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ELECTRONIC PRINCIPLES GOVERNING THE STABILITY AND REACTIVITY OF 
LIGATED METAL AND SILICON ENCAPSULATED TRANSITION METAL CLUSTERS 
 
By Marissa Baddick Abreu, Ph.D. 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy in Chemistry at Virginia Commonwealth University. 
 

Virginia Commonwealth University, 2015 
 

Major Director: Dr. Shiv N. Khanna, Commonwealth Professor, Department of Physics 
 
 

A thorough understanding of the underlying electronic principles guiding the stability and 

reactivity of clusters has direct implications for the identification of stable clusters for 

incorporation into clusters-assembled materials with tunable properties. This work explores the 

electronic principles governing the stability and reactivity of two types of clusters: ligated metal 

clusters and silicon encapsulated transition metal clusters. In the first case, the reactivity of 

iodine-protected aluminum clusters, Al13Ix
- (x=0-4) and Al14Iy

- (y=0-5), with the protic species 

methanol was studied. The symmetrical ground states of Al13Ix
- showed no reactivity with 

methanol but reactivity was achieved in a higher energy isomer of Al13I2
- with iodines on 

adjacent aluminum atoms – complementary Lewis acid-base active sites were induced on the 

opposite side of the cluster capable of breaking the O-H bond in methanol. Al14Iy
- (y=2-5) react 

with methanol, but only at the ligated adatom site. Reaction of methanol with Al14
- and Al14I- 

showed that ligation of the adatom was necessary for the reaction to occur there – revealing the 

concept of a ligand-activated adatom.  In the second case, the study focused heavily on CrSi12, a 

silicon encapsulated transition metal cluster whose stability and the reason for that stability has 

been debated heavily in the literature. Calculations of the energetic properties of CrSin (n=6-16) 



x 
 

 
 

revealed both CrSi12 and CrSi14 to have enhanced stability relative to other clusters; however 

CrSi12 lacks all the traditional markers of a magic cluster. Molecular orbital analysis of each of 

these clusters showed the CNFEG model to be inadequate in describing their stability. Because 

the 3dz2 orbital of Cr is unfilled in CrSi12, this cluster has only 16 effective valence electrons, 

meaning that the 18-electron rule is not applicable. The moderate stability of CrSi12 can be 

accounted for by the crystal-field splitting of the 3d orbitals, which pushes the 3dz2 orbital up in 

energy. CrSi14, on the other hand, has 18 effective valence electrons on Cr, minimal 3d-orbital 

splitting, and does follow the 18-electron rule. A repetition of these calculations with WSin (n=6-

16) showed similar results, except WSi12 shows all the markers of a magic cluster, due to the 

greater crystal-field splitting of 5d orbitals.  
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1 Introduction	

1.1 The	Journey	to	Cluster‐Assembled	Materials	

Well-designed studies of clusters consisting of a few to a few thousand atoms offer the 

practical opportunity to model complex phenomena, such as catalytic activity, doping in 

semiconductors, and behavior at surfaces. Within this small size regime, however, something 

even more interesting occurs: electronic, magnetic, and chemical properties can be 

fundamentally different from those of the bulk phase of the comprising element. Aluminum 

behaves as a monovalent atom in homogeneous clusters containing less than seven atoms, while 

it is trivalent in the bulk.1 Large magnetic moments have been theoretically predicted and 

experimentally confirmed in clusters of the 4d transition metal rhodium, which is non-magnetic 

on a macroscopic scale.2,3 The type of magnetism can also change; manganese, which has two 

antiferromagnetic bulk phases, becomes ferromagnetic on the size scale of two to eight atoms.4,5 

Clusters of the noble metal gold have been shown to catalyze the combustion of carbon 

monoxide,6 while, on the other hand, clusters of readily oxidized aluminum show stability to 

oxygen at certain cluster sizes.7–9   

Unique properties arise in clusters due to the phenomenon of quantum confinement.10 

Because of the small size of clusters, the potential well confining the electrons has a much 

smaller volume than in macroscopic solids. As a consequence of this, the electronic states are 

grouped into shells, similar to atoms, rather than in continuous bands as in an extended system. 

Another, more physical, way of accounting for the difference between clusters and their bulk 

counterparts is considering that because of their small size, a greater fraction of the atoms of a 

cluster are exposed to the surface than in a macroscopic species.11 This argument has, for 
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example, been used to predict and explain the aforementioned giant magnetic moments in 

rhodium, and magnetic properties in other clusters.2,12  

Another important difference in the behavior of clusters when compared to bulk systems is 

that the properties can vary dramatically with size. Adding or removing even a single atom from 

a cluster can significantly change its electronic, magnetic, or reactive properties. Returning to our 

previous examples, we can see how a cluster’s properties depend heavily on the number of atoms 

comprising it. The valency of aluminum changes from one to three on going from six atoms to 

seven atoms.1 Certain rhodium clusters, notably Rh12, Rh13, Rh15, Rh16, and Rh19, have higher 

magnetic moments than their neighbors.2 Catalytic activity of size-selected gold clusters begins 

at Au8.6 Al13
- is stable to reaction with oxygen, while Al12

-, just one atom smaller, reacts away.7–9 

Because of the unique and size-selective characteristics of clusters, and the ability to control their 

size and composition one atom at a time, there exists the exciting potential of synthesizing new 

materials with tailored properties if clusters, instead of atoms, can serve as their building 

blocks.10,13–17 

The realization of cluster-assembled materials (CAMs) has been a major motivation in the 

study of clusters for the past two decades. Many such materials have already been theoretically 

predicted and/or experimentally made. The famous buckminsterfullerene, C60, a very stable 

cluster due to aromaticity, has been doped with alkali metal atoms to form alkali fullerides, many 

with superconducting properties.18–23 Gadolinium-doped fullerenes have been developed that are 

useful in magnetic resonance imaging (MRI) technology.24 In addition to metal doping, C60 lends 

itself to easy external functionalization, allowing its chemistry to be modified.22 The success of 

fullerene-based materials serves as a model for CAMs – proof that it can be done. Metallic 

clusters also have their place in the world of cluster-assembled materials. Ionic compounds of 
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Al13, which has halogen-like properties, and alkali atoms have been a topic of much theoretical 

study.16,17,25–31 For example, it has been theorized that in combination with Na3O or K3O, which 

behave as alkali metals, Al13 forms ionic compounds, (Na3OAl13)n  and (K3OAl13)n, with very 

high binding energies.31  

Another pair of clusters, As7 and As11, has been found to form stable complexes with alkali 

atoms as well, and various alkali compounds of As7 have been successfully experimentally 

synthesized into extended materials.32,33  These clusters also serve as an example of the ways in 

which the properties of a cluster-assembled material can be modified by changing its 

composition; in this case the band gap varies depending on the alkali atom choice. In Figure 

1.1.1, three observed structures of alkali metal and As7 cluster assemblies are shown.  

 
Figure	1.1.1:	Band	Gap	Tuning	 in	As7‐Alkali	Cluster‐Assembled	Materials.	
Changes	in	the	alkali	metal	bonding	with	As7‐3	results	in	changes	in	the	band	gap	
of	 the	 solid.	 Shown	 above	 are	 CAMs	 made	 of	 As7	 and	 (a)	 potassium	 and	
cryptated	potassium,	(b)	cesium	and	potassium,	and	(c)	all	potassium.	Arsenic	is	
shown	in	red,	with	one	cluster	highlighted	in	orange	in	(b)	and	(c),	potassium	is	
shown	in	purple,	and	cesium	is	shown	in	dark	blue.	The	cryptand	in	(a)	 is	not	
shown	for	clarity.	Figure	taken	from	Castleman,	Jr.	and	Khanna.34		
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In these ionic compounds, the As7 cluster will gain three electrons to become As7
-3, so each 

cluster-assembled material requires a ratio of three alkali atoms to every one As7 cluster. Note 

that cryptated postassium, abbreviated KCry in Figure 1.1.1, is potassium chelated by a large 

polydentate organic ligand. Crypt-222, the common name for 4,7,13,16,21,24-Hexaoxa-1,10-

diazabicyclo[8.8.8]hexacosane, is often used. Cryptation of the alkali metal reduces the 

ionization potential of the metal, making electron transfer from the metal atom to the cluster 

easier, and thereby facilitating cluster assembly. In Figure 1.1.1(a), no cryptated potassium atoms 

are used, and the band gap is 1.35 eV. Substituting two cesium atoms for two of the potassium 

atoms, and a cryptated-potassium for the remaining potassium atom, gives a cluster assembly 

shown in Figure 1.1.1(b) with a higher band gap of 1.81 eV.  The highest band gap, 2.60 eV, 

results using a 1:1 mixture of potassium and cryptated-potassium, as shown in Figure 1.1.1(c). 

This family of materials serves as a powerful example of the ways in which materials with 

tunable properties are achievable through the use of clusters as building blocks. 

As the first step towards the goal of CAMs, identifying clusters with unique and potentially 

useful properties has been a priority. Interesting properties, however, are not the only 

requirement for a cluster to eventually become a part of a cluster-assembled material. On the 

whole, clusters are metastable; when brought into close proximity with each other they will 

coalesce, and the sought after unique properties will vanish.35 The use of clusters so stable they 

do not interact is, of course, one method of tackling this issue – C60 is such a cluster. Individually 

stable clusters will have low cohesive energies, so the task of using them involves not only 

identifying clusters with great stability, but ways of combining or linking them that will hold the 

clusters together without eliminating the individual clusters’ properties. The incorporation of 

Al13 and As7 into alkali complexes is an example. Other methods involve passivating the cluster 
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in some way: embedding of clusters in zeolite cages, adsorbing clusters on surfaces, or adding 

ligands to stabilize clusters. This raises the need to understand the chemistry of interaction 

between the cluster and the stabilizing agents, and the ways in which that will affect the 

properties of the material.34 Whether using inherently stable clusters, or adjusting clusters with 

stabilizing agents, a thorough understanding of the underlying electronic and chemical principles 

guiding the stability and reactivity of interesting clusters is required for the accurate prediction of 

stable and appropriate clusters and the rational design and synthesis of cluster-assembled 

materials.  

Just as in conventional chemistry, several models have been developed to explain the 

stability and reactivity of cluster systems. A complete coverage of all the electronic structure and 

other guiding principles currently used in cluster science is beyond the scope of this thesis. 

Rather, I will explore these concepts by considering those theories relevant to the two example 

systems of study: aluminum clusters with iodine ligands and silicon encapsulated transition metal 

clusters. The confined nearly free electron gas (CNFEG) model (also known as the jellium 

model), a centerpiece of cluster science, describes the electronic structure of simple metal 

clusters well and has been successfully extended to some ligated systems. Aluminum clusters in 

particular exemplify the CNFEG model, being simple metallic clusters with relatively spherical 

geometries. Reactivity with protic species in these clusters depends on Lewis acid and base 

active sites, and for ligated clusters such as AlnIm
-, the interaction of ligands with the cluster is 

important. On the other hand, the electronic principles governing the stability of silicon 

encapsulated transition metal clusters are not fully understood or agreed upon. Due to the 

presence of a metal atom, the CNFEG model has sometimes been invoked, either for the entire 

cluster, or only for the metal atom, with the silicon atoms considered to be ligands simply 
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donating charge. The presence of a transition metal atom implies concepts familiar from 

traditional coordination chemistry, such as the 18-electron rule and crystal-field splitting. In the 

following two sections, I will review the electronic principles currently used to describe these 

two types of clusters and relevant previous work, both theoretical and experimental.  

1.2 Ligated	Metal	Clusters:	Iodine‐Protected	Aluminum	

1.2.1 Motivation	

Aluminum is of interest as a high energy density material. Other elements with higher 

energy densities include beryllium, which is toxic, and boron, which is also well studied in pure 

and mixed clusters, but exhibits unusual bonding patterns due to having only three electrons. 

Clusters of aluminum, on the other hand, were quickly found to adhere to predictions based on 

the CNFEG model, which will be discussed in detail in the next section. The small size of 

aluminum atoms has also made it incredibly amenable to theoretical treatment; clusters of larger 

metals are generally more computationally expensive to study due to the number of electrons and 

the possible necessity of adding spin-orbit coupling and relativistic effects. As a result, there is a 

wide body of literature, both experimental and theoretical, discussing the stability and reactivity 

of aluminum clusters.7–9,36–40 

As mentioned above, the addition of ligands to metal clusters has served as a means of 

stabilizing clusters by protecting the metal atoms from reaction with surrounding species. The 

ligand can also exchange charge with the cluster, making it more stable and promoting formation 

of assemblies. An understanding of ligand-metal bonding is thus imperative to the design of 

materials using ligand-protected clusters. Synthesis of such CAMs also requires knowledge of 

the effects ligands have on metal cluster reactivity in different environments – this is not only 

important in developing experimental protocols for making CAMs, but also has implications for 
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the utility of such a material. Studying the reactivity of ligated metal clusters also has 

significance in catalysis, as active sites can be isolated and the mechanisms of reaction revealed. 

The addition of halogen atoms to aluminum clusters has been previously studied, and iodine was 

found to form the most stable halogenated aluminum complexes, making iodine a logical choice 

for the exploration of ligand effects on aluminum cluster reactivity.  

1.2.2 The	Confined	Nearly	Free	Electron	Gas	Model	

Much of the early work in cluster science sought to explain the abundance spectra of 

various clusters. Of these early studies, the experimental observation of “magic” numbers - 

cluster sizes with relatively intense peaks - in the mass spectra of sodium clusters by Knight et 

al., and the subsequent analysis, shaped the future of the field.41  

	
Figure	1.2.1:	Mass	Spectra	of	Sodium	Clusters.	The	above	 figure	 shows	 the	
abundance	 spectra	 taken	 from	Knight	 et	 al.41	 Counting	 rate,	 or	 intensity,	 is	 in	
arbitrary	units.	The	inset	figure	shows	the	mass	spectra	of	higher	clusters.	The	
magic	numbers	of	atoms	are	indicated	on	the	x‐axis.	
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As shown in Figure 1.2.1 above, sodium clusters with 2, 8, 20, 40, 58, and 92 sodium atoms 

exhibited relatively larger peaks in the mass spectra than other cluster sizes, and an abrupt 

decrease in intensity followed. Both factors indicated enhanced stability for these cluster sizes, 

which Knight et al. viewed as a reflection of the electronic structure. Applying the nearly free 

electron concept of bulk metallic bonding, the lone 3s valence electrons were considered to form 

a nearly free electron gas against a background potential - the spherical jellium background 

potential as proposed by Ekardt.42 The ionic cores of each atom in the cluster, which include the 

nuclei and non-valence electrons, contribute to the jellium potential, with their positive charge 

smeared uniformly across the cluster. This led to the “jellium” or confined nearly free electron 

gas (CNFEG) model applied to metallic clusters. 

Solving the Schrödinger equation under the conditions described above yields discrete 

energy levels, N=1, 2, 3… with angular momentum L=0, 1, 2, 3… The electron filling order is 

given by 1S2, 1P6, 1D10, 2S2, 1F14, 2P6, 1G18, 2D10, 3S2, 1H22, etc.  Note that the potential in a 

cluster is considered constant throughout the entire cluster, and only begins to drop off at the 

surface of the cluster, in contrast to an atom, for which the potential immediately begins to drop 

off as one leaves the nucleus. There are three possible radial potentials to describe a confined 

nearly free electron gas: a 3D harmonic potential, a 3D square well potential, and the Woods-

Saxon potential. The last of these is the most commonly used for the empirical CNFEG model. 

Because of the differing potentials, clusters and atoms yield different results for the radial 

portion of the solution to the Schrödinger equation, and thus the solution for clusters generally 

follows the nuclear convention rather than the atomic convention.41–43 The orbital levels and 

electron configurations are shown for several atoms and clusters in Figure 1.2.2 below.  
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Figure	 1.2.2:	 Electron	 Filling	 Order	 in	 Atoms	 and	 Clusters.	 The	 first	 six	
energy	 levels	 and	 their	 designations	 are	 shown	 for	 an	 atom	 and	 a	 cluster.	
Electron	 configurations	 are	 also	 given	 for	 the	 atoms	 Argon,	 Chlorine,	 and	
Sodium,	 and	 their	 isovalent	 cluster	 respective	 counterparts	Mg4	and	Na8,	Al13,	
and	Al7.		

While not consistently done in the literature, CNFEG orbital letters will be capitalized within this 

thesis to distinguish them from atomic orbitals. In this shell closure model, frequently referred to 

as the spherical CNFEG model, magic clusters have a number of valence electrons 

corresponding to a major electronic shell closing, just as in atoms and in nuclei.41,43  

While the spherical CNFEG model helped to explain the major peaks in the abundance 

spectra of sodium clusters, it did not adequately explain the weaker peaks at theoretically 

predicted magic numbers 18, 34, 68, and 70, nor the fine structure of the mass spectrum - the 

moderately intense peaks at 12, 14, 26, 30, 36, 38, 50, and 54.41 The Jahn-Teller effect,44 which 
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states that the geometry of molecules with spatially degenerate ground states will distort, offered 

a reasonable explanation for both inadequacies. Clusters with valence electron counts that do not 

correspond to a major shell closing will not be spherically symmetric. Rather, these clusters will 

have an oblate or prolate geometry, that is, a geometry compressed or elongated along the z-axis, 

respectively. To account for this, Clemenger introduced the ellipsoidal CNFEG model45 by 

adapting a similar concept by Nilsson46 for nuclei, in which the potential is allowed to relax 

away from spherical symmetry. This modification correctly predicted the small peaks observed 

in the sodium cluster mass spectrum, and the weaker intensity of the peaks 18, 34, 68, and 70 

compared to the prediction of the spherical model.43,45,47 The spheroidal CNFEG model 

combines the spherical and ellipsoidal models, allowing the background CNFEG potential to 

take the shape of the cluster, whether that be perfectly spherical or distorted. 47  

The CNFEG model provided a theoretical and conceptual explanation for the abundance 

spectra of not only sodium clusters, but also potassium,48 aluminum,7 copper, silver, and gold49 

clusters, and has since been expanded to include most metallic clusters in which the electrons are 

delocalized. Aside from mass spectral data, the CNFEG model helped to explain discontinuities 

in other experimentally measured properties such as ionization potential (IP), electron affinity 

(EA), and polarizability. The IP and EA can take on two forms: vertical and adiabatic. The 

adiabatic ionization potential (AIP) is equal to the difference in energy of the neutral and cationic 

species in their respective ground states, while the vertical ionization potential (VIP) is equal to 

the difference in energy between the neutral species in its ground state and the cationic species in 

the geometry of the neutral. Similarly, the adiabatic electron affinitiy (AEA) is the difference in 

energy of the neutral and anionic species in their respective ground states, and the vertical 

electron affinity (VEA) is the difference in energy between the neutral species in its ground state 
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and the anionic species in the geometry of the neutral. Related to the electron affinities are the 

electron detachment energies. The adiabatic detachment energy (ADE) is identical to the AEA, 

while the vertical detachment energy is the difference in energy between the anion in its ground 

state and the neutral species in the anionic geometry. The ADE and VDE are measured 

experimentally using photoelectron spectroscopy, a method often employed in cluster studies. In 

the resulting spectra, the VDE shows up as the first peak, indicating the energy it takes to remove 

an electron from the cluster with no geometry change, and the ADE shows up as the initial rise in 

the photoelectron spectra. Finally, polarizability is the ease of distorting a cluster’s electron 

cloud.  

In general, cluster sizes corresponding to magic numbers of valence electrons show 

higher ionization potentials and lower electron affinities, detachment energies, and 

polarizabilities than open-shelled neighbors.47 This provided further evidence supporting the idea 

that these cluster sizes were stable due to electronic shell closures; it takes a greater amount of 

energy to remove an electron from a closed-shell species than from an open-shell species. 

Similarly, there is a smaller gain in energy in adding an electron to a closed-shell species than to 

an open-shell species. Likewise, dipoles are more easily induced in open-shell species compared 

to closed-shell species. In addition to high IPs, low VDEs and ADEs, and low polarizabilities, 

magic clusters usually have large gaps between the highest occupied and lowest unoccupied 

molecular orbitals, HOMO-LUMO gaps, resulting from electronic shell closure. Lastly, magic 

clusters often have greater incremental binding energies, the energy necessary to remove one 

atom from the cluster, than their less magic neighbors.  
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1.2.3 Superatoms	

The observation of properties dependent on cluster shell structure was reminiscent of atomic 

behavior and led to a very important outgrowth of the CNFEG model – the superatom concept. 

At its most fundamental, a superatom is a cluster that mimics the chemical properties of an atom 

on the periodic table and can be assigned an effective valence. As the field of cluster science 

grew, the idea of a superatom was refined so that currently only those clusters that exhibit 

energetic and chemical stability are considered; a superatomic cluster must maintain its chemical 

identity upon interaction with other species or incorporation into cluster assemblies.34 

Superatoms have been identified consisting of atoms from across the periodic table, although we 

will only be concerned with those based on aluminum. A notable example of a superatom, and 

one of the first to be observed,7,17 is Al13
-, an icosahedron with a closed electronic shell of 40 

valence electrons. As shown in Figure 1.2.3, the electronic level ordering is 1S2, 1P6, 1D10, 2S2, 

1F14, 2P6. The 1F orbitals split due to the icosahedral geometry, but overall the electronic 

structure corresponds with the spherical CNFEG model. The four 1F orbitals raised in energy are 

about degenerate with the 2P orbitals, so the cluster has a P subshell closing, similar to a noble 

gas atom. As a result of its closed shell, Al13
- has a HOMO-LUMO gap of about 1.8 eV, 

uncharacteristic of metals which have no band gap. The cluster also displays decidedly 

unmetallic chemical behavior; it survives reaction with oxygen, water, and alcohols, and usually 

results as a product of the etching reactions of larger sized aluminum clusters with these 

species.9,37,38 With its noble gas-like configuration and robust chemical inertness, Al13
- enjoys 

status as a noble gas superatom.  
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Figure	 1.2.3:	 Electronic	 energy	 levels	 and	 corresponding	 molecular	
orbitals	of	Al13‐.	The	electron	levels	and	corresponding	molecular	orbitals	are	
shown	with	the	highest	occupied	orbital	set	to	0	eV.	The	CNFEG	orbital	type,	S,	
P,	 D,	 or	 F,	 is	 indicated.	 Dashed	 lines	 indicate	 unoccupied	 orbitals,	 and	 the	
HOMO‐LUMO	gap	is	indicated.	

Superatomic behavior is not limited to electronically closed-shell species such as Al13
-. 

Its neutral counterpart with 39 valence electrons, Al13, has been the subject of much study. Only 

one electron shy of filling its 2P subshell, Al13 has an electron affinity of 3.4 eV, on par with the 

chlorine atom at 3.6 eV, leading to the early proposal by Khanna and Jena that it may be a 

superatomic analogue of a halogen atom – a superhalogen. Further study of the bonding of Al13 

with alkali metals and with other halogen atoms revealed that it does indeed exhibit chemical 

behavior similar to halogens. When Al13 combines with potassium, there is an electron transfer 

from K to Al13.25 Al13K’s ionic character has been confirmed experimentally,50 and its discovery 

served as a starting point for the design of cluster-assembled materials in the form of ionic salts. 

In combination with halogens, Al13 forms anionic complexes stable to reaction with O2 when the 
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number of iodine atoms is even – Al13I2x
-. In these clusters, Al13 withdraws charge from the I 

atoms, due to its greater electron affinity. These clusters are very similar to polyhalides of the 

form X2x+1
-, where X is a halogen, except that the iodine bonds to Al13 as individual I atoms, 

rather than as I2, owing to the greater strength of Al-I bonds compared to I-I bonds. With the I 

atoms decorating the larger Al13 core, these clusters resemble fluorohalides such as BrF6
-.40,51 

Owing to electronic structure, electron affinity, and chemical bonding patterns analogous to a 

halogen atom, Al13 was confirmed as a superhalogen. 

While Al13
- displays properties of a noble gas and Al13 exhibits those of a halogen atom, 

aluminum-based superatoms showing metallic properties have also been identified. Much as Al13 

forms stable anions with even numbers of iodine atoms, Al14 forms anions resistant to oxygen 

with odd numbers of iodine atoms, Al14I2x+1
-, for greater than three iodine atoms. In this case, the 

iodine atoms withdraw electrons from the Al14 core, until the core achieves a dication state, 

Al14
2+, which takes the addition of at least three iodine atoms since the clusters are anionic. As a 

dication, Al14 has 40 valence electrons – a closed electronic shell as predicted by the CNFEG 

model. By losing the charge of two electrons through its bonds with iodine, Al14 becomes 

electronically stable. The loss of two electrons to achieve a closed shell state is characteristic of 

alkaline earth metals, and so Al14 is dubbed an alkaline earth metal superatom.40 In some 

transition and post-transition metals, more than one valence or oxidation state is possible; for 

example, lead can exist as Pb+2 or Pb+4. A similar multivalent cluster, Al7
-, acts as a tetravalent 

element when it forms Al7C-, a cluster whose peak on mass spectra rivals that of Al13
-, and acts 

as a divalent element when bonding with oxygen or sulfur. With its 22 valence electrons, Al7
- 

can bond with either two or four electrons to gain a closed shell of 18 or 20 electrons, 



 
 

15 
 

respectively. Because of this, Al7
- is known as a multivalent superatom akin to a post-transition 

metal such as lead or tin.52 

1.2.4 Extension	of	the	CNFEG	Model	to	Ligand‐Protected	Systems	

As previously mentioned, the addition of ligands is one method of passivating and 

controlling the electronic structure of metallic clusters. Ligands such as thiols,53–61 

phosphines,53,62–64 and halogens39,50,64,65 have been successfully used to stabilize clusters. 

Essentially, a ligand can form an ionic or covalent bond with a metallic cluster which withdraws 

electrons from the core to the surface of the cluster, leaving the core with a stable, closed 

electronic shell.60 The metallic core is treated separately from the ligands as a CNFEG described 

by the CNFEG model; this view has led to the term split-CNFEG when dealing with ligated 

metal clusters. There are many ligand-protected clusters whose stability has been rationalized 

within the CNFEG model. A popular class of such compounds is thiolated gold clusters.54–57,60,61 

For example, the cluster Au25(SR)18
-, where SR is a thiol-containing organic group, is composed 

of an icosahedral Au13
- metallic core of 14 electrons protected by six –S-Au-S-Au-S- staples. 

Each of these protective staples withdraws one electron from the core, leaving a closed-shell 

configuration on the gold cluster of 1S21P6
.  

 The extension of the CNFEG model to ligand-protected metal clusters also applies to our 

system of interest, iodized aluminum clusters. As discussed in the previous section, Al14I2x+1
- 

clusters show great stability because the iodine ligands withdraw charge from the metallic core, 

enabling the core to reach a +2 charge and become closed-shell Al14
+2. For this reason, the 

stability of these clusters begins only when three iodine ligands are attached. If we think of it as a 

ligand-protected system, we can say that the Al14
- metallic core has 43 valence electrons – three 

from each aluminum atom, and one to make the cluster anionic. Each iodine atom bonds with the 
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core, withdrawing one electron each, and leaving a stable closed-shell electronic configuration of 

40 valence electrons. It should be noted, however, that not all cluster-ligand interactions are 

electron precise. Within the same series, Al14I5
- shows similar stability to oxygen etching and has 

a nearly identical HOMO-LUMO gap to Al14I3
- (1.31 eV compared to 1.34 eV), but 38 is not a 

magic number in the CNFEG model.40,51  

1.2.5 Reactivity	of	CNFEG	Clusters	

Oxygen etching has long been a method of identifying stable clusters, as previously 

mentioned in the discussion of superatoms. For aluminum cluster anions, those clusters with odd 

numbers of electrons react with oxygen, while those clusters with even numbers of electrons 

show variable reactivity – some clusters, like Al13
-, Al23

-, and Al37
-, are incredibly stable, but 

others react away.7,8 Addition of a hydrogen atom, and hence a single electron, to the clusters 

preserves the even/odd electron reaction behavior, indicating that the spin state of the cluster 

may be a key to its reactivity with oxygen.9 The spin state of molecular oxygen is triplet, while 

anionic aluminum clusters are either spin singlet or doublet, for even and odd electron species, 

respectively. As per the Wigner-Witmer spin conservation rules, the reaction between an 

aluminum cluster and an oxygen molecule must conserve the overall spin of the system. Clusters 

with odd numbers of electrons react easily with oxygen because the unpaired electron on the 

cluster acts to fill one of the half-filled orbitals on O2, so that the cluster-oxygen complex and the 

bare cluster have the same multiplicity. Clusters with even numbers of electrons show variable 

reactivity because some clusters can more easily accommodate triplet oxygen. With no unpaired 

electrons, even electron systems must promote a paired electron to a higher energy orbital, 

putting the cluster in a triplet state. The energy needed to do this is known as the spin excitation 

energy. Clusters with large HOMO-LUMO gaps, like Al13
-, have correspondingly high spin 
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excitation energies, and are marked by a large barrier to accommodation of the spin on the 

oxygen atom; clusters with small HOMO-LUMO gaps do not require as much energy to promote 

an electron to the LUMO, and so will have small excitation energies, allowing reaction with O2 

to occur more readily. The idea of spin accommodation can be adapted to any cluster system, 

including the system of interest, AlnIm
-. Shown in Figure 1.2.4 is the reaction of iodized 

aluminum clusters with oxygen. The even/odd electron behavior is clearly visible in panel (c), in 

which clusters with even numbers of electrons, Al13I2x
- and Al14I2x+1

-, resist oxygen etching.  
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Figure	 1.2.4:	Mass	 Spectra	 of	 AlnIm‐	 Clusters	 and	 Reaction	with	Oxygen.	
Taken	 from	 Jones	 et	 al.40	 the	 above	mass	 spectra	 show	 (a)	 the	 abundance	 of	
pure	 aluminum	 clusters,	 (b)	 the	 abundance	 of	 aluminum	 clusters	 of	 reaction	
with	I2	gas,	and	(c)	the	abundance	of	iodized	aluminum	clusters	after	etching	by	
O2.	Intensities	are	given	in	arbitrary	units.	Al13Ix‐	cluster	peaks	are	highlighted	in	
green,	while	Al14Iy‐	cluster	peaks	are	highlighted	in	blue.		

 While cluster reactivity with O2 depends on electronic shell closure, the reactivity of 

aluminum-based clusters with alcohols and water appears to rely on a different mechanism. For 
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example, Al23
- and A137

-, both stable to oxygen etching because of their rare gas-like electronic 

configurations, adsorb water molecules, while the open-shell cluster Al20
- does not. To explain 

this reactivity, we turn to a familiar concept from traditional chemistry – Lewis acid-base theory. 

Within a molecule, lone pairs of electrons and differences in electronegativity between atoms 

result in sites capable of accepting or donating a pair of electrons, Lewis acid and base sites, 

respectively. Governed by the CNFEG model, the valence electrons in bare aluminum clusters 

are delocalized across the cluster, and no electronegativity differences exist between atoms. 

Geometric effects, however, can perturb the charge density of the cluster, causing more localized 

sites of HOMO or LUMO charge density to emerge. Concentrations of HOMO and LUMO 

density act as Lewis base and Lewis acid sites, respectively. These active sites enable the 

cluster’s reaction with other acidic or basic species, such as water or alcohols. The acid and base 

sites must also be close to each other in the cluster, as they work in concert to break the O-H 

bond in the protic species; one Al atom acts as a Lewis acid and accepts an electron pair from the 

oxygen of water or alcohol, while a second, neighboring Al atom acts as a Lewis base and bonds 

with the hydrogen. In this way, two Al atoms on the cluster work as complementary active 

sites.36 For example, as shown below in Figure 1.2.5, Al12
- is a geometrically distorted cluster 

with an uneven charge distribution resulting in adjacent Lewis acid and Lewis base sites capable 

of breaking the O-H bond in water. 
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Figure	1.2.5:	Complementary	Active	Sites	on	Al12‐	Break	 the	O‐H	Bond	 in	
Water.	On	the	left,	the	HOMO	(red)	and	LUMO	(blue)	charge	density	of	Al12‐	 is	
shown,	 corresponding	 to	Lewis	base	and	Lewis	acid	 sites	 respectively.	On	 the	
right,	a	water	molecule	 is	 shown	with	hydrogen	 (white)	bonding	 to	 the	Lewis	
base	site	and	oxygen	(red)	bonding	to	the	Lewis	acid	site.	Figure	courtesy	of	Dr.	
Arthur	Reber.	

More spherical clusters with an even charge distribution are less reactive toward water and 

alcohols than clusters with an uneven charge distribution resulting from geometric edges and 

defects. Complementary active sites have also been shown to enable aluminum clusters to break 

carbonyl bonds.67  

1.2.6 Purpose	of	the	Present	Study	

The present study seeks to build on previous theoretical and experimental reactivity work 

done on aluminum clusters by exploring the reactivity of Al13Ix
- and Al14Iy

- clusters with 

methanol. While the addition of electronegative ligands such as iodine can act to stabilize a 

cluster, it also distorts the electronic charge density of the cluster, just like geometric defects or 

edges. The disturbance of the metallic core’s charge density can create active sites on the 

cluster’s surface at which a protic species such as methanol may react. It is the hypothesis of this 

study that, in the same manner as edges and defects, the addition of electron-withdrawing iodine 

ligands to aluminum clusters will create a non-uniform charge density and, consequently, 

complementary Lewis acid-base active sites capable of breaking the O-H bond in methanol. 
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1.3 Silicon	Encapsulated	Transition	Metal	Clusters	

1.3.1 Motivation	

Clusters of silicon, the most widely used semiconductor in the electronics industry, doped 

with various transition metals (TM) have attracted attention for several reasons. At its most 

fundamental, the study of TM-doped silicon clusters offers the opportunity to study the metal-

silicon bond in great detail, leading to a greater understanding of bulk systems; but just like other 

clusters, TM-doped silicon clusters exhibit properties different from the bulk, motivating the 

pursuit of stable clusters that can be used in cluster-assembled materials. Furthermore, it is 

difficult to dope bulk silicon with transition metal atoms. Using small clusters of silicon doped 

with TM atoms to build cluster-based materials from the bottom up would overcome this current 

limitation. Additionally, the use of magnetic transition metals could result in magnetic TM-

doped silicon clusters, and, eventually, a magnetic silicon-based material.  

The inherent structure of TM-doped silicon clusters provides additional impetus for their 

study. In contrast to carbon, which forms the fullerene structures previously discussed, pure 

silicon clusters tend to form prolate structures due to silicon’s preference for sp3 bonding. These 

clusters also tend to be very reactive due to the dangling bonds of silicon.68 When doped with a 

TM atom, however, silicon atoms will surround the metal to form clusters with cage-like or 

fullerene-like geometries. Beck first proposed the idea of silicon encapsulated TM clusters after 

producing TMSin
+ (TM=Cr, Mo, W) clusters with laser vaporization of silicon and metal 

hexacarbonyls.69,70 Beck found that TMSi13 through TMSi17 appeared in subsequent mass 

spectra, but that the highest peaks appeared at TMSi15 and TMSi16 for all metals studied, and 

postulated that these were endohedrally-doped silicon clusters wherein the metal atom acted as a 

seed around which the silicon atoms bonded. Subsequent theoretical work on TM-doped clusters 
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of this size regime confirmed the encapsulation of the transition metal atom by silicon, by 

showing that structures with an external TM atom are much higher in energy.71–73 Experimental 

findings using X-ray fine structure also revealed that WSin clusters (n=8-12) are indeed cage 

structures, verifying theoretical results.74 The structure of silicon encapsulated TM clusters 

affords the opportunity to design CAMs from silicon in the same manner as from carbon 

fullerene clusters. 

Further experimental and theoretical work revealed stable silicon encapsulated TM clusters 

for a variety of transition metal atoms. For example, Kumar et al. found numerous structures for 

early transition metals, including TMSi14, TMSi15, and TMSi16, for Ti, Hf, and Zr.68,73 In 

particular, TiSi16 shows promise as a stable motif out of which to assemble a new material – it 

has a HOMO-LUMO gap of 2.36 eV and has been theoretically predicted to interact similarly to 

C60 clusters in a cluster-assembled material. Clusters of the same size range using Cr, Mo, and W 

were also theoretically studied, and TMSi14 was found to have the highest HOMO-LUMO gap in 

these clusters, despite its small abundance peak in Beck’s original experiments.72 More recent 

experimental work by Janssens et al., however, found CrSi14
+ to be similarly abundant to CrSi15

+ 

and CrSi16
+.75 Further, Hiura et al. found WSi12

+ clusters to be particularly stable in experiment, 

inspiring numerous studies on the WSi12 and congener cluster CrSi12.76 The wealth of studies 

concerning silicon encapsulated TM clusters cannot be reasonably covered within this thesis. 

The main focus will be on CrSi12, a cluster which has attracted a great amount of theoretical 

attention. In fact, the stability of this cluster and the reason for that stability has been debated in 

the literature for years. In the remainder of this section, I will review the experimental and 

theoretical work lending support to the stability of CrSi12 and the electronic principles that have 
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been used to rationalize that stability, and hence the stability of TM-doped silicon clusters in 

general. 

1.3.2 Is	CrSi12	a	Magic	Cluster?	

Interest in the structure and stability of CrSi12 began when Hiura et al. generated a variety 

of mixed transition metal-silicon clusters by reacting silane, SiH4, with pure transition metal 

vapor in an ion trap.76 Time-resolved mass spectra of the reaction showed the sequential growth 

of the clusters formed with tungsten, isovalent with Cr, from W+ through WSi12Hx
+, as shown in 

Figure 1.3.1.  

 
Figure	1.3.1:	Time‐resolved	mass	spectra	of	WSinHx+.	Taken	from	Figure	1	of	
Hiura	 et	 al.76	 the	 above	 shows	 the	 time‐resolved	 mass	 spectra	 of	 WSinHx+	
clusters	 formed	 in	an	 ion	 trap	using	 silane.	Counts,	 or	 intensity,	 are	 shown	 in	
arbitrary	units.	The	mass	to	charge	ratio	is	shown	on	the	x‐axis.	Holding	times	
from	(a)	10ms	through	(g)	200s	are	marked.		

Clusters possessing more than twelve silicon atoms were not observed, even at the longest 

holding times, giving the first indications that WSi12 might exhibit enhanced stability. Hiura et 

al. also examined the number of H atoms predominantly present on the cluster for each size 

using high resolution mass spectrometry. They found that the peak corresponding to WSi12Hx
+ 

was composed of about 70% pure WSi12
+, the greatest proportion of dehydrogenated clusters 
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present in the range of one to twelve silicon atoms. The remaining portion was mostly WSi12H2
+, 

with less than 5% WSi12H4
+. To see this more clearly, the histogram of the hydrogen analysis is 

given in Figure 1.3.2.  

 
Figure	 1.3.2:	 Relative	 Abundances	 of	WSinHx‐	 (n=1‐12;	 x=0,	 2,	 4).	 Taken	
from	 Hiura	 et	 al.76	 the	 percentage	 of	 clusters	 containing	 zero,	 two,	 and	 four	
hydrogens	 are	 shown	 in	 dark	 gray,	 shaded	 gray,	 and	 white,	 respectively,	 for	
each	cluster.		

Comparison to WSi10Hx
+ and WSi11Hx

+, the only other remaining peaks in the time-resolved 

mass spectra at the longest holding time, gives further evidence to the stability of WSi12. 

WSi10Hx
+ was comprised of about 30% each WSi10

+ and WSi10H2
+, with the remaining 40% 

WSi10H4
+, while WSi11Hx

+ was comprised of almost entirely all WSi11H4
+, with only about 15% 

pure WSi11
+ and 5% WSi11H2

+. Overall, the absence of larger cluster sizes, and the 

preponderance of bare WSi12
+ clusters, led Hiura et al. to propose enhanced stability for WSi12, 

citing different production methods as explanation of the different results obtained by Beck, in 

which TMSi12 (TM=Cr, Mo, W) did not prominently appear.  

Theorists quickly found that the favored structure of WSi12, shown in Figure 1.3.3, is a 

hexagonal prism of silicon containing the metal atom,77 similar to previously found clusters of 

Cr(C6H6)2, in which the metal atom is sandwiched between two benzene molecules.78  
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Figure	 1.3.3:	 Geometry	 of	WSi12.	 The	 hexagonal	 prism	 geometry	 with	 D6h	
symmetry	of	WSi12	 is	shown	above,	with	silicon	atoms	in	gray	and	tungsten	in	
light	blue.	Bond	lengths	are	indicated	in	Angstroms.		

While the work of Hiura et al. stimulated interest in WSi12, many theorists focused their attention 

on the congener cluster CrSi12. While the number of valence electrons remains the same, the 

smaller size of 3d chromium compared to 5d tungsten makes the CrSi12 cluster more amenable to 

calculations. An early study of CrSin (n=11-14) explored the notion of CrSi12 magicity by 

calculating various properties associated with magic behavior in metal clusters.79 The HOMO-

LUMO gap does not indicate any special stability, being moderate at 0.94 eV. The cluster has 

identical VDE and ADE, calculated by Khanna et al. at 3.11 eV, and confirmed by experiment at 

3.10 eV.80 This is higher than the VDE and ADE of neighboring clusters. The ionization 

potential of CrSi12 is higher than that of CrSi13, but not that of CrSi11. Finally, the incremental 

binding energy (BE) of silicon is largest for CrSi12 in the range of n=11-14. While the IP and 

incremental BE indicate enhanced stability for CrSi12, the moderate HOMO-LUMO gap and 

high VDE and ADE do not.  

The binary nature of these clusters provides the opportunity to calculate another useful 

stability criterion – the embedding energy. Sometimes called the dissociation, formation, or TM-

removal energy, the embedding energy is the energy gained upon addition of the transition metal 
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atom. A larger embedding energy indicates greater stability. Sen and Mitas calculated the 

embedding energies of all the 3d transition metals, as well as some 4d and 5d metals, to gauge 

the stability of the TM in the hexagonal Si12 cage.81 They found that CrSi12 did not have the 

highest embedding energy of the 3d metals; VSi12, TiSi12, FeSi12, and NiSi12 all yielded larger 

values. WSi12, however, had the highest embedding energy of the 5d metals tested. In a similar 

study, Khanna and Reveles applied Wigner-Witmer spin conservation rules to the calculation of 

the embedding energy for the 3d metals.82 By calculating the embedding energy with the energy 

of the metal atom in the same spin state as the cluster, usually singlet and doublet for even and 

odd electron clusters respectively, they found CrSi12 and FeSi12 to have enhanced stability. The 

application of Wigner-Witmer spin conservation to these clusters has not been uncontroversial. 

While Khanna and Reveles cite the previously miscalculated embedding energy of chromium in 

Cr-benzene complexes and the correct recalculation using Wigner-Witmer rules,78 and He et al. 

used polarizability and chemical hardness to justify the use of the Wigner-Witmer rules in 

TMSi14 clusters,83 others view the use of spin conservation as unneccessary.84 Despite the 

disagreement, the embedding energy remains a useful signpost of stability in these clusters. 

As shown, the evidence for CrSi12 magicity is mixed. The cluster appears in some 

experiments, but not intensely in others. The high ionization potential and large incremental 

binding energy indicate stability, but other values, such as the VDE, ADE, and HOMO-LUMO 

gap, give no indication of special stability compared to other clusters in the size range. That not 

all of the markers for enhanced stability found in magic metallic clusters are present could mean, 

as Khanna put forth, that covalent clusters such as these operate under different stability 

criteria;79 there are of course other cluster types, even metal clusters, whose electronic structure 

follows different rules such as aromaticity or Wade-Mingos rules.34 The inconsistency in 
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experiment and in the calculated numbers could also indicate a more complicated mechanism of 

stability. In regards to this, what principles may play a role?  

1.3.3 The	18‐Electron	Rule	

Within the 18-electron rule, a mainstay of transition metal chemistry, the stability of a 

transition metal complex depends on the filling of the d and p orbitals on the metal center.85 The 

goal, similar to the octet rule for elements in the first two rows of the periodic table, is to achieve 

a noble-gas configuration, ns2(n-1)d10np6. An example of a complex which follows the 18-

electron rule is Cr(CO)6. Chromium has a valence electron configuration of 4s13d5, for a total of 

six valence electrons. Each carbon monoxide ligand donates two electrons to the chromium 

atom, giving it a total of 18 electrons. As shown in Figure 1.3.4, the 4s, 3d, and 4p orbitals of 

chromium are occupied through bonding with the CO ligands.  

 
Figure	1.3.4:	The	Energy	Levels	and	Molecular	Orbitals	of	Cr(CO)6.	To	show	
the	18‐electron	rule,	levels	with	chromium	4s,	3d,	and	4p	character	are	shown	
in	black,	blue,	and	red,	respectively,	on	the	left,	and	the	corresponding	orbital	is	
pictured	on	the	right.	Levels	with	mostly	or	all	CO	character	are	shown	in	gray.		
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Note that often the p orbitals of the metal do not bond as strongly as the d orbitals. For example, 

fragment analysis of Cr(CO)6 reveals that the molecular orbitals labeled as 4p in Figure 1.3.4 

contain only 6% chromium 4p orbital character, while the 3dz2 and 3dx2-y2 molecular orbitals 

contain about 31% chromium character, and the remaining 3d orbitals contain 59% chromium 

character. That the filling of the d states seems more important to the molecule’s stability, 

whether or not the p-states are filled, has led some to reduce the 18-electron rule to the 12-

electron rule. This has not, however, been widely accepted.86 Within this thesis, the view of 

Pyykkӧ will be used; the 18-electron rule involves the filling of both the d and p orbitals on the 

transition metal, although the d orbital character in resulting molecular orbitals is expected to be 

more prominent.87 

While the 18-electron rule has been found to accurately predict stable complexes for most 

transition metals with a variety of ligands, such as carbon monoxide (CO), phosphines (PR3), 

halogens (X), amines (NH3), etc., it does, like all rules in chemistry, have exceptions.85 Some 

early transition metals will form stable complexes with less than 18 electrons, due to the larger 

size of the TM atom, the lower number of electrons the TM atom starts with, or steric hindrance 

of the binding ligands. V(CO)6 with 17 electrons and W(CH3)6 with 12 electrons are examples of 

stable complexes with less than 18 electrons. The most major exception to the 18-electron rule 

earns its own designation as the 16-electron rule. Many square-planar complexes are stable with 

an electron count on the metal atom of only 16; in the square-planar complex PtCl4
-2, the 

platinum atom already has 10 electrons and receives 4 more, one from each of the chlorine 

atoms, and the overall -2 charge gives platinum a total of 16 electrons. The 16-electron rule is 

not limited to square-planar complexes. In the tetrahedral complex Ni(CO)4, the CO ligands 

contribute 8 electrons to nickel, which already has 8 valence electrons, for a stable 16-electron 
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center. Complexes following the 16-electron rule usually have TM centers that already possess a 

large complement of d-electrons; Ni, Rh, Ir, Pt, and Pd commonly form complexes with 16 

electrons.  

Hiura et al. proposed that WSi12 is stable due to the 18-electron rule, assuming that each 

silicon atom donates one electron through covalent bonding to the chromium atom; the addition 

of 12 electrons from the silicon cage to chromium’s six valence electrons gives a total of 18 

electrons.76 The structure of WSi12 and CrSi12 seems to support this argument as well - each 

silicon atom is bonded to three other silicon atoms, as well as to the chromium atom, ostensibly 

indicating electron-precise sp3 bonding. Note that we have already seen that electron-precise 

bonding is not necessarily the norm for clusters – recall Al14I5
-, which obtained a 40-electron 

closed-shell core through ligation with five, rather than three, iodine ligands. To provide further 

evidence for the 18-electron rule, Khanna et al. carried out studies on other 3d metal clusters in 

the same size range.88 If this counting rule were true, then FeSi10 should also be magic, since iron 

has two more electrons than chromium to begin with, and each silicon atom would donate one 

electron to give a total of 18. A study of FeSin from n=9-11 did show that FeSi10 had a higher 

incremental binding energy than its neighbors, with an energy gain of 4.71 eV from FeSi9. The 

ionization potential and HOMO-LUMO gap are also larger than FeSi9 and FeSi11, although the 

gap is still moderate at only 1.10 eV. The 18-electron rule has not been readily accepted by 

everyone as a guiding principle for TMSin clusters; studies cite the stability of MSi16 clusters, 

which cannot be explained as 18-electron systems within an electron-precise bonding scheme, as 

well as the mixed results establishing the stability of CrSi12, as evidence that the 18-electron rule 

may be too simple a description.81,84,89 
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1.3.4 Application	of	the	CNFEG	Model	

A full treatment of CrSi12 with the CNFEG model has not been suggested by many 

researchers; however, Kumar proposed that it is magic under a “cylindrical” CNFEG model,68 

which is another way of referring to the ellipsoidal CNFEG model discussed in Section 1.2.2. 

With four electrons from each silicon atom and six electrons from the metal atom, the total 

valence electron count for CrSi12 is 54, a magic number predicted by the ellipsoidal CNFEG 

model. More commonly, a split-CNFEG model has been used.82,90,91 Within this model, the 

metal atom is treated as a CNFEG, while the silicon atoms are treated as ligands contributing 

electrons to the metal center. Again, it is assumed that each silicon atom donates one electron to 

the metal atom through covalent bonding. For CrSi12, then, the chromium atom attains a CNFEG 

closed shell of 18 electrons.  

The application of a split-CNFEG model to CrSi12 does not seem to differ from the 18-

electron rule at first glance, as the metal atom still obtains 18 electrons; an 18-electron atomic 

shell closure (4s23d104p6) corresponds rather identically to an 18-electron CNFEG shell closure 

(1S21P61D10) on a single atom. To test the split-CNFEG model, Khanna and Reveles attempted 

to extend it to 20-electron clusters. The first of these is FeSi12, which showed the second highest 

embedding energy of all TMSi12, with TM being a 3d metal.82 This number resulted from 

calculations using the Wigner-Witmer spin conservation rules. Another study that did not apply 

spin conservation found the embedding energy of FeSi12 to be greater than that of CrSi12, again 

indicating the stability of FeSi12.81 The idea of a CNFEG shell closure was further applied to 

clusters containing more than 12 silicon atoms, notably TMSi16 where TM = Sc, Ti, and V. 

Khanna and Reveles found that ScSi16
-, TiSi16, and VSi16

+, all 20-electron systems, showed 

enhanced stability based on embedding energies with spin conservation.90 These clusters have 
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also shown stability in experiments; all three are found with great intensity in mass spectra and 

are resistant to binding water.92 A 20-electron shell closure has also been considered for CrSi14.83 

In the literature, the CNFEG shell closure at 20 electrons is sometimes referred to as the 20-

electron rule.  

1.3.5 Crystal‐Field	Splitting		

Another consideration that must be taken into account when dealing with transition 

metals is that of crystal-field splitting.85,93 In crystal-field theory, ligands are considered to be 

negative point charges that interact via electron repulsion with the d-orbitals of the transition 

metal. In the spherically symmetric case, all d-orbitals are degenerate, that is, at the same energy. 

When surrounded by ligands in a non-spherical arrangement, the d-orbitals of the transition 

metal will split into non-degenerate groups. Generally, orbitals that interact more strongly with 

ligands, so that repulsion between electrons is greater, will be pushed up in energy compared to 

those orbitals that do not interact as strongly.  

 
Figure	1.3.5:	Crystal‐Field	 Splitting	of	d‐orbitals	 for	 Several	 Symmetries.	
The	splitting	of	the	d‐orbitals	is	shown	from	the	spherical	case	to	the	octahedral	
(Oh),	square‐planar	(D4h),	and	D6h	symmetry	case.	Each	d‐orbital	is	indicated	as	
xy,	xz,	yz,	z2,	or	x2‐y2.	Splitting	distances	are	qualitative	only.	In	the	D4h	case,	the	
splitting	reflects	compression	along	the	z‐axis.		
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Figure 1.3.5 shows the splitting arrangement for the octahedral (Oh), D4h, and D6h symmetry 

point groups. For an octahedral complex, the d orbitals of the metal will split into two sets: dz2 

and dx2-y2, pushed up in energy compared to the spherical case, and dxy, dyz, and dxz, lowered in 

energy compared to the spherical case. Upon compression of the z-axis, leading to D4h 

symmetry, the d-orbitals with a z-component will be raised in energy relative to the Oh case, 

while the other orbitals will be lowered in energy. In a D6h molecule, such as CrSi12, the dxy and 

dx2-y2 orbitals and the dxz and dyz orbitals are degenerate, while the dz2 orbital is raised highest in 

energy.78 Recall that crystal-field theory models the ligands as point charges and the splitting of 

the orbitals as a result of purely electrostatic effects, but the type of ligand will also affect the 

extent of d-orbital splitting.85,93  

 Crystal-field splitting has been found to play roles in the stability of clusters, including 

those governed by the CNFEG model. For example, in the cluster Al22Cu-, the 2D orbitals, with 

A1 symmetry, split similarly to the D6h case shown in Figure 1.3.5, due to the oblate geometry of 

the cluster.  

 
Figure	1.3.6:	Crystal‐Field	Splitting	in	Al22Cu‐.	The	splitting	of	the	2D	orbitals	
are	shown	for	a	spherical	shell	model	(left),	an	oblate	shell	model	(middle),	and	
for	Al22Cu‐	(right)	with	accompanying	A1	orbital	images	for	the	cluster.		

As Figure 1.3.6 shows, the 2Dz2 orbital is raised high in energy, and is empty, while the 

remaining 2D orbitals are lowered in energy, lending overall stability to the cluster.94 Another 
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example is Ag13
-, which despite having 14 valence electrons (not a magic number), has a large 

HOMO-LUMO gap and is stable to reaction with O2. Unlike Al13
-, Ag13

- does not form an 

icosahedron, but rather a bilayer structure. Due to this geometric distortion, the 1D subshells split 

– two are filled while the remaining three are unfilled and raised in energy-leading to the large 

HOMO-LUMO gap that lends Ag13
- its stability.95 Other subshells can show crystal-field-like 

splitting as well; Al11Mg2
- and Al11Mg-, both having oblate geometries, gain stability through 

splitting of the 2P and 1F subshells, respectively.96 The D6h symmetry of the cluster of interest, 

CrSi12, implies a crystal-field splitting as shown in Figure 1.3.5, with the 3dz2 orbital of Cr being 

pushed up in energy. This was pointed out by Kumar,68 however no molecular orbital analysis 

has been done to explore the orbital splitting and its possible effects on the cluster’s stability. 

1.3.6 Purpose	of	the	Present	Study	

As demonstrated in the preceding sections, the stability, and what mechanisms are 

responsible for that stability, of WSi12 and congener CrSi12 has been a matter of intense debate in 

the literature. Both the 18-electron rule from inorganic chemistry and an 18-electron CNFEG 

shell closure, extendable to a 20-electron shell closure for other species, have been suggested, 

and crystal-field splitting may also contribute. It is important to note that all of the counting rules 

that have so far been applied have assumed that the bonding in the cluster is electron-precise, 

that is, each silicon atom contributes exactly one electron to the chromium or tungsten atom 

through a covalent bond. Studies have focused on proving that CrSi12 and WSi12 do exhibit signs 

of enhanced stability, on showing that neighboring clusters that also presumably have 18 

electrons on the TM atom, such as FeSi10, are also relatively stable, and, in the case of a split-

CNFEG model, on extending the counting rule to 20-electron systems such as TiSi16. No studies, 

however, have ever called into question whether CrSi12 and WSi12 are indeed 18-electron 
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systems. Interestingly, preliminary calculations show that the LUMO of CrSi12, shown in Figure 

1.3.7, is the 3dz2 orbital of chromium.  

 
Figure	1.3.7:	Lowest	Unoccupied	Molecular	Orbital	of	CrSi12.	The	LUMO	of	
CrSi12	is	shown	to	be	the	3dz2	atomic	orbital	of	the	chromium	atom.		

With an empty 3dz2 orbital, it seems clear that not all the d and p orbitals of the chromium atom 

are filled by bonding with the silicon ligands – the 18-electron rule is not satisfied. This empty 

Dz2 orbital also has significance for a CNFEG or split-CNFEG description of the electronic 

structure, as the split-CNFEG model predicts the LUMO to be a 2S orbital, following shell 

closure at 1D10.  

 The present study seeks to determine if the 18-electron rule or 18-electron CNFEG shell 

closure applies – that is, are CrSi12 and WSi12 actually 18-electron systems? This will be done 

using an extensive molecular orbital (MO) analysis of CrSi12. Such a MO analysis has not been 

done previously for either CrSi12 or WSi12, although some researchers have looked at the frontier 

orbitals of select TMSin clusters. Fragment analysis of the MOs will provide information on the 

composition of each orbital, which can cast light on whether the 3d and 4p orbitals of chromium 

are filled. (This was done for Cr(CO)6 as an example in Figure 1.3.4). To further reexamine the 

stability of CrSi12 and as a search for other relatively stable clusters, energetic properties will be 

calculated for CrSin (n=6-16). It has also been assumed that in these clusters, chromium and 

tungsten would act identically, but due to their different sizes and to the fact that tungsten 
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possesses f electrons while chromium does not, this may not be the case. Thus, the same 

energetic analysis will be applied to WSin (n=6-16) in order to show any differences in the 

behavior between W-doped and Cr-doped clusters. Through the recalculation of energetic 

properties in a wide size range and the careful examination of the MOs of selected clusters, the 

goal of this study is to contribute to a better conceptual understanding of the electronic principles 

governing the stability of silicon encapsulated TM clusters.  

1.4 Organization	of	This	Thesis	

In Chapter 2, I will discuss the theoretical basis of density functional theory, the formalism 

used for the calculations in this thesis, as well as the computational methodologies used in each 

study to implement it. Chapter 3 will cover the results for the ligated metal cluster example, 

reactivity of Al13Ix
- and Al14Iy

- with methanol, including experimental results. Chapter 4 will 

cover the silicon encapsulated transition metal clusters CrSin and WSin in three portions: the first, 

a comparative study of CrSin
- to establish the appropriate functional to use for these clusters 

(functionals will be discussed in detail in Chapter 2); the second, the energetic properties and 

molecular orbital analysis of CrSin; and the third, the energetics and a brief molecular orbital 

analysis of WSin. The concluding chapter will relate the results found in the two example studies 

to the overall process of finding and using electronic principles to describe and predict the 

properties of clusters.  
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2 Methods		

2.1 Overview	

Within this thesis, the electronic structure calculations are performed using density 

functional theory (DFT), a framework in which the electron density rather than the wavefunction 

is the primary variable. This chapter will briefly cover the development and theoretical 

background of DFT, focusing on the Hohenberg-Kohn theorems and the Kohn-Sham equations. 

The computational methodology used to implement the DFT calculations will also be described 

for both the ligated metal clusters study and the silicon encapsulated transition metal clusters 

study, as different software was used in each case.  

2.2 Density	Functional	Theory	

2.2.1 The	Electron	Density	

The goal of electronic structure calculations is to find the solution, a wavefunction, to the 

time-independent Schrödinger equation, from which one can glean all the information 

concerning the electronic structure of a system. Unfortunately, an analytical solution is only 

possible for a one-electron system, and approximations need to be made in order to find a 

solution for larger systems.  For example, the Born-Oppenheimer approximation97 uses the fact 

that nuclei are much heavier than electrons to consider the electrons in a system as moving 

against a field of fixed nuclei. This allows the dropping of the nuclear kinetic energy term and 

converts the nucleus-nucleus interaction term to a constant. While this simplifies the 

Hamiltonian to a certain degree, actually finding the wavefunction still requires searching 

through all possible wavefunctions to minimize the energy as per the variational principle – still 

an insurmountable task. Most approximation methods based on the variational principle search 
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only a subset of the possible wavefunctions. For example, the Hartree-Fock (HF) method 

considers the many-electron wavefunction to be an antisymmetrized product of N single-electron 

wavefunctions, known as a Slater determinant. Rather than from the total wavefunction, the 

energy is found from the expectation value of the Hamiltonian written in terms of this Slater 

determinant.98  

The HF method serves as the groundwork for many wavefunction-based quantum 

mechanical methods, however these methods tend to be computationally expensive. The 

wavefunction remains a complicated quantity that depends on 4N variables, where N is the 

number of electrons, and systems of interest in chemistry and materials science tend to have 

many electrons. As an alternative, DFT employs the electron density as the principle variable, 

rather than the wavefunction. The electron density, ρሺrԦሻ, displays several important properties 

that make its use as a variable advantageous. Depending only on the three spatial coordinates, the 

electron density, unlike the wavefunction, is an experimentally measurably quantity (by, for 

example, X-ray diffraction). It also only exhibits maxima at the positions of the nuclei, and the 

value of the density at these positions provides information about the atoms of the system, 

specifically their nuclear charge. Finally, the electron density integrates over all space to give the 

total number of electrons in the system. Thus, the electron density provides all the information 

on which the Hamiltonian depends: the number of electrons, and the positions and charges of the 

nuclei. For this reason, it is plausible that the electron density could be used as the variable for 

approximately solving the Schrödinger equation.  

2.2.2 	The	Hohenberg‐Kohn	Theorems	

While the previous section showed that the use of the electron density might be 

reasonable, proof that the electron density does uniquely determine the Hamiltonian and thereby 
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all the properties of the system, came with the work of Hohenberg and Kohn.99 In the first of two 

theorems, they stated:  

The external potential VextሺrԦሻ is (to within a constant) a unique functional of ρሺrԦሻ; 

since, in turn VextሺrԦሻ fixes H෡, we see that the full many particle ground state is a 

unique functional of ρሺrԦሻ. 

Their proof showed that two different potentials, VextሺrԦሻ and Vୣ୶୲ᇱ ሺrԦሻ, cannot produce the same 

electron density,	ρሺrԦሻ, which means that the true ground state density, ρሺrԦሻ, uniquely defines the 

external potential, VextሺrԦሻ, (to within a constant). The key here is that the electron density is now 

justified as a physically sound parameter in determining the external potential, which for a 

chemical system would consist of the electron-nuclear potential. The Hamiltonian also contains 

an electron kinetic energy term and an electron-electron repulsion term, which Hohenberg and 

Kohn proposed are, like VextሺrԦሻ, functionals of the electron density. That is, 

 Fୌ୏ሾρሿ ൌ Tሾρሿ ൅ Vୣୣሾρሿ ൌ ൻΨหT෡ ൅ V෡ୣୣหΨൿ, (2.2-1)

where Fୌ୏ is a functional that produces the expectation values of the kinetic, T෡, and electron-

electron repulsion, V෡ୣୣ, operators in the ground state wavefunction when it operates on the 

electron density.  

In their second theorem, Hohenberg and Kohn applied the variational principle to the 

their functional Fୌ୏. It states: 

A universal functional for the energy Eሾρሿ in terms of the density		ρሺrԦሻ  can be 

defined, valid for any external potential VextሺrԦሻ. For any particular potential, the 

exact ground state energy of the system is the global minimum value of this 

functional, and the density that minimizes the functional is the exact ground state 

density	ρ଴ሺrԦሻ. 
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Essentially, the functional will deliver the ground state energy of the system only if the input 

electron density is the true ground state density.  

The two theorems of Hohenberg and Kohn provide proof that the previously discussed 

plausible arguments concerning the use of the electron density as a parameter rather than the 

wavefunction and arrive at the ground state energy of a system. These prove in principle that a 

unique mapping exists between the ground state electron density, ρሺrԦሻ, and the ground state 

energy; that is, the energy is a functional of the electron density. It is important to note, however, 

that the theorems do not explain how to construct the functional FHK or how to come to a 

solution using it. Still, the proof of these principles laid the foundation for the development of 

practical density functional theory.  

2.2.3 The	Kohn‐Sham	Equations	

The work of Kohn and Sham100 built upon the proofs discussed in Section 2.2.2 to give a 

practical method for actually approaching the functional defined by Hohenberg and Kohn. They 

used the idea that the exact calculation of many-body properties can, in principle, be determined 

by independent particle methods. The approach takes the many-body, interacting-particle system, 

which is difficult to solve, and replaces it with an auxiliary system of non-interacting particles. 

The auxiliary system is made up of single electron orbitals used to construct a Slater determinant, 

similar to how single electron wavefunctions were used to construct a Slater determinant in the 

Hartree-Fock approach. Within this method, the kinetic energy is split into two terms: one in 

which the exact kinetic energy of non-interacting electrons is computed - the main contribution 

to the kinetic energy - and another in which the electron correlation contribution to the kinetic 

energy is approximated - a relatively small contribution to the kinetic energy. This non-
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interacting, auxiliary system is fictitious, but provides a reasonably accurate method to calculate 

the kinetic energy. 

To actually represent this auxiliary system, a set of single electron orbitals, or Kohn-

Sham orbitals, as they are commonly referred to, are used. These single electron orbitals are used 

to construct the auxiliary electron density, 

 
ρ ൌ ෍ |ϕ୧|ଶ

୒౛ౢ౛ౙ

୧ୀଵ

, (2.2-2)

which is then operated on by the kinetic energy operator, 
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, 
(2.2-3)

to give the exact kinetic energy of a system of non-interacting electrons. The total energy within 

the Kohn-Sham approach becomes a functional of the electron density, ρ, and is written as 

 E୏ୗ ൌ Tሾρሿ ൅ Jሾρሿ ൅ E୒ୣሾρሿ ൅ Eଡ଼େሾρሿ, (2.2-4)

where T[ρ] is the exact kinetic energy of the non-interacting system, Jሾρሿ is the Coulomb 

repulsion between electrons, and E୒ୣሾρሿ is the Coulomb nuclear-electron repulsion. Each of 

these terms has an explicit functional form dependent only on the electron density, which is the 

sum of the single electron orbitals of Equation (2.2-2). These three terms make up the effective 

potential, Vୣ୤୤, felt by the single electrons. Together with the kinetic energy operator, Vୣ୤୤ 

operates on the single electron orbitals, creating an eigenvalue problem:  

 
ቆെ

1
2
ଶ׏ ൅ Vୣ୤୤ሺܚଵሻቇϕ୧ ൌ ε୧ϕ୧. (2.2-5)

Solving the Kohn-Sham orbitals can be done using the self-consistent field (SCF) method. 

Within this method, one initially guesses a set of orbitals. Using these trial orbitals, a ௘ܸ௙௙ is 

constructed and used to solve the Kohn-Sham equations, which, in turn, gives rise to a new set of 
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orbitals. This iterative approach is continued until the input orbitals match the output orbitals, 

within a certain precision, at which point self-consistency is achieved. The Kohn-Sham approach 

is at the core of modern density functional theory. 

2.2.4 Exchange‐Correlation	Functionals	

The Kohn-Sham approach is useful because it turns a many-body problem into an 

independent-particle problem, by separating the exact kinetic energy for a system of non-

interacting particles, and then putting the remaining contribution to the kinetic energy, as well as 

contributions to the potential energy, in the EXC term. The exchange-correlation energy, EXC, is 

the only remaining term in the Kohn-Sham energy for which there exists no explicit functional 

form. Much progress has been made to yield an approximate form, but modern research efforts 

are still aimed at improving EXC. A popularly implemented treatment of EXC is called the Local 

Density Approximation (LDA), which treats the local electron density as a slowly varying 

function that is essentially a homogeneous electron gas. Improving the accuracy of the LDA 

method, the Generalized Gradient Approximation (GGA) formalism is introduced. The GGA 

method includes not only information about the electron density, ρ(r), at a particular point in 

space, but also the gradient of the electron density between two points, ׏ρ(r). The purpose is to 

account for the realistic nature of the true electron density, which is not the homogeneous 

electron gas as approximated by the LDA method. Perhaps the most commonly used variation of 

the GGA method is that implemented by Perdew, Burke, and Ernzerhof.101,102 Even with this 

correction, GGA functionals are known to underestimate the HOMO-LUMO gap of a molecule 

or band gap of a solid. Another type of functional is a hybrid, which seeks to correct the 

underestimated band gap by incorporating some exact exchange, calculated using the Hartree-
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Fock method. There are many examples of hybrid functionals, but the most commonly used is 

B3LYP, which usually includes 20% exact HF exchange.103,104 

2.3 Computational	Methods	

2.3.1 Ligated	Metal	Clusters:	AlnIm‐	

For this project, the calculations were performed using a first-principles molecular orbital 

approach within a density functional theory framework, in which the molecular orbitals were 

represented as a linear combination of atomic orbitals centered on the atomic sites. In previous 

studies on aluminum cluster reactivity,9,36–38 calculations were carried out using the Naval 

Research Laboratory Molecular Orbital Library (NRLMOL) set of codes,105–107 and so the 

current study will also be done using NRLMOL. Similarly, the generalized-gradient 

approximation proposed by Perdew, Burke, and Ernzerhof (PBE) 101,102 was used to incorporate 

exchange and correlation in previous work with results consistent with experiment,36–38 so PBE 

was used here as well. By using NRLMOL with the PBE functional in this current work, 

consistency across all of the aluminum cluster reactivity studies is achieved.  

Within NRLMOL, the atomic orbitals were expressed as a linear combination of Gaussian 

orbitals located at the atomic sites. The basis set consisted of 6s, 5p, and 3d functions for 

aluminum; 8s, 7p, and 5d functions for iodine; 4s, 3p, and 1d functions for hydrogen; and 5s, 4p, 

and 3d functions for both carbon and oxygen. Optimization of the cluster geometries was done 

using a conjugate-gradient algorithm. The atoms of the cluster were moved in the direction of 

forces until those forces dropped below 0.05 eV per Å, at which point the geometry was 

considered converged. Molekel was used to visualize the geometric coordinate output, as well as 

to generate charge density isosurfaces of the frontier orbitals of each cluster. The latter was done 

in order to conduct a frontier orbital analysis and choose possible active sites. An isosurface 
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value of 0.03 electrons was used throughout. The search for structures along the reaction 

pathway and calculation of reaction pathway energies will be discussed in conjunction with the 

presentation of the results in Chapter 3.  

2.3.2 Silicon	Encapsulated	Transition	Metal	Clusters:	CrSin	and	WSin	

First-principles calculations within the DFT framework were carried out using the 

Amsterdam Density Functional (ADF) software package.108–110 ADF was chosen because it 

allows for fragment analysis, which is a powerful tool in understanding the bonding in these 

clusters. Both the GGA PBE functional101,102 and the hybrid B3LYP functional103,104,111 were 

used to incorporate exchange and correlation, as testing of functionals was necessary in this case. 

For PBE calculations, a small core was used, meaning that the 1s, 2s, and 2p orbitals of silicon, 

chromium, and the 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, and 4d orbitals of tungsten were frozen during 

the calculation. B3LYP calculations were all-electron, as the frozen core approximation has not 

yet been implemented for hybrid functionals within the ADF code. The excitations of the anionic 

clusters were found using time-dependent density functional theory (TDDFT) using the Tamm-

Dancoff Approximation (TDA) within ADF.112–114  
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3 Ligated	Metal	Clusters	

3.1 	Overview	

The overall purpose of this study is to explore the ways in which ligation with an 

electronegative atom such as iodine affects the reactivity of Aln
- clusters with methanol. 

Induction of active sites by geometric defects and subsequent reactivity with H2O and alcohols 

has been observed for bare aluminum clusters. Since ligands perturb the charge density of a 

cluster in a similar manner as geometric defects, it is hypothesized that the attachment of 

electronegative ligands to these clusters can induce complementary Lewis acid-base sites capable 

of breaking an O-H bond. In a broader sense, this study will test whether ligands can serve as 

activating species as well as protecting species, an important consideration for the design and 

synthesis of cluster-assembled materials. To this end, theoretical calculations were carried out on 

Al13Ix
- (x=0-4) and Al14Iy

- (y=0-5) clusters and their reactivity with methanol, as outlined in 

Chapter 2. In the first case, we explore the effect of ligating a superatom, Al13
-, with an 

electronegative atom, iodine. Can reactivity with methanol be induced by such ligation? In the 

second case, we seek to determine the effect of adding an adatom defect to the Al13Ix
- series. 

Does an adatom defect alone create a more reactive cluster, or is a ligand also necessary as an 

activating species? In the remaining sections, I will outline how the reaction pathways for each 

species were determined and discuss the results, which are published in the Journal of the 

American Chemical Society.115 I will also present experimental confirmation of the results, 

carried out by our collaborators at the Pennsylvania State University.  
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3.2 Determining	the	Reaction	Pathways	of	AlnIm‐	with	Methanol	

Determining the reaction pathway of a cluster with methanol involves several steps, the 

first of which is finding the ground state of the cluster. Because these clusters have been 

previously studied, the structures of Al13Ix
- (x=0 – 4) and Al14Iy

- (y=0 – 5) were built from the 

literature39,40,51,65 and optimized as outlined in Chapter 2. The ground state structures of the 

Al13Ix
- series have a very symmetrical arrangement of iodine atoms, especially in those clusters 

with an even number of iodines; therefore, an isomer of Al13I2
- with two iodine atoms on the 

same side was also studied. The inclusion of this additional structure allowed for the exploration 

of reactivity in clusters with unbalanced ligands. 

Once all ground state structures had been found, possible active sites were chosen based on 

a frontier orbital analysis. The charge densities of the HOMO and LUMO of each cluster were 

examined. In the case of clusters with an odd number of electrons, the HOMO and LUMO are 

actually a singly-occupied molecular orbital (SOMO) and singly-unoccupied molecular orbital 

(SUMO), respectively. Since a Lewis acid accepts an electron pair, and a SUMO cannot act as 

such, the second lowest unoccupied molecular orbital, LUMO+1, was considered for odd-

electron species. For the remainder, LUMO will be used to indicate the lowest completely 

unoccupied molecular orbital, encompassing both of the unoccupied orbitals of interest, the 

actual LUMO in even-electron species and the LUMO+1 in odd-electron species. The SOMO 

will simply be referred to as a half-filled HOMO in odd-electron species. Aluminum atoms in the 

cluster with a large concentration of HOMO or LUMO charge density - that is those with strong 

Lewis base or Lewis acid character, respectively - were primarily chosen as reaction sites. Other 

sites, such as those aluminum atoms ligated with an iodine atom and, in the case of Al14Iy
- 

clusters, the adatom defect, were chosen based on geometric considerations.  
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To find the methanol-bound state of each cluster, a methanol molecule was attached via the 

oxygen atom to each of the reaction sites chosen. The geometry of each of the resultant 

complexes was then optimized. The strength of the methanol-cluster binding was quantified by 

calculating the binding energy, BE, as shown in Equation (3.2-1).  

 BE ൌ ൫EሺAl୬I୫ି ሻ ൅ EሺCHଷOHሻ൯ െ EሺCHଷOHAl୬I୫ି ሻୟୢୱ (3.2-1)

The binding energy is the difference between the sum of the total energies of the aluminum 

cluster and methanol in their separate ground states, E(AlnIm
-) and E(CH3OH), and the total 

energy of the methanol-bound complex, E(CH3OHAlnIm
-)ads. This quantity can be used as a 

measure of Lewis acidity of each reaction site on a cluster. A larger binding energy indicates that 

the site is accepting a greater amount of charge from the lone pairs of electrons on methanol’s 

oxygen atom, and thus that the site is a stronger Lewis acid. In principle, sites chosen based on a 

large concentration of LUMO charge density should be the strongest Lewis acids, and therefore 

have the largest values of BE. Based on the complementary active sites hypothesis, these Lewis 

acid sites are also the most probable sites on the cluster for breaking the O-H bond, though this 

also depends on the presence of a nearby Lewis base site. 

The binding energy is related to the first quantity that will be used to describe the reaction 

pathways of AlnIm
- with methanol – EB, the relative energy of the methanol-bound complex to 

the separated reactants. As Equation (3.2-2) below shows, EB is essentially the negative of the 

binding energy, BE, described previously.  

 E୆ ൌ EሺCHଷOHAl୬I୫ି ሻୟୢୱ െ ൫EሺAl୬I୫ି ሻ ൅ EሺCHଷOHሻ൯ ൌ െBE (3.2-2)

Distinction between the binding energy and EB is necessary because binding energies are 

typically reported as positive quantities, while EB is a negative quantity. Both BE and the 

absolute value of EB quantify the Lewis acidity of a reaction site, as discussed above. A negative 
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quantity, however, more appropriately describes the initial methanol-cluster binding state along 

the reaction pathway, indicating that the methanol-bound complex is lower in energy than 

methanol and the aluminum cluster when separated. 

The transition state structures for each reaction site were found using a linear transit 

approach, which has been used successfully in past theoretical reactivity studies.9,36–38 Before 

beginning the linear transit procedure, the most likely site for hydrogen to bind upon O-H bond 

breaking was found. Starting with the methanol-bound complexes, the O-H bond was stretched 

to a length of 1.30 Å toward several neighboring aluminum atoms. This bond length has been 

found to be near the distance required to break the O-H bond in previous work.36–38 The O-H 

bond length was fixed, while the rest of the complex was relaxed. The lowest energy complex 

resulting from this optimization indicated which aluminum atom is hydrogen’s preferred binding 

site. The linear transit approach was then applied to this lowest energy complex. The O-H bond 

was stretched and compressed further by 0.01 Å, to 1.31 Å and 1.29 Å, respectively. These two 

structures were optimized with the O-H bond length again fixed. The path of steepest ascent in 

energy was chosen for continuation of the linear transit process. The O-H bond was stretched or 

compressed in 0.01 Å increments and fixed while the complex was optimized, until a saddle-

point, or maximum, in the total energy was reached. The structure at this point of maximum 

energy is the transition state.  

To describe the transition state, two relative energies were calculated: the relative 

transition state energy, ET, and the activation energy, EA. The first quantity was calculated as 

follows: 

 E୘ ൌ EሺCHଷOHAl୬I୫ି ሻ୘ୗ െ ൫EሺAl୬I୫ି ሻ ൅ EሺCHଷOHሻ൯	 (3.2-3)
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Similar to EB, the relative transition state energy is the difference between the total energy of the 

transition state complex, E(CH3OHAlnIm
-)TS, and the sum of the total energies of the cluster and 

methanol in their ground states. Previous studies show that clusters with a transition state energy 

greater than 0.10 eV above the combined energies of the separated reactants - that is, an ET of 

more than 0.10 eV as calculated above - are only negligibly reactive in a gas-phase reaction 

chamber on the time scale of flow tube reactions.36–38 Thus, this quantity was used as the 

deciding factor when determining whether a cluster is reactive with methanol. Since ET is most 

useful in the prediction of gas-phase reactivity, the EA (or potential barrier) was calculated to 

provide more widely applicable information of the reactivity of these clusters. This value is the 

difference between the total energy of the transition state and the total energy of the methanol-

cluster complex, as shown below: 

 E୅ ൌ EሺCHଷOHAl୬I୫ି ሻ୘ୗ െ EሺCHଷOHAl୬I୫ି ሻୟୢୱ (3.2-4)

The activation energy is of most interest in liquid-phase reactions, in which the solvent may 

rapidly dissipate the binding energy. As such, the reactivity will most likely follow the Arrhenius 

law, with EA serving as the activation energy.  

 For the final or relaxed state geometries, several arrangements were tried for each cluster 

in which hydrogen was bound to different aluminum atoms neighboring the reaction site, 

including the preferred site found in the initial step of the transition state search. The entire 

complex was optimized, and the lowest energy geometry resulting from this was the final state 

geometry. The total energy of the relaxed geometry was used to calculate the final quantity 

characterizing these reaction pathways: the relative relaxed state energy, ER. Similar to EB and 

ET, ER is the difference between the total energy of the final state of the complex, 
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E(CH3OHAlnIm
-)R, and the sum of the total energies of the cluster and methanol in their ground 

states, as seen in the following equation: 

 Eୖ ൌ EሺCHଷOHAl୬I୫ି ሻୖ െ ൫EሺAl୬I୫ି ሻ ൅ EሺCHଷOHሻ൯ (3.2-5)

In general, the relative relaxed state energy is the greatest (most negative) of all calculated values 

for each reaction site. Based on the complementary Lewis acid-base concept, ER should be 

greatest in those cases where the hydrogen atom bonds to a Lewis base site, an aluminum atom 

with a large concentration of occupied frontier orbital charge density.  

3.3 The	Al13Ix‐	(x=0	–	4)	Series	

 The ground state structures and one higher energy isomer, as well as the charge densities 

of the frontier orbitals for Al13Ix
- are shown in Figure 3.3.1. The attachment of ligands does little 

to disturb the symmetrical geometric structure of Al13
-, and each cluster in this series retains an 

approximately icosahedral core, with iodine bonding externally. Upon examining the electronic 

structure, it was found that there were a number of degenerate or nearly degenerate states in the 

regions of the frontier orbitals. To take this into account, the charge density of all occupied 

orbitals close in energy to the HOMO, which will be referred to as the occupied frontier orbital 

charge density, was plotted in red. Similarly, the charge density of all unoccupied orbitals close 

in energy to the LUMO, which will be referred to as the unoccupied frontier orbital charge 

density, was plotted in blue. Details of which orbitals were included for each cluster are provided 

in Table A1 in Appendix A.  
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Figure	 3.3.1:	 Ground	 State	 Structures	 and	 Frontier	 Orbital	 Charge	
Densities	 of	 the	 Al13Ix‐	 (x=0‐4)	 Series.	 The	 ground	 state	 structures	 and	
frontier	orbital	charge	densities	of	(a)	the	symmetrical	species:	Al13‐,	Al13I2‐,	and	
Al13I4‐;	and	(b)	the	asymmetrical	species:	Al13I‐,	a	higher	energy	isomer	of	Al13I2‐,	
and	 Al13I3‐.	 Aluminum	 atoms	 are	 shown	 in	 light	 blue	 and	 iodine	 atoms	 are	
shown	 in	 purple.	 HOMO	 charge	 density	 is	 red,	while	 LUMO	 charge	 density	 is	
dark	blue.	All	charge	densities	were	generated	with	an	isosurface	value	of	0.03	
electrons.	Figure	taken	from	Abreu	et	al.115	

The frontier orbital analysis did not reveal any prominent Lewis acid or Lewis base sites in 

Al13
- or in the ground states of Al13I2

- and Al13I4
-, shown in Figure 3.3.1(a). Both occupied and 

unoccupied charge densities are symmetrical and diffuse, owing to the balancing of the iodine 

ligands. In the odd-iodine species, Al13I- and Al13I3
-, shown in Figure 3.3.1(b), one does see a 

concentration of occupied frontier orbital charge density on the aluminum opposite the 

unbalanced iodine ligand, which comes from the half-filled HOMO. The unoccupied charge 

density, however, still appears diffuse and symmetrically distributed about the clusters’ centers. 

The higher energy isomer of Al13I2
-, in which both iodine atoms are placed on adjacent 
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aluminum atoms, shows a distinct pair of Lewis acid and Lewis base sites on the opposite side of 

the cluster – a potential pair of complementary active sites. 

 For each of the ground state geometries above, several reaction sites were chosen as 

described in Section 3.2, with the exception of Al13
- for which all aluminum atoms are 

equivalent. Sites chosen included aluminum atoms with Lewis acid and Lewis base character, as 

well as those ligated with iodine atoms. Table 3.3-1 shows the various sites chosen and their 

binding energies.  

Table 3.3-1: Reaction Sites and Corresponding Binding Energies for Al13Ix
-. 

Cluster Site BE (eV) 

Al13
- any 0.15 

Al13I- 
LA 0.14 
LB 0.15 

I site 0.06 

Al13I2- 
LA/HB 0.29 

LA 0.17 
Al13I2-

adj LA/LB 0.67 

Al13I3- 
LB 0.13 

LA/HB 0.29 
I site 0.01 

Al13I4- 
LA/HB (top) 0.32 
LA/HB (side) 0.27 

I site 0.02 
The	 reaction	 sites	 chosen	 for	 each	 cluster	 and	 their	 corresponding	 binding	
energies	as	defined	in	Equation	(3.2-1)	are	given	above.	LA	(LB)	 indicates	that	
methanol	bonds	to	a	Lewis	acid	(base)	site;	HB	indicates	that	methanol	forms	a	
hydrogen	bond	with	 a	 nearby	 iodine	 atom;	 and	 I	 site	 indicates	 that	methanol	
bonds	to	an	aluminum	atom	that	is	bonded	to	an	iodine	atom.		

For the bare cluster, the binding energy of methanol is only 0.15 eV, owing to the diffuse nature 

of the unoccupied charge density – there is no concentration of LUMO density to act as a strong 

Lewis acid site. The addition of a single iodine atom does not improve the binding energy; the 

unoccupied frontier orbital is still symmetrically distributed around the core of the cluster, 

resulting in a Lewis acid site binding energy of only 0.14 eV. The concentration of HOMO 
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density that forms opposite the iodine atom has about the same binding energy as the Lewis acid 

site. Being half-filled, this site acts as a poor Lewis acid. The final site tested for Al13I- was the 

aluminum atom directly bonded to the iodine atom, denoted the I site. This site proves to have 

the lowest binding energy of only 0.06 eV. The second odd-iodine cluster in the series, Al13I3
-, 

shows the same pattern of binding energies, with the Lewis base site having a binding energy of 

0.13 eV and the I site having a binding energy of 0.01 eV. The Lewis acid site on Al13I3
-, 

however, has a binding energy about twice that of the Lewis acid site on Al13I-, due to the 

formation of a hydrogen bond between a hydrogen atom on methanol and the iodine atom, which 

acts to stabilize the binding of methanol to the cluster.  

As discussed, the addition of an even number of iodine atoms maintains the diffuse and 

symmetrically distributed unoccupied charge density seen in the bare and odd-iodine clusters; 

however, no concentration of HOMO density arises since the iodine atoms are equally balanced. 

For these clusters, then, only Lewis acid sites and I sites were tested. For Al13I2
-, one site has 

about the same Lewis acidity as the bare cluster, with a binding energy of 0.17 eV. A second 

Lewis acid site has a higher binding energy of 0.29 eV, again owing to a stabilizing hydrogen 

bond between methanol and iodine. In Al13I4
-, both Lewis acid sites, one an on-top site and one 

on the side of the cluster, have hydrogen-bond stabilized binding energies of 0.32 eV and 0.27 

eV, respectively. The I site, as in the odd-iodine clusters, is a poor Lewis acid with a binding 

energy of only 0.02 eV. The binding energy is noticeably increased in the higher energy isomer 

of Al13I2
- with iodine atoms attached to adjacent aluminum atoms; the Lewis acid site on the 

opposite side of the cluster binds methanol with an energy of 0.67 eV, over four times that of the 

bare cluster.  
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While examination of occupied and unoccupied frontier orbital charge densities and 

calculation of the binding energies revealed certain sites as more probable reaction centers for 

the successful breaking of the O-H bond in methanol, the transition and relaxed states were 

found for all sites given in Table 3.3-1. The relative methanol-bound state, relative transition 

state, relative relaxed state, and activation energies were calculated for all sites as described in 

Section 3.2. Table 3.3-2 gives these four relative energies for the lowest energy reaction 

pathway, that is, the pathway with the smallest transition state energy, for each cluster.  

Table	3.3‐2:	Relative	Energies	for	Reaction	Pathways	of	Al13Ix‐	with	Methanol	
Cluster EB (eV) ET (eV) ER (eV) EA (eV) 

Al13
- -0.15 0.25 -0.77 0.40 

Al13I- -0.14 0.23 -1.34 0.37 
Al13I2- -0.29 0.20 -0.85 0.49 

Al13I2-
adj -0.67 -0.42 -2.14 0.25 

Al13I3- -0.29 0.21 -1.34 0.50 
Al13I4- -0.27 0.26 -0.72 0.53 

The	 relative	 methanol‐bound	 state,	 EB,	 relative	 transition	 state,	 ET,	 relative	
relaxed	 state,	 ER,	 and	 activation,	 EA,	 energies	 of	 the	 lowest	 energy	 reaction	
pathways	of	Al13Ix‐	with	methanol.	Adapted	from	Table	1	in	Abreu	et	al.115	

Note again that the relative energy of the methanol-bound state, EB, is simply the negative of the 

binding energy, BE. Comparing the BE values in Table 3.3-1 with the EB values in Table 3.3-2, 

one can see that the lowest energy reaction pathways begin as predicted with the binding of 

methanol to a Lewis acid site, whether that site is a particularly strong Lewis acid or not. 

To first explore the effect of adding a single iodine atom on the reactivity of Al13
-, Figure 

3.3.2 shows the lowest energy reaction pathways of Al13
- and Al13I- with methanol. As discussed, 

Al13
- is a poor Lewis acid, with binding energy of only 0.15 eV, due to the even charge density 

distribution of the cluster. In Figure 3.3.2(a), the reaction pathway shows that the reaction of 

Al13
- with methanol has a positive relative transition state energy, ET, of 0.25 eV, indicating that 

this reaction will not occur. Similarly, as shown in Table 3.3-2, the high activation energy, EA, of 
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0.40 eV confirms stability of this cluster toward methanol. This EA will be used as the reference 

for the remaining clusters in the series. 

 
Figure	 3.3.2:	 Lowest	 Energy	 Reaction	 Pathways	 of	 Al13‐	 and	 Al13I‐	 with	
Methanol.	The	above	figure	demonstrates	the	effect	that	the	addition	of	a	single	
iodine	 atom	makes	 to	 the	 reactivity	 of	 Al13‐.	 The	 reaction	 pathways	 with	 the	
lowest	 transition	 state	 energy	 for	 (a)	 Al13‐	 and	 (b)	 Al13I‐	 are	 shown.	 The	
interpolated	reaction	pathway	is	shown	as	a	red	line,	and	the	absolute	values	of	
EB	(or	BE),	ET,	and	ER	are	indicated.	The	occupied	(red)	and	unoccupied	(blue)	
frontier	orbital	 charge	densities	are	shown	on	 the	ground	state	structure,	and	
the	geometries	of	the	methanol‐bound	state,	transition	state,	and	final	state	are	
pictured	with	aluminum	in	blue,	iodine	in	purple,	oxygen	in	red,	carbon	in	gray,	
and	hydrogen	in	white.	Adapted	from	Figure	2	of	Abreu	et	al.115		

In Figure 3.3.2(b), one can see that the reaction site with the lowest ET for Al13I- is a Lewis 

acid site on the core, with the hydrogen atom eventually binding to the half-filled HOMO site 

exactly opposite the iodine ligand. The binding energy at this site is about the same as for the 

bare Al13
- cluster, again due to the diffuse and symmetrical distribution of unoccupied frontier 

orbital charge density. The ET is also similar to the bare cluster, only dropping to 0.23 eV, so this 

cluster is also unreactive. This is further shown by the EA of 0.37 eV, which again shows no 

significant improvement over that of the bare cluster. The only difference between the reactions 

of the bare and iodized cluster is the relative relaxed state energy, ER. In the case of Al13I-, it is 

almost twice as great as it is in the case of Al13
-. This could be caused by the concentration of 
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HOMO density in Al13I- on the aluminum atom opposite the iodine, which receives the hydrogen 

atom. Despite only being half-filled, this site acts as a better Lewis base than any site on the Al13
- 

cluster.  

The addition of one iodine atom does not act to make the cluster reactive, so we will now 

look at the addition of two iodine atoms. Figure 3.3.3 shows the lowest energy reaction pathways 

with methanol of both Al13I2
- isomers: the ground state with balanced iodine ligands and the 

higher energy structure with iodine ligands on adjacent aluminum atoms.  

 
Figure	3.3.3:	Lowest	Energy	Reaction	Pathways	of	Two	 Isomers	of	Al13I2‐	
with	Methanol.	The	above	figure	demonstrates	the	effect	of	 ligand	placement.	
The	lowest	energy	reaction	pathways	are	given	for	(a)	the	ground	state	of	Al13I2‐	
in	which	the	two	iodine	ligands	are	opposite	each	other,	and	(b)	a	higher	energy	
isomer	 of	 Al13I2‐,	 in	 which	 the	 two	 iodine	 ligands	 are	 placed	 on	 adjacent	
aluminum	atoms.	The	interpolated	reaction	pathway	is	shown	as	a	red	line,	and	
the	 absolute	 values	 of	 EB,	 ET,	 and	 ER	 are	 indicated.	 The	 occupied	 (red)	 and	
unoccupied	 (blue)	 frontier	 orbital	 charge	 densities	 are	 shown	 on	 the	 ground	
state	 structure,	 and	 the	 geometries	 of	 the	 methanol‐bound	 state,	 transition	
state,	 and	 final	 state	 are	 pictured	 with	 aluminum	 in	 blue,	 iodine	 in	 purple,	
oxygen	in	red,	carbon	in	gray,	and	hydrogen	in	white.	Adapted	from	Figure	2	of	
Abreu	et	al.115	

Despite being a slightly better Lewis acid than both the bare Al13
- cluster and Al13I-, as shown in 

Figure 3.3.3(a), Al13I2
- in its ground state is unreactive with methanol, with a positive ET of 0.20 

eV. ER is also low, similar to that of Al13
-, indicating that there is no adequate Lewis base site to 
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which hydrogen can bind. Finally, the EA of 0.49 eV is even higher than that of the bare cluster, 

further evidence that the cluster is unreactive. This can be attributed to the symmetrical 

distribution of the charge density.  

As previously shown, the placement of the two iodine ligands on adjacent aluminum 

atoms results in the formation of complementary active sites on the opposite side of the cluster. 

Consequently, one can see in Figure 3.3.3(b) that this cluster does react with methanol. This is 

indicated by the negative ET, -0.42 eV, which shows that the O-H bond can be broken. Finally, 

the ER of -2.14 eV suggests that hydrogen is able to bind strongly to a Lewis base site adjacent to 

the Lewis acid site. This cluster also has the lowest EA in this series, at only 0.25 eV. While 

Al13I2
-
adj is a higher energy isomer, its reactivity with methanol is evidence that complementary 

Lewis acid-base sites can be induced in unreactive clusters, like Al13
-, by appropriately attaching 

electronegative ligands. The higher energy isomer is unlikely to exist in experiment, but the 

effect of ligand placement uncovered in the theoretical study of Al13I2
-
adj can be extended to other 

cluster systems and to the design of cluster-assembled materials.  

As the relative energies in Table 3.3-2 show, the lowest energy reaction pathways for 

Al13I3
- and Al13I4

- are very similar to those of Al13I- and Al13I2
- in their ground states, 

respectively. Neither cluster is a particularly good Lewis acid, and the high ET and EA values for 

both clusters show that neither will react with methanol. Although Al13I3
- is a better Lewis acid 

than its odd-iodine counterpart Al13I- – perhaps owing to the electron-withdrawing effects of 

several iodine atoms compared to just one – it shows no enhanced reactivity over Al13I-; the 

unoccupied frontier orbital charge density is still too diffuse, and the concentrated HOMO site 

cannot act fully as a Lewis base, being only half-filled. Looking to the even-iodine clusters, 

Al13I4
- is actually less reactive than Al13I2

-, and this can again be attributed to the symmetrical 
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frontier orbital charge densities. No prominent Lewis acid-base pairs are induced by the addition 

of the iodine ligands, since they add to the cluster in a symmetrical manner. The lowest energy 

reaction pathways for Al13I3
- and Al13I4

- are shown in Figure A1 in Appendix A.  

3.4 The	Al14Iy‐	(y=0‐5)	Series	

Figure 3.4.1 presents the ground state structures of Al14Iy
- (y = 0-5) and their 

corresponding frontier orbital charge densities.  

 
Figure	 3.4.1:	 Ground	 State	 Structures	 and	 Frontier	 Orbital	 Charge	
Densities	of	Al14Iy‐.	 The	 ground	 state	 structures	 of	 Al14Iy‐	 (y=0‐5)	 are	 shown	
with	 aluminum	 atoms	 in	 light	 blue	 and	 iodine	 atoms	 in	 purple.	 Occupied	
frontier	orbital	charge	density	is	shown	in	red,	while	unoccupied	frontier	orbital	
charge	density	is	shown	in	blue.	Taken	from	Figure	3	of	Abreu	et	al.115	
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In the same manner as with Al13Ix
-, the occupied frontier orbital density includes the HOMO and 

all orbitals lying close in energy and the unoccupied frontier orbital density includes the LUMO 

and all orbitals lying close in energy. The orbitals used for each cluster are given in Table A2 in 

Appendix A. The general geometry of the series is that of an icosahedral Al13
- cluster with an 

adatom defect – the fourteenth atom sits atop the Al13
- core. The iodine ligands attach at external 

sites, with the first iodine bonding to the adatom, and any additional iodine atoms bonding to 

aluminum atoms on the opposite side of the cluster. As shown in Figure 1.4.1, the adatom itself 

induces sites of concentrated occupied and unoccupied frontier orbital charge density on the 

opposite side of the Al14
- cluster, forming a complementary Lewis acid-base pair. This is also 

apparent in Al14I-. The addition of an iodine atom to the adatom creates a concentration of 

occupied and unoccupied charge density near the adatom, creating another possible reaction site 

on the remaining clusters in this series. 

 For each cluster in the Al14Iy
- series, the chosen reaction sites and the calculated binding 

energies are given in Table 3.4-1. One can immediately see that the binding energies are 

generally greater than those found in the Al13Ix
- series, meaning the adatom perturbs the charge 

density enough to create stronger active sites by concentrating the occupied or unoccupied 

frontier orbital charge density to certain areas on the cluster. In addition to the adatom itself, 

which has a binding energy of 0.30 eV, Al14
- has active sites on the core: a Lewis acid site with a 

binding energy of 0.36 eV and a Lewis base site with a binding energy of 0.34 eV. All three 

chosen sites are better Lewis acids than any site on the bare Al13
- cluster. The addition of an 

iodine atom to the Al14
- cluster only enhances the Lewis acidity of these sites; the binding 

energies of the Lewis acid and Lewis base sites increase to 0.43 eV and 0.41 eV, respectively, 

and the binding energy of the now iodine-ligated adatom site increases to 0.55 eV. 
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Table 3.4-1: Reaction Sites and Corresponding Binding Energies for Al14Iy
-. 

Cluster Site BE (eV) 

Al14
- 

adatom 0.30 
LB (core) 0.34 
LA (core) 0.36 

Al14I- 
adatom 0.55 

LA (core) 0.43 
LB (core) 0.41 

Al14I2- 
adatom 0.41 

I site 0.08 
LA/LB (core) 0.45 

Al14I3- 
adatom 0.44 

I site 0.16 
LA (core) 0.58 

Al14I4- 
adatom 0.40 
I site/LA 0.02 
LB (core) 0.33 

Al14I5- 
adatom 0.38 

LA/HB (core) 0.33 
I site 0.11 

The	 reaction	 sites	 chosen	 for	 each	 cluster	 and	 their	 corresponding	 binding	
energies	as	defined	in	Equation	(3.2‐1)	are	given	above.	LA	(LB)	indicates	that	
methanol	bonds	to	a	Lewis	acid	(base)	site;	HB,	that	methanol	forms	a	hydrogen	
bond	with	a	nearby	iodine	atom;	adatom,	that	methanol	bonds	to	the	adatom;	I	
site,	that	methanol	bonds	to	an	aluminum	atom	that	is	bonded	to	an	iodine	atom	
on	 the	 core	 of	 the	 cluster,	 not	 the	 adatom;	 and	 core,	 that	 whichever	 site	
indicated	is	on	the	core	of	the	cluster.		

The ligated adatom site maintains a high binding energy, hovering around 0.40 eV, in the 

remaining clusters in the series. For clusters with more than one iodine, the iodine-ligated 

aluminum atom on the core of the cluster, indicated by I site, shows low Lewis acidity, with 

binding energies less than 0.20 eV, and in the case of Al14I4
-, as low as 0.02 eV. This is similar to 

the I sites tested in Al13Ix
-, which were also poor Lewis acids. The remaining sites tested were 

Lewis acid or Lewis base sites located on the core, all of which have high binding energies, 

including the Lewis acid site on the core of Al14I3
-, which has the highest binding energy, 0.58 
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eV, of all reaction sites tested in this series. This is due to the formation of a hydrogen bond 

between methanol and the iodine ligand.  

The transition state and relaxed state geometries were found as described in Section 3.2 for 

all the reaction sites listed in Table 3.4-1. The relative methanol-bound state, relative transition 

state, relative relaxed state, and activation energies were calculated for each reaction site as 

described in Section 3.2, and are shown for selected reaction pathways in Table 3.4-2. This table 

includes the lowest energy reaction pathway for each cluster (shaded) as well as additional 

reaction pathways that are of interest in understanding the role of the iodine ligand or exploring 

the differences in reactivity between various active sites. 

Table	3.4‐2:	Relative	Energies	for	Reaction	Pathways	of	Al14Iy‐	with	Methanol	
Cluster EB(eV) ET(eV) ER(eV) EA(eV) 
Al14

-
act -0.36 -0.12 -1.80 0.24 

Al14
-
adatom -0.30 0.22 -0.69 0.52 

Al14I-adatom -0.55 -0.12 -1.80 0.43 
Al14I-act -0.43 -0.29 -2.30 0.14 

Al14I3-
adatom -0.44 -0.20 -0.84 0.24 

Al14I3-
I site -0.16 0.36 -0.90 0.52 

Al14I3-
core -0.58 0.13 -0.78 0.71 

Al14I2-
adatom -0.41 -0.23 -1.12 0.18 

Al14I4-
adatom -0.40 -0.17 -0.95 0.23 

Al14I5-
adatom -0.38 -0.18 -1.35 0.20 

The	relative	methanol‐bound	state,	EB,	relative	transition	state,	ET,	relative	
relaxed	state,	ER,	and	activation,	EA,	energies	of	selected	reaction	pathways	of	
Al14Iy‐	with	methanol.	Adpated	from	Table	2	of	Abreu	et	al.115	

Comparing the binding energies in Table 3.4-1 to the relative methanol-bound energies in 

Table 3.4-2, one can see that in most cases the lowest energy reaction pathway corresponds to 

the greatest binding energy, and hence occurs at the site of greatest Lewis acidity. However, this 

is not true for all clusters in the series, and not all sites that have high binding energies actually 

succeed in breaking the O-H bond in methanol. This is explored in Figure 3.4.2, which shows the 
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results of the reaction of Al14I3
- with methanol at three different active sites: the ligated adatom, a 

ligated aluminum atom on the core, and an all-metal Lewis acid site on the core.  

 
Figure	3.4.2:	Reaction	Pathways	of	Al14I3‐	with	Methanol.	This	figure	shows	
the	variable	reactivity	found	at	different	reaction	sites	on	the	Al14I3‐	cluster.	The	
reaction	 pathways	 of	 Al14I3‐	 at	 (a)	 the	 ligated	 adatom	 site,	 (b)	 a	 ligated	
aluminum	site	on	the	core,	and	(c)	an	all‐metal	site	on	the	core	are	shown.	The	
interpolated	reaction	pathway	is	shown	as	a	red	line,	and	the	absolute	values	of	
EB	(or	BE),	ET,	and	ER	are	indicated.	The	occupied	(red)	and	unoccupied	(blue)	
frontier	orbital	 charge	densities	are	shown	on	 the	ground	state	structure,	and	
the	geometries	of	the	methanol‐bound	state,	transition	state,	and	final	state	are	
pictured	with	aluminum	in	blue,	iodine	in	purple,	oxygen	in	red,	carbon	in	gray,	
and	hydrogen	in	white.	Adapted	from	Figure	2	of	Abreu	et	al.115	
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As shown in Figure 3.4.2(a), Al14I3
- will react with methanol at the ligated adatom site. The 

ligated adatom is a decent Lewis acid site, and the ET of -0.20 eV shows that the O-H bond will 

be broken. Furthermore, the EA is quite low at 0.24 eV, on par with the reactive Al13I2
- cluster 

with adjacent iodine ligands. Interestingly, as shown in Figure 3.4.2(b) and (c), Al14I3
- does not 

react with methanol at any other site. The ligated aluminum atom on the core, (b), is a poor 

Lewis acid and has the highest ET, 0.36 eV, of all the lowest energy reaction pathways presented 

in either series. The all-metal site on the core, (c), has the highest binding energy in the series, 

but is still unreactive with an ET of 0.13 eV. These sites on the core, whether ligated or not, may 

be unreactive due to steric constraints. Al14I2
-, Al14I4

-, and Al14I5
- all show the same reactivity 

patterns as Al14I3
-; the clusters react with methanol at the ligated adatom site, with negative ET 

and low EA, but not at any other site. This is especially remarkable for Al14I3
- and Al14I5

-, which 

as previously discussed, are both closed-shell species stable to O2. The lowest energy reaction 

pathways of Al14I2
-, Al14I4

-, and Al14I5
- are given in Figure A2 in Appendix A. 

The fact that Al14Iy
- (y = 2-5) clusters are only reactive with methanol at the adatom site 

begs the question: Is the iodine ligand necessary to induce reactivity, or is the bare adatom 

sufficient for creating the active site? To examine this, the selected reaction pathways of bare 

Al14
- and Al14I- are shown in Figure 3.4.3.  



 
 

63 
 

 
Figure	 3.4.3:	 Selected	 	 Reaction	 Pathways	 of	 Al14‐	 and	 Al14I‐.	 This	 figure	
shows	the	effect	of	adding	a	ligand	to	the	adatom	of	Al14‐.	The	reaction	pathways	
of	Al14‐	with	methanol	at	(a)	a	Lewis	acid	site	opposite	the	adatom	and	(b)	the	
adatom,	as	well	as	(c)	the	reaction	pathway	of	Al14I‐	at	the	ligated	adatom	site	
are	 shown.	The	 interpolated	 reaction	pathway	 is	 shown	as	a	 red	 line,	 and	 the	
absolute	 values	 of	 EB,	 ET,	 and	 ER	 are	 indicated.	 The	 occupied	 (red)	 and	
unoccupied	 (blue)	 frontier	 orbital	 charge	 densities	 are	 shown	 on	 the	 ground	
state	 structure,	 and	 the	 geometries	 of	 the	 methanol‐bound	 state,	 transition	
state,	 and	 final	 state	 are	 pictured	 with	 aluminum	 in	 blue,	 iodine	 in	 purple,	
oxygen	in	red,	carbon	in	gray,	and	hydrogen	in	white.	Adapted	from	Figure	2	of	
Abreu	et	al.115	
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As Figure 3.4.3(a) shows, the bare Al14
- cluster reacts with methanol at the aforementioned 

complementary active sites on the cluster opposite the adatom. Just as in Al13I2
- with adjacent 

iodine atoms, the oxygen of methanol bonds to the fairly strong Lewis acid site on the core of the 

Al14
- cluster, the O-H bond breaks with a ET of -0.12 eV, and hydrogen binds to the adjacent 

Lewis base site, with a ER of -1.80 eV. The adatom site, shown in (b), is about as strong a Lewis 

acid as the site on the core, but is unreactive with methanol – the ET is 0.22 eV. The ER is also 

quite high at -0.69 eV. While the addition of the adatom to the Al13
- cluster makes the resulting 

Al14
- cluster reactive through geometric distortion of the charge density, the adatom itself is not 

reactive.  

Comparison of the binding energies of Al14
- and Al14I- demonstrates that the addition of an 

iodine ligand to the Al14
- cluster at the adatom site nearly doubles its Lewis acidity. Now looking 

at Figure 3.4.3(c), one can see that the ligated adatom is consequently reactive with methanol, 

having an ET of -0.12 eV. This site also has a lower ER of -1.80 eV. By comparing the reactivity 

of Al14
- and Al14I-, it becomes clear that the adatom only becomes reactive when a ligand is 

attached; this active site can be referred to as a ligand-activated adatom. It should be noted that 

the adatom is not the site of the lowest reaction pathway for Al14I-, which has a lower energy 

transition state at a Lewis acid site on the opposite side of the cluster, as shown in Table 3.4-2; 

however, it has already been shown that the remaining clusters react only at this ligand-activated 

adatom.  

3.5 Discussion	

 Through study of the reactivity of the Al13Ix
- and Al14Iy

- series with methanol, it was 

shown that ligands, usually thought of as protecting groups, can also be used as activating 

groups. Overall, the ground states of Al13Ix
- are stable to methanol due to the diffuse and 
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generally symmetrical frontier orbital charge densities. Despite addition of electronegative 

ligands, the highly symmetrical icosahedral core of this series generally prevents distortion in the 

charge densities, meaning no prominent complementary Lewis acid-base sites are generated. 

With the addition of an adatom, the Al13
- core does become reactive, as the charge density is 

distorted on the opposite side of the cluster. The adatom of the Al14
- cluster, however, does not 

react with methanol. It is only by ligation with electronegative iodine that the adatom becomes 

activated. The adatom site maintains its reactivity with methanol throughout the series tested, 

even as the sites on the opposite side of the cluster become unreactive with the addition of iodine 

atoms. Most notably, the closed-shell species Al14I3
- and Al14I5

- will react with methanol at the 

ligand-activated adatom site. Overall, the hypothesis that induction of complementary Lewis 

acid-base sites capable of breaking the O-H bond in methanol was possible through ligation with 

electronegative iodine was confirmed, but we also found unexpected behavior in the form of the 

ligand-activated adatom. 

3.6 Experimental	Confirmation	

Our collaborators in the Castleman Group at Pennsylvania State University experimentally 

produced the AlnIx
- clusters and reacted them with methanol in a fast-flow tube apparatus. The 

experimental setup was similar to that of the oxygen etching experiment previously mentioned,40 

except CH3OH was used instead of O2. Briefly, aluminum clusters are produced by laser ablation 

of an aluminum rod, known as a laser vaporization (LaVa) source. These Aln
- clusters are 

introduced into the fast-flow tube apparatus with the carrier gas helium at 8000 standard cubic 

centimeters per minute (sccm). The fast-flow tube is equipped with two reaction gas inlets 

(RGIs) through which reactants can be added to the aluminum clusters. In this case, I2 gas 

produced through sublimation is introduced to generate AlnIm
- clusters. Subsequently, methanol 
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(MeOH) is introduced (in this case at a rate of 20 sccm) to the AlnIm
- clusters. The products of 

this reaction were analyzed via quadrupole mass spectrometry. Figure 3.6.1 shows the mass 

spectra of AlnIm
- before and after reaction with methanol. (Note that the experimental 

collaborators use the designation AlnIx
- instead of AlnIm

-). 

 
Figure	 3.6.1:	 Mass	 spectra	 of	 AlnIx‐	 before	 and	 after	 reaction	 with	
methanol.	 The	 bottom	 spectrum	 shows	 the	 intensities	 of	 AlnIx‐	 units	 before	
reaction	 with	 CH3OH,	 while	 the	 top	 shows	 the	 intensities	 after	 the	 reaction.	
Peaks	are	labeled	to	indicate	the	number	of	Al	and	I	atoms	present.	Intensity	is	
measured	in	arbitrary	units.	Note	that	the	scales	for	each	spectrum	differ.	

From the mass spectra, it is clear that Al13
-, Al13I-, Al13I2

-, and Al13I3
- survive the reaction with 

methanol, as predicted by theoretical results. No Al13I4
- appears to have been initially present. On 

the other hand, there is no Al14I- or Al14I2
- left after the reaction, despite there being appreciable 

amounts of these clusters present in the first spectrum. Additionally, Al14I3
- is reduced to a nearly 

negligible intensity after reaction with methanol. Contrary to our predictions, Al14
- did not 

completely react away during this experiment, however, previous experiments of this type 

showed that Al14
- does react with methanol.38 Thus, this experiment confirms what we showed 

theoretically; the Al13Ix
- series is stable to reaction with methanol, while the Al14Iy

- series, even 

those clusters with closed-shell electronic configurations, is not.  
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4 Silicon	Encapsulated	Transition	Metal	Clusters	

4.1 Overview	

The purpose of this study is to revisit the applicability of the electronic principles that have 

been used to describe the stability of TMSin clusters – specifically, the CNFEG model and the 

18-electron rule. To do this, careful calculations of the ground state geometries and molecular 

orbital analyses were carried out on CrSin and WSin (n=6-16). Before doing so, a functional, 

which approximates the electron exchange and correlation within density functional theory, was 

chosen for the calculations. The process by which this was done and the results are described in 

Section 4.2. A brief section describing the calculation of energetic properties used to characterize 

these clusters follows in Section 4.3. Ground state structures of CrSin (n=6-16) and their 

properties are presented in Section 4.4.1, and the molecular orbital analyses of select clusters in 

this series is given in Section 4.4.2. In Section 4.5, the study is extended to WSin (n=6-16) and 

the energetic and brief molecular orbital analysis results are compared to those obtained for 

CrSin. A portion of this work has been published in the Journal of Physical Chemistry Letters.116 

4.2 Choosing	a	Functional	

While aluminum clusters are accurately treated using the PBE functional, as several 

photoelectron spectroscopy experiments confirm, theoretical studies of silicon encapsulated 

transition metal clusters have employed a variety of functionals. Some studies used LDA or 

GGA functionals, especially PBE and PW91, since these are the most computationally 

inexpensive.79,81,82,84,90 Other studies used hybrid functionals, especially B3LYP or 

B3PW91.81,83,89,91,117,118 One study by Kumar et al. utilized both hybrid B3PW91 and GGA PBE; 

the hybrid functional was used for geometry optimization, while PBE was used to calculate 
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HOMO-LUMO gaps, making comparison with previous studies possible. Consequently, this 

study showed that the properties of these clusters are very sensitive to the functional used in the 

calculations.89  

In their study of CrSin (n=11-14), Khanna et al. compared the theoretically calculated VDE 

and ADE to experimental photoelectron spectroscopy results to validate their theoretical method, 

which employed the PBE functional for exchange and correlation.79 The experiment, however, 

tested only CrSin
- (n=9-12), so only the values for CrSi11 and CrSi12 were verifiable. No 

comprehensive comparison of theoretical and experimental results over a larger size range has 

been attempted. Recently, Kong et al. have produced photoelectron spectra for chromium-doped 

silicon clusters, CrSin
- (n=3-12).119 The results of this work are shown in Figure 4.2.1. To make 

contact with these experiments, the ground state structures of CrSin
- (n=6-12) were found using 

two different functionals: the gradient-corrected PBE functional and the hybrid B3LYP 

functional. These two functionals were chosen because they have been the most used in the 

literature, and because they are both typical examples of GGA and hybrid functionals. 

Geometries were built from the literature71,72,77,79,81–84,89,90,119,120 and optimized with PBE and 

B3LYP as described in Chapter 2. The ground states and low-lying structures within 0.20 eV of 

the ground state are shown for PBE and B3LYP in Figure 4.2.2 and Figure 4.2.3, respectively.  
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Figure	 4.2.1:	 Photoelectron	 Spectra	 of	 CrSin‐	 (n=3‐12).	 This	 figure,	 taken	
from	Kong,	et	al.,119	shows	the	photoelectron	spectra	for	anionic	CrSin	clusters	
with	3	through	12	silicon	atoms	obtained	with	266	nm	photons.	We	provide	this	
figure	 to	compare	our	 theoretical	 results	 to	 these	experimental	ones,	but	note	
that	we	did	not	calculate	spectra	for	CrSin‐	(n=3‐5).		
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Figure	 4.2.2:	 PBE	 Ground	 States	 and	 Low‐Lying	 Isomers	 of	 CrSin‐.	 The	
lowest	energy	geometries	and	those	within	0.20	eV	 for	anionic	CrSin	 (n=6‐16)	
clusters	 found	 using	 the	 PBE	 functional	 are	 shown	 above.	 Silicon	 atoms	 are	
shown	in	gray	and	chromium	atoms	are	shown	in	dark	blue.	The	total	magnetic	
moment	(MT)	and	local	magnetic	moment	on	chromium	(MCr)	are	given	for	each	
cluster.	Adapted	from	Figure	S2	of	Abreu	et	al.116	
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Figure	 4.2.3:	B3LYP	Ground	 States	 and	 Low‐Lying	 Isomers	 of	 CrSin‐.	The	
lowest	 energy	 geometries	 and	 those	 within	 0.20	 eV	 found	 with	 the	 B3LYP	
functional	are	shown	above	for	the	anions	of	CrSin	(n=6‐12).	Silicon	atoms	are	
gray	and	chromium	atoms	are	dark	blue.	The	total	magnetic	moment	(MT)	and	
the	local	magnetic	moment	on	chromium	(MCr)	are	given	for	all	geometries.		

In comparing the low-lying structures of CrSin
- found using PBE and B3LYP, it is 

noticeable that the B3LYP functional gives more low-lying isomers close to the ground state; all 

clusters except CrSi6
- and CrSi12

- have isomers within 0.20 eV, and most of these clusters have 
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several isomers in this energy range. On the other hand, the PBE functional yielded only three 

clusters with just one isomer within 0.20 eV of the ground state. Secondly, the magnetic 

properties of the clusters differ greatly depending on the functional. In the case of PBE, all the 

clusters have the lowest possible magnetic moment of 1 uB, except for the smallest, CrSi6
-, which 

has a magnetic moment of 3 uB. When B3LYP is used, higher magnetic moments of 3 uB and 5 

uB are favored for most clusters, even for cluster sizes as large as ten silicon atoms. The 

geometries themselves are also different; PBE tends to favor basket-like and eventually cage-like 

structures with an interior chromium atom, while B3LYP favors structures in which the 

chromium atom occupies an external position.  

Using these anionic geometries, the photoelectron spectra were calculated using time-

dependent density functional theory as described in Chapter 2. The anion geometry was forced 

neutral for a single-point calculation, meaning there was no geometry optimization. For each 

anion, it is necessary to calculate both possible spin states resulting from the removal of an 

electron – for an anion with a magnetic moment of M, neutral clusters can have magnetic 

moments M+1 and M-1. For each spin state, the VDE was calculated as:  

 VDE ൌ EሺCrSi୬ିሻ െ EሺCrSi୬ሻୟ୬୧୭୬ ୥ୣ୭୫ (4.2-1)

which is the difference between the energy of the anion and the energy of the anion forced 

neutral. The ADE was also calculated for each cluster as the difference between the anion and 

the neutral ground state, as in Eq. (4.2-2): 

 ADE ൌ EሺCrSi୬ିሻ െ EሺCrSi୬ሻୋୗ (4.2-2)

The lowest 50 excitations were calculated for the two possible spin states of each cluster using 

the anion clusters forced neutral with no geometry optimization. The VDE was added to the 

resulting excitations for each spin state to give the excitations of the anionic cluster. The line 



 
 

73 
 

spectra, showing individual excitations, and continuous spectra, generated from a Gaussian 

fitting of the excitation values, are shown for PBE and B3LYP in Figure 4.2.4 and Figure 4.2.5, 

respectively.  

 
Figure	4.2.4:	PBE	Simulated	Photoelectron	Spectra	for	CrSin‐	(n=6‐12).	For	
each	cluster,	the	bottom	graph(s)	show	the	excitations,	represented	as	lines,	for	
each	possible	spin	state.	The	top	graph	shows	a	Gaussian	fitting	(σ=0.15)	of	the	
excitation	values.	For	clusters	with	isomers	close	to	the	ground	state,	(a)	is	the	
ground	state	geometry	and	(b)	is	the	higher	energy	state.	Taken	from	Figure	S3	
of	Abreu	et	al.116	
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Figure	4.2.5:	B3LYP	Simulated	Photoelectron	Spectra	 for	CrSin‐	 (n=6‐12).	
For	each	cluster,	the	bottom	graph(s)	show	the	excitations,	represented	as	lines,	
for	 each	 possible	 spin	 state	 –	 the	 lower	 spin	 state	 is	 shown	 in	 blue	 and	 the	
higher	spin	state	is	shown	in	red.	For	anions	with	magnetic	moments	of	1,	3,	and	
5	 µB,	 the	 resulting	 states	 are	 0	 and	 2,	 2	 and	 4,	 and	 4	 and	 6	 µB,	 respectively.	
(Please	refer	 to	Figure	4.2.3	 for	 information	about	 the	possible	spin	states	 for	
the	 various	 isomers.)	 The	 top	 graph	 for	 each	 cluster	 shows	 a	Gaussian	 fitting	
(σ=0.15)	 of	 the	 excitation	 values	 –	 a	 continuous	 spectra.	 For	 clusters	 with	
isomers	close	 to	 the	ground	state,	 the	 labels	 (a)	 through	(e)	are	 indicated	and	
correspond	to	the	geometries	shown	in	Figure	4.2.3.		
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Comparing the continuous theoretical spectra to the experimental spectra in Figure 4.2.1, the 

PBE spectra match the experimental spectra very well, while the B3LYP spectra do not. To 

further exemplify this, Table 4.2-1 gives the VDE, ADE, and the relative position of the second 

peak in each spectrum for both PBE and B3LYP. These values are given only for the absolute 

ground state for clarity.  

Table	 4.2‐1:	 VDE,	 ADE,	 and	 Relative	 Position	 of	 the	 2nd	 Peak	 of	 Theoretical	 and	
Experimental	Photoelectron	Spectra	for	CrSin‐	(6‐12).	
Number 

of Si 
Atoms 

VDE ADE 
Relative Position of 2nd 

Peak 

PBE B3LYP Exp PBE B3LYP Exp PBE B3LYP Exp 
6 2.93 3.09 2.98 2.54 2.22 3.12 0.36  0.12 0.55 
7 2.49 2.43 2.56 2.44 2.20 2.42 0.48  0.32 0.64 
8 2.62 2.98 2.72 2.54 2.45 2.61 0.48  0.06 0.80 
9 2.80 2.64 2.90 2.67 2.49 2.71 0.47  0.12 0.52 
10 2.83 3.05 2.88 2.66 2.72 2.68 1.10  0.61 1.22 
11 2.88 3.33 2.97 2.77 2.98 2.79 0.76  0.07 0.98 
12 3.05 3.09 3.19 3.05 3.06 3.11 0.69  0.43 0.83 
The	 above	 table	 gives	 the	 theoretically	 calculated	 vertical	 and	 adiabatic	
detachment	 energies	 for	 both	 the	 PBE	 and	 B3LYP	 functionals	 and	 compares	
them	to	the	experimental	VDE	and	ADE	values	from	Kong,	et	al.119.	The	relative	
position	 of	 the	 second	 peak	 on	 the	 spectra	 was	 taken	 from	 the	 theoretically	
simulated	 continuous	 spectra	 and	 compared	 to	 the	 experimental	 spectra.	 All	
theoretical	 values	 are	 given	 only	 for	 the	 ground	 states,	 even	 where	 isomers	
close	in	energy	exist.	Adapted	from	Table	S1	of	Abreu	et	al.116	

In general, the PBE values are closer to the experimental values than those of B3LYP. This study 

confirms that the use of the PBE functional is appropriate for TM-doped silicon clusters, and 

PBE is used for the remaining calculations.   

4.3 Calculating	Cluster	Properties	

To characterize the stability of TMSin (TM = Cr, W) clusters, several properties were 

calculated. The first of these is the incremental silicon binding energy, ΔSi, calculated as:  

 ∆Si ൌ EሺTMSi୬ሻ െ ൫EሺTMSi୬ିଵሻ ൅ EሺSiሻ൯ (4.3-1)
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where E(TMSin) is the energy of the ground state of the cluster, E(TMSin-1) is the energy of the 

ground state of the cluster of the preceding size, and E(Si) is the energy of a free silicon atom. 

Because the energy of the preceding size is required, ΔSi was calculated only for clusters with 

seven or more silicon atoms. A similar property, the transition metal embedding energy, ΔTM, 

was calculated, by Equation (4.3-2):  

 ∆TM ൌ EሺTMSi୬ሻ െ ൫EሺTMሻ ൅ EሺSi୬ሻ൯ (4.3-2)

where E(TM) is the energy of a free chromium or tungsten atom and E(Sin) is the energy of the 

pure silicon cluster. For this calculation, the geometries of the pure silicon clusters used for both 

transition metals are shown in Figure B-5 of Appendix B and agree with structures previously 

found in theoretical studies of silicon clusters.121–126 Relatively large values of both ΔSi and ΔCr 

or ΔW indicate that a cluster is stable to the removal of a silicon or transition metal atom, 

respectively. Note that the Wigner-Witmer spin conservation rules were not used. 

The stability of these clusters to the addition or removal of an electron was also explored 

using the VDE, ADE, and the ionization potential, IP. The VDE and ADE were calculated for 

the remaining Cr-doped clusters (n=13-16) using Equations (4.2-1) and (4.2-2), respectively, and 

for WSin (n=6-16) using the same equations with the corresponding WSin energies. Low values 

of ADE and VDE indicate stability of the neutral cluster. The ionization potential for each cluster 

was calculated as shown below:  

 IP ൌ EሺTMSi୬ሻ െ EሺTMSi୬ାሻ (4.3-3)

where E(TMSin) is the ground state energy of the cluster, and E(TMSin
+) is the ground state 

energy of its cation. Higher values of IP indicate stability of the neutral cluster.  

Finally, the hydrogen binding energy was calculated for each cluster because some of the 

experiments used silane, SiH4, as a precursor to generate CrSin or WSin clusters. First, the 
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preferred hydrogen binding site was found by adding a hydrogen atom to many different sites on 

the ground state clusters, including both metal and silicon sites, and optimizing each geometry. 

The hydrogen binding energy, H BE, was calculated for each ground state by Equation (4.3-4): 

 H	BE ൌ EሺHTMSi୬ሻ െ ൫EሺHሻ ൅ EሺTMSi୬ሻ൯ (4.3-4)

where E(HTMSin) is the energy of the lowest energy hydrogen bound cluster and E(H) is the 

energy of a free hydrogen atom. The binding energy of a single hydrogen atom in a H2 molecule 

was calculated to be 2.26 eV and an H BE value lower than this indicates stability of the bare 

TMSin cluster.  

4.4 CrSin	(n=6‐16)	

4.4.1 Energetics	

Figure 4.4.1 shows the ground state geometries of CrSin (n=6-16) found using the PBE 

functional for exchange and correlation. Many structures were tried, and higher energy isomers 

are shown in Figure B-1 through Figure B-4 in Appendix B. The structures for neutral species 

are similar to the ones obtained in previous theoretical studies.71,72,77,79,81–84,89,90,118,119 The 

magnetic moments of all the clusters are quenched, except for CrSi6, which has a total magnetic 

moment of 4 µB and a local magnetic moment on the chromium atom of 4.21 µB. As shown in 

Figure 4.4.1, the chromium atom occupies an external site for clusters with six to nine silicon 

atoms. In CrSi10 and CrSi11, the Cr is mostly embedded in the silicon cage, but is still partially 

exposed. For CrSi12 and larger clusters, the Cr atom is completely encapsulated. Thus, CrSi12 is 

the smallest cluster with a completely interior Cr atom. 
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Figure	4.4.1:	Ground	State	Geometries	of	Neutral	CrSin	(n=6‐16)	Clusters.	
The	lowest	energy	isomers	found	using	the	PBE	functional	for	CrSin	clusters	are	
shown.	 Silicon	 atoms	 are	 gray	 and	 chromium	 atoms	 are	 in	 dark	 blue.	 The	
average	 Si‐Si	 and	 Cr‐Si	 bond	 lengths	 for	 each	 cluster	 are	 shown	 beside	 the	
geometries	in	gray	and	dark	blue	respectively.	Taken	from	Figure	1	of	Abreu	et	
al.116	

Values of ΔSi, ΔCr, ADE, VDE, IP, HOMO-LUMO gap, and H BE were calculated as 

described in Section 4.3. The energies of the ground state structures of the cationic clusters and 

hydrogen-bound clusters shown in Figure B-6 and Figure B-7, respectively, were used for the 

calculation of the IP and H BE. Similarly, the energies of the anionic structures previously 

shown in Figure 4.2.2 were used for the calculation of ADE and VDE. The trends in these values 

are given in Figure 4.4.2. Table B-1 in Appendix B gives each of these values explicitly. 
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Figure	4.4.2:	Energetic	Properties	of	Ground	State	CrSin	(n=6‐16)	Clusters.	
(a)	The	 silicon	binding	energy,	ΔSi,	 for	n=7‐16.	 (b)	The	 chromium	embedding	
energy,	 	ΔCr.	(c)	The	adiabatic	and	vertical	detachment	energy,	ADE	and	VDE,	
respectively.	ADE	is	shown	as	blue	squares	and	VDE	is	shown	as	red	circles.	(d)	
The	ionization	potential,	IP.	(e)	The	HOMO‐LUMO	gap.	(f)	The	hydrogen	binding	
energy.	The	horizontal	dotted	line	shows	the	binding	energy	per	hydrogen	atom	
of	H2	as	a	 reference.	 In	 (a)‐(f),	 the	x‐axis	 is	 the	number	of	 silicon	atoms.	Data	
points	corresponding	to	CrSi12	and	CrSi14	are	included	to	guide	the	eye.	Adpated	
from	Figure	2	of	Abreu	et	al.116	
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The ΔSi binding energies, presented in Figure 4.4.2(a), show that CrSi14 has the largest binding 

energy while CrSi12 has the second largest. The progression in ΔSi is consistent with stability as 

observed in experiments; in the case of growth in an ion trap, CrSi12 stands out as a magic 

species,76 while in the case of synthesis via laser vaporization, the larger clusters are 

prominent.69,70 ΔCr shows a monotonic increase—the clusters become more stable as the metal is 

increasingly surrounded—with CrSi14 having a larger than trend embedding energy. Figure 

4.4.2(c) shows the ADE and VDE. CrSi12 has the largest ADE and third largest VDE, both 3.05 

eV. It is surprising that CrSi12 has a very high ADE because magic neutral species are expected 

to have low ADE. The IP shown in Figure 4.4.2(d) also reveals CrSi14 to have the highest IP, 

7.59 eV, and CrSi12 to have the second highest, 7.43 eV. Figure 4.4.2(e) shows the 

HOMO−LUMO gap, the strongest signature of a closed electronic shell, for each cluster. CrSi12 

has a relatively small HOMO−LUMO gap of 0.97 eV, while CrSi14 has the largest 

HOMO−LUMO gap of 1.48 eV.  

To interpret the final criterion, the H BE shown in Figure 4.4.2(f), the binding energy of a 

hydrogen atom in H2 was also calculated; found to be 2.26 eV, it is shown as the dashed line in 

Figure 4.4.2(f). Clusters that bind H strongly are likely to remain hydrogenated, while those with 

weak H binding energies are likely to be pristine CrSin species. CrSi14 and CrSi15 are found to 

have quite low H binding energies, indicating that H2 has the energy to autodissociate. CrSi12 

binds hydrogen with 2.35 eV, slightly too strongly to allow autodissociation, although it binds H 

much more weakly than n=7−9. The previously described results bring out two stable clusters, 

namely, CrSi12 and CrSi14. The fact that the binding energies of CrSi12 are relatively large 

suggests it is thermodynamically stable; however, the electronic criteria of the HOMO−LUMO 

gap and electron detachment energy suggest that CrSi12 does not possess high electronic stability. 
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CrSi14 appears to possess both electronic and thermodynamic stability. One would expect that a 

cluster that is stabilized by the 18-electron rule would be electronically stable, even if it did not 

have a particularly high thermodynamic stability. 

4.4.2 Molecular	Orbital	Analysis	

To uncover the underlying electronic principles governing the energetic properties of 

CrSi12, a thorough analysis of the molecular orbitals was undertaken. All of the occupied orbitals 

are show in Figure B-8 and Figure B-9, while unoccupied orbitals are shown in Figure B-10 in 

Appendix B. The MOs of CrSi12 were first examined against the CNFEG model for a nearly free 

electron gas. By looking at the shape, symmetry, and nodes of the MOs, each was assigned a 

CNFEG model orbital designation, e.g., 1S or 2P. These designations are shown explicitly for 

each orbital pictured in Appendix B. In Figure 4.4.3, the CNFEG model orbital designations are 

given on the left-hand side, where S orbitals are shown in black; P, blue; D, red; F, green; and G, 

purple. This analysis reveals that a simple CNFEG model is inconsistent with the observed 

electronic structure. With 54 total electrons, the assigned CNFEG shell structure for CrSi12 is 

|1S2|1P4|1P2 1D8|1F8 1D2 2S2|1F4 2P6 2D12 1G4||1D2|, with the | indicating distinct sets of orbitals 

with similar energies and the || indicating the line between filled and unfilled orbitals. The 2D12 

occupation occurs because of covalent bonding between the silicon cage and the Cr atom, 

demonstrating that a simple split-CNFEG model with charge transfer is unable to explain the 

electronic structure of the cluster.  

Having shown that a CNFEG model, whether applied to the full cluster or centered only on 

the chromium atom, does not fit the electronic structure of CrSi12, the nature of the MOs in 

CrSi12 were further analyzed to determine if the 18-electron rule applies. Most noticeably, the 

LUMO of CrSi12 is the 3dz2 orbital of Cr, and an analysis of the filled orbitals reveals no other 
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significant contributions to MOs from 3dz2. If the 18-electron rule did apply to CrSi12, then all 

five 3d orbitals must be occupied. A fragment analysis was performed wherein the cluster was 

divided into Cr and Si12 fragments,127,128  allowing states that contain appreciable contributions 

from Cr or Si12 sites to be identified. On the right-hand side of Figure 4.4.3, the MOs are 

classified by their fragment composition.  

 
Figure	4.4.3:		CrSi12	Orbital	Energy	Levels	and	Selected	Orbitals.	On	the	left	
hand,	the	orbital	energy	levels	are	assigned	as	S,	P,	D,	F,	or	G	delocalized	orbitals	
as	 per	 the	 CNFEG	 (Jellium)	model.	 On	 the	 right,	 the	 orbital	 energy	 levels	 are	
assigned	based	on	orbital	composition	as	predominantly	silicon,	shown	in	gray,	
or	having	chromium	s,	p,	or	d	character.	Occupied	orbitals	are	shown	as	solid	
lines	 and	 unoccupied	 orbitals	 are	 shown	 with	 dashed	 lines.	 The	 orbitals	
pictured	 are	 those	 with	 high	 Cr	 character,	 and	 the	 contributing	 Cr	 orbital	 is	
noted.	Adapted	from	Figure	3	of	Abreu	et	al.116	
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Orbitals with predominantly Si12 character are gray while orbitals possessing significant Cr 

character are shown in black, blue, and red, for 4s, 4p, and 3d orbitals, respectively. While it 

appears that there are six 3d orbitals in Figure 4.4.3, the 3dx2-y2 and 3dxy orbitals actually 

hybridize with the Si12 cage and split into two sets of orbitals, each with about equal Cr 3d 

orbital character. Thus, this analysis shows that the 4s and 4p orbitals, as well as all the 3d 

orbitals except for 3dz2, are filled. These orbitals are pictured in Figure 4.4.3. Thus, the Cr atom 

is found to have an electronic configuration of 4s24p63d8, indicating that the Cr atom has 16 

effective valence electrons. 

To understand why this cluster has an appreciable HOMO−LUMO gap with only 16 

valence electrons, one must look to the geometric structure of the cluster. The hexagonal 

structure of the CrSi12 is oblate with no silicon atoms along the primary axis of rotation. This 

causes a crystal-field-like splitting52 of the 3d orbitals, with the 3dz2 orbital being pushed up in 

energy. Much like a square-planar transition metal complex, the cluster becomes electronically 

stable with 16 effective valence electrons rather than the previously expected 18 effective 

valence electrons. A similar crystal-field splitting marks the Cr 4p orbitals, although they are 

filled, with the 4pz being higher in energy than 4px and 4py. While the oblate D6h structure causes 

crystal-field splitting to give CrSi12 a respectable HOMO−LUMO gap, the cluster is not 

characterized by a filled 3d electronic shell. This is the reason that CrSi12 does not exhibit all of 

the electronic markers of a magic species. 

While the 18-electron rule does not apply to CrSi12, which has been shown to have 16 

effective valence electrons rather than 18, another candidate for 18-electron rule stability is 

CrSi14. As shown in the previous section, CrSi14 has the largest HOMO−LUMO gap and ΔSi, 

making it the most stable cluster; so does the 18-electron rule apply to this magic cluster? To 
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answer this question, the same MO analysis was carried out for CrSi14, as was done for CrSi12. 

All of the occupied orbitals are shown in Figure B-11 and Figure B-12 and select unoccupied 

orbitals are shown in Figure B-13 in Appendix B. The cluster was split into Cr atom and Si14 

cage fragments in order to explore the makeup of each orbital, and determine the effective 

valence electrons on the Cr atom. The results of this are shown in Figure 4.4.4.  

 
Figure	4.4.4:	CrSi14	Orbital	Energy	Levels	and	Selected	Orbitals.	The	orbital	
energy	levels	of	CrSi14	are	shown	and	are	assigned	based	on	orbital	composition	
as	 predominantly	 silicon,	 shown	 in	 gray,	 or	 having	 chromium	 s,	 p,	 d,	 or	 p‐d	
hybrid	character,	shown	in	black,	blue,	red,	and	purple,	respectively.	Occupied	
orbital	energy	levels	are	shown	with	solid	lines,	and	unoccupied	orbital	energy	
levels	are	shown	with	dashed	lines.	The	orbitals	pictured	are	those	with	high	Cr	
character,	and	the	contributing	Cr	orbital	is	noted.	Taken	from	Figure	4	of	Abreu	
et	al.116	
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On the left-hand side, the orbital energy levels are again colored by their composition, while on 

the right the MOs containing appreciable amounts of Cr character are pictured. The electronic 

structure of CrSi14 is found to be 4s23d104p6 with all five of the 3d orbitals being occupied. Due 

to the lower symmetry of CrSi14 (C2v) compared to CrSi12, there is more hybridization between 

orbitals than in CrSi12. Most notably, there is significant hybridization between the 3dxz and the 

4px orbitals, resulting in two mixed orbitals. Additionally, the 3dxy and 3dyz orbitals hybridize 

with the Si14 cage to produce two sets of orbitals each. The comparably more spherical shape of 

the Si14 cage results in the 3d orbitals all being within 0.84 eV of each other and no dramatic 

crystal-field splitting is observed. The LUMO is a mixture of the 3dx2-y2 and 3dz2 orbitals, lying 

1.48 eV above the HOMO. Thus, CrSi14 has 18 effective valence electrons and follows the 18-

electron rule. 

 In order to expand the MO analysis to the rest of the series, the remaining clusters were 

split into fragments and the resulting MO compositions were analyzed to determine the effective 

valence electrons on the Cr atom. Surprisingly, the results show that all clusters except for CrSi6 

have 18 effective valence electrons. Being a magnetic cluster with four unpaired electrons, CrSi6 

has an effective valence count of 14. To further characterize the electronic structure, the width of 

the 3d-bands – that is, the difference in energy between the lowest and highest energy orbitals 

encompassing all five of the 3d orbitals of Cr – was calculated for all clusters except CrSi6, since 

it has half-filled orbitals. The 3d-band width can be thought of as a measure of the local 

environment surrounding the metal; the narrower the band, the more spherically distributed the 

silicon atoms are around the Cr atom. Figure 4.4.5 shows the results of this analysis.  
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Figure	4.4.5:	The	3d‐Bands	of	CrSin.	The	bands	 formed	by	the	3d	orbitals	of	
chromium	are	shown	as	vertical	gray	lines	relative	to	the	HOMO	in	red	and	the	
LUMO	in	blue	for	CrSin	(n=7‐16).	The	absolute	energy	of	the	orbitals	is	given	on	
the	y‐axis.			

For most clusters, the 3d-band width is around 0.8 eV, but for CrSi12 and CrSi13, this value jumps 

to about 1.6 eV. In the case of CrSi12, the crystal-field splitting of the 3d orbitals resulting in the 

unoccupied 3dz2 orbital being pushed up in energy has already been discussed. CrSi12 is the only 

cluster for which the 3d-band encompasses an empty orbital. CrSi13 has a geometry similar to 

CrSi12, being a capped distorted hexagonal prism of C3v symmetry. The MO analysis reveals that 

the electronic structure, in terms of the energies of the 3d orbitals, is very similar to that of 

CrSi12. Furthermore, the HOMO in CrSi13 is the Cr 3dz2 orbital, and so the size of the 3d-band 

does not change upon addition of a thirteenth silicon atom. The clusters with the narrowest 3d-

bands are CrSi14, CrSi15, and CrSi16, which are the three most spherical clusters in the series.  
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4.5 WSin	(n=6‐16)	

4.5.1 Energetics	

The ground state structures of WSin are shown in Figure 4.5.1. Higher energy isomers 

within 1.0 eV of the ground state are shown in Figure B-14, Figure B-15, and Figure B-16 in 

Appendix B. For the most part, the ground state structures resemble those of CrSin, including the 

hexagonal prism structure of WSi12, although due to the greater size of tungsten compared to 

chromium the average Si-Si and TM-Si bond lengths are slightly longer. The most notable 

difference in geometry occurs for WSi6, in which the W atom occupies a central capping location 

rather than being part of the pentagon as was found for CrSi6. The magnetic moment of WSi6, 

like all the clusters in the WSin series studied, is quenched, whereas CrSi6 was found to be 

magnetic. Another difference in geometry can be seen for WSi13. Unlike the capped distorted 

hexagonal prism seen for CrSi13, WSi13 is a distorted hexagonal antiprism, and the capping 

thirteenth atom bonds to only four of the six silicon atoms in the upper hexagon. Additionally, 

the symmetry of TMSi13 is slightly reduced from C3v for CrSi13 to C2v for WSi13. WSi15 and 

WSi16 also show slight differences in their ground state structures compared to their Cr-doped 

counterparts.  
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Figure	 4.5.1:	 Ground	 State	 Stuctures	 of	WSin	 (n=6‐16).	 Above	 shows	 the	
lowest	energy	structures	of	neutral	WSin	(n=6‐16).	Tungsten	atoms	are	shown	
in	blue	and	silicon	atoms	are	shown	 in	grey.	The	average	Si‐Si	and	W‐Si	bond	
lengths	are	given	next	to	each	structure	in	gray	and	blue	respectively.	

The same energetic properties were calculated for WSin as for CrSin as described in 

Section 4.3. Again ΔSi was calculated only for n=7-16, since the energy of the previous cluster 

size is needed for the calculation. The energies of the anionic structures, cationic structures, and 

hydrogen-bound structures shown in Figure B-17, Figure B-18, and Figure B-19 in Appendix B 

were used to calculate the ADE, VDE, IP, ΔW, and H BE. The trends in the ΔSi, ΔW, ADE, 

VDE, IP, HOMO-LUMO gap, and H BE for WSin are given in Figure 4.5.2. Table B-2 in 

Appendix B explicitly lists each of these values.  
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Figure	4.5.2:	Energetic	Properties	of	WSin	(n=6‐16)	Ground	States.	(a)	The	
silicon	binding	energy,	ΔSi,	for	n=7‐16.	(b)	The	tungsten	embedding	energy,	ΔW.	
(c)	The	 adiabatic	 and	vertical	 detachment	 energy,	ADE	and	VDE,	 respectively.	
ADE	 is	 shown	 as	 blue	 squares	 and	 VDE	 is	 shown	 as	 red	 circles.	 (d)	 The	
ionization	 potential,	 IP.	 (e)	 The	 HOMO‐LUMO	 gap.	 (f)	 The	 hydrogen	 binding	
energy.	The	horizontal	dotted	line	shows	the	binding	energy	per	hydrogen	atom	
of	H2	as	a	 reference.	 In	 (a)‐(f),	 the	x‐axis	 is	 the	number	of	 silicon	atoms.	Data	
points	corresponding	to	WSi12	and	WSi14	are	circled	as	a	guide	for	the	eye.	

As can be seen in Figure 4.5.2(a), the silicon binding energies show notable differences 

from those of CrSin. WSi7 has a much higher ΔSi, perhaps due to the differing ground state 
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geometry of WSi6. WSi11 has a slightly higher ΔSi at 4.87 eV than WSi12 at 4.72 eV, which is 

opposite of the case in the CrSin series. WSi14, just like CrSi14, has the highest ΔSi in the series, 

5.32 eV. WSi13 and WSi16 have the lowest ΔSi values at 3.75 eV and 3.76 eV, respectively; 

compared to the ΔSi of their Cr-doped counterparts, the ΔSi of WSi13 increases by about 0.15 eV 

while that of WSi16 decreases by about the same amount. Overall, ΔSi again indicates enhanced 

stability of WSi12 and WSi14, and WSi11 gains some stability compared with CrSi11. The trend in 

ΔW, shown in Figure 4.4.2(b), appears nearly identical to the trend of ΔCr; it generally increases 

monotonically with a slightly above average increase at WSi14. Unlike the trend for ΔCr, that of 

ΔW shows WSi12 to be slightly higher than the average increase as well.  

A great difference can be seen between the energetic properties of the CrSin and WSin 

series in Figure 4.5.2(c), which shows the ADE and VDE trends for WSin. Unlike CrSi12, which 

has the highest ADE and second highest VDE in the CrSin series, the ADE and VDE values of 

WSi12 are among the lowest in the WSin series. They still remain identical: both ADE and VDE 

are 2.50 eV. Low detachment energies are markers of magicity that were missing from the 

energetic description of CrSi12, but are found in WSi12. In the WSin series, WSi13 has the highest 

ADE and VDE, and WSi9 also shows high values of both, which was not the case for CrSi9. The 

IPs, shown in Figure 4.5.2(d), generally show the same trend as those of CrSin, with WSi12, 7.40 

eV, and WSi14, 7.42 eV, having the highest IPs and WSi13, 6.63 eV, and WSi16, 6.61 eV, having 

the lowest. The IP of WSi11, however, increases slightly from that of CrSi11 to be about the same 

as that of WSi12.  

The trend in the HOMO-LUMO gaps of WSin, presented in Figure 4.5.2(e), shows some 

interesting differences when compared to that of CrSin. The gap of WSi10 is greatly reduced 

compared to CrSi10—from 1.41 eV to 0.89 eV. This could be due to geometrical differences; the 
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bond lengths in WSi10 are greater than those in CrSi10—the top Si-Si bond seen in CrSi10 

stretches to the point that these silicon atoms are no longer bonded in WSi10. WSi14 has the 

highest HOMO-LUMO gap in the series at 1.82 eV, WSi15 has the second highest at 1.71 eV, 

and WSi11 has the third highest at 1.54 eV. Surprisingly, the gap of WSi12 is 1.41 eV—a large 

increase from the 0.97 eV gap of CrSi12. This is likely due to the crystal-field splitting of the 5d 

orbitals, which generally show greater splitting than 3d orbitals. Despite its differing geometry, 

WSi13, just like CrSi13, has the lowest HOMO-LUMO gap in the series at 0.81 eV. The gap of 

WSi15 is increased and that of WSi16 is decreased compared to their Cr-counterparts, an effect of 

the different ground state structures between the Cr-doped and W-doped TMSin clusters.  

Finally, the hydrogen binding energies, shown in Figure 4.5.2(f), indicate that WSi11, 

WSi12, and WSi14 through WSi16 have low enough H BEs that the hydrogen atoms will 

autodissociate, indicating that the dehydrogenated clusters are stable. This is another important 

change from the CrSin series, in which CrSi12 had a hydrogen binding energy high enough at 

2.35 eV to indicate that hydrogen would not easily dissociate from the cluster. With the change 

to W, the H BE drops to 1.83 eV. Similarly, while CrSi14 had a low enough H BE, 2.06 eV, to 

indicate autodissociation of hydrogen, substituting W causes a further drop to 1.77 eV. The H BE 

results for WSin agree better with the experimental results of Hiura et al. than those of the CrSin 

series; they more clearly show that hydrogenation is greatly favored for clusters with six through 

ten silicon atoms, less favored for eleven silicon atoms, and finally, completely unfavorable with 

twelve silicon atoms. 

 Overall, the enhanced stability of TMSi14 is preserved upon substitution of Cr with W. 

With a large ΔSi, ΔW, HOMO-LUMO gap, and IP, and a relatively low ADE, VDE, and H BE, 

WSi14 has all the markers of a magic cluster. Unexpectedly, the substitution of the transition 
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metal also results in greater stability for TMSi12. In contrast to CrSi12, WSi12 shows all the 

markers of magic stability; it has a higher HOMO-LUMO gap, ADE and VDE about 0.50 eV 

lower than CrSi12, and a H BE clearly indicative of hydrogen dissociation. The sometimes 

dramatically differing energetic results between WSi12 and CrSi12 may suggest that Cr does not 

behave entirely the same as W, despite having the same number of valence electrons.   

4.5.2 Molecular	Orbital	Analysis	

In order to understand the bonding in WSin, and compare it to that found in CrSin, 

fragment analyses were performed on all clusters in the series and the composition of the MOs 

was examined. The MO analysis of WSi12 revealed that the 5dz2 orbital of W is unoccupied and 

serves as the LUMO of the cluster, just like the 3dz2 orbital of Cr in CrSi12. Presumably, the 

crystal-field splitting of the 5d orbitals gives WSi12 magic stability despite its possessing only 16 

effective valence electrons. As previously mentioned, the splitting is greater for 5d orbitals than 

for 3d orbitals, resulting in a larger HOMO-LUMO gap than CrSi12. The MOs of WSi14 show 

much less hybridization than those of CrSi14; in fact, there is no hybridization between 5d 

orbitals and 6p orbitals. Still, all five 3d orbitals are filled and the W atom in WSi14 has a valence 

configuration of 6s25d106p6, and hence follows the 18-electron rule.  

The width of the 5d-bands was also calculated for each cluster in the series. WSi6, which 

has no unpaired electrons unlike CrSi6, was included. The results are shown in Figure 4.5.3 

below. In general, the absolute energies of the HOMOs in the WSin series, and the start of the 

5d-band, are lower in energy compared to those of the CrSin series. The trend in the 5d-band 

widths is similar to that of the 3d-band widths for CrSin, with narrower bands around 0.8 eV to 

1.0 eV for most clusters and a large jump at WSi12. A major difference arises at WSi13. Due to its 

different geometry, the MOs of WSi13 are not akin to those of WSi12, as was seen for CrSi13 and 
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CrSi12. The HOMO of WSi13 is purely silicon in character, rather than being the 5dz2 orbital, so 

that the 5d-band does not extend to the HOMO. The 5d-band width for WSi14 is, at 0.84 eV, 

almost exactly the same as that of CrSi14, and indicating a more spherical arrangement of silicon 

atoms around the W atom than found in WSi12.  

 
Figure	4.5.3:	The	5d‐Bands	of	WSin.	The	bands	 formed	by	 the	5d	orbitals	of	
tungsten	are	shown	as	vertical	gray	 lines	relative	 to	 the	HOMO	 in	red	and	the	
LUMO	in	blue	for	WSin	(n=6‐16).	The	absolute	energy	of	the	orbitals	is	given	on	
the	y‐axis.	

4.6 Discussion	

Based on the comparison of theoretically simulated photoelectron spectra with 

experimental results, the PBE functional was confirmed as an accurate choice for the study of 

TM-doped silicon clusters. Within this theoretical framework, the energetics of CrSin showed 

that CrSi12 and CrSi14 were particularly stable clusters within the CrSin (n=6-16) series. While 

CrSi14 shows all the usual energetic markers of a magic cluster, CrSi12 comes up short with only 
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a moderate HOMO-LUMO gap and a high ADE and VDE. This discrepancy was explained upon 

examining the molecular orbitals of CrSi12. The 3dz2 orbital of Cr is unfilled, and makes up the 

LUMO of the entire cluster. The crystal-field splitting of the 3d orbitals in oblate D6h CrSi12 

pushes the 3dz2 orbital up in energy, lending the cluster some magic properties despite possessing 

only 16 effective valence electrons. On the other hand, CrSi14 was revealed to follow the 18-

electron rule with all 3d orbitals occupied. This pattern was also shown with WSin, although in 

the case of WSi12, the crystal-field splitting of the 5d orbitals is much greater, leading to a larger 

HOMO-LUMO gap than seen in CrSi12. WSi12 also showed lower values of ADE and VDE, and 

a very low hydrogen binding energy, giving it all the indicators of magicity. This may suggest 

that W, while possessing the same number of valence electrons, does not necessarily behave in 

the same manner as Cr in these clusters due to its differing size. These results also show that our 

intuition involving bonding from traditional chemistry does not always apply to clusters, which 

can exhibit non-electron precise bonding.  
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5 Conclusions	

The main objective of the present work was to study the electronic principles that govern the 

stability and reactivity of two classes of clusters, namely ligated metal clusters and transition 

metal doped silicon clusters. Rules describing the electronic structure and reactivity patterns of 

clusters are important to the identification of stable species and appropriate methods of assembly 

that could be utilized in the building of nanoscale cluster-assembled materials. In the remainder 

of this chapter, the major findings for each type of cluster will be reviewed and its implications 

concerning electronic principles discussed.  

The first study focused on aluminum clusters ligated with halogen atoms, specifically iodine 

atoms. Motivated by recent successes in stabilizing assemblies of metallic clusters through the 

addition of protecting ligands, this study questioned whether electron-withdrawing ligands such 

as iodine could also serve as activating species when attached to metal clusters. Previous studies 

on the reactivity of pure aluminum clusters showed that geometric defects cause irregularities in 

the charge density to manifest on the surface of the cluster, allowing for reaction with water or 

alcohols through complementary Lewis acid-base sites. The addition of ligands can also perturb 

the charge density of a cluster, perhaps resulting in similarly reactive sites. In the case of Al13Ix
- 

(x=0-4), the results showed that the addition of iodine ligands was not sufficient to induce 

reactivity with methanol due to the symmetrical charge distribution, which is maintained despite 

the addition of iodine. A higher energy isomer of Al13I2
- with the iodines attached to adjacent 

aluminum atoms, however, was reactive with methanol – the placement of the ligands resulted in 

complementary Lewis acid-base sites on the opposite side of the cluster. In the Al14Iy
- (y=0-5) 

series, clusters possessing more than one iodine atom react with methanol, but only at the 

ligated-adatom site. This is especially interesting for the electronically closed-shell clusters 
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Al14I3
- and Al14I5

-, neither of which reacts with oxygen. Furthermore, comparing the reactivity of 

the Al14
- and Al14I- shows that the adatom must be ligated in order to react; Al14

- reacts at other 

sites, but not at the bare adatom, while Al14I- will react with methanol at the ligated-adatom site. 

The stability of Al13Ix
- species to methanol and reactivity of Al14Iy

- species with methanol that 

was theoretically predicted by the work in this thesis was confirmed experimentally by the 

Castleman group at Penn State University. 

The above results provide several insights into the reactivity of these clusters and the effect 

ligands have on reactivity in general. While the reactive higher energy isomer of Al13I2
- is 

unlikely to exist in experiment, this result showed that it is possible to induce such an active site 

on an unreactive cluster, such as Al13
-, by the appropriate placement of ligands.  From the Al14Iy

- 

series, came the important result of the ligand-activated adatom – a geometric defect which alone 

is not an active site, but when ligated becomes reactive. Each of these ideas could be useful in 

the purposeful activation of other such clusters and in the design of cluster-assembled materials. 

Additionally, these results further demonstrate the differing mechanisms governing the reaction 

of these clusters with oxygen and protic species such as water and alcohols. Reactivity with 

oxygen is controlled by spin excitation energy, while reactivity with a protic environment is 

controlled by Lewis acid-base chemistry – specifically complementary active sites or ligand-

activated adatoms whose strength and location can be modified by attaching ligands. For air 

stable cluster assemblies, one can use these to design clusters that are unreactive to air. On the 

other hand, for cluster assemblies with controlled reactive patterns, one can generate assemblies 

that can react with oxygen, protic environments, or both. 

 The second study examined the electronic principles that determine the stability of silicon 

clusters with an endohedral transition metal atom. Silicon is widely used in the electronics 
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industry and the possibility of producing cage-like silicon clusters encapsulating a transition 

metal atom, wherein the metal atom could retain its magnetic character, would be an important 

development. The use of transition metal doped silicon clusters is especially intriguing since the 

doping of bulk silicon with transition metal atoms beyond a few percent is difficult; cluster 

materials offer the unique possibility of changing the metal to silicon ratio by using designer 

clusters. Understanding the electronic principles that govern the stability of such silicon 

encapsulated transition metal clusters is the first step to develop these assemblies. The focus 

within this thesis was on CrSin (n=6-16) clusters, and in particular CrSi12. The stability of CrSi12 

has previously been rationalized using both a split-CNFEG model and the 18-electron rule of 

transition metal chemistry; both involve Cr attaining an 18-electron shell closing by gaining one 

electron from each silicon atom in an electron-precise bonding scheme. The purpose of this study 

was to challenge both of these ideas with updated and more comprehensive calculations of 

energetic properties and through an extensive molecular orbital analysis of clusters of interest.   

The energetic results for CrSin revealed CrSi12 to have only some of the traditional markers 

of a magic cluster, while CrSi14 was shown to possess all the markers. A comprehensive 

molecular orbital analysis showed that the CNFEG model, whether applied to the entire cluster 

or only to the chromium atom, did not accurately describe the electronic structure of CrSi12, or 

explain its stability. Fragment analysis of the molecular orbitals of CrSi12 showed that the 3dz2 

orbital of Cr is unfilled, and serves as the LUMO of the cluster. All other 3d orbitals are filled, as 

well as 4s and 4p, giving CrSi12 an effective valence count of 16. Due to the oblate structure of 

CrSi12, its 3dz2 orbital is pushed up in energy relative to the others by crystal-field splitting. On 

the other hand, CrSi14 has all 3d orbitals filled, giving it an effective valence count of 18. Thus, 

while the 18-electron rule does not apply to CrSi12, it does apply to CrSi14. These results were, 
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for the most part, repeated in the WSin series. The crystal-field splitting in WSi12, however, was 

much greater for the 5d orbitals of W than for the 3d orbitals of Cr. This leads to a very high 

HOMO-LUMO gap for WSi12 and a greater stability than seen for CrSi12. The hydrogen binding 

energy for WSi12 matches well with the results of Hiura et al., which showed that 

unhydrogenated WSi12
+ is stable.  

These results indicate that the metal-silicon bonds in these clusters are not electron-precise, 

as previously assumed and contrary to one’s intuition from traditional chemistry. Most notably, 

the results of the molecular orbital analyses suggest that both the split-CNFEG view and the 18-

electron rule are inaccurate or inadequate to describe the electronic structure of these clusters. 

Rather, the stability of TMSin is governed by crystal-field splitting of the d orbitals and by 

electron shell filling on the transition metal atom. This idea will have significance in the ongoing 

search for stable and usable silicon encapsulated transition metal clusters. The results also 

contribute to a conceptual understanding of the experimental results of Hiura et al; the absence of 

larger clusters in this experiment could be due to the fact that upon reaching twelve silicon 

atoms, the transition metal atom is completely interior and unavailable to react with silane 

further. Additionally, an incidental finding of this study was that the gradient-corrected 

functional PBE is sufficient for calculations on this class of clusters. This was done using time-

dependent density functional theory to simulate the photoelectron spectra of anionic CrSin (n=6-

12) and comparing the results to recent experimental findings. Specifically, the PBE functional 

performed much more accurately than another popular functional used for these clusters, the 

hybrid B3LYP. These results provide a theoretical foundation for future studies, and lend 

confidence to the results given in this thesis. 
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Both ligated aluminum clusters and silicon encapsulated transition clusters remain 

important areas of study within the cluster field. Continuing work on iodized aluminum cluster 

reactivity includes using smaller AlnIm
- clusters as substrates; for example, Al7

- with iodine 

ligands is currently underway. The possibility of breaking other types of bonds is also of interest. 

It was already mentioned that pure aluminum clusters can break a carbonyl bond, but this has yet 

to be extended to ligated clusters. Comparable studies of TMSin continue with different dopant 

atoms, including manganese and iron, and a similar analysis of TMSi16 clusters where (TM=V, 

Sc, Ti) would also be interesting, since these clusters show enhanced stability in experiments. 

Because most of the clusters studied in this thesis had a quenched magnetic moment, future 

studies will be undertaken that include doping with two transition metal atoms, which will more 

likely result in magnetic clusters, a major goal of designing silicon encapsulated transition metal 

clusters.  
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Appendix	A		

Table	A‐1:	Orbitals	Used	in	Plotting	the	Frontier	Orbital	Density	of	Al13Ix‐	(x=0‐4). 
Cluster Occupied Orbitals  Unoccupied Orbitals 

Al13
- 

HOMO, HOMO-1, HOMO-3, HOMO-5, 
HOMO-7, HOMO-9, HOMO-11 

LUMO, LUMO+1, LUMO+3, 
LUMO+5, LUMO+7 

Al13I- HOMO 
LUMO, LUMO+1, LUMO+3, 

LUMO+5, LUMO+7 
Al13I2- HOMO, HOMO-1  LUMO, LUMO+1  

Al13I2-
adj HOMO LUMO 

Al13I3- HOMO LUMO+1, LUMO+3, LUMO+5 

Al13I4- HOMO, HOMO-1 LUMO, LUMO+1, LUMO+3  
The	above	table	gives	the	occupied	and	unoccupied	orbitals	used	to	plot	the	occupied	and	
unoccupied	frontier	orbital	density,	respectively.	For	those	that	list	more	than	one	orbital,	
the	orbitals	listed	are	nearly	degenerate	(within	0.008	eV).	Occupied	orbitals	are	given	in	
relation	 to	 the	 highest	 occupied	 molecular	 orbital	 (HOMO)	 and	 unoccupied	 orbitals	 are	
given	in	relation	to	the	lowest	unoccupied	molecular	orbital	(LUMO).	

	

 
Figure	A‐1:	Lowest	Energy	Reaction	Pathways	of	AlI3I3‐	and	Al13I4‐	with	Methanol.	The	
above	 figure	 further	 demonstrates	 the	 reactive	 trends	 found	 in	 Al13I‐	 and	Al13I2‐	 in	 their	
ground	 states.	 The	 lowest	 energy	 reaction	 pathways	 of	 (a)	 Al13I3‐	 and	 (b)	 Al13I4‐	 with	
methanol	 are	 shown.	 The	 interpolated	 reaction	 pathway	 is	 shown	 as	 a	 red	 line,	 and	 the	
absolute	values	of	EB,	ET,	and	ER	are	indicated.	The	occupied	(red)	and	unoccupied	(blue)	
frontier	 orbital	 charge	 densities	 are	 shown	 on	 the	 ground	 state	 structure,	 and	 the	
geometries	of	the	methanol‐bound	state,	transition	state,	and	final	state	are	pictured	with	
aluminum	in	blue,	iodine	in	purple,	oxygen	in	red,	carbon	in	gray,	and	hydrogen	in	white.	
Figure	adapted	from	Figure	2	of	Ref.	114. 
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Table	A‐2: Orbitals	used	in	Plotting	the	Frontier	Orbital	Density	of	Al14Iy‐	(y=0‐5). 
Cluster  Occupied Orbitals Unoccupied Orbitals 

Al14
- HOMO LUMO+1 

Al14I- HOMO LUMO 
Al14I2- HOMO LUMO+1 
Al14I3- HOMO LUMO, LUMO+1 
Al14I4- HOMO LUMO+1, LUMO+3 
Al14I5- HOMO LUMO 

The	above	table	gives	the	occupied	and	unoccupied	orbitals	used	to	plot	the	occupied	and	
unoccupied	frontier	orbital	density,	respectively.	For	those	that	list	more	than	one	orbital,	
the	orbitals	listed	are	nearly	degenerate	(within	0.008	eV).	Occupied	orbitals	are	given	in	
relation	 to	 the	 highest	 occupied	 molecular	 orbital	 (HOMO)	 and	 unoccupied	 orbitals	 are	
given	 in	 relation	 to	 the	 lowest	 unoccupied	 molecular	 orbital	 (LUMO).	 Note	 that	 in	
comparison	to	the	Al13Ix‐	series,	there	is	less	orbital	degeneracy	in	the	Al14Iy‐	series,	due	to	
its	lowered	symmetry.		
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Figure	 A‐2:	 Lowest	 Energy	 Reaction	 Pathways	 of	 Al14I2‐,	 Al14I4‐,	 and	 Al14I5‐	 with	
Methanol.	The	figure	shows	the	reaction	pathway	at	the	ligated	adatom	for	(a)	Al14I2‐,	(b)	
Al14I4‐,	and	(c)	Al14I5‐.	This	was	the	only	site	at	with	these	clusters	reacted	with	methanol.	
The	interpolated	reaction	pathway	is	shown	as	a	red	line,	and	the	absolute	values	of	EB,	ET,	
and	 ER	 are	 indicated.	 The	 occupied	 (red)	 and	 unoccupied	 (blue)	 frontier	 orbital	 charge	
densities	 are	 shown	 on	 the	 ground	 state	 structure,	 and	 the	 geometries	 of	 the	methanol‐
bound	state,	transition	state,	and	final	state	are	pictured	with	aluminum	in	blue,	iodine	in	
purple,	oxygen	in	red,	carbon	in	gray,	and	hydrogen	in	white.	Figure	adapted	from	Figure	2	
of	Ref.	114.	  
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Appendix	B		

 
Figure	B‐1:	Higher	Energy	Isomers	of	CrSin	(n=6‐9).	The	higher	energy	isomers	within	
1.0	eV	of	the	ground	state	are	shown,	with	silicon	atoms	in	gray	and	chromium	atoms	are	
shown	in	dark	blue.	The	energies,	Erel,	are	given	relative	to	the	corresponding	ground	states	
shown	 in	 Figure	 4.2.1.	 The	 total	 magnetic	 moment,	 MT,	 local	 magnetic	 moment	 on	 the	
chromium	atom,	MCr,	and	HOMO‐LUMO	gap	are	given	for	each	cluster.  
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Figure	 B‐2:	 Higher	 Energy	 Isomers	 of	 CrSin	 (n=10‐12).	 The	 higher	 energy	 isomers	
within	 1.0	 eV	 of	 the	 ground	 state	 are	 shown,	 with	 silicon	 atoms	 in	 gray	 and	 chromium	
atoms	are	 shown	 in	dark	blue.	The	energies,	Erel,	 are	given	 relative	 to	 the	 corresponding	
ground	 states	 shown	 in	 Figure	 4.2.1.	 The	 total	 magnetic	 moment,	 MT,	 local	 magnetic	
moment	on	the	chromium	atom,	MCr,	and	HOMO‐LUMO	gap	are	given	for	each	cluster. 
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Figure	 B‐3:	Higher	 Energy	 Isomers	 of	 CrSi13	 and	 CrSi14.	 The	 higher	 energy	 isomers	
within	 1.0	 eV	 of	 the	 ground	 state	 are	 shown,	 with	 silicon	 atoms	 in	 gray	 and	 chromium	
atoms	are	 shown	 in	dark	blue.	The	energies,	Erel,	 are	given	 relative	 to	 the	 corresponding	
ground	 states	 shown	 in	 Figure	 4.2.1.	 The	 total	 magnetic	 moment,	 MT,	 local	 magnetic	
moment	on	the	chromium	atom,	MCr,	and	HOMO‐LUMO	gap	are	given	for	each	cluster. 
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Figure	 B‐4:	Higher	 Energy	 Isomers	 of	 CrSi15	 and	 CrSi16.	 The	 higher	 energy	 isomers	
within	 1.0	 eV	 of	 the	 ground	 state	 are	 shown,	 with	 silicon	 atoms	 in	 gray	 and	 chromium	
atoms	are	 shown	 in	dark	blue.	The	energies,	Erel,	 are	given	 relative	 to	 the	 corresponding	
ground	 states	 shown	 in	 Figure	 4.2.1.	 The	 total	 magnetic	 moment,	 MT,	 local	 magnetic	
moment	on	the	chromium	atom,	MCr,	and	HOMO‐LUMO	gap	are	given	for	each	cluster. 
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Figure	 B‐5:	 Ground	 State	 Geometries	 of	 Pure	 Silicon	 Clusters.	 The	 lowest	 energy	
isomers	of	Sin	(n=6‐16)	are	shown.	The	energies	of	these	isomers	were	used	in	calculating	
the	Cr	embedding	energy. 
 

 
Figure	B‐6:	CrSin	Cation	Ground	States.	The	 lowest	energy	structures	of	CrSin+	 for	n=6‐
16.	The	energy	of	these	structures	was	used	in	the	calculation	of	the	ionization	potentials.	
The	 total	 magnetic	 moment	 and	 the	 local	 magnetic	 moment	 on	 Cr	 are	 shown	 for	 each	
cluster.	Figure	adapted	from	Supplemental	Information	of	Ref	**. 
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Figure	 B‐7:	 Hydrogen	 Bound	 CrSin	 Ground	 States.	 The	 lowest	 energy	 structures	 of	
HCrSin	 for	n=6‐16.	 Silicon	atoms	are	 gray,	 chromium	atoms	are	dark	blue,	 and	hydrogen	
atoms	 are	 white.	 The	 energies	 of	 these	 structures	 was	 used	 to	 calculate	 the	 hydrogen	
binding	 energy.	 The	 total	 magnetic	 moment	 and	 the	 local	 magnetic	 moment	 on	 Cr	 are	
given.	Figure	adapted	from	Figure	S5	of	Ref.	**.	
 

Table	B‐1:	Calculated	Properties	of	CrSin	(n=6‐16).		
# Si 

atoms 
HOMO-
LUMO 

ΔSi ΔCr VDE ADE IP H BE 

6 0.86 -- 2.22 2.93 2.54 6.81 2.26 
7 1.12 4.05 1.81 2.49 2.44 7.22 2.6 
8 0.95 4.33 3.07 2.62 2.54 7.17 2.52 
9 1.09 4.3 2.96 2.8 2.67 7.29 2.54 

10 1.41 4.38 2.63 2.83 2.66 7.35 2.23 
11 1.37 4.26 3.77 2.88 2.77 7.29 2.25 
12 0.97 4.55 4.2 3.05 3.05 7.43 2.35 
13 0.84 3.91 4.59 3.31 2.93 6.4 2.42 
14 1.48 5.04 5.23 2.92 2.81 7.59 2.06 
15 1.21 4.35 5.39 2.86 2.75 7.06 1.97 
16 1.48 3.56 5.74 3.14 2.6 6.24 2.15 

The	 above	 table	 gives	 the	 numerical	 values	 used	 to	 generate	 the	 graphs	 in	 Figure	 4.4.2,	
including	 the	 HOMO‐LUMO	 gap,	 silicon	 binding	 energy,	 chromium	 embedding	 energy,	
vertical	 and	 adiabatic	 detachment	 energies,	 ionization	 potential,	 and	 hydrogen	 binding	
energy.	All	values	are	given	in	eV.	
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Figure	B‐8:	Occupied	Molecular	Orbitals	of	CrSi12	 (1).	Side	 and	 top	 views	 of	 the	 first	
fourteen	 occupied	 orbitals	 of	 D6h	 CrSi12.	 The	 symmetry	 label,	 CNFEG	 model	 orbital	
designation,	and	chromium/silicon	character	designation	are	given	below	the	images. 
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Figure	 B‐9: Occupied	 Molecular	 Orbitals	 of	 CrSi12	 (2).	 Side	 and	 top	 views	 of	 the	
remaining	 thirteen	 occupied	 orbitals	 of	 D6h	 CrSi12.	 The	 symmetry	 label,	 CNFEG	 model	
orbital	 designation,	 and	 chromium/silicon	 character	 designation	 are	 indicated	below	 the	
images. 
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Figure	B‐10:	Unoccupied	Molecular	Orbitals	of	CrSi12.	Side	and	top	views	of	the	sixteen	
lowest	energy	unoccupied	orbitals	of	D6h	CrSi12.	The	symmetry	label,	CNFEG	model	orbital	
designation,	 and	 the	 chromium/silicon	 character	 designation	 are	 indicated	 under	 the	
images. 
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Figure	B‐11:	Occupied	Molecular	Orbitals	of	CrSi14	(1).	Side	and	top	views	of	 the	first	
seventeen	 occupied	 orbitals	 of	 C2v	 CrSi14.	 Symmetry	 labels	 and	 chromium/silicon	
designations	are	given.	 
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Figure	B‐12:	Occupied	Molecular	Orbitals	of	CrSi14	(2).	Side	and	top	views	of	 the	first	
seventeen	 occupied	 orbitals	 of	 C2v	 CrSi14.	 Symmetry	 labels	 and	 chromium/silicon	
designations	are	given. 
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Figure	B‐13:	Unoccupied	Molecular	Orbitals	of	CrSi14.	Side	 and	 top	 views	 of	 the	 first	
eight	 unoccupied	 molecular	 orbitals	 of	 C2v	 CrSi14.	 The	 symmetry	 label	 and	
chromium/silicon	character	designation	are	included.	 
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Figure	B‐14:	Higher	Energy	Isomers	of	WSin	(n=6‐11).	Structures	within	1.0	eV	of	 the	
ground	state	given	in	Figure	4.5.1	are	shown	with	silicon	in	gray	and	tungsten	in	blue.	The	
energy	is	given	relative	to	the	ground	state.	For	those	geometries	with	a	non‐zero	magnetic	
moment,	the	total	magnetic	moment,	MT,	and	local	magnetic	moment	on	tungsten,	MW,	are	
given.	HOMO‐LUMO	gaps	are	given	for	all	geometries. 
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Figure	B‐15: Higher	Energy	Isomers	of	WSin	(n=12,	13).	Structures	within	1.0	eV	of	the	
ground	state	shown	in	Figure	4.5.1	are	shown	with	silicon	in	gray	and	tungsten	in	blue.	The	
energy	is	given	relative	to	the	ground	state.	For	those	geometries	with	a	non‐zero	magnetic	
moment,	the	total	magnetic	moment,	MT,	and	local	magnetic	moment	on	tungsten,	MW,	are	
given.	HOMO‐LUMO	gaps	are	given	for	all	geometries. 

 



 
 

117 
 

 
Figure	B‐16: Higher	Energy	Isomers	of	WSin	(n=14‐16).	Structures	within	1.0	eV	of	the	
ground	state	shown	in	Figure	4.5.1	are	shown	with	silicon	in	gray	and	tungsten	in	blue.	The	
energy	is	given	relative	to	the	ground	state.	For	those	geometries	with	a	non‐zero	magnetic	
moment,	the	total	magnetic	moment,	MT,	and	local	magnetic	moment	on	tungsten,	MW,	are	
given.	HOMO‐LUMO	gaps	are	given	for	all	geometries.	
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Figure	 B‐17:	 Anionic	 Ground	 States	 of	WSin	 (n=6‐16).	 The	 structures	 of	 the	 lowest‐
energy	WSin	anions	are	shown	with	silicon	in	gray	and	tungsten	in	blue.	The	total	magnetic	
moment	and	local	moment	on	tungsten	are	given.	The	total	energies	of	these	clusters	were	
used	to	calculate	the	adiabatic	detachment	energy.	 

 
Figure	 B‐18:	 Ground	 State	 Structures	 of	WSin	 (n=6‐16)	 Cations.	 The	 lowest‐energy	
structures	of	WSin+	are	shown	with	silicon	in	gray	and	tungsten	in	blue.	The	total	magnetic	
moment	 and	 local	moment	 on	 tungsten	are	 given.	The	energies	of	 these	 structures	were	
used	to	calculate	the	ionization	potential	for	each	neutral	cluster.	 
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Figure	 B‐19:	 Lowest‐Energy	 Hydrogen‐Bound	WSin	 (n=6‐16)	 Clusters.	 The	 lowest‐
energy	structures	of	hydrogen‐bound	WSin	clusters	are	shown	about	with	silicon	 in	gray,	
tungsten	in	blue,	and	hydrogen	in	white.	The	total	magnetic	moment	and	local	moment	on	
tungsten	are	given	for	each	cluster.	The	total	energies	of	these	structures	were	used	in	the	
calculations	of	the	hydrogen	binding	energy. 
 

Table	B‐2:	Calculated	Properties	of	WSin	(n=6‐16).	
# Si 

Atoms 
ΔSi ΔW ADE VDE IP 

HOMO-
LUMO 

H BE  

6   5.40 2.17 2.49 7.30 1.29 2.54 
7 4.77 5.71 2.28 2.31 7.24 1.43 2.61 
8 4.14 6.79 2.39 2.44 6.99 0.98 2.78 
9 4.00 6.37 2.87 3.17 7.13 0.96 2.64 
10 4.45 6.11 3.00 3.03 7.12 0.89 2.56 
11 4.87 7.85 2.78 2.97 7.41 1.54 2.02 
12 4.72 8.46 2.50 2.50 7.40 1.41 1.83 
13 3.75 8.69 3.16 3.38 6.63 0.81 2.45 
14 5.32 9.61 2.65 2.95 7.42 1.82 1.77 
15 4.55 9.72 2.56 2.84 7.07 1.71 1.82 
16 3.76 10.53 2.62 2.74 6.61 1.21 2.19 

The	 above	 table	 gives	 the	 numerical	 values	 used	 to	 generate	 the	 graphs	 in	 Figure	 4.5.2,	
including	 the	 HOMO‐LUMO	 gap,	 silicon	 binding	 energy,	 tungsten	 embedding	 energy,	
vertical	 and	 adiabatic	 detachment	 energies,	 ionization	 potential,	 and	 hydrogen	 binding	
energy.	All	values	are	given	in	eV. 	



 
 

120 
 

References	

1. Rao, B. K. & Jena, P. Evolution of the electronic structure and properties of neutral and 

charged aluminum clusters: A comprehensive analysis. J. Chem. Phys. 111, 1890 (1999). 

2. Reddy, B. V., Khanna, S. N. & Dunlap, B. I. Giant magnetic moments in 4d clusters. Phys. 

Rev. Lett. 70, 3323–3326 (1993). 

3. Cox, A. J., Louderback, J. G. & Bloomfield, L. A. Experimental observation of magnetism in 

rhodium clusters. Phys. Rev. Lett. 71, 923–926 (1993). 

4. Pederson, M. R., Reuse, F. & Khanna, S. N. Magnetic transition in Mnn (n=2–8) clusters. 

Phys. Rev. B 58, 5632–5636 (1998). 

5. Nayak, S. . & Jena, P. Anomalous magnetism in small Mn clusters. Chem. Phys. Lett. 289, 

473–479 (1998). 

6. Sanchez, A. et al. When Gold Is Not Noble:  Nanoscale Gold Catalysts. J. Phys. Chem. A 

103, 9573–9578 (1999). 

7. Leuchtner, R. E., Harms, A. C. & Castleman, A. W. Thermal Metal Cluster Anion Reactions 

- Behavior of Aluminum Clusters with Oxygen. J. Chem. Phys. 91, 2753–2754 (1989). 

8. Leuchtner, R. E., Harms, A. C. & Castleman, A. W. Aluminum cluster reactions. J. Chem. 

Phys. 94, 1093 (1991). 

9. Reber, A. C., Khanna, S. N., Roach, P. J., Woodward, W. H. & Castleman, A. W. Spin 

Accommodation and Reactivity of Aluminum Based Clusters with O2. J. Am. Chem. Soc. 

129, 16098–16101 (2007). 

10. Khanna, S.N. & Castleman, A.W. Quantum phenomena in clusters and nanostructures. 

(Springer, 2003). 



 
 

121 
 

11. Alonso, J. A. Structure And Properties Of Atomic Nanoclusters. (World Scientific 

Publishing Company, 2005). 

12. Billas, I. M. L., Châtelain, A. & de Heer, W. A. Magnetism from the Atom to the Bulk in 

Iron, Cobalt, and Nickel Clusters. Science 265, 1682–1684 (1994). 

13. Castleman, A. W. & Khanna, S. N. "Superatoms: building blocks of new materials." The 

Chemical Physics of Solid Surfaces 12, 409-425 (Elsevier, 2007).  

14. Sattler, K. Cluster Assembled Materials. (CRC Press, 1996). 

15. P. Jena. Clusters And Nano-assemblies Physical And Biological Systems. (World Scientific 

Publishing Company, 2005). 

16. Khanna, S. N. & Jena, P. Assembling crystals from clusters. Phys. Rev. Lett. 69, 1664–1667 

(1992). 

17. Khanna, S. N. & Jena, P. Atomic clusters: Building blocks for a class of solids. Phys. Rev. B 

51, 13705–13716 (1995). 

18. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl & R.E. Smalley. C60: Buckminsterfullerene. 

Nature 318, 162–163 (1985). 

19. Kroto, H. The Stability of the Fullerenes Cn with n = 24, 28, 32, 36, 50, 60 and 70. Nature 

329, 529–531 (1987). 

20. Hebard, A. F. et al. Superconductivity at 18 K in potassium-doped C60. Nature 350, 600–601 

(1991). 

21. Yamanaka, S., Hotehama, K. & Kawaji, H. Superconductivity at 25.5 K in electron-doped 

layered hafnium nitride. Nature 392, 580–582 (1998). 

22. Claridge, S. A. et al. Cluster-Assembled Materials. ACS Nano 3, 244–255 (2009). 



 
 

122 
 

23. Bühl, M. & Hirsch, A. Spherical Aromaticity of Fullerenes. Chem. Rev. 101, 1153–1184 

(2001). 

24. Bolskar, R. D. Gadofullerene MRI contrast agents. Nanomed. 3, 201–213 (2008). 

25. Khanna, S. N. & Jena, P. Designing ionic solids from metallic clusters. Chem. Phys. Lett. 

219, 479–483 (1994). 

26. Liu, F., Mostoller, M., Kaplan, T., Khanna, S. N. & Jena, P. Evidence for a new class of 

solids. First-principles study of K(Al13). Chem. Phys. Lett. 248, 213–217 (1996). 

27. Ashman, C. et al. (BAl_{12})Cs:mA cluster-assembled solid. Phys. Rev. B 55, 15868–15873 

(1997). 

28. Khanna, S. N., Rao, B. K. & Jena, P. Electronic signature of the magicity and ionic bonding 

in Al13X (X=Li–K) clusters. Phys. Rev. B 65, 125105 (2002). 

29. Rao, B. K., Khanna, S. N. & Jena, P. Isomers of Al13 clusters and their interaction with alkali 

atoms. Phys. Rev. B 62, 4666–4671 (2000). 

30. Gutsev, G. L., Khanna, S. N. & Jena, P. Unambiguous assignment of the ground state of a 

nearly degenerate cluster. Phys. Rev. B 62, 1604–1606 (2000). 

31. Reber, A. C., Khanna, S. N. & Castleman, A. W. Superatom Compounds, Clusters, and 

Assemblies:  Ultra Alkali Motifs and Architectures. J. Am. Chem. Soc. 129, 10189–10194 

(2007). 

32. Mandal, S. et al. [As7M(CO)3]3– M = Cr, Mo, W: Bonding and Electronic Structure of 

Cluster Assemblies with Metal Carbonyls. J. Phys. Chem. C 115, 23704–23710 (2011). 

33. Reber, A. C., Ugrinov, A., Sen, A., Qian, M. & Khanna, S. N. Helical and linear [K(As11)]2− 

chains: Role of solvent on the conformation of chains formed by Zintl anions. Chem. Phys. 

Lett. 473, 305–311 (2009). 



 
 

123 
 

34. Castleman, A. W. & Khanna, S. N. Clusters, Superatoms, and Building Blocks of New 

Materials. J. Phys. Chem. C 113, 2664–2675 (2009). 

35. Häkkinen, H. & Manninen, M. How ‘Magic’ is a Magic Metal Cluster? Phys. Rev. Lett. 76, 

1599–1602 (1996). 

36. Roach, P. J., Woodward, W. H., Castleman, A. W., Reber, A. C. & Khanna, S. N. 

Complementary Active Sites Cause Size-Selective Reactivity of Aluminum Cluster Anions 

with Water. Science 323, 492–495 (2009). 

37. Reber, A. C., Khanna, S. N., Roach, P. J., Woodward, W. H. & Castleman, A. W. Reactivity 

of Aluminum Cluster Anions with Water: Origins of Reactivity and Mechanisms for H2 

Release. J. Phys. Chem. A 114, 6071–6081 (2010). 

38. Reber, A. C., Roach, P. J., Woodward, W. H., Khanna, S. N. & Castleman, A. W. Edge-

Induced Active Sites Enhance the Reactivity of Large Aluminum Cluster Anions with 

Alcohols. J. Phys. Chem. A 116, 8085–8091 (2012). 

39. Bergeron, D. E., Castleman, A. W., Morisato, T. & Khanna, S. N. Formation of Al13I-: 

Evidence for the Superhalogen Character of Al13. Science 304, 84–87 (2004). 

40. Bergeron, D. E., Roach, P. J., Castleman, A. W., Jones, N. O. & Khanna, S. N. Al Cluster 

Superatoms as Halogens in Polyhalides and as Alkaline Earths in Iodide Salts. Science 307, 

231–235 (2005). 

41. Knight, W. D. et al. Electronic shell structure and abundances of sodium clusters. Phys. Rev. 

Lett. 52, 2141–2143 (1984). 

42. Ekardt, W. Work function of small metal particles: Self-consistent spherical jellium-

background model. Phys. Rev. B 29, 1558–1564 (1984). 



 
 

124 
 

43. Knight, W. D. et al. Alkali metal clusters and the jellium model. Chem. Phys. Lett. 134, 1–5 

(1987). 

44. Jahn, H. A. & Teller, E. Stability of Polyatomic Molecules in Degenerate Electronic States. 

I. Orbital Degeneracy. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1934-1990 161, 220–235 

(1937). 

45. Clemenger, K. Ellipsoidal shell structure in free-electron metal clusters. Phys. Rev. B 32, 

1359–1362 (1985). 

46. Nilsson, S. G. Kgl Dan. Videnske Vidensk. Selsk. Mat Fys Medd 29, (1955). 

47. De Heer, W. A. The physics of simple metal clusters: experimental aspects and simple 

models. Rev. Mod. Phys. 65, 611–676 (1993). 

48. Knight, W. D., de Heer, W. A., Clemenger, K. & Saunders, W. A. Electronic shell structure 

in potassium clusters. Solid State Commun. 53, 445–446 (1985). 

49. Katakuse, I. et al. Mass distributions of negative cluster ions of copper, silver, and gold. Int. 

J. Mass Spectrom. Ion Process. 74, 33–41 (1986). 

50. Zheng, W.-J., Thomas, O. C., Lippa, T. P., Xu, S.-J. & Bowen, K. H. The ionic KAl13 

molecule: A stepping stone to cluster-assembled materials. J. Chem. Phys. 124, 144304 

(2006). 

51. Jones, N. O. et al. Structural, electronic, and chemical properties of multiply iodized 

aluminum clusters. J. Chem. Phys. 124, 154311 (2006). 

52. Reveles, J. U., Khanna, S. N., Roach, P. J. & Castleman, A. W. Multiple valence superatoms. 

Proc. Natl. Acad. Sci. 103, 18405–18410 (2006). 

53. Shichibu, Y. et al. Biicosahedral Gold Clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2−18):  

A Stepping Stone to Cluster-Assembled Materials. J. Phys. Chem. C 111, 7845–7847 (2007). 



 
 

125 
 

54. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of 

a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution. Science 318, 430–433 

(2007). 

55. Heaven, M. W., Dass, A., White, P. S., Holt, K. M. & Murray, R. W. Crystal Structure of the 

Gold Nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 

(2008). 

56. Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. Correlating the Crystal 

Structure of A Thiol-Protected Au25 Cluster and Optical Properties. J. Am. Chem. Soc. 130, 

5883–5885 (2008). 

57. Lopez-Acevedo, O., Tsunoyama, H., Tsukuda, T., Hannu Häkkinen & Aikens, C. M. 

Chirality and Electronic Structure of the Thiolate-Protected Au38 Nanocluster. J. Am. Chem. 

Soc. 132, 8210–8218 (2010). 

58. Moreno, M., Ibañez, F. J., Jasinski, J. B. & Zamborini, F. P. Hydrogen Reactivity of 

Palladium Nanoparticles Coated with Mixed Monolayers of Alkyl Thiols and Alkyl Amines 

for Sensing and Catalysis Applications. J. Am. Chem. Soc. 133, 4389–4397 (2011). 

59. Nimmala, P. R. & Dass, A. Au36(SPh)23 Nanomolecules. J. Am. Chem. Soc. 133, 9175–9177 

(2011). 

60. Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. 

Proc. Natl. Acad. Sci. 105, 9157–9162 (2008). 

61. Akola, J. et al. Thiolate-Protected Au25 Superatoms as Building Blocks: Dimers and Crystals. 

J. Phys. Chem. C 114, 15986–15994 (2010). 



 
 

126 
 

62. Briant, C. E. et al. Synthesis and X-ray structural characterization of the centred icosahedral 

gold cluster compound [Aul3(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction. 

J. Chem. Soc. Chem. Commun. 201–202 (1981).  

63. Pettibone, J. M. & Hudgens, J. W. Synthetic Approach for Tunable, Size-Selective 

Formation of Monodisperse, Diphosphine-Protected Gold Nanoclusters. J. Phys. Chem. Lett. 

1, 2536–2540 (2010). 

64. Shafai, G., Hong, S., Bertino, M. & Rahman, T. S. Effect of Ligands on the Geometric and 

Electronic Structure of Au13 Clusters. J. Phys. Chem. C 113, 12072–12078 (2009). 

65. Bergeron, D. E., Jr, A. W. C., Morisato, T. & Khanna, S. N. Formation and properties of 

halogenated aluminum clusters. J. Chem. Phys. 121, 10456–10466 (2004). 

66. Jiang, D. & Walter, M. The halogen analogs of thiolated gold nanoclusters. Nanoscale 4, 

4234–4239 (2012). 

67. Woodward, W. H., Reber, A. C., Smith, J. C., Khanna, S. N. & Castleman, A. W. Carbonyl 

Bond Cleavage by Complementary Active Sites. J. Phys. Chem. C 117, 7445–7450 (2013). 

68. Kumar, V. Nanosilicon, 114–148 (Elsevier, 2008). 

69. Beck, S. M. Studies of silicon cluster–metal atom compound formation in a supersonic 

molecular beam. J. Chem. Phys. 87, 4233–4234 (1987). 

70. Beck, S. M. Mixed metal–silicon clusters formed by chemical reaction in a supersonic 

molecular beam: Implications for reactions at the metal/silicon interface. J. Chem. Phys. 90, 

6306–6312 (1989). 

71. Kumar, V. & Kawazoe, Y. Metal-Encapsulated Fullerenelike and Cubic Caged Clusters of 

Silicon. Phys. Rev. Lett. 87, (2001). 



 
 

127 
 

72. Kumar, V. & Kawazoe, Y. Magic behavior of Si15M and Si16M (M=Cr, Mo, and W) clusters. 

Phys. Rev. B 65, (2002). 

73. Kawamura, H., Kumar, V. & Kawazoe, Y. Growth behavior of metal-doped silicon clusters 

SinM(M=Ti,Zr,Hf;n=8–16). Phys. Rev. B 71, (2005). 

74. Sun, Z., Oyanagi, H., Uchida, N., Miyazaki, T. & Kanayama, T. Structure determination of 

W-capsulated Si cage clusters by x-ray absorption fine structure spectra. J. Phys. -Appl. 

Phys. 42, 015412 (2009). 

75. Janssens, E. et al. Argon Physisorption as Structural Probe for Endohedrally Doped Silicon 

Clusters. Phys. Rev. Lett. 99, 063401 (2007). 

76. Hiura, H., Miyazaki, T. & Kanayama, T. Formation of Metal-Encapsulating Si Cage 

Clusters. Phys. Rev. Lett. 86, 1733–1736 (2001). 

77. Miyazaki, T., Hiura, H. & Kanayama, T. Topology and energetics of metal-encapsulating Si 

fullerenelike cage clusters. Phys. Rev. B 66, 121403 (2002). 

78. Pandey, R., Rao, B. K., Jena, P. & Blanco, M. A. Electronic Structure and Properties of 

Transition Metal−Benzene Complexes . J. Am. Chem. Soc. 123, 7744–7744 (2001). 

79. Khanna, S., Rao, B. & Jena, P. Magic Numbers in Metallo-Inorganic Clusters: Chromium 

Encapsulated in Silicon Cages. Phys. Rev. Lett. 89, (2002). 

80. Zheng, W., Nilles, J. M., Radisic, D. & Bowen, K. H. Photoelectron spectroscopy of 

chromium-doped silicon cluster anions. J. Chem. Phys. 122, 071101–071101–4 (2005). 

81. Sen, P. & Mitas, L. Electronic structure and ground states of transition metals encapsulated 

in a Si12 hexagonal prism cage. Phys. Rev. B 68, 155404 (2003). 

82. Ulises Reveles, J. & Khanna, S. Nearly-free-electron gas in a silicon cage. Phys. Rev. B 72, 

(2005). 



 
 

128 
 

83. He, J., Wu, K., Liu, C. & Sa, R. Stabilities of 3d transition-metal doped Si14 clusters. Chem. 

Phys. Lett. 483, 30–34 (2009). 

84. Guo, L., Zhao, G., Gu, Y., Liu, X. & Zeng, Z. Density-functional investigation of metal-

silicon cage clusters MSin (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn; n=8-16). Phys. Rev. B 

77, (2008). 

85. Atkins, Peter et al. Inorganic Chemistry. (W.H. Freeman and Company, 2006). 

86. Jensen, W. B. The Origin of the 18-Electron Rule. J. Chem. Educ. 82, 28 (2005). 

87. Pyykkö, P. Understanding the eighteen-electron rule. J. Organomet. Chem. 691, 4336–4340 

(2006). 

88. Khanna, S. N., Rao, B. K., Jena, P. & Nayak, S. K. Stability and magnetic properties of iron 

atoms encapsulated in Si clusters. Chem. Phys. Lett. 373, 433–438 (2003). 

89. Kawamura, H., Kumar, V. & Kawazoe, Y. Growth, magic behavior, and electronic and 

vibrational properties of Cr-doped Si clusters. Phys. Rev. B 70, (2004). 

90. Ulises Reveles, J. & Khanna, S. N. Electronic counting rules for the stability of metal-silicon 

clusters. Phys. Rev. B 74, 035435 (2006). 

91. Uchida, N., Miyazaki, T. & Kanayama, T. Stabilization mechanism of Si12 cage clusters by 

encapsulation of a transition-metal atom: A density-functional theory study. Phys. Rev. B 74, 

205427 (2006). 

92. Koyasu, K., Akutsu, M., Mitsui, M. & Nakajima, A. Selective Formation of MSi16 (M = Sc, 

Ti, and V). J. Am. Chem. Soc. 127, 4998–4999 (2005). 

93. Bowser, J. R. Inorganic Chemistry. (Brooks/Cole, 1993). 



 
 

129 
 

94. Roach, P. J., Woodward, W. H., Reber, A. C., Khanna, S. N. & Castleman, A. W. Crystal 

field effects on the reactivity of aluminum-copper cluster anions. Phys. Rev. B 81, 195404 

(2010). 

95. Luo, Z. et al. Spin Accommodation and Reactivity of Silver Clusters with Oxygen: The 

Enhanced Stability of Ag13
-. J. Am. Chem. Soc. 134, 18973–18978 (2012). 

96. Luo, Z., Grover, C. J., Reber, A. C., Khanna, S. N. & Castleman, A. W. Probing the Magic 

Numbers of Aluminum–Magnesium Cluster Anions and Their Reactivity toward Oxygen. J. 

Am. Chem. Soc. 135, 4307–4313 (2013). 

97. Born, M. & Oppenheimer, R. Zur quantentheorie der molekeln. Ann. Phys. 389, 457–484 

(1927). 

98. Koch, W. & Holthausen, M. C. A Chemist’s Guide to Density Functional Theory. (Wiley-

VCH, 2001). 

99. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964). 

100. Kohn, W. & Sham, L. Self-Consistent Equations Including Exchange and Correlation 

Effects. Phys. Rev. 140, 1133–& (1965). 

101. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made 

simple. Phys. Rev. Lett. 77, 3865 (1996). 

102. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made 

Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396–1396 (1997). 

103. Becke, A. D. A new mixing of Hartree–Fock and local density-functional theories. J. 

Chem. Phys. 98, 1372 (1993). 

104. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. 

Chem. Phys. 98, 5648 (1993). 



 
 

130 
 

105. Jackson, K. & Pederson, M. R. Accurate forces in a local-orbital approach to the local-

density approximation. Phys. Rev. B 42, 3276–3281 (1990). 

106. Pederson, M. R. & Jackson, K. A. Variational mesh for quantum-mechanical simulations. 

Phys. Rev. B 41, 7453–7461 (1990). 

107. Porezag, D. & Pederson, M. R. Optimization of Gaussian basis sets for density-functional 

calculations. Phys. Rev. A 60, 2840–2847 (1999). 

108. Guerra, C. F., Snijders, J. G., Te Velde, G. & Baerends, E. J. Towards an order-N DFT 

method. Theor. Chem. Acc. 99, 391–403 (1998). 

109. Te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001). 

110. ADF2013. (SCM, Theoretical Chemistry). at <http://www.scm.com> 

111. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab Initio Calculation of 

Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force 

Fields. J. Phys. Chem. 98, 11623–11627 (1994). 

112. Van Gisbergen, S. J. A., Snijders, J. G. & Baerends, E. J. Implementation of time-

dependent density functional response equations. Comput. Phys. Commun. 118, 119–138 

(1999). 

113. Rosa, A. et al. Electronic Spectra of M(CO)6 (M = Cr, Mo, W) Revisited by a 

Relativistic TDDFT Approach. J. Am. Chem. Soc. 121, 10356–10365 (1999). 

114. Hirata, S. & Head-Gordon, M. Time-dependent density functional theory within the 

Tamm–Dancoff approximation. Chem. Phys. Lett. 314, 291–299 (1999). 

115. Abreu, M. B., Powell, C., Reber, A. C. & Khanna, S. N. Ligand-Induced Active Sites: 

Reactivity of Iodine-Protected Aluminum Superatoms with Methanol. J. Am. Chem. Soc. 

134, 20507–20512 (2012). 



 
 

131 
 

116. Abreu, M. B., Reber, A. C. & Khanna, S. N. Does the 18-Electron Rule Apply to CrSi12? 

J. Phys. Chem. Lett. 5, 3492–3496 (2014). 

117. Hagelberg, F., Xiao, C. & Lester, W. Cagelike Si12 clusters with endohedral Cu, Mo, and 

W metal atom impurities. Phys. Rev. B 67, (2003). 

118. Lu, J. & Nagase, S. Structural and Electronic Properties of Metal-Encapsulated Silicon 

Clusters in a Large Size Range. Phys. Rev. Lett. 90, (2003). 

119. Kong, X., Xu, H.-G. & Zheng, W. Structures and magnetic properties of CrSin
− (n = 3–

12) clusters: Photoelectron spectroscopy and density functional calculations. J. Chem. Phys. 

137, 064307 (2012). 

120. Li, J. et al. Structures and magnetic properties of SinMn (n = 1–15) clusters. J. Chem. 

Phys. 130, 164514–164514–9 (2009). 

121. Ho, K.-M. et al. Structures of medium-sized silicon clusters. Nature 392, 582–585 

(1998). 

122. Rohlfing, C. M. & Raghavachari, K. A theoretical study of small silicon clusters using an 

effective core potential. Chem. Phys. Lett. 167, 559–565 (1990). 

123. Raghavachari, K. & McMichael Rohlfing, C. Electronic structures of the negative ions 

Si2 –Si10: Electron affinities of small silicon clusters. J. Chem. Phys. 94, 3670–3678 (1991). 

124. Belkhir, M. A., Mahtout, S., Belabbas, I. & Samah, M. Structure and electronic property 

of medium-sized silicon clusters. Phys. E Low-Dimens. Syst. Nanostructures 31, 86–92 

(2006). 

125. Nigam, S., Majumder, C. & Kulshreshtha, S. K. Structural and electronic properties of 

Sin, Sin
+, and AlSin-1 (n=2–13) clusters: Theoretical investigation based on ab initio 

molecular orbital theory. J. Chem. Phys. 121, 7756 (2004). 



 
 

132 
 

126. Iwamatsu, M. Global geometry optimization of silicon clusters using the space-fixed 

genetic algorithm. J. Chem. Phys. 112, 10976 (2000). 

127. Pedicini, A. F., Reber, A. C. & Khanna, S. N. The effect of sulfur covalent bonding on 

the electronic shells of silver clusters. J. Chem. Phys. 139, 164317 (2013). 

128. Gamboa, G. U., Reber, A. C. & Khanna, S. N. Electronic subshell splitting controls the 

atomic structure of charged and neutral silver clusters. New J. Chem. 37, 3928–3935 (2013). 

	


	Electronic Principles Governing the Stability and Reactivity of Ligated Metal and Silicon Encapsulated Transition Metal Clusters
	Downloaded from

	Microsoft Word - Abreu_Marissa_PhD

