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Abstract

A LEXICOGRAPHIC PRODUCT CANCELLATION PROPERTY FOR DIGRAPHS

By Kendall Lee Manion, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2012.

Director: Richard Hammack, Associate Professor, Department of Mathematics and Applied
Mathematics.

There are four prominent product graphs in graph theory: Cartesian, strong, direct,

and lexicographic. Of these four product graphs, the lexicographic product graph is the

least studied. Lexicographic products are not commutative but still have some interesting

properties. This paper begins with basic definitions of graph theory, including the definition

of a graph, that are needed to understand theorems and proofs that come later. The paper

then discusses the lexicographic product of digraphs, denoted G ◦H, for some digraphs

G and H. The paper concludes by proving a cancellation property for the lexicographic

product of digraphs G, H, A, and B: if G◦H ∼= A◦B and |V (G)|= |V (A)|, then G∼= A. It

also proves additional cancellation properties for lexicographic product digraphs and the

author hopes the final result will provide further insight into tournaments.
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Chapter 1: Introduction

The study of graph theory began in the eighteenth century with the great mathematician

Leonhard Euler’s proof of the Köningsberg bridges problem. Once considered recreational

mathematics, graph theory has today evolved to be an efficient tool for modeling problems

in many different fields and its applications widely range from logistics, communication,

data organization, flow of computation, social network analysis, and molecule structures in

chemistry and physics. Graph theory features many operations that can be performed on

graphs, including four prominent graph products: the Cartesian product, the strong product,

the direct product, and the lexicographic product.

Each of these graph products has its own unique characteristics that make it interesting

in its own right; however, the focus of this paper is on a cancellation property specific to

the lexicographic product of digraphs. Before discussing cancellation of the lexicographic

product of digraphs, many definitions, properties and propositions of graphs and digraphs

will be introduced. We begin with some very basic information, followed by the definition of

the lexicographic product of graphs, and stating some of its specific properties. We conclude

with a cancellation property for the lexicographic product of digraphs.

1.1 Preliminaries

The basis of all graph theory is the definition of a graph. Informally, a graph is a collection

of vertices, or nodes, along with a set of distinct 2-element subsets of vertices called edges.

Edges are also referred to as lines or links. The precise definition of a graph is given below.
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DEFINITION 1.1. A graph G, is a set V of objects called vertices (the singular is vertex)

together with a possibly empty set E of distinct 2-element subsets of V called edges. The

vertex set of G is denoted by V (G) and the edge set is denoted by E(G). The Order of a

digraph D is the number of vertices in D and is denoted |V (D)|. The Size of a digraph D

is the number of arcs in D and is denoted |A(D)|. Vertices of G are generally written as a

single letter, such as u,v ∈V (G) and edges are written as vertex pairs such as uv ∈ E(G).

a b c

d e f

Figure 1.1: An Example of a Graph with V (G) = {a,b,c,d,e, f} and
E(G) = {ae,ad,bc,bd,be,c f ,e f}.

The definition of a graph given in Definition 1.1 eliminates multiple edges. Given two

vertices u,v ∈G, the edges uv,uv ∈ E(G) are said to be multiple since they connect the same

two vertices. This paper also assumes that for any u ∈ G uu /∈ E(G) for all u ∈V (G), that is

the graph has no loops. Figure 1.2 and provides an example of a graph that is not simple

because it contains loops. Figure 1.3 provides an example of a graph that is not simple

because it has multiple edges. Figure 1.1 is an example of a simple graph.

Figure 1.2: A graph that has loops.
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Figure 1.3: A graph that has multiple edges.

If edges have direction associated with them, the graph is called a directed graph, or

digraph, or the elements in the 2-element subsets are ordered.

DEFINITION 1.2. A directed graph, or digraph D is a set of objects called vertices, together

with a set of ordered pairs of distinct vertices of D called arcs, or directed edges. The set of

vertices is denoted V (D) and the set of arcs is denoted A(D).

Recall that a simple graph is a graph without multiple uv-edges or loops. As with graphs,

digraphs in this paper do not have multiple uv-arcs or loops. These digraphs, understood to

be simple digraphs, are the focus of this paper. The concept of an underlying graph is useful

with many topics related to digraphs. Definition 1.3 provides the definition of an underlying

graph.

DEFINITION 1.3. For a digraph D, the underlying graph G is the graph with V (D) =V (G)

and uv ∈ E(G) if uv ∈ A(D) or vu ∈ A(D). The direct edge uv, from u to v is called an arc.

1.2 Properties of Digraphs

Digraphs and graphs share many similar properties, however there are also some differences.

If interested in similarities and differences between graphs and digraphs see Chartrand,

Lesniak, and Zhang [1].

This section explores some properties of simple digraphs, which will enable us to

investigate cancellation properties of lexicographic product of digraphs. For the rest of this

paper, the term digraph explicitly implies a simple digraph unless otherwise stated.
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Every digraph has certain characteristics. One of the characteristics of digraphs is the

notion of its order, |V (D)|, and its size, |A(D)|. As discussed in Definition 1.1, a digraph’s

order is the number of vertices in its vertex set and the digraph’s size is the number of arcs

in its arc set. In Figure 1.4, |V (D)|= 4 and |A(D)|= 6.

u

v

x

y

Figure 1.4: An illustration of a digraph D.

Definition 1.2 provides a foundation for understanding of digraphs. Figure 1.4 illustrates

a digraph with V (D) = {u,v,x,y} and A(D) = {xu,xy,yv,vx,uv,uy}.

Figure 1.5: A subdigraph of the digraph D in Figure 1.4.

Given a digraph G, two new digraphs can be generated from G called the subdigraph

and the subdigraph induced on S.

DEFINITION 1.4. A digraph H, is a subdigraph of a digraph G, if V (H) ⊆ V (G) and

A(H)⊆ A(G). Digraph H is a proper subdigraph of G if V (H)⊂V (G) or A(H)⊂ A(G).

Given a digraph G, and a subset S⊆V (G), the subdigraph induced on S, denoted 〈S〉,

has vertex set S, and for any x,y ∈ S, xy ∈ E(〈S〉) ⇐⇒ xy ∈ E(G).

In a digraph, two vertices are adjacent if there is an arc that connects them. For vertices

u,v ∈V (G), the vertex u is said to be adjacent from the vertex v if vu ∈ A(G) and the vertex
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v is said to be adjacent to the vertex u if vu ∈ A(G). Figure 1.4 illustrates adjacencies in

a digraph. The vertex u is adjacent to v and the vertex v is adjacent from u. Figure 1.6

graphically shows the complete digraph K3.

DEFINITION 1.5. The complete digraph Kn is the digraph on n vertices, for which every

pair of vertices are adjacent, that is, if u,v ∈V (Kn) then both uv and vu belong to A(Kn).

Figure 1.6: The complete digraph K3.

One of the common digraphs (and graphs) one can work with is called a path, which is

defined in Definition 1.6.

DEFINITION 1.6. A Path is a digraph Pn for some integer n whose vertices can be labeled

v1,v2, . . . ,vn and E(P) = {viv j : j = i+1}, where (1≤ i≤ |V (Pn)|−1).

A path is a specific type of digraph, but it can also be a subdigraph. For vertices

u,v ∈ V (D) a u,v-path is a series of arcs that connect vertex u to vertex v. In a graph, a

u,v-path and a v,u-path are equivalent. However, in digraphs, a u,v-path is not the same as a

v,u-path. If a u,v-path exists a v,u-path does not necessarily exist. Definition 1.7 gives the
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135

246

Figure 1.7: Path on Six Vertices (P6)

formal definition and Figure 1.8 provides an example of digraph with a u,v-path that does

not contain a v,u-path. The direction in which a path is traversed is important in digraphs

since the orientation of an arc begins at one vertex and ends at another. If the direction is

reversed it goes against the orientation. In Figure 1.8, a u,v-path traverses u,x,v. However,

a v,x,u-path does not exist.

DEFINITION 1.7. If u,v ∈V (D) for some digraph D, a u,v-path is defined to be a series of

arcs that connect the vertex u with the vertex v in D.

v

u

x

Figure 1.8: A digraph with a u,v-Path but no v,u-Path.
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Now that u,v-paths have been defined, we investigate the concept of connectedness.

Two vertices u and v are said to be connected if there is a u,v-path. A graph G is said to

be connected if every two vertices of G are connected. A digraph D is said to be weakly

connected if the underlying graph is connected. Figure 1.8 is an example of a weakly

connected digraph, since the underlying graph is connected.

A digraph D is said to be strongly connected if for every u,v ∈V (D) there exists both a

u,v and a v,u path. The digraph in Figure 1.4 is a strongly connected digraph.

DEFINITION 1.8. A digraph D is said to be strongly connected, if for every u,v ∈ V (D)

both a u,v and a v,u path exist.
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Chapter 2: Homomorphisms and an Introduction to Lexicographic Product Digraphs

Chapter 1 covered basic concepts in graph theory necessary to explore the lexicographic

product of digraphs. This chapter covers more specific material including homomorphisms

and isomorphisms between digraphs and an introduction to the lexicographic product of

digraphs.

2.1 Injective Homomorphisms

We can define functions on graphs or digraphs. One such function is a homomorphism.

A homomorphism is an adjacency preserving mapping from a digraph G to a digraph H,

defined as follows:

DEFINITION 2.1. A function φ : V (G)→V (H) is a homomorphism if uv ∈ A(G) implies

φ(u)φ(v) ∈ A(H), for all u,v ∈V (G). A homomorphism φ is injective if φ is injective as a

map on sets.

DEFINITION 2.2. Two digraphs G and H are isomorphic, written G∼= H if there exists a

bijective function θ : V (G)→V (H) such that uv ∈ A(G) ⇐⇒ θ(u)θ(v) ∈ A(H).
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Assume there are two digraphs, G and H, and that G has an injective homomorphism

into H, and that H has an injective homomorphism into G. Theorem 2.3 shows that G is

then isomorphic to H.

THEOREM 2.3. If there are injective homomorphisms α : G→ H and β : H→ G,

then G∼= H.

Proof. Let α : G→H and β : H→G be injective homomorphisms. Since α and β are both

injective as maps on sets, |V (G)|= |V (H)|. Note: α−1 does not necessarily equal β . Since

α is an injective homomorphism, |A(G)| ≤ |A(H)|, and β is an injective homomorphism,

|A(H)| ≤ |A(G)|, thus |A(G)| = |A(H)|. Recall Definition 2.2. We know that α is injective

and that if uv ∈ A(G) then α(u)α(v) ∈ A(H). We need to show that if α(u)α(v) ∈ A(H),

then uv ∈ A(G). Suppose α(u)α(v) ∈ A(H) but uv /∈ A(G). Since H has an arc α(u)α(v)

and uv /∈ A(G) this implies |A(G)| < |A(H)|. But since β is an injective homomorphism,

|A(H)| ≤ |A(G)|. This is a contradiction. Hence G ∼= H.

2.2 The Lexicographic Product of Digraphs and Its Size

This section provides basic information about the lexicographic product of digraphs. First,

we define the lexicographic product of digraphs and then define an H-layer of a lexicographic

product of digraphs, which is also called a fiber. Each of these definitions can be found in

Hammack, Imrich, and Klavžar [6].

DEFINITION 2.4. The lexicographic product G◦H of digraphs G and H is defined as:

V (G◦H) = {(g,h)|g ∈V (G),h ∈V (H)},

A(G◦H) = {(g,h)(g′,h′) |gg′ ∈ A(G) or g = g′and hh′ ∈ A(H)}.
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The lexicographic product is associative, that is, for digraphs G, H, and K,

(G◦H)◦K = G◦ (H ◦K). However, it is not necessarily commutative. We illustrate the

lexicographic product of digraphs using the disjoint union of two digraphs. A disjoint union

is the operation on two or more digraphs where each digraph is drawn, but no arcs are

adjacent to a vertex from another digraph. Figures 2.1 and 2.2 illustrate a lexicographic

product of two digraphs that are not commutative.

−→
P2 +

−→
K1

−→
P2 +

−→
P2

Figure 2.1: The lexicographic product of two disjoint union digraphs.

DEFINITION 2.5. Given a vertex h = (h1,h2, . . . ,hk) of the product

H = H1 ◦H2 ◦ · · · ◦Hk,

the Hi-layer through h = (h1,h2, . . . ,hk) is the induced subdigraph

Hh
i = 〈{x ∈V (H)|p j(x) = h j f or j 6= i}〉

= 〈{(h1,h2, . . . ,xi . . .hk) |xi ∈V (Hi)}〉,

where p j is a projection map defined as pi = (x1,x2, . . . ,xk) = xi.
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−→
P2 +

−→
P2

−→
P2 +

−→
K1

Figure 2.2: The lexicographic product of two disjoint union digraphs.

Note: In a lexicographic product G◦H, there are precisely |V (G)| H-layers.

DEFINITION 2.6. Given a digraph Hi and uv ∈ A(Hi) and a product graph H1 ◦H2 and

hh′ ∈ A(H1 ◦H2) where h = (x1,x2) and h′ = (x′1,x
′
2), then the fiber-over-the-arc uv is de-

fined as:

A(Hi)uv = {hh′ ∈ A(H1 ◦H2)|πi(h)πi(h′) ∈ A(Hi)},

where πi is a projection mapping.

Note: In a lexicographic product G◦H, there are precisely |A(G)| fibers-over-the-arcs.

Also, note that the disjoint union of arcs of the fibers-over-the-arcs and the Hi-layers make

the totality of the arcs of G◦H.

Given digraphs G and H the size of G◦H can be calculated from the order and size of

both G and H, as follows:
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PROPOSITION 2.7. If G◦H is a Lexicographic Product, then

|A(G◦H)|= |V (H)|2 · |A(G)|+ |V (G)| · |A(H)|.

Proof. Let G ◦H be a lexicographic product of digraphs. (Recall Definition 2.4.) By

definition of the lexicographic products of digraphs, (g,h)(g′h′) ∈ A(G◦H) if either g = g′

and hh′ ∈ A(H) or gg′ ∈ A(G).

Suppose g = g′ and hh′ ∈ A(H). Notice when g = g′ an H-layer is created (Definition

2.5). Each H-layer has |A(H)| arcs. And there are |V (G)| H-layers in G ◦H. Therefore,

there are |V (G)| · |A(H)| arcs in all H-layers of G◦H.

Now suppose gg′ ∈ A(G). By definition of the lexicographic product of digraphs, if

gg′ ∈ A(G) then there is an arc between each vertex in adjacent H-layers. Recall, each

H-layer has |V (H)| vertices. So there are |V (H)| arcs from each vertex in adjacent H-layers

and there are |V (H)| vertices in each H-layer. So there are |V (H)|2 arcs in each fiber-over-

the-arc. There are |A(G)| fibers in G◦H, so the sum of the number of all arcs in every fiber

of G◦H is |V (H)|2 · |A(G)|. Hence |A(G◦H)| = |V (H)|2 · |A(G)|+ |V (G)| · |A(H)|.

In order to show that Proposition 2.7 holds, refer to Figure 2.1. If you count the arcs in

each fiber-over-the-arc it is nine, notice that nine is the square of the number of vertices in
−→
P2 +

−→
K1 and that there are two fibers-over-the-arcs, which is the same as the size of

−→
P2 +

−→
P2 .

Now observe each H-layer has exactly one arc, which equals |A(−→P2 +
−→
K1)| and as noted

earlier there are |V (G)| H-layers in a lexicographic product of digraphs. The result holds.

Note: (
−→
P2 +

−→
K1)◦ (

−→
P2 +

−→
P2) 6= (

−→
P2 +

−→
P2)◦ (

−→
P2 +

−→
K1), that is, the lexicographic product

of digraphs is not necessarily commutative, as illustrated in Figures 2.1 and 2.2.
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Chapter 3: Lexicographic Product Digraph Cancellation

In Chapter 2 we defined the lexicographic product of digraphs and showed that it is not

necessarily commutative. This chapter explores cancellation properties of lexicographic

product digraphs.

3.1 Number of Injective Homomorphisms

We begin this chapter the definition of a weak homomorphism and continue with the

definition of the number of homomorphisms and injective homomorphisms between two

digraphs.

DEFINITION 3.1. A weak homomorphism φ : G→ H, where G and H are digraphs, is a

map φ : V (G)→V (H) for which uv ∈ E(G) implies φ(u)φ(v) ∈ E(H) or φ(u) = φ(v).

Note that every lexicographic product of digraphs has a weak homomorphism,

φ : G◦H→ G by mapping each H-layer to one vertex of G. Specifically,

φ(g,h) = g for every (g,h) ∈ G◦H.

DEFINITION 3.2. If G and H are digraphs, then hom(G,H) is the number of homomor-

phisms θ : G→ H, and inj(G,H) is the number of injective homomorphisms ψ : G→ H.

DEFINITION 3.3. Suppose we have an arbitrary partition Ω of V (G), with nonempty sets

Si, i ∈ I. We define the quotient of G by Ω to be the digraph G/Ω with vertex set Ω , and

SiS j ∈ E(G/Ω) if some uv ∈ E(G) has u ∈ Si and v ∈ S j.
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The number of injective homomorphisms from a digraph X into a digraph G◦H can be

counted as well. Theorem 3.4 provides a formula that determines the number of injective

homomorphisms from a digraph X to the product G◦H.

THEOREM 3.4. If X , G, and H are digraphs, then

inj(X ,G◦H) = ∑
Ω∈P(V (X))

(
inj(X/Ω ,G) · ∏

θ∈Ω

inj(〈θ〉,H)

)
,

where P(V (X)) is the set of all partitions on V (X).

Proof. Let X ,G, and H be digraphs. Let Inj(X ,G◦H) be the set of injective homomorphisms

from X to G ◦H, and w : G ◦H → G be the weak homomorphism where w(g,h) = g

for all (g,h) ∈V (G◦H). Let z the projection from G ◦H defined by z(g,h) = h for all

(g,h) ∈V (G◦H).

Any function f gives rise to a partition of V (X) defined as

Ω f = {(w f )−1(w f (x)) : x ∈V (X)}.

Even though f is not an injective homomorphism from X to G, f can be regarded as an

injective homomorphism to G from the quotient X/Ω f . This is true as follows:

Given such f , define the function r : X/Ω f → G, where

r(U) = f (U) forU ⊆Ω f . We will show that r is an injective homomorphism.

Assume there exists an x1,x2 ∈ X/Ω f , such that r(x1) = r(x2) and x1 6= x2. Recall,

Ω f partitions V (X) by collecting all x ∈ V (X) such that f (x) = g ∈ V (G). Since x1 6= x2,

these sets are different in Ω f , but if r(x1) = r(x2) then f (x1) = f (x2) which contradicts the

definition of Ω f , and hence r is injective.



15

Now we need to show the function, r, is an homomorphism. Recall, r(U) = φ(U) and

φ is an homomorphism. Since r is defined by the preimage of the homomorphism φ , if

x1x2 ∈ A(X/Ωφ ) then r(x1)r(x2) must be in A(G) or r contradicts its definition. Therefore,

r is an injective homomorphism.

We already defined Inj(X ,G◦H) to be the set of injective homomorphisms from X to

G◦H, formally Inj(X ,G◦H) = {φ |φ : X → G◦H is an injective homomorphism}, and

|Inj(X ,G◦H)|= inj(X ,G◦H). The partition Ωφ is one element of P(V (X)).

Next, define the set ∆ to be

∆ =
⋃

Ω∈P(V (X))

(
Inj(X/Ω ,G)× ∏

θi∈Ω

Inj(〈θi〉,H)

)
,

where 〈θi〉 is the subdigraph induced on θi ⊆ V (X). By definition of the cardinality of a

Cartesian product,

|∆ |= ∑
Ω∈P(V (X))

(
inj(X/Ω ,G) ∏

θi∈Ω

inj(〈θi〉,H)

)
.

The theorem follows once we show that there is a bijection Ψ : Inj(X ,G◦H)→ ∆ . Con-

siderΨ : Inj(X ,G◦H)→∆ such that for f ∈ Inj(X ,G◦H), f 7→ (w◦ f ,z◦ f ,z◦ f , . . . ,z◦ fkΩ
).

Additionally, this f maps to

∆Ω f = Inj(X/Ω f ,G)∏
θi

Inj(〈θi〉,H).

We need to show that this Ψ is bijective.

We use proof by contradiction to show that Ψ is injective. Consider f ,g ∈ Inj(X ,G◦H)

where f 6= g, and assume that Ψ( f ) =Ψ(g). Let x ∈V (X). Two cases follow.
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Case 1: The function f (x) maps to fiber H1 of G◦H and g(x)maps to fiber H2 of G◦H.

If each go to a different fiber, then Ψ( f ) 6=Ψ(g) since Ψ( f ),Ψ(g) would map to different

w◦ f . Therefore, in Case 1 if Ψ( f ) =Ψ(g) then f = g.

Case 2: The functions f (x) and g(x) map to the same fiber of G ◦H. Since f 6= g,

f (x) 6= g(x), f (x) and g(x) map to different vertices in that fiber of G◦H. Then Ψ( f ) and

Ψ(g) would not be equal since Ψ( f ) would map x to a different (z ◦ f )i than Ψ(g) since

both map to the same fiber but different vertices. Then in Case 2, if Ψ( f ) =Ψ(g) then

f = g. Therefore Ψ is injective.

Next, we must show that Ψ is onto. Consider the element ( f , f1, f2, . . . , fk) ∈ ∆Ω , where

each fi maps to z◦ f . The domains of ( f1, f2, . . . , fk) can be written Ω = {θ1,θ2, . . . ,θkΩ
}.

Recall f : X/Ω → G, where Ω = {θ1,θ2, . . . ,θk}, and fi : θi→ H.

Using this information, a function g ∈ Inj(X ,G ◦H) can be defined as g : X → G ◦H

defined by

g(x) = ( f (θi), fi(x)),

where x ∈ θi. We will show that g is an injective homomorphism and then show

Ψ(g) = ( f , f1, f2, . . . , fk).

We will show g is injective using proof by contradiction. Assume g is not injective,

then there exists x1,x2 ∈ θi, such that x1 6= x2 but g(x1) = g(x2). If g(x1) = g(x2), then

( f (θi), fi(x1)) = ( f (θi), fi(x2)) for all i. Recall that θi is the domain for fi. If x1 6= x2, then

x1 maps to a different fiber than x2. If g(x1) = g(x2), then x1 and x2 both map to the same

fiber, but by the construction of θi x1 = x2, which is a contradiction. Therefore g is injective.

Next, we will show g is an homomorphism. Assume x1,x2 ∈ θi and x1x2 /∈ A(X), but

g(x1)g(x2) ∈ A(G◦H). Then ( f (θi), fi(x1))( f (θi, fi(x2))) ∈ A(G◦H). Recall that θi ∈Ω

and that the quotient partition generated is injective to G. Therefore, if
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( f (θi), fi(x1))( f (θi, fi(x2))) ∈ A(G◦H), then the preimage of g on the quotient is defined

to be wg−1(g′), where g′ ∈ V (G). Earlier, this was established to be a homomorphism,

which is a contradiction. Therefore g is a homomorphism. To be more precise g is an

injective homomorphism.

Now we must show that Ψ(g) = ( f , f1, f2, . . . , fk).

Ψ(g) = (( f (θi), fi(x)),( f (θi), f1(x)),( f (θi), f2(x)), . . . ,( f (θi), fk(x))).

The first part, ( f (θi), fi(x)) can be written as w◦ f since it will be mapped to G. Recall that

each θi is a domain for fi, so it can be rewritten as z◦ fi.. Now, we have

Ψ(g) = (w◦ f ,z◦ f1,z◦ f2, . . . ,z◦ fk) = ( f , f1, f2, . . . fk). Therefore, the total number of in-

jective homomorphisms from X to G◦H is

inj(X ,G◦H) = ∑
Ω f∈P(V (X))

(
inj(X/Ω f ,G) · ∏

θ∈Ω f

inj(〈θ〉,H)

)
.

Theorem 3.4 provides a base step for the cancellation properties we need to establish.

This result is used to show that for digraphs G, H, and K that if G◦H ∼= G◦K then H ∼= K

as well as to show that if G◦H ∼= K ◦H then G∼= K.

THEOREM 3.5. If G, H, and K are digraphs and G◦H ∼= G◦K, then H ∼= K.

Proof. Let X , G, H, and K be digraphs and G◦H ∼= G◦K. We need to show H ∼= K. This

will be accomplished by showing inj(X ,H) = inj(X ,K) for all X by induction on |V (X)|.

If |V (X)|= 1, then inj(X ,H) = |V (H)|= |V (K)|= inj(X ,K) since |V (H)|= |V (K)| by

properties of isomorphic digraphs and lexicographic product digraphs (the order of G◦H

equals the order of G◦K).
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Now assume that inj(X ,H) = inj(X ,K) whenever |V (X)|< N, for some integer N. We

need to show that inj(X ,H) = inj(X ,K) when |V (X)| = N. By Theorem 3.4 we have the

following:

inj(X ,G◦H) = ∑
Ω∈P(V (X))

inj(X/Ω ,G) · ∏
θ∈Ω

inj(〈θ〉,H), (3.1)

where P(V (X)) is the set of all partitions of the vertex set of X, Ω is an element of this

partition set, and θ is one element of Ω . Similarly,

inj(X ,G◦K) = ∑
Ω∈P(V (X))

inj(X/Ω ,G) · ∏
θ∈Ω

inj(〈θ〉,K). (3.2)

Because G ◦H ∼= G ◦K, it follows that inj(X ,G◦H) = inj(X ,G◦K) and by Equation

3.1 and Equation 3.2

∑
Ω∈P(V (X))

inj(X/Ω ,G) · ∏
θ∈Ω

inj(〈θ〉,H) = ∑
Ω∈P(V (X))

inj(X/Ω ,G) · ∏
θ∈Ω

inj(〈θ〉,K). (3.3)

Therefore,

0 = ∑
Ω∈P(V (X))

inj(X/Ω ,G) ·

(
∏

θ∈Ω

inj(〈θ〉,H)− ∏
θ∈Ω

inj(〈θ〉,K)

)
. (3.4)

By the induction hypothesis, whenever the cardinality of θ is less than N it follows that

inj(〈θ〉,H) = inj(〈θ〉,K) and every term in Equation 3.4 is zero except for Ω = {V (X)}.

Additionally, |θ | ≥ N when Ω =V (X). If Ω = {V (X)} then there is only one element of

the partition and Equation 3.4 can be reduced to:

0 = inj(X/X ,G) · (inj(X ,H)− inj(X ,K)) . (3.5)
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Since inj(X/X ,G) 6= 0 then it follows that,

0 = inj(X ,H)− inj(X ,K).

Therefore, inj(X ,H) = inj(X ,K). So, when |V (X)| = N, inj(X ,H) = inj(X ,K), implying

that inj(X ,H) = inj(X ,K) for all graphs X .

If X = H then inj(H,H) = inj(H,K) and inj(H,K) > 1. Similarly, if X = K then

inj(K,K) = inj(K,H) and inj(K,H)> 1. By Theorem 2.3, H ∼= K.

Therefore, if G◦H ∼= G◦K, then H ∼= K,

THEOREM 3.6. If G, H, and K are digraphs and G◦H ∼= K ◦H, then G∼= K.

Proof. Let X ,G,H, and K be digraphs and G◦H ∼= K ◦H. We need to show G∼= K, which

will be accomplished by showing inj(X ,G) = inj(X ,K) for all X by induction on |V (X)|.

If |V (X)|= 1, then inj(X ,G) = |V (G)|= |V (K)|= inj(X ,K) since |V (G)|= |V (K)| by

properties of isomorphic digraphs and lexicographic product digraphs (the order of G◦H

equals the order of G◦K).

Now assume that inj(X ,G) = inj(X ,K) whenever |V (X)|< N, for some integer N. We

need to show that inj(X ,G) = inj(X ,K) when |V (X)| = N. By Theorem 3.4 we have the

following:

inj(X ,G◦H) = ∑
Ω∈P(V (X))

inj(X/Ω ,G) · ∏
θ∈Ω

inj(〈θ〉,H), (3.6)

where P(V (X)) is the set of all partitions of the vertex set of X, Ω is an element of this

partition set, and θ is one element of Ω . Similarly,

inj(X ,K ◦H) = ∑
Ω∈P(V (X))

inj(X/Ω ,K) · ∏
θ∈Ω

inj(〈θ〉,H). (3.7)



20

Because G◦H ∼= K ◦H it follows that inj(X ,G◦H) = inj(X ,K ◦H) and by Equations

(3.6) and (3.7).

0 = ∑
Ω∈P(V (X))

(inj(X/Ω ,G)− inj(X/Ω ,K)) ·

(
∏

θ∈Ω

inj(〈θ〉,H)

)
. (3.8)

By the induction hypothesis whenever the cardinality of X/Ω is less than N it follows that

inj(X/Ω ,G) = inj(X/Ω ,K). Furthermore, whenever |x/Ω | ≥N the partition of V (X) is one

element. Then there is one element in Ω and inj(〈θ〉,H) = |V (H)|> 0, so inj(X/Ω ,G)−

inj(X/Ω ,K) = 0 for all graphs X .

If X = K, then inj(K,G) = inj(K,K) and inj(K,G) ≥ 1. Similarly, if X = G, then

inj(G,G) = inj(G,K) and inj(G,K)≥ 1. By Theorem 2.3 if G◦H ∼= K ◦H then G∼= K.

3.2 More on the Cancellation Property of Lexicographic Product of Digraphs

Section 3.1 provided some cancellation properties of lexicographic products of digraphs. In

this section we provide more such cancellation properties. The section starts off with a very

important definition, externally related vertex sets. This definition is extremely useful in

each proof in this section.

DEFINITION 3.7. Let X and G be digraphs with X ⊆ G. The subdigraph X is said to be

externally related if for every u ∈V (G)−V (X) the following conditions hold.

1. Any u ∈ V (G)−V (X) is either adjacent to every x ∈ V (X) or is not adjacent to any

x ∈V (X),

2. Any u ∈V (G)−V (X) is either adjacent from every x ∈V (X) or is not adjacent from any

x ∈V (X).

Lemma 3.8 shows that every lexicographic product digraph G ◦H contains at least

|V (G)| externally related subdigraphs.
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LEMMA 3.8. If G and H are digraphs and G◦H is their lexicographic product, then any

H-layer of G◦H is externally related.

Proof. Let G and H be digraphs. Show any H-layer of G◦H is externally related. This will

be shown using proof by contradiction.

Suppose Hi is an H-layer in G◦H where the weak homomorphism φ maps every vertex of

Hi to gi ∈V (G). Let (g j,hn),(g j,hm) ∈ A(Hi-layer)⊂ A(G◦H) and let (g j,hl) ∈ A(G◦H)

where i 6= j. Figure 3.1 illustrates the different H-layers. Figures 3.2 and 3.3 have stripped

Figure 3.1 of all fibers to illustrate the two different cases below.

−→
P2 +

−→
P2

−→
P2 +

−→
K1

(g j,hm) (gi,hn)

(g j,hl)

g j gi gz

H j-l
ay

er

H i-l
ay

er

H z-l
ay

er

Figure 3.1: Illustration of each H-layer in G◦H.

Two cases follow:

Case 1: The arc gig j ∈ A(G). There exists a (gi,hn)(g j,hm) ∈ A(G◦H) but

(gi,hn)(g j,hl) /∈ A(G◦H) for i 6= j. Then (g j,hm) and (g j,hl) are in a different H-layer
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than (gi,hn). Since i 6= j,k then (g j,hm),(gk,hl) ∈V (G◦H)−V (Hi). This contradicts the

definition of the lexicographic product, and therefore if any vertex from another H-layer is

adjacent from Hi then they all must be.

−→
P2 +

−→
P2

−→
P2 +

−→
K1

(g j,hm) (gi,hn)

(g j,hl)

g j gi gz

H j-l
ay

er

Hi-layer Hz-layer

Figure 3.2: Showing (gig j) ∈ V (G) and (gi,hn)(g j,hm) ∈ A(G ◦ H) but
(gi,hn)(g j,hl) /∈ A(G◦H).

Case 2: The arc g jgi ∈ A(G). There exists a (g j,hm)(gi,hn) ∈ A(G◦H) but

(g j,hl)(gi,hn) /∈ A(G◦H) for i 6= j. Then this contradicts the definition of lexicographic

product digraphs, and therefore if any vertex is adjacent to Hi then all are adjacent to Hi.
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−→
P2 +

−→
P2

−→
P2 +

−→
K1

(g j,hm) (gi,hn)

(g j,hl)

g j gi gz

H j-l
ay

er

H i-l
ay

er

H z-l
ay

er

Figure 3.3: Showing (g jgi) ∈ V (G) and (g j,hm)(g j,hn) ∈ A(G ◦ H) but
(g j,hl)(gi,hn) /∈ A(G◦H).

Therefore Hi is externally related.

Next, we show that if X , Y ⊆ G are both externally related and each are complete then

X ∩Y 6= φ and X ∪Y is externally related (Proposition 3.9). Following Proposition 3.9,

Proposition 3.10 will show that if X ∩Y 6= φ and each are totally disconnected, then X ∪Y

is totally disconnected. Proposition 3.11 will show that if X ⊆ G ◦H then PG(X), the

projection of X onto G, is externally related in G. Proposition 3.12 will show that if X ⊆ G

is externally related then the preimage of the projection of X onto G is externally related.



24

PROPOSITION 3.9. If X , Y ⊆ G are externally related and each is complete and X ∩Y 6= φ ,

then X ∪Y is externally related and complete.

Proof. Let X , Y , and G be digraphs and X ,Y ⊆ G and both X and Y are externally related

and complete. Also, X ∩Y 6= φ . We will show X ∪Y is externally related and complete.

First we will show that X ∪Y is externally related and then show it is complete.

Consider V (X ∪Y ) = {g ∈V (X ∪Y ) : g ∈V (X)org ∈V (Y )}.

If X ∩Y 6= φ , then there exists at least one g1 ∈V (X∩Y ). Assume X∪Y is neither externally

related nor complete.

Then there exists one g1g2 ∈ A(G) such that g1 ∈V (X ∪Y ) and g2 /∈V (X ∪Y ). Assume,

without loss of generality, that g2 is only adjacent to g1 ∈ V (X ∪Y ). By definition of

V (X ∪Y ), g1 ∈V (X) or g1 ∈V (Y ). Since X is externally related g1 /∈V (X) and since Y is

externally related g1 /∈V (Y ). Since X and Y are externally related, this is a contradiction

and either g1g2 /∈ A(G) or g1 /∈V (X ∪Y ). Thus X ∪Y is externally related.

Since X ∩Y 6= φ then there exists at least one g ∈ V (X ∪Y ) such that g ∈ V (X) and

g∈V (Y ). Consider x∈V (X∪Y ), where x∈V (X) but x /∈V (Y ). Since X and Y are complete

by definition of externally related and complete digraphs, every v ∈V (X) is either adjacent

to every h ∈V (G)−V (X) or nonadjacent to every h ∈V (G)−V (X). Or every v ∈V (X) is

either adjacent from every h ∈V (G)−V (X) or nonadjacent from every h ∈V (G)−V (X).

Recall g ∈ V (X ∩Y ) and so g ∈ V (X ∪Y ) as well. Recall, X is complete. Since X is

complete, xg,gx ∈ A(X) and hence also xg,gx ∈ A(X ∪Y ). The vertex x /∈ V (Y ). Recall

that Y is also complete. Then there exists y ∈ V (Y ) such that y /∈ V (G) but yg,gy ∈ A(Y )

and hence yg,gy ∈ A(X ∪Y ). Note, that x ∈ V (X) and y ∈ V (Y ) are both adjacent to and

adjacent from g ∈V (X ∩Y ).
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Recall that we assumed that X ∪Y is not complete. Now consider that X is externally

related and X ∩Y 6= φ . Then g ∈V (X) is adjacent to and adjacent from every vertex in V (Y )

since X is externally related. Then X ∪Y is complete. Similarly, the second condition of

externally related could be followed to show that V (X ∪Y ) is complete.

Therefore if X , Y , and G are digraphs with X ,Y ⊆ G and both X and Y are externally

related and complete with X ∩Y 6= φ , then X ∪Y is externally related and complete.

PROPOSITION 3.10. If X , Y , and G are digraphs and X ,Y ⊆ G and are externally related

and each is totally disconnected and X ∩Y 6= φ , then X ∪Y is totally disconnected.

Proof. Let X , Y , and G be digraphs and X ,Y ⊆ G. Also X and Y are externally related and

totally disconnected with X ∩Y 6= φ . We need to show X ∪Y is totally disconnected.

Let g1,g2 ∈V (G)−V (X ∪Y ). Then g1,g2 /∈V (X) and g1,g2 /∈V (Y ). Let

x ,y ,v ∈V (X ∪Y ), where x,v ∈ V (X) and y,v ∈ V (Y ). Assume X ∪Y is not externally

related. Then there exists a v ∈V (X ∪Y ) such that vg1 ∈ A(G) but not adjacent to any other

v ∈ V (X ∪Y ). Recall that X ,Y ⊆ G are externally related. Then v /∈ V (X) and v /∈ V (Y )

since both are totally disconnected. So, X ∪Y is externally related.

Now, assume X ∪Y is not totally disconnected. Then there exists x ∈ V (X) and a

y ∈V (Y ) such that xy ∈ A(X ∪Y ). Recall that X ∩Y 6= φ . Then there exists a v ∈V (X ∩Y ).

Since X and Y are externally related then for any g ∈V (G)−V (X) every x ∈V (X) is not

adjacent to or adjacent from every g ∈V (G)−V (X). Consider y ∈V (X ∪Y ) and y /∈V (X).

Since Y is totally disconnected, y∈V (Y ) and y∈V (G)−V (X) is not adjacent to or adjacent

from any other vertex in Y . Since v ∈V (X ∩Y ) v is not adjacent to or adjacent from y, but

v ∈V (X). Hence X ∪Y is totally disconnected.

PROPOSITION 3.11. If X ⊆ G ◦H is externally related, then the projection of X onto G,

PG(X), is externally related in G.
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Proof. Let X , G, and H be digraphs and X ⊆G◦H and X is externally related. Show PG(X)

is externally related in G. This will be accomplished using proof by contradiction.

Assume PG(X) is not externally related in G. Then there exists a g ∈ PG(X) and

g1,g2 ∈ V (G) such that gg1 ∈ A(G) but gg2 /∈ A(G). Since X ⊆ G ◦H and is externally

related if gg1 ∈ A(G) and gg2 /∈ A(G) then (g,h)(g2, j) /∈ A(G◦H) for some h, j ∈V (H).

Let (g,m) ∈V (X). Recall that X ⊆ G◦H. Since X is externally related, if

(g,h) ∈ A(G◦H), then for all (gl,hi) ∈ A(X)⊆ A(G◦H) must be either adjacent to or

adjacent from every element of an H-layer or nonadjacent to or nonadjacent from every

vertex of an H-layer for all (g,h) ∈ V (G ◦H)−V (X). If PG(X) is not externally related,

then there exists a PG((g,m))g2 ∈ A(G), but PG((g,m))g3 /∈ A(G)) where g2,g3 /∈ PG(X).

Since X is externally related in G ◦H, if PG(g,m)g2 is adjacent to or adjacent from in G,

then the preimage must be adjacent to or adjacent from all V (G◦H)−V (X) and likewise

the preimage of PG(g,m)g3 are not adjacent to nor adjacent from the preimage of PG(X).

Since (g2,hi),(g3,h j) are not in the preimage, and each H-layer is externally related, this

contradicts the fact that X is externally related in G◦H. Therefore PG(X) must be externally

related.

PROPOSITION 3.12. If X ⊆ G is externally related, then P−1
G (X) is externally related.

Proof. Let X and G be digraphs with X ⊆ G. The subdigraph X is also externally related.

Show P−1
G (X) is externally related. Let h,g ∈ V (X) Then PG(X) and PG(X) both exist.

Since X is externally related, all vertices in the set V (G)−V (X) are either adjacent to or

not adjacent to all vertices in V (X) and either adjacent from or not adjacent from all vertices

in V (X). The preimage of the projection is X itself so it is externally related.

Several useful propositions have been proven using Definition 3.7. Recall the definition

of strongly connected (Definition 1.8) for Proposition 3.13 to show that if X ⊆ G◦H and it
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is strongly connected and externally related with |V (X)| ≤ |V (H)| then the projection of X

onto G is externally related and complete.

PROPOSITION 3.13. Let X ⊆ G◦H and assume it is strongly connected, externally related,

and |V (X)| ≤ |V (H)|. Then PG(X) is externally related and complete.

Proof. Let X ,G, and H be digraphs and X ⊆ G◦H as well as externally related. The order

of X is less than or equal to the order of H. We need to show that PG(X) is externally related

and complete. Recall that by Proposition 3.11, PG(X) is externally related. So all that is

needed is to show is that PG(X) is complete.

Let (g1,h1) ∈ V (X) and PG(x) = g1 where g1 ∈ V (G). Since X is strongly connected,

there must be a neighbor (g2,h2) ∈V (X) of (g1,g2). The neighbor (g2,h2) is either in the

same H-layer of G◦H or is in an adjacent H-layer.

Case 1. Assume that V (X)⊆V (Hi), that is X is a subset of an H-layer of G◦H. Then

PG(x) = {g1} and PG(X) is complete.

Case 2. Assume that V (X) is not a subset of an H-layer of G ◦H. Then there exists

at least one (g1,h1)(g2,h2) ∈ A(G ◦H) where g1 6= g2. Since PG(X) is a projection and

X ⊆ G◦H (g1g2) ∈ A(G). Since X is strongly connected, a (g1,h1)(g2,h2)-path exists and

also a (g2,h2)(g1,h1)-path exists. So (g1,h1) has an out degree and in degree of at least one.

Since PG(X) is externally related, we know that any vertex adjacent to or adjacent from g1

is also adjacent to or adjacent from g2 respectively.

Now, assume that PG(X) is not complete. Then there exists a g1,g2,g3 ∈V (G), where

g3 /∈ PG(X) but g1,g2 ∈ PG(X) and g1g3 ∈ A(PG(X) but g2g3 /∈ PG(X). Then the H-layer

defined by (g1,hi) is adjacent to (g3,hi) but (g2,hi) is not adjacent to (g3,hi). This contra-

dicts the given fact that X is externally related since (g1,h1),(g2,h2) ∈ V (X). Therefore

PG(X) is complete.
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Theorem 3.14 ties all the work together to show that if G◦H ∼=A◦B and |V (G)|= |V (A)|,

then G∼= A.

THEOREM 3.14. If G, H, A, and B are digraphs and G◦H ∼= A◦B and |V (G)|= |V (A)| and

H is strongly connected, then Kl ◦H ∼= Kl ◦B, for some l and G∼= A.

Proof. Let G, H, A, and B be digraphs with G◦H ∼= A◦B and |V (G)| = |V (A)| and H is

strongly connected. We want to show that Kl ◦H ∼= Kl ◦B, for some l. (Note: by properties

of lexicographic product of digraphs and isomorphisms |V (H)|= |V (B)|.) Define α : A◦B

as the projection α((a,b)) = a for a ∈ V (A) and (a,b) ∈ V (A ◦B). Additionally define

γ : G◦H as the projection γ((g,h) = g) for g ∈V (G) and (g,h) ∈V (G◦H).

Define Φi to be the function from G ◦H to A ◦B from a fixed H-layer of G ◦H, that

is Φ(gi,h) for a fixed gi ∈ V (G) and for all h ∈ V (H). Note that Φi can be written as

Φ(γ−1(gi)). Recall that H-layers of a lexicographic product digraph are externally related.

Then by Proposition 3.13, Φi is externally related in A ◦B and by Proposition 3.11 the

projection of Φi onto A is externally related in A and by Proposition 3.13 the projection of

Φi onto A is also complete, say Kp.

Since Kp = α(Φ(γ−1(gi))) ⊆ A is externally related and complete, by Proposition

3.10 α−1(Kp) is externally related in A◦B. Again, by Proposition 3.10 Φ−1(α−1(Kp)) is

externally related in G◦H. Then by Proposition 3.13 and Proposition 3.11 γ(Φ−1(α−1(Kp))

is externally related and complete. Either this subset of V (G) = Kp or its order is larger

than Kp. If it equals Kp then Kl ◦H ∼= Kl ◦B. If it is not, then take the preimage of this new

set of vertices in G◦H and repeat the process until you have Kn ⊆ G and Kn ⊆ A, then by

Theorem 3.5 H ∼= B and hence A∼= G.
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