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Sterilization of tissue engineered scaffolds is an important regulatory issue and is at the 

heart of patient safety.  With the introduction of new biomaterials and micro/nano structured 

scaffolds, it is critical that the mode of sterilization preserve these built-in features. Conventional 

sterilization methods are not optimal for engineered polymeric systems and hence alternate 

systems need to be identified and validated. PCL is polyester with a low melting point (heat labile), 

susceptible to hydrolysis and is popular in tissue engineering. Electrospinning generates some 

nanoscale features within the scaffold, the integrity of which can be affected by sterilization 

method. Chapter 1 explores the possibility of using Peracetic acid (PAA) to sterilize polymeric 

scaffolds that are sensitive to heat or moisture. PAA is a strong oxidizing agent that has been 



 
 

 
 

approved for sterilizing catheters and endoscopes. The ability of PAA to sterilize at room 

temperature, its breakdown into non-toxic end products and effectiveness at low concentrations 

are major advantages.  

Chapter 2 evaluates the ability of PAA-sterilized PCL scaffolds (PAA-PCL) to support 

survival and proliferation of mouse calvarial osteoblast cell line, MC3T3. While Ctrl-PCL 

scaffolds (ethanol-disinfected) showed robust cell survival, PAA-PCL scaffolds induced massive 

cell death. Following interrelated hypotheses are tested: the observed cytotoxicity was due 

adsorption of PAA and/or hydrogen peroxide onto PCL fibers during sterilization; and elimination 

of adsorbed residues will restore scaffold cytocompatibility. Neither extensive aeration nor 

chemical neutralization with sodium thiosulfate and catalase were effective in improving cell 

survival. However, quenching PAA-PCL scaffolds in 70% ethanol for 30 minutes effectively 

removed adsorbed PAA residues and completely restored cell viability and proliferation over a 7 

day period. In order to test if PAA-induced toxicity was limited to electrospun PCL scaffolds, 

commercially available, porous polystyrene scaffolds (Alvetex®) was treated with PAA. 

Interestingly, a statistically significant increase in cell survival and proliferation resulted with PAA 

treatment and this was abolished by ethanol quenching. Combined, these results illustrate that PAA 

treatment can produce diametrically opposite effects on cell survival depending on substrate 

chemistry and that PAA can be used to effectively sterilize tissue engineering scaffolds without 

compromising cell viability. 

Keywords: peracetic acid, sterilization, electrospinning, polymeric scaffolds, cytotoxicity, 

desorption, quenching, Alvetex®
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1.1 INTRODUCTION 

Tissue engineering is a rapidly evolving field that aims to develop functional tissue 

substitutes by integrating advanced engineering principles and improved understanding of cell 

behavior.  The ultimate goal of tissue engineering and regenerative medicine is to improve the 

quality of life in patients by promoting true regeneration of structure and function of diseased/ lost 

tissue. Scaffold-based tissue engineering is a popular strategy that involves seeding and culture of 

specific cell types in an environment that mimics the native extracellular matrix (ECM). The ideal 

ECM analogs are engineered to be 3D instructional matrices that contain all the physical, chemical 

and biological cues to promote tissue repair and regeneration1. 

Metals and alloys, ceramics and polymers, either alone or in combination have been 

traditionally used to rehabilitate the patient with missing organs. While metals and ceramics are 

inherently strong and possess favorable mechanical properties for orthopedic applications, they 

are non-degradable and possess limited process ability. Polymers are popular materials used in 

various devices for replacing missing organs or restoring functions of the body because of 

favorable physical and mechanical properties. Synthetic polymers are being increasingly used in 

tissue engineering because the composition, structure and hence the properties can be tailored to 

suit specific needs.  In addition to being biocompatible, synthetic polymers can be rendered 

biodegradable (by imparting appropriate chemistry), does not elicit immune reactions (unlike 

natural polymers) and can be mass produced with little batch-to-batch variability2. Among the   

synthetic biodegradable polymers, polycaprolactone (PCL) and polydioxanone (PDO) are very 

popular in the fields of drug delivery, medical devices and tissue engineering because of their 

excellent biocompatibility, slow yet complete degradation in vivo and its ability to be blended with 
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other polymers to tailor properties as well as FDA approval.  Micro- and nano- spheres of PCL 

have been used successfully in controlled drug delivery systems3,4,5; in sutures as a co-polymer 

with glycolide (Monacryl® by Ethicon); as a root canal filler6; and tissue engineering 

applications7,8. PDO, on the other hand has been extensively used in medical devices as sutures 

(PDS®, by Ethicon) and tissue engineering applications9,10,11,12. 

Among different scaffold fabrication techniques available to generate 3D porous polymeric 

scaffolds, electrospinning has been very popular because of its simplicity, versatility and its ability 

to faithfully reproduce the sub-micron fibrous morphology of the native ECM. The process 

involves dissolving a biodegradable polymer in a suitable solvent at high concentrations and 

subjecting this viscous solution to high voltage (typically tens of kilovolts). Under optimal 

conditions, sufficient polymer chains entanglements occur to form a stable polymer jet that 

accelerates towards a grounded target driven by the high potential difference. The solvent 

evaporates during the travel and the fibers are collected as dry fibrous non-woven mats. The 

scaffold composition, fiber diameters and alignment can be readily controlled by the operator to 

tailor tissue-specific properties13. 

Given the translational nature of tissue engineering research, constant innovation in 

polymer systems and their processing technologies, the issue of sterilization needs to be 

periodically revisited., Tissue engineered products are regulated by the FDA for efficacy and safety 

reasons and as devices intended to be direct contact with living tissue needs to be completely sterile 

prior to implantation. It is also imperative for the sterilization method to preserve the meticulously 

engineered micro- and nano-scaled features as well as the material and structural properties of the 

polymeric scaffolds. Current sterilization processes employed by the health care industry including 

ethylene oxide, moist steam (autoclave) and gamma irradiation, cannot be readily applied to tissue 
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engineered products because of the nature of the biomaterial involved i.e. polymers. Since 

polyester polymers are hydrolytically unstable, subjecting them to autoclaving (moist heat) is not 

an option; high energy gamma radiation is known to degrade polymeric backbone reducing 

molecular weight and alter degradation profiles14; and ethylene oxide (EtO) has been shown to 

alter scaffold properties by penetrating into polymeric networks  and reacting with chemical 

groups15. 

This study systematically explore the feasibility of using peracetic acid (PAA) as a 

chemical sterilant for polymeric tissue-engineered scaffolds, when compared to EtO, autoclave 

and ethanol. PCL was chosen as the model polymer because of its proven track record and its low 

melting point. In addition, PCL was subjected to electrospinning to produce porous 3D scaffolds 

with well-defined nano-topography. The aim was to identify the sterilization conditions (in terms 

of concentration, contact time and temperature) necessary to achieve complete sterility while 

maintaining scaffold integrity. Sterilization method was exposed to the highest challenge by 

inoculating electrospun scaffolds with spores of Bacillus atrophaeus. Spores represent the most 

resistant forms of life and are the gold standard to verify the efficacy of sterilization. The effects 

of sterilization on scaffold properties including fiber morphology, porosity, permeability, 

hydrophilicity and tensile modulus was examined. This is the first study to evaluate the biological 

effectiveness of sterilization against spores in the context of electrospun polymeric scaffolds. 
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1.2 MATERIALS AND METHODS 

1.2.1 Electrospinning: PCL (Sigma, MW 80,000) was dissolved in hexafluroisopropanol (HFP) 

at a concentration of 100 mg/ml. Electrospinning conditions were optimized (rate: 7 ml/hr, air-gap 

distance: 12.5 cm, voltage: 25 kV) to generate continuous non-woven nanofibers that were 

collected onto a rotating cylindrical drum mandrel (1000 rpm). After electrospinning, scaffolds 

were removed from mandrel, dried in the hood for 30 min and stored in an airtight desiccator until 

use. Scaffolds were cut using defined punches for use in various experiments. 

 

Fig 1: Schematic of Electrospinning. 

1.2.2 Characterization of B. atrophaeus Spores:  B. atrophaeus spores (ATCC #9372) was 

purchased as suspensions from Moog Medical Devices Group, NY, USA and stored at 4oC. A total 

of 106 spores (10 µl) were added to 990 µl of DI water to be used as a starting concentration for 

all the experiments.  Fifty microliter of this solution as well as two serial dilutions (1:50) was 
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plated on TSA (tryptic soy-agar) plates using Eddy Jet 2 Spiral Plating System (NeuTec Group, 

NY).  The plates were then transferred to the incubator at 35oC and the colonies were counted 

using the automated colony counter after 18 hours. 

1.2.3 Sterilization efficacy of PAA: PAA was purchased as a 39% solution (Sigma) in acetic acid 

and hydrogen peroxide. Different concentrations of PAA (100, 500, 1000, 2500, and 5000 ppm) 

were obtained by diluting the stock (390,000 ppm) in an appropriate volume of DI water. Initial 

experiments to identify the minimal effective concentration were performed by directly exposing 

the spore suspensions to different concentrations of PAA for 5 min at room temperature, plating 

these solutions on solid agar and evaluating colonies, as described in the section ‘‘Characterization 

of B. atrophaeus spores’’. The absence of colonies is a more important parameter while assessing 

terminal sterilization, as their evidence represents a failure to achieve sterility. Thus, the actual 

numbers of colonies are irrelevant and were not recorded. For experiments involving scaffolds, a 

second diluent was introduced; in addition to DI water, the PAA was also diluted in 20% ethanol. 

This is because of the observed significantly better wetting of spore solution (in 20% ethanol) on 

scaffolds than DI water. 

1.2.4 Scaffold Inoculation with B. atrophaeus spores and culture: Electrospun PCL fabric was 

cut into 10 mm discs using a disposable dermal biopsy punch. Discs were placed in the wells of 

micro-titer plate and intentionally inoculated with 106 spores and allowed to dry.  After 30 minutes, 

the scaffolds were subject to different methods of sterilization. Scaffolds were then transferred into 

5 ml of Tryptic soy broth and cultured in a mechanical shaker for 3 days maintained at 35oC. Any 

turbidity in the broth was due to bacterial growth and represented inadequate sterilization. 

1.2.5 Scanning Electron Microscopy: Air-dried electrospun scaffolds (before and after various 

sterilization protocols) were mounted on aluminum stubs using standard double-sided tape, sputter 
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coated with platinum, and examined at an accelerating voltage of 20 kV using a JEOL JSM 

5610LV scanning electron microscope (SEM). Average fiber diameters were calculated from a 

total of 50 randomly selected fibers from corresponding SEM images using Image J (NIH). 

1.2.6 Sterilization Treatments:   Electrospun scaffolds were subjected to 8 different sterilization 

regimens: Ethylene oxide (EtO), Autoclave, 80% Ethanol, 100 ppm, 500 ppm, 1000 ppm, 2500 

ppm and 5000 ppm of peracetic acid (PAA).  The EtO sterilization was done at 50oC for 16 hours 

while autoclaving was done at 121oC at 15 psi for 15 minutes. Scaffolds were placed in self-sealing 

pouches (Henry-Schein) containing chemical color indicators for attainment of process 

parameters. Scaffolds for ethanol treatment were immersed in an 80% solution (in DI water) for 

30 minutes and rinsed thrice with PBS for 10 minutes each. PAA was purchased as 39% solution 

from Sigma which corresponded to 390,000 ppm.  The stock PAA was diluted in either DI water 

or 20% ethanol solution (in DI water) to arrive at the desired concentrations. The scaffolds were 

incubated for a period of 15 minutes on an orbital shaker unless otherwise stated. 

1.2.7 Contact Angle Measurements:  The surface characteristic of the electrospun PCL scaffolds 

(treated and controls) was determined by measuring the contact angle using a Rame´-Hart 200 

contact-angle goniometer. A sessile drop (2-4 µl volume) of DI water is placed on the surface of 

the scaffold using a micro-syringe and allowed to equilibrate for a period of 10 seconds. The image 

of the drop was captured and analyzed using DROPImage for contact angle measurements. A total 

of 6 readings were done for every scaffold type. 

1.2.8 Scaffold Permeability:  Electrospun scaffolds were cut into 25mm discs and thickness 

recorded using a micrometer. Vacuum filtration assembly was adapted to measure scaffold 

permeability. The scaffolds were placed on top of a Type 316 stainless steel screen (100 mesh, 

filtration area of 2.1 cm2). The edges of the scaffolds were sealed using clear PTFE gaskets and 
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the attachment was secured to a 300 ml funnel using an anodized aluminum clamp. The funnel 

was filled with DI water and the entire apparatus was attached to a pump that consistently 

generated a vacuum of 25 inches mercury (corresponding to 4.92 inches of absolute pressure). The 

DI water was allowed to flow through the membrane after checking for any leaks and the time it 

took to filter 300 ml was recorded with readings taken after every 50 ml. A total of 4 readings were 

averaged for each scaffold type to be used in the Darcy’s equation to calculate permeability16. 

1.2.9 Uniaxial tensile testing: Uniaxial tensile testing was performed according to previous 

published studies17. Briefly, scaffolds were cut into ‘dog-bones’ (2.75 mm wide at their narrowest 

point with a gage length of 7.5 mm) and tested on an MTS Bionix 200 testing system with a 50 N 

load cell (MTS Systems Corp.) at an extension rate of 10.0 mm.min−1 . Elastic modulus, strain at 

break and energy to break were calculated by the MTS software TestWorks 4.0 and recorded. A 

total of 6 replicates were done for each treatment type. 

1.2.10 Stability of Peracetic Acid: PAA was prepared in different concentrations from 100-2000 

ppm in DI as well as 20% ethanol solution and stored air-tight at room temperature. The solutions 

were tested for the PAA concentration every 3 days for 2 weeks using colorimetric MQuant™ test 

strips specific for peracetic acid and sensitive in 100-2000 mg/L (ppm) range (EMD Millipore, 

Germany).  Manufacturers’ instructions were followed to quantify the concentration over time and 

recorded. 

1.2.11 Statistical Analysis: Values were presented as means and standard deviation, where 

appropriate. The scaffold types were compared using analysis of variance, and significant 

differences were described using Tukey’s HSD. All analyses were performed using SAS software 

(JMP version 10; SAS Institute, Inc.). 
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1.3 RESULTS 

 

1.3.1 Electrospun scaffold and spore characterization: Porous, nanofibrous scaffolds were 

generated after the optimization of electrospinning conditions. SEM analyses revealed that the 

average fiber diameter was 0.92 – 0.52 μm. There was a broad distribution of fibers with fiber 

diameters ranging from 136 to 2100 nm. The SEM of spores showed a typical rod-shaped structure, 

with the smaller dimension < 1 μm, and the size was small enough to penetrate into the depths of 

porous fibrous matrix. Spores loaded onto scaffolds could not be visualized even at high 

concentrations, possibly due to the porous nature of electrospun scaffolds as well as because of the 

lack of color contrast. 

 

Fig 2: SEM micrograph of electrospun PCL depicting porous, nanofibrous scaffold. 
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Fig 3: SEM image of B. atrophaeus spores. 

 

1.3.2 B. atrophaeus spore culture and sensitivity to PAA: Untreated spores promptly germinated 

on the surface of TSB agar to form discrete reddish-orange colonies within 18 h. longer incubation 

times led to coalescence and difficulty distinguishing individual colonies. Exposure of spore 

suspensions to PAA (diluted in DI water) resulted in marked reductions in colony-forming units. 

The number of colonies decreased significantly at 100 ppm (visual), but isolated colonies could 

still be seen at 500 ppm. However, no colonies were found at 1000 ppm or above. Figure 4 is 

representative of the results obtained with three trials. Hence, we established that 1000 ppm was 

the minimal sporicidal concentration of PAA at room temperature. 
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Fig 4: Effect of peracetic acid (PAA) (diluted in deionized water [DI water]) on spore viability. 

Spores were incubated with different concentrations of PAA for 5 min; suspensions were spiral-

plated on solid agar and incubated for 18 h. inadequate spore killing was observed at low 

concentrations (100 and 500 ppm) compared with controls, but complete sterility was seen at 1000 

ppm and higher PAA concentrations. 

 

1.3.3 Effects of sterilization: For each of the sterilization treatments on e-PCL scaffolds, we 

validated the sterilization process using the spores of B. atrophaeus as a biological indicator. In 

addition, we investigated the effects of the process on the physical and mechanical properties of 

the scaffolds. The results are discussed in the same order. 
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1.3.3a Sterilization efficacy: Both EtO and autoclaving are established methods of sterilization 

and expectedly destroyed all spores. Scaffolds treated with 80% ethanol demonstrated heavy 

bacterial loads similar to untreated controls. This is not surprising given that 80% ethanol is a high-

level disinfectant that is incapable of killing spores and, hence, is not a viable option for terminal 

sterilization. Since 1000 ppm was identified to be the minimal sporicidal concentration of PAA, 

lower concentrations (100 and 500 ppm) were ignored and assays on e-PCL scaffolds were 

performed with 1000, 2500, and 5000 ppm only. Spore-inoculated scaffolds, challenged to 

different concentrations of PAA diluted in DI water, showed incomplete sterilization even at 1000 

and 2500 ppm (data not shown). Lack of efficacy at these sporicidal concentrations was attributed 

to inadequate wetting of PCL scaffold and resulted in decreased access of PAA to spores within 

the scaffold. In order to improve the wetting characteristics of hydrophobic polymer scaffold, PAA 

was diluted in 20% ethanol, the same solution in which the spores were originally suspended. This 

modification dramatically improved the efficacy of PAA demonstrated by complete sterilization 

at 1000 ppm and above, which was consistent with our earlier observation with spore suspensions 

(Figure 5). 

 

Fig 5: Sterilization efficacy of PAA on spore laden e-PCL scaffolds. 
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1.3.4 Effects of sterilization methods on physical and mechanical properties:  

1.3.4a Gross morphology and SEM: EtO-treated electrospun scaffolds showed minimal gross 

dimensional change, but the scaffolds became translucent and brittle. Autoclaving induced massive 

melting and coalescence of polymer and completely destroyed the integrity of the scaffold. Further, 

scaffolds subjected to EtO and autoclaving showed complete loss of fibrous architecture and fusion 

of independent fibers under SEM (Figure 6). Scaffolds treated with chemical sterilants (80% 

ethanol and different concentrations of PAA) did not show any appreciable change in either 

macroscopic (photographic imaging) or microscopic (SEM) scale compared with controls. 

 

Fig 6: Effect of sterilization on gross morphology and SEM 

The scanning electron micrographs of scaffolds treated with PAA diluted in DI water and 20% 

ethanol are shown in Figure 7. The fibrous morphology of the scaffolds was significantly altered 

by treatment with PAA diluted in DI water in a concentration-dependent manner; individual fibers 

started fusing into bundles with evidence of fiber breakage at higher concentrations. PAA diluted 

in 20% ethanol showed a tendency toward thinning of fibers but preserved open porous 

architecture even at 5000 ppm. Statistical analyses confirmed significant effects of PAA 
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concentration on fiber diameter depending on the diluent (p < 0.001). Scaffolds treated with PAA 

diluted in DI water showed a significant difference in fiber diameter ( p < 0.001); fiber diameters 

at 2500 and 5000 ppm were larger than all other concentrations but were not different from one 

another (2500 ppm mean = 2.03 – 1.02 μm vs. 5000 ppm mean = 1.82 – 0.81 μm). Concentration-

dependent effects on fiber diameter were not observed in scaffolds treated with PAA diluted in 

20% ethanol (p > 0.8). 

 

Fig 7: SEM of scaffolds treated with PAA diluted in DI water and 20% ethanol 

1.3.4b Scaffold hydrophilicity: Contact angle measurements after different sterilization 

treatments were analyzed to indicate hydrophilicity or wettability of the scaffolds. Generally, 

surfaces are termed hydrophilic when the water contact angle is < 90o and hydrophobic, if contact 

angle is more than 90o. Figure 9 shows representative image of an actual drop placed on differently 

treated surfaces. Untreated control PCL scaffolds are highly hydrophobic (contact angle around 

120o); EtO, autoclaving, and 80% ethanol treatments make them hydrophilic as seen by reduced 

contact angles. Scaffolds treated with PAA at 1000 and 2500 ppm, in either diluent, did not 

significantly alter the wetting properties. However, at 5000 ppm, there was a dramatic decrease in 
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the contact angles. Figure 8 is a quantitative representation of the average of contact angles 

measured from six replicates for each scaffold type. Scaffolds treated with PAA at 5000 ppm 

diluted in DI water decreased contact angles by more than half, whereas PAA in 20% ethanol 

completely soaked up the water and brought the contact angle to zero. 

 

 

Fig 8: Quantification of contact angle measurements of PCL scaffolds 
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 Fig 9: Sessile drop images, after 10 s equilibration, on e-PCL scaffolds subjected to standard 

sterilization methods (A) and PAA diluted in DI water (B) or 20% ethanol (C).While conventional 

treatment reduced contact angles appreciably, PAA did not have any significant effect for 

approximately 2500 ppm. PAA at 5000 ppm induced a dramatic reduction in contact angle, 

irrespective of the diluent. The effect was more pronounced when 20% ethanol was used, as seen 

by complete absorption of the water drop. 



 
 

17 
 

1.3.4c Scaffold permeability: The permeability of the PCL scaffold to water was highest in the 

control-untreated PCL scaffold and decreased with increasing concentrations of PAA until the 

effect plateaued off at 2500 ppm (Fig. 10, p < 0.001). The permeability of scaffolds treated with 

PAA at 2500 ppm was not significantly different than 5000 ppm, nor was it different than when 

using 80% ethanol. This correlates well with the observation on scaffold hydrophilicity; a 

hydrophilic scaffold is expected to interact with water and to decrease the flow rate. Scaffolds 

treated with PAA diluted in DI water demonstrated high variations in permeability, due to 

heterogeneity in wetting characteristics (data not shown). 

 

Fig 10: Scaffold permeability (measured in Darcy units) determined by flow rate of DI water 

through treated e-PCL scaffold. 
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1.3.4d Mechanical properties: Since PAA diluted in DI water were not sporicidal at high 

concentrations, induced unfavorable changes in fiber morphology, and produced inconsistent data 

for scaffold permeability, mechanical testing on these samples was not performed. The results of 

mechanical testing of scaffolds treated with 80% ethanol and different PAA concentrations are 

shown in Figure 11. EtO and autoclaved samples could not be mechanically tested because of loss 

of scaffold integrity. It is interesting to note that the modulus was not affected by the concentration 

of PAA used (p > 0.06). Values for energy to break and strain at break indicate a tendency toward 

brittleness with increasing PAA concentrations for approximately 2500 ppm (statistically not 

significant). However, at 5000 ppm, the scaffolds were not statistically different from controls for 

the same properties (p = 0.007 and p = 0.010, respectively). 

1.3.5 PAA stability: PAA is at equilibrium with acetic acid and hydrogen peroxide and is 

particularly unstable at low concentrations. PAA at 100 ppm started degrading around 7 days as 

determined by a visual comparison with manufacturer-provided shade guides. Higher 

concentrations of PAA (> 200 ppm) did not show any degradation for a period of 3 weeks when 

stored air tight at room temperature. In addition, stability of PAA was not affected by the diluent 

used. Hence, PAA at concentrations necessary for sterilization (> 1000 ppm) could be prepared in 

large volumes and stored for a minimum of 3 weeks. 



 
 

19 
 

 

Fig 11: Mechanical properties of e-PCL scaffolds treated with different concentrations of PAA 

diluted in 20% ethanol. (A) Tensile modulus, (B) strain at break, and (C) energy to break. Control 

scaffolds refer to scaffolds incubated with 20% ethanol with no PAA. Scaffolds treated with 80% 

ethanol are also shown. 
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1.4 DISCUSSION 

 

The aim of tissue engineering is to develop viable functional alternatives for 

failing/missing organs. However, the strategies pursued have evolved from purely cell- or 

biomolecule- based approaches to current paradigm of scaffold-based tissue engineering. This 

involves seeding and culturing specific cell types in engineered 3D matrices designed to simulate 

the native extracellular matrix1. Such matrices are expected to present appropriate physical, 

biological and biochemical cues to predictably influence cell behavior18,19. Synthetic polymers are 

popular in tissue engineering because they are biocompatible, biodegradable and are available in 

a wide range of properties. The growing list of polymers2,20 and emerging scaffold fabrication 

technologies21, provide matrices with range of internal architecture and mechanical properties.  

Intended to be in direct contact with living tissues, these scaffolds must be terminally 

sterilized prior to implantation. One cannot assume product sterility even if fabricated in a ‘clean 

room’ because the machinery and starting materials are not sterile. In addition, normally benign 

bacteria can become pathogenic when present on the surface of devices.  This makes scaffold 

sterilization an important issue that needs to be addressed prior to clinical translation. Synthetic 

polymers used in tissue engineered scaffolds possess low melting points, are susceptible to 

hydrolysis and possess intricate architecture at micro-or nano- scale, all of which can be affected 

by the sterilization process. In addition, mechanical and surface properties, toxicity and 

biocompatibility of polymers needs to be evaluated before and after sterilization to ensure selection 

of an appropriate sterilization method that is benign to the polymer, device and the patient. In this 

context it is important to realize that standard sterilization practices (including autoclaving, 
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ethylene oxide and use of high energy irradiation) are not specifically suited for polymeric systems 

employed in tissue engineering. 

Autoclaving with pressurized moist steam at 120oC for 15 minutes is not practical for 

sterilizing polymers with low melting points. In addition, most biocompatible polymers are 

hydrolytically unstable and exposure to moisture can accelerate degradation, reduce shelf life and 

negatively affect physical properties22. EtO Is a reactive gas that can penetrate into polymeric 

networks, react with its chemical groups, cause degradation of polymer and alter scaffold 

dimensions23. In addition, EtO is carcinogenic and needs to be extensively degassed over many 

hours prior to packaging15. High energy irradiation is an efficient sterilization method that may 

preserve the morphology of a 3-D scaffold, but it dramatically decreases the polymer molecular 

weight and hence, accelerating degradation10. 

Limitations of conventional modes of sterilization in tissue engineering have led 

researchers to explore alternatives especially in the past few years. Shearer et al.24 found that 

peracetic acid and antibiotic solutions were effective in sterilizing hollow fiber and flat sheets of 

poly (lactide: glycolide) but induced unfavorable changes in morphology but not mechanical 

properties. Rainer et al. compared the effects of different sterilization techniques (ethanol, dry heat, 

autoclave, UV and plasma treatment) on morphology and crystallinity of electrospun poly-l-lactide 

scaffolds25. Dry heat and autoclave treatments resulted in an increase in crystallinity while low 

temperature UV and hydrogen peroxide plasma preserved the structural properties. Siritientong et 

al26 evaluated the effects of sterilization on lyophilized sericin-polyvinyl alcohol scaffolds and 

concluded that gamma irradiation as the most appropriate method even though it degraded by 

almost 70% in 24 hours. Even though these studies are very important, the authors do not specify 

the source or the identity of the contaminating bacteria in many cases thus making comparisons 
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difficult. Mostly, the groups used unsterilized material as control which can vary widely in their 

bacterial load or bio-burden. This study sought to address this issue by using B. atrophaeus spores 

as biological indicators. 

The use of chemical agents to reduce bacterial load in polymeric scaffolds is attractive 

because it allows processing at low temperatures and rapid processing. Since sterilization provides 

a higher standard of care as well as highest margin of safety for patients, we inoculated 106 spores 

of B. atrophaeus onto electrospun PCL scaffolds to serve as biological indicators. Spores, being 

the more resistant form of life and present in large numbers, a negative spore test would mean 

complete elimination of bio-burden27 and a sterile scaffold. 

Peracetic acid has long been in use as a chemical sterilizing agent because of its strong 

oxidizing properties. It is available as an equilibrium mixture of acetic acid and hydrogen peroxide 

and has been extensively used in the food industry because of its high potency and low residual 

toxicity. PAA denatures proteins and disrupts cell wall permeability and is effective against all 

forms of microbes (including spores) even in the presence of organic matter28. PAA is effective at 

low concentrations, low temperatures and reduced contact times.  PAA is also economical, 

degrades into non-toxic (water, oxygen and carbon-di-oxide) end products and can be safely 

disposed down the drain without affecting the environment27. 

The efficacy of PAA is affected by concentration, contact time, pH and temperature. The 

commercially available STERIS system employs 35% PAA diluted to 200 ppm in water (pH 6.4), 

at 50-56oC for 23 minutes. This automated system has been approved for sterilizing medical, 

surgical and dental instruments including those made from heat-sensitive materials29. The focus of 

the STERIS system is sterilization at near neutral pH to reduce the tendency of PAA to corrode 

metals; hence the use of low concentrations (200 ppm) and sodium salt of EDTA.  
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A significant deviation from FDA approved STERIS protocol to account for differences in 

biomaterials employed. First, since polymeric scaffolds are sensitive to heat (PCL degraded with 

EtO exposure at 50oC) and the priority was to effect sterilization at room temperature. Second, in 

contrast to traditional solid surfaces (tubes and instruments), engineered scaffolds are three 

dimensional, nanofibrous porous structures. The enormous surface to volume ratio offered by 

electrospun scaffolds is a huge benefit for tissue engineering but also presents a problem for 

sterilization due to the potential for lodging and survival of spores/ bacteria in the depth of the 

scaffold. 

The baseline conditions for sterilization in terms of contact time and temperature was 

established. PAA when added to spore suspension was effective in 5 minutes at room temperature; 

however, taking into account the 3D porous nature of the electrospun scaffold, the contact time 

was increased to 15 minutes for all scaffold based experiments. Working with various dilutions of 

PAA, an observation was made; wettability of the scaffold affected the ability of PAA to kill 

spores. Since the model polymer (PCL) was hydrophobic, diluting PAA in water (as has been done 

in STERIS) yielded incomplete sterilization. However, use of 20% ethanol (in DI water) as diluent 

for PAA, significantly improved the wetting characteristic of the scaffold without affecting the 

sporicidal activity of PAA at previously established concentrations. This is consistent with the fact 

that PAA need to be in physically contact to effect sterilization. 

An interesting effect of PAA at high concentrations on surface properties of electrospun 

scaffolds was detected. Control PCL scaffolds were significantly hydrophobic as reflected by the 

contact angle measurement of greater than 120 degrees. Contact angles tend to decrease with 

increasing concentrations of PAA even though the differences were not statistically significant. 

However, at 5000 ppm, the scaffold surface became so hydrophilic that that the contact angle 
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decreased to zero with the scaffold literally soaking up the drop. In order to determine if this 

observed effect is due to the diluent (20% ethanol) or PAA, the experiment was repeated with no 

diluent. The contact angle did not drop to zero but it was significantly less than controls. In both 

cases, the scaffolds became hydrophilic. This is not unexpected because polyester polymers are 

known to undergo acid- or alkali mediated hydrolysis beyond a threshold pH. It is an interesting 

observation because conscious efforts are being made to improve the hydrophilicity of scaffolds 

as it directly affects biocompatibility and favorable host response30,31. This finding makes PAA 

attractive because of its ability to sterilize as well as to improve the surface properties of 

electrospun scaffolds. 

Since acid-mediated hydrolysis can potentially affect morphological characteristics and 

mechanical properties of electrospun scaffolds, the study sought to evaluate these effects by SEM 

and tensile testing. The results portray no alteration in the sub-micron level architecture when 

scaffolds were treated with 5000ppm PAA diluted in 20% ethanol. However, the fibers tend to 

fuse and scaffolds demonstrates decreased porosity when DI water was used as a diluent.  

The study presented has the following limitations: working with one representative low-

melting polymer (PCL) fabricated by electrospinning. Even though we expect the results to be 

valid in other polymer systems and scaffold fabrication technologies, the results cannot be directly 

extrapolated and needs to be treated with caution. Conditions for sterilization and effects on 

scaffolds will vary and need to be optimized for specific systems. Cell response to sterilized 

scaffolds is an important issue and the second chapter will address the results of in vitro 

experiments. 
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1.4 CONCLUSIONS: 

 

The primary goal was to systematically evaluate the feasibility of using peracetic acid 

(PAA) as an effective technique to sterilize electrospun polymeric scaffolds. PCL was deliberately 

chosen because it represents low melting polymers (55-60oC) and is popular in tissue engineering.  

Even though few prior studies were done to evaluate the effects of sterilization on engineered 

scaffolds, this is the first to employ spores as a challenge organism. In addition, electrospinning 

allowed generation of porous, nanofibrous scaffolds thus providing the opportunity to observe the 

effects of sterilization on scaffold architecture at nanoscale. The quest was to identify optimal 

conditions that would 1.sterilize the scaffold at normal temperature and pressure, 2. Preserve the 

nanofibrous morphology and 3. Maintain or improve mechanical/ surface properties. PAA at 1000 

ppm for 15 minutes at room temperature renders the scaffold sterile without having any adverse 

effects on the morphological or mechanical properties of the scaffold. Incubation in 5000 ppm 

PAA for 15 minutes renders the scaffold hydrophilic as well. The role of diluent is important and 

is shown to significantly affect the sterilization efficacy and alter scaffold architecture. PAA 

diluted in a solution of 20% ethanol seems to be able to retain the sporicidal properties without 

affecting scaffold attributes.   
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2.1 INTRODUCTION: 

Restoration of structure and function of failed tissues is essential of maintenance of quality 

of life. None of the current therapies (auto/allo grafts, mechanical devices, and artificial 

prostheses) result in satisfactory long-term outcomes32. Tissue engineering is a promising strategy 

that attempts to replace missing or diseased tissues by implanting natural, synthetic, or 

semisynthetic tissue and organ mimics that are intended to develop functionality over time33 

The three fundamental components of tissue engineering are scaffolds, cells and signaling 

molecules. Scaffolds are structures with defined three-dimensional form that simulates the natural 

extracellular matrix34. Scaffolds provide microenvironment that mimics the biochemical and 

mechanical aspects of natural extracellular matrix. Foremost among the list of requirements of 

implanted tissue engineered scaffold is its cytocompatibility. Beyond this basic requirement, the 

scaffolds need to be conducive to cell attachment, migration, proliferation, differentiation and 

maintenance of cell phenotype35,36,37. 

Synthetic resorbable polyesters are popular choice in scaffold fabrication because of the 

ability to tailor mechanical properties and degradation. Additionally, the micro/nano architecture 

can be controlled by employing different fabrication methods38,39. Electrospinning is a versatile 

scaffold fabrication technology that consistently reproduces the fibrous morphology of the native 

ECM. In addition, the process is scalable; allows control over fiber diameter40,41, porosity42,43 and 

alignment44,45. Sterilization of tissue engineering scaffolds is an important regulatory issue and is 

mandatory prior to clinical translation. A majority of published literature in tissue engineering 

involves use of ethanol or UV to disinfect scaffolds; methods that are clearly inadequate for human 

use. The previous study has revealed that conventional methods of sterilization cause loss of 
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structural integrity in electrospun scaffolds  made from low-temperature melting polymers while 

chemical sterilization using peracetic acid (PAA) preserved its fibrous architecture and mechanical 

properties46 

Unlike physical methods (radiation and heat) that are terminal, chemical sterilization 

(liquid or gas) need to be followed by a decontamination regimen to eliminate residuals. 

Adsorption of cytotoxic and carcinogenic ethylene oxide (EtO) residuals onto polymeric surfaces 

is well acknowledged and extensive aeration is required prior to clinical use27. Tissue engineering 

scaffolds must support cell attachment and growth at the implanted site to be effective. It is 

therefore important to ensure all toxic residuals are eliminated post-sterilization. The previous 

study demonstrated that PAA can effectively sterilize PCL scaffolds and this study focuses on 

evaluating the biological effects of PAA sterilization using mouse calvarial osteoblasts (MC3T3). 

This chapter compares the cellular effects on two different substrates: electrospun PCL scaffolds 

and commercially available polystyrene scaffold (Alvetex™). 
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2.2 METHODS: 

2.2.1 Electrospinning PCL Scaffolds: PCL (Sigma, MW 80,000) was dissolved in a binary 

solvent system of formic acid: acetic acid (1:3 ratio) at a concentration of 100 mg/ml47. 

Electrospinning apparatus (EC-DIG, IME Technologies, The Netherlands) was used at optimized 

process conditions (rate: 2 ml/h, air-gap distance: 12.5 cm, applied needle voltage: +25 kV) to 

generate continuous, non-woven fibers that were collected onto 18mm glass cover slips attached 

to cylindrical drum mandrel (100 mm diameter) rotating at 100 rpm. After electrospinning, cover 

slips were removed from the mandrel, dried in a fume hood overnight and stored in an airtight 

desiccator until use. 

2.2.2 Scanning Electron Microscopy: Air-dried electrospun scaffolds (before and after various 

sterilization protocols) were mounted on aluminum stubs using standard double-sided tape, sputter 

coated with platinum and examined at an accelerating voltage of 20 kV using JEOL JSM 5610LV 

scanning electron microscope. Average fiber diameters were calculated from a total of 50 

randomly selected fibers from corresponding SEM images using Image J (NIH). Cells seeded 

scaffolds were fixed in 2.5% glutaraldehyde, sequentially dehydrated in ethanol followed by 3 

minute incubation in hexamethyldisilazane (HMDS, Sigma) prior to imaging48. 

2.2.3 Scaffold Sterilization: The scaffolds on coverslips were sterilized using previously 

identified conditions for PAA sterilization. Stock PAA (390,000 ppm) was diluted in 20% ethanol 

to 1000 ppm and the scaffolds were incubated for 15 min at room temperature (PAA-PCL) while 

control scaffolds (Ctrl-PCL) were disinfected with 70% ethanol for 30 min. All scaffolds were 

washed thrice with PBS (10 min each) and incubated in cell culture media overnight prior to cell 

seeding. 
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2.2.4 Cytotoxicity Assay: Live/Dead assay (Life Technologies) was used to evaluate 

cytocompatibility of PAA-PCL before and after different neutralization methods (see sections 2.5-

2.8). A total of 20,000 MC3T3 cells were seeded at the center of scaffold and retained within a 

10mm diameter glass cloning ring (Corning). Cell constructs were cultured in DMEM with 10% 

FBS (Atlanta Biologicals, GA) and 1% antibiotic/antimycotic (Invitrogen) at 37°C and 5% CO2. 

All Live/Dead experiments were done in triplicate; assays was performed at 24 hours and imaged 

using Nikon fluorescence microscope (10X). Live MC3T3 cells with esterase activity appear green 

while dead cells with exposed DNA emit red fluorescence. All images are overlay of green and 

red channels indicating live and dead cells respectively. Live/Dead assay was used as a screening 

tool to assess early cytotoxicity. 

2.2.5 Neutralization Using STS and Catalase: PAA is an equilibrium mixture of peracetic acid 

(39%), hydrogen peroxide (6%) in acetic acid. Since PAA is a strongly oxidizing, its neutralization 

was investigated using 20mg/ml of sodium thiosulfate (STS) for 2 hours49, a known reducing 

agent. Additionally scaffolds were incubated in catalase (0.1mg/ml) for 8 hours50, an enzyme 

known to effectively quench hydrogen peroxide. 

2.2.6. Aeration of PAA-PCL: A modified protocol traditionally used in decontamination 

following EtO sterilization. PCL being a low melting polymer aeration was carried out at room 

temperature.  PAA-PCL scaffolds were placed in an aeration chamber for 18 hours, treated with 

STS (20 mg/ml) and catalase (0.1mg/ml) prior to cell seeding. 

2.2.7. PAA Quenching using Ethanol: Since ethanol treatment of scaffolds improves wetting 

characteristics, it was hypothesized that washing PAA-PCL will effectively desorb residues. 

Accordingly, PAA-treated scaffolds were quenched in 70% ethanol for 30 minutes followed by 

washing in PBS, prior to cell seeding. 
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2.2.8. Cell Proliferation Assay:  Cell proliferation was evaluated using MTS (Promega) assay on 

two different scaffold types: electrospun PCL and commercially available Alvetex polystyrene 

scaffolds (Reinnervate Ltd. Durham, UK). Four groups were accordingly identified: electrospun 

PCL scaffolds treated with PAA (PAA-PCL), PAA-treated electrospun scaffolds quenched with 

ethanol (PAA-PCL+EtOH), Alvetex scaffolds treated with PAA (PAA-Alv) and PAA-treated 

Alvetex quenched with ethanol (PAA-Alv+EtOH). Control scaffolds were disinfected with 70% 

ethanol and designated Ctrl-PCL and Ctrl-Alv. In addition, tissue culture polystyrene (TCPS) was 

included for comparison. All scaffolds were washed thrice in PBS for 10 minutes and incubated 

in cell culture media overnight prior to cell seeding. A total of 10,000 MC3T3 cells were seeded 

onto scaffolds and a modified MTS assay (Promega, Madison, WI) performed on days 1 and 7. 

Briefly, cell-seeded scaffolds were washed with PBS at designated time points and incubated with 

MTS reagents for 2 hours. The absorbance of the supernatant was read at 490 nm using BioTek 

Synergy 2 microplate reader. Experiments were performed in triplicates and repeated once to 

confirm the results. The optical density (OD) was analyzed using a mixed-model, repeated-

measures ANOVA. Since absolute values of OD were skewed, the data were analyzed on log scale 

and then transformed back to original units using SAS software (SAS Institute, Inc., Cary NC). 

The data is graphically represented as means with 95% confidence intervals (CI). Statistical 

significance was set a priori at 0.05. 
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2.3 RESULTS: 

 

2.3.1 Scaffold Characterization: The scaffolds generated from binary solvent system-FAA 

(formic and acetic acid) predictably yielded fibrous scaffolds with a mean fiber diameter of 210 

nm (Figure 1). 

 

Fig 1: SEM micrograph of electrospun PCL generated from binary solvent system-FAA (formic 

and acetic acid) 

 

2.3.2 Cell Survival on PAA-PCL: The results of Live/Dead assay on PAA-treated scaffolds and 

control scaffolds are presented in Figure 2. While Ctrl-PCL supported robust cell attachment and 

survival, PAA-PCL was completely cytotoxic: significantly less number of cells attached and any 

entrapped cell was dead within 24 hours. 
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Fig 2: Effect of PAA on cell viability. Live/Dead staining of MC3T3 on Ctrl-PCL (a) and PAA-

treated scaffolds (b) 

 

2.3.3 STS and Catalase Neutralization on PAA-PCL: Incubation of PAA-scaffolds with 

20mg/ml of STS did not improve the cytocompatibility profile and neither was STS cytotoxic 

(Figure 3). These results show that thiosulfate was not adequate or incapable of neutralizing 

adsorbed PAA residuals. There was an increase in the number of attached cells as well as a higher 

proportion of live cells when the scaffolds were incubated with 0.1mg/ml catalase (Figure 4). 

However, higher concentrations of catalase did not improve survival. These results suggest that 

adsorbed hydrogen peroxide contributed partially to cytotoxicity in PAA-treated scaffolds and that 

catalase was able to quench adsorbed hydrogen peroxide residuals. 
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Fig 3: Effect of PAA neutralization by STS on cell viability. MC3T3 on Ctrl-PCL incubated in 

20mg/ml STS is shown on the left (a) while PAA-treated scaffold is shown in panel (b). 

 

 

Fig 4: Effect of catalase on cell viability following PAA exposure on electrospun scaffold. 

Live/Dead images from Ctrl-PCL (a) and PAA-PCL (b) treated with 0.1mg/ml catalase 

 

2.3.4 PAA Aeration: PAA-PCL aerated for 18 hours, showed a remarkable decrease in the number 

of dead cells with a concomitant increase in living cells even though the cell density is significantly 

less than the controls (Figure 5) suggesting this strategy was moderately effective in improving 

scaffold cytocompatibility. 
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Fig 5: Effect of PAA decontamination by aeration, STS and catalase. Live/Dead image of 

MC3T3 on Ctrl-PCL (a) and PAA-PCL (b). 

 

2.3.5 PAA Quenching with Ethanol: The effect of quenching PAA-PCL in 70% ethanol for 30 

minutes (PAA-PCL+EtOH) is illustrated in Figure 7. As can be seen, ethanol treatment fully 

restored the scaffold cytocompatibility to levels comparable to controls. The cell density, flattened 

cell morphology and the proportion of live cells were similar to that of Ctrl-PCL. Comparable cell 

spreading behavior on Ctrl-PCL and PAA-PCL+EtOH was evident in scanning electron 

microscopy (Figure 6) confirming reversal of cytotoxicity with treatment. 

 

Fig 6: SEM images of MC3T3 after 24 hours of culture on Ctrl-PCL (a) and PAA-PCL+EtOH (b) 
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Fig 7: Effect of PAA quenching with 70% EtOH; Live/Dead image of MC3T3 on Ctrl-PCL (a) 

and PAA-PCL quenched with EtOH (b). 

 

2.3.6. Cell Proliferation (MTS) Assay: Standard curve for MTS assay was established using 

MC3T3 cells (R2=0.9981) to validate the assay protocol. As seen in Figure 8 there is a significant 

increase in cell numbers from day 1 to day 7 in all groups with the exception of PAA-PCL group. 

This is due to profound cytotoxicity associated with PAA treatment of electrospun PCL scaffolds 

(confirmed by previous Live/Dead results). More importantly, there is no statistically significant 

difference in the day 1 cell viability between TCPS, Ctrl-PCL and PAA-PCL+EtOH groups 

(p=0.9079). This indicates complete restoration of cytocompatibility after exposure of electrospun 

PCL to PAA. Despite seeding the same number of cells, there were significant differences in OD 

between Ctrl-PCL and Ctrl-Alv on day 1. Even though inherent differences between these 

substrates can account for these observations, this also presents a difficulty in comparing 

proliferation data. Therefore a logical approach of comparing was adapted the OD ratios at these 

time points (day7: day1). This strategy eliminated the tendency of baseline differences to skew the 

data and provided a means to objectively evaluate scaffold performance over time (Figure 9). The 

cells nearly doubled (ratio 1.96) in 7 days on TCPS and this increase is statistically significant 
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compared to Ctrl-PCL (ratio nearly 1.6). While PAA-PCL+EtOH group show significantly 

improved cell number over time (day 1 and day7), the rate of cell proliferation is still significantly 

less than TCPS group (p=0.013). In complete contrast to electrospun scaffolds, Alvetex scaffolds 

showed significantly enhanced cell proliferation following PAA exposure. Interestingly, if PAA-

treated Alvetex scaffolds were washed with ethanol (PAA-Alv+EtOH), the proliferation rates 

return back to baseline (Ctrl-Alv group), suggesting that ethanol is very effective in desorbing 

adsorbed residuals from PAA sterilization. 

 

Fig 8: Cell Viability at days 1 and 7 as determined by optical density (OD) of MTS assay.   
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Fig 9: Ratios of OD from day 7 to day 1 to illustrate ability of the scaffold to support cell 

proliferation 
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2.4 DISCUSSION 

The ever-increasing use of biomaterials as components of surgically implanted devices 

makes it imperative that they are evaluated for safety or toxicity prior to clinical application. Tissue 

engineering scaffolds represent a unique class of biomaterials that are surgically placed in the 

defect site and are intended to integrate, remodel and eventually replaced by host tissue. The most 

fundamental requirement of such biomaterial constructs is their biocompatibility (i.e.) their use 

should not impose any unnecessary adverse or toxic response in a patient/ biologic environment.   

The most common cause of incompatibility of a biomaterial is the presence of biologically 

active substances that are absorbed within, condensed or adsorbed upon the surface of the polymer. 

Upon contact with biological fluids or media, substances absorbed into the matrix migrate to the 

surface where they are solubilized and released into the immediate environment to induce toxic 

effects. Since toxic leachables can arise as sterilant residues (liquid or gas sterilants) or degradation 

products, it is important to identify the leachable as well as its source to successfully eliminate 

them from the biomaterial.57 

In the present study, PCL (MW  80000) was used as the starting material for 

electrospinning scaffolds from a binary solvent system of formic acid: acetic acid. Test scaffolds 

were subjected to PAA sterilization while control scaffolds were disinfected with 70% ethanol. 

Following sterilization/ disinfection treatment, MC3T3 cells were cultured on both scaffold types 

under identical conditions. The data shows robust cell survival and growth in control scaffolds 

while PAA-PCL induced massive cell death within 24 hours and hence was not cytocompatible. 

The observations that (1) PAA-PCL induced an acute cell death, (2) PAA and its components are 

known corrosives29, and have been shown to absorb onto polymers51 clearly reflect the sterilant 

residues as the cause of observed toxicity. Since PAA was shown to achieve effective sterilization 
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of low-temperature melting, hydrolysable polyester PCL (m.p. 59oC) at room temperature, the aim 

was to identify suitable post-sterilization process/modification to eliminate these toxic leachables. 

Absorption and adsorption are phenomena that result in uptake of substance from the 

medium onto solid biomaterial and are observed with many polymers. While adsorption is a 

surface phenomenon that is easily reversed, absorption is a bulk phenomenon and such molecules 

are not easily separated from the absorbent.  Radl et al. tested three different polymers and reported 

highest amounts of absorption of hydrogen peroxide by polyvinyl chloride during sterilization. 

Further, desorption kinetics from polymers showed strong dependence on material composition 

and temperature51 

Results presented are in agreement with the results of Franklin et al.52, who reported 

significant cytotoxicity associated with low-temperature hydrogen peroxide gas plasma treatment 

of PCL scaffolds. The authors suggested that leaching of residual hydrogen peroxide from within 

or upon the porous scaffolds could explain observed cytotoxic effects and concluded that oxidizing 

plasma treatment is not compatible with 3 dimensional, porous PCL scaffolds. While we observed 

similar cytotoxic effects, suitable modification of the post-sterilization processing conditions led 

to complete recovery of cytocompatibility.   

In order to evaluate if the PAA induced cytotoxicity was substrate dependent, a comparison 

experiment was set up between electrospun PCL scaffolds and Alvetex, a commercially available 

polystyrene scaffold. The latter scaffolds, generated by high internal phase emulsion, have porosity 

>90% with regular (~40um) interconnected pores53,54. In complete contrast to e-PCL scaffolds, 

PAA treatment of Alvetex resulted in significantly enhanced biologic performance; interestingly, 

these effects were promptly reversed when Alvetex was quenched in ethanol. These results could 

be attributed to reversible changes in the orientation of polymer chains, induced by PAA to favor 
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cell attachment. The fact that PAA-induced changes are dependent on substrate chemical 

composition is also supported by a recently published study55 that reported no cytotoxicity in PAA-

treated, decellularized, cadaveric tendons. 

Not surprisingly, we found that available surface area plays a significant role in the toxicity 

of electrospun PCL scaffolds. PCL was electrospun from two different solvents, hexafluro-

isopropanol (HFP) and a binary solvent system of formic acid:acetic acid (FAA) to yield scaffolds 

with distinct fiber diameters. While HFP generated fibers with mean diameter of 820 nm (range: 

135 - 2030nm), FAA generated fibers with average diameter of 219 nm (range: 113 - 468nm). 

Specific surface areas (total surface area/ total volume) for each scaffold type were calculated 

following previous published protocol56. Scaffolds from HFP had specific surface area four times 

lower than their counterparts from FAA. In order to investigate the increased specific surface area 

on absorption of sterilant residues, both scaffold types were treated with PAA as described in the 

methods section and evaluated for 24-hour cytotoxicity. While both of these scaffolds did not 

support cell survival as strongly as controls, significantly higher cytotoxicity was found in PCL 

electrospun from FAA compared to those generated from HFP (Figure 10) 

Even though cytotoxicity on MC3T3 was used as a surrogate marker to evaluate the 

presence of PAA residuals, its use is justified because it represents a valid marker of 

cytocompatibility and accurate quantification of absorbed residuals is challenging. 
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Fig 10: Live Dead Images of MC3T3 depicting higher cytotoxicity in PCL electrospun from 

FAA vs HFP; Ctrl-PCL [FAA] (a), Ctrl-PCL [HFP] (c), PAA sterilized PCL generated from 

FAA and HFP (b) and (d) respectively. 

 

  



 
 

43 
 

2.5 CONCLUSION 

Liquid or gas sterilization technologies, while effective, are associated with of toxic residuals at 

the end of sterilization process. The issue is even more pertinent with polymeric biomaterials 

because of their ability to absorb chemical sterilants during processing. Release of sterilant 

residuals from the biomaterial is the common cause of acute toxicity in a biological environment. 

The observed acute cytotoxicity in PAA sterilized electrospun PCL scaffolds, suggesting 

incomplete elimination of absorbed residuals.  Since PAA was previously shown to achieve 

effective sterilization of electrospun PCL at room temperature without affecting scaffold 

properties, strategies were investigated to eliminate residuals after PAA sterilization. While 

conventional neutralization methods (STS, catalase, aeration) were ineffective, quenching PA-

PCL in 70% ethanol for 30 minutes resulted in complete elimination of toxic residuals and restored 

scaffold cytocompatibility. In complete contrast to electrospun PCL, Alvetex scaffolds showed 

significantly enhanced cell attachment and proliferation after PAA treatment. Interestingly, this 

enhanced biological response was abolished following ethanol quenching indicating this effect 

was specific to PAA treatment. These data illustrate that biological effects of PAA sterilization 

depends on substrate chemistry as well as scaffold architecture. PAA thus presents an interesting 

opportunity to sterilize low-temperature melting polymeric scaffolds but constructs should be 

evaluated for toxic residuals prior to extensive testing.  
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SUPPLEMENTARY MATERIAL 

1) Fourier transform infrared spectroscopy data: 

a. Characteristics infrared bands of PCL 

 

 
 

b. Effect of Peracetic Acid Concentration on Electrospun PCL 

 

 

 

PCL+ 1000ppm PAA 

Ctrl PCL 

PCL+ 5000ppm PAA 

PCL+ 2500ppm PAA 
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c. Influence of solvent used in electrospinning of PCL 

 

d. Impact of Ethanol sterilization and Peracetic acid sterilization on PCL 

 

  

PCL from FAA 

PCL from HFP 

Ctrl-PCL 

PCL+ 5000ppm PAA 

PCL+ EtOH 
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2) Evaluation of fiber diameter from scanning electron micrographs. 

 

While the fibrous structure in scaffolds treated with PAA diluted in 20% ethanol is 

unaffected, scaffolds treated with PAA in water showed a trend towards increasing fiber 

diameters due to fusion of fibers. 

 

3) MTS standard curve for MC3T3 
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MC3T3 Cell 
Number x105 

Average 
OD 

0.5 0.329 

1 0.729 

1.5 1.013 
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2.5 1.405 

3 1.578 

 

4) MC3T3 Cell Proliferation on Ctrl-PCL and PAA-PCL+EtOH on days 1, 3 and 7 

 

 

 

  

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

Day1 Day3 Day7

A
b

so
rb

an
ce

 @
 4

9
0

n
m

Days

70% Ethanol vs Peracetic Acid + Ethanol

70% Ethanol Peracetic Acid + EtOH



 
 

53 
 

5) SEM of Alvetex Scaffolds exposed to different sterilization regimes a) Out of the box 

scaffold b) Ctrl-Alv (70% Ethanol) c) PAA-Alv d) PAA-Alv+EtOH 
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6) SEM of Electrospun PCL Scaffolds exposed to different sterilization regimes a) No 

treatment b) Ctrl-PCL (70% Ethanol) c) PAA-PCL d) PAA-PCL+EtOH 
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7) Contact angle measurements done on Alvetex scaffolds following different treatments. 
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