<td>N</td>
<td>Central-most space</td>
</tr>
<tr>
<td>Restaurant</td>
<td>2</td>
<td>2,037</td>
<td>H</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Coffee Shop</td>
<td>3</td>
<td>1,019</td>
<td>H</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Retail</td>
<td>4</td>
<td>2,292</td>
<td>H</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Support Spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dining Room Kitchen</td>
<td>5</td>
<td>1,018</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Coffee Shop Kitchen</td>
<td>6</td>
<td>500</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Rest Rooms</td>
<td>7</td>
<td>305</td>
<td>H</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Offices + Back of House</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner's Office</td>
<td>8</td>
<td>200</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>9, 10, 11, 12, 13</td>
<td>9</td>
<td>150</td>
<td>M</td>
<td>Y</td>
<td>M</td>
</tr>
<tr>
<td>Event Coordinator's Office</td>
<td>10</td>
<td>150</td>
<td>M</td>
<td>Y</td>
<td>M</td>
</tr>
<tr>
<td>Gallery Contact's Office</td>
<td>11</td>
<td>150</td>
<td>M</td>
<td>Y</td>
<td>M</td>
</tr>
<tr>
<td>Marketing Office</td>
<td>12</td>
<td>150</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Reception + Admin</td>
<td>13</td>
<td>150</td>
<td>M</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Conference Room</td>
<td>14</td>
<td>450</td>
<td>M</td>
<td>M</td>
<td>A/V equipment needed</td>
</tr>
<tr>
<td>Kitchentte/Break Area</td>
<td>15</td>
<td>250</td>
<td>N</td>
<td>I</td>
<td>Y</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallery Storage</td>
<td>16</td>
<td>120</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Event Storage</td>
<td>17</td>
<td>120</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Retail Stockroom</td>
<td>18</td>
<td>215</td>
<td>N</td>
<td>Y</td>
<td>I</td>
</tr>
<tr>
<td>Office Storage</td>
<td>19</td>
<td>25</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server Room</td>
<td>20</td>
<td>20</td>
<td>C</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Mechanical Room</td>
<td>21</td>
<td>20</td>
<td>C</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Janitor Closets</td>
<td>22</td>
<td>25 each</td>
<td>5, 6, 7</td>
<td>Y</td>
<td>H</td>
</tr>
</tbody>
</table>

Legend

- **H** = High
- **M** = Medium
- **L** = Low
- **Y** = Yes
- **N** = No/None
- **I** = Important, but not required

Space Planning

Note: Diagram includes connections between different spaces and various notes on accessibility and function.
floor plan

Legend

1. Main Hall Entrance
2. Main Entrance
3. Staff Entrance
4. Elegant Entrance
5. Changing Rooms
6. Office Entrance
7. Comfortable Room
8. Cafeteria
9. Office
10. Office Centrally
11. Office Opportunity
12. Office Space
13. Office Area
14. Office Area
15. Office Area
16. Office Area
17. Office Area
18. Office Area
19. Office Area
20. Office Area
21. Office Area
22. Office Area
23. Office Area
24. Office Area
The building’s primary programmatic framework is structured around eight 11’ cubes that run along its core. These cubes contain the building’s rest room facilities, dressing rooms, art and event storage, and a bar. The materiality of each cube’s front façade communicates its unique level of programmatic fixedness or flexibility.

Walls clad in rusted and non-rusted metal panels create vibrant niches between each of the eight cubes.
Merchandise Display - Storage Racks
Display racks were modeled after moving library shelving systems. Five modules provide a variety of storage options and can easily be wheeled into different configurations. The cases can be pushed together and secured at the sides with casters at the rear.

(Opus) Retail Store from main entrance.
Art gallery highlighted
Configured for an exhibit in the round
Moveable panels provide additional hanging surfaces in the gallery and can readily be rearranged for various functions. When not in use displaying artworks, these panels non-invasively partition off areas of the gallery so simply ten framed works can be tucked away between the utility cubicle and counter-carrels.
Opposite: View of bar from Dining Room
Fashioned from old shipping containers, these 7' pods bring the scale of the dining room down to a more human level, and provide additional hanging surfaces on which to display art. Mounted on wheels, the dining pods can be rolled outside the building’s garage doors for instant indoor/outdoor seating. They can also be pushed together to accommodate larger dining parties.
Four 10’ cubes mark entrances into the back-of-house office spaces. In a similar language to that of the larger cubes running through the building’s public core, these cubes communicate fixed versus flexible as well as public versus private through the use of concrete, wood, glass, and steel. A kitchenette, shared office entrance, and conference room align along a central axis, while the president’s office is tucked back and less readily accessible.
Right: West-facing exterior façade, looking into Retail Area and Coffee Shop.
Below: North-facing exterior façade, with main entrances into Retail and Dining Areas.
Opposite: Overhead view of Art Gallery and Office Area.
My project explores the idea of flexibility as it pertains to architecture and interior design. Strategies such as overlap versus separation, public versus private, and design communities.

The building's primary programmatic framework is structured around eight cubes.

- 1. Main Retail Entrance
- 2. Retail Boutique
- 3. Rest Rooms
- 4. Changing Rooms
- 5. Coffee Shop
- 6. Employee Break Room
- 7. Art Gallery
- 8. Bar

Display racks were modeled after moving library shelving systems. 5 modules provide a variety of storage options and can be pushed together and moved aside when not in use. Can easily be wheeled into different configurations. The racks can be tucked away between the utility cubes and panels can partition off areas of the gallery or simply in the gallery and can easily be rearranged for various uses.

Moveable panels provide additional hanging surfaces, basic art gallery configuration, art gallery option 2 - in the round, art gallery option 3 - in a build out, Smaller Gallery behind Counter-Carrels. A smaller art gallery option can be tucked away between the utility cubes and panels can partition off areas of the gallery or simply in the gallery and can easily be rearranged for various uses.

Fashioned from old shipping containers, these 7' pods bring the scale of the restaurant down to a more human level, and provide additional hanging surfaces for instant indoor/outdoor seating. They can also be pushed together to accommodate larger dining parties for wedding ceremony configuration.

Fashioned from old shipping containers, these 7' pods bring the scale of the restaurant down to a more human level, and provide additional hanging surfaces for instant indoor/outdoor seating. They can also be pushed together to accommodate larger dining parties for wedding ceremony configuration.

They can also be pushed together to accommodate larger dining parties for wedding ceremony configuration.

They can also be pushed together to accommodate larger dining parties for wedding ceremony configuration.

They can also be pushed together to accommodate larger dining parties for wedding ceremony configuration.

