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1. Abstract 

 

MODIFICATION AND EVALUATION OF A BRAIN COMPUTER INTERFACE SYSTEM TO 

DETECT MOTOR INTENTION 

 

 

by Christopher Hagerty-Hoff, B.A. 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at 

Virginia Commonwealth University. 

 

 

Virginia Commonwealth University 2015 

 

Major Director: Ou Bai, Ph.D., Assistant Professor, Department 

 of Biomedical Engineering 

 

 It is widely understood that neurons within the brain produce electrical activity, and 

electroencephalography—a technique used to measure biopotentials with electrodes placed upon the 

scalp—has been used to observe it. Today, scientists and engineers work to interface these electrical 

neural signals with computers and machines through the field of Brain-Computer Interfacing (BCI). 

BCI systems have the potential to greatly improve the quality of life of physically handicapped 

individuals by replacing or assisting missing or debilitated motor functions. This research thus aims to 

further improve the efficacy of the BCI based assistive technologies used to aid physically disabled 

individuals. This study deals with the testing and modification of a BCI system that uses the alpha and 

beta bands to detect motor intention by weighing online EEG output against a calibrated threshold.
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  2. Introduction 

 

 As modern assistive technology has become more sophisticated, transitioning from simple rigid 

objects intended to only help support the user's weight to mechatronic devices capable of complex 

reactive support and even motion, a burgeoning need for increased user control has arisen: now that the 

hardware is sufficiently advanced, research has shifted focus to technology that allows the wearer to 

communicate more easily with the device in order to modify or control its behavior. One of the 

foremost methods for interacting with these assistive devices is Brain-Computer Interfacing (BCI). 

This research focuses on the evaluation and modification of a BCI system capable of recognizing user 

motor intention and translating it into machine commands. 

 

 2.1 Electroencephalography and Brain Waves 

 Electroencephalography (EEG) is the technique of recording the firing of neurons in the brain 

using electrode arrays mounted on the scalp. These electrodes are sensitive to the electrical activity 

associated with the postsynaptic potentials of neurons in the cerebral cortex. It was Hans Berger, in 

1922, who first measured the EEG waves in the human brain and coined their modern name [1]. The 

biopotentials recorded by EEG are products of localized depolarization/polarization across the brain as 

an electrochemical reaction following the release of neurotransmitters and the resulting change in 

membrane conductivity [2]. Specifically, these potentials are the sum of excitatory and inhibitory 

signals traveling through dendrites.  
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 The electrodes mounted on the scalp have a standard sensitivity of 7 μV per millimeter, and the 

recorded data typically undergoes averaging techniques to represent the net potential measured in the 

target zone proximal to the electrode [3]. Electrode arrays are typically assembled upon the scalp in the 

“10-20” placement invented by Herbert Jasper in 1957 with the earlobe used as a reference voltage and 

aqueous gel as a medium [4]. This placement (Figure 1) is regarded as the international norm [5]. This 

orientation allows for standardized measurements of brain activity ordered by scalp locations 

corresponding to various parts of the brain. 

 When it comes to modern research, EEG is often used in experiments studying normal and 

abnormal neurophysiology. As EEG activity is very sensitive to a plethora of factors including various 

emotions, levels of alertness/drowsiness or mental/neural disorders, many researchers utilize the 

technique to observe different normative brain waves in subjects exposed to a variety of conditions or 

tasks as well as to examine the neural activity associated with diseases such as Alzheimer's, epilepsy or 

narcolepsy. Medical practitioners also use EEG to look for the markers associated with said disorders to 

assist in the diagnosis of their patients [6] [7]. 

 A chronic problem that researchers using electroencephalography have had to deal with is that 

of electrode artifacts. These artifacts represent corruption of the desired EEG data and occur when the 

electrodes acquire signals from sources outside of the target area leading to the distortion of the original 

signal. Artifacts in EEG are commonly caused by unwanted electrooculography (EOG)—electrical 

activity that occurs during eye movement as a result of polarity differences between the front and back 

of the eye—or electromyography (EMG)—motoneuron activity that can be detected during muscle 

contraction [5] [6]. In EEG, often the source of these artifacts is EOG and blinking, but it is not 

uncommon for neck or scalp muscle contraction to throw off data recording. Additionally, a “slip” or 

any form of insufficient contact between the scalp and the electrodes will also produce artifacts [7]. 

These artifacts can typically be dealt with using digital filtering or other post-processing techniques. 
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 Regarding EEG waves, there are several different oscillatory brain signals ordered by the 

frequency band in which they occur (Table 1). The structure and behavior of these rhythms depends on 

the relative abundance of excitatory and inhibitory connections between neural masses [2] as well as 

the activity and health of the brain [8]. Two of the most important waves are the alpha and beta 

rhythms. The alpha rhythm is a very strong waveform that predominately originates from the occipital 

lobe of the brain. The alpha rhythm amplitude is strongest during periods of wakeful rest when the 

subject's eyes are closed, in which state the alpha rhythm has the largest amplitude among the other 

brainwaves. The behavior of the alpha rhythm historically have been associated with activity in the 

visual cortex, but more recent work has suggested that it plays a role in coordination and 

communication across the neural network [9]. 

 The beta rhythm has a much broader frequency band than the alpha (as can be seen in Table 1) 

and as such is divided into three sections: Low Beta Waves (13-16 Hz); Beta Waves (16.5-20 Hz); and 

High Beta Waves (20.5-30 Hz). These are also referred to as “Beta 1,” “Beta 2” and “Beta 3” powers 

respectively [10]. Beta wave activity and strength is often associated with alertness and consciousness 

with various amplitudes and frequencies being associated with different levels of concentration [11]. 

Additionally, beta waves in the motor cortex are associated with isotonic muscle contraction, and 

during movement changes/transitions, these waves have been observed to be suppressed [12].  When 

the strength of these waves is artificially amplified (induced by transcranial alternating-current 

stimulation) an increase in isotonic muscular activity can be observed causing a retardation of motor 

movement [12]. 

 Another pattern heavily related to the motor cortex is the sensorimotor rhythm (SMR)     

(Figure 2), a waveform occurring within the upper frequency band of the alpha rhythm. The SMR 

displays distinct patterns of behavior during the activation of sensory-motor areas of the brain. During 

states of inactivity/immobility, the SMR has a high amplitude, but when the appropriate sensory or 
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motor areas are activated, the amplitude of the SMR drops. This behavior can be produced during 

muscle movement or even with motor imagery [13]. 

 

2.2 Brain-Computer Interfacing 

 The purpose of brain-computer interfacing (BCI) is to create a system that allows a machine to 

be affected or even controlled by the user's brainwaves. Typically, there are two types of BCI systems 

(Figure 3): “open loop” where a system responds to user input with no feedback; and “closed loop” 

where a system provides reactive feedback to user input. Initial studies were focused on animals—

monkeys in particular—yielding results that illustrated the extent of the brain's plasticity and its ability 

to adapt to new stimuli and to focus upon the activation of specific zones of the motor cortex [14]. 

Through these studies, researchers were able to design algorithms capable of interpreting an animal 

subject's raw neural data. This would then allow engineers to coordinate patterns in the neural activity 

with commands to be delivered to a mechatronic device [15] [16].  

 In the early incarnations of the technology, these interfaces were based on invasive EEG 

systems featuring percutaneous electrode arrays. While these systems enjoy a higher overall resolution 

than non-invasive systems, the disadvantages outweigh the advantages (when its purpose is solely to 

gather data): these invasive systems introduce a major risk of serious bacterial infection at the site of  

implantation which can easily lead to life-threatening meningitis. Additionally, the electrode artifacts 

that are inherent in non-invasive systems (which supposedly were not present in invasive systems—or 

so researchers theorized) are also common in the invasive systems [17] [18]. Coupled with the danger 

and inconvenience of surgery, most modern BCI research and technologies rely upon non-invasive 

systems.  

 Magnetoencephalography, magnetic resonance imaging, electrocorticography and EEG are the 

non-invasive (though electrocorticography is partially invasive) technologies typically used to record 
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the activity of the brain for BCI [19]. EEG in particular is well suited for BCI technology due to its 

high temporal resolution, simplicity and portability. As discussed previously, non-invasive EEG suffers 

from noise and artifact susceptibility as well as poor signal resolution. Additionally, surface electrodes 

can only pick up signals at the surface of the brain; non-invasive EEG cannot be used to capture signals 

from deeper within the brain [18]. Regardless, the bulk of brain-computer interfaces rely on non-

invasive EEG. The idea of using EEG waves as input for BCI is an old one but only recently have 

engineers managed to successfully implement this concept [19]. The typical EEG-BCI follows a 

particular paradigm of collecting EEG data, processing it, translating the processed data into commands 

delivered to an output system and providing a feedback element to the subject (Figure 4). Recording 

raw data from the brain is simple, but analyzing this data and recognizing the features/patterns critical 

to the experiment has been the major crux of BCI technology. Feature extraction entails separating 

useful EEG data from undesired signal noise/artifacts while simplifying the data such that it becomes 

possible to decipher the meaning within the signal, classify it and translate it to the output device. 

There are several algorithmic methods used to process raw EEG data including Hjorth parameters, 

wavelet transforms, Fourier transforms and digital filtering. As for classification algorithms, there are 

several descriptive categories a classifier may all into (Table 2) [20]. 

 

 Generative-

discriminative: 

 

Generative classifiers (e.g., Bayes 

quadratic) compute the likelihood of each 

class and choose the most probable 

candidate, while discriminate classifiers 

(e.g., Support Vector Machines) only 

discern class membership in order to 

directly classify a feature [21] [22]. 

 Static-dynamic:  

Static classifiers (e.g., MultiLayer 

Perceptrons) do not take temporal 

information into account during 

classification: they classify a single 
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feature vector. Dynamic classifiers (e.g., 

Hidden Markov Models) classify a 

sequence of feature vectors thus allowing 

for the modeling of temporal behavior 

[23]. 

 Stable-unstable:  

Stable classifiers (e.g., Linear 

Discriminant Analysis), have low 

complexity/capacity. They are said to be 

stable as small variations in the training 

set do not considerably affect their 

performance. Unstable classifiers (e.,g., 

MultiLayer Perceptron) have high 

complexity. Small variations of the 

training set may lead to important 

changes in performance [24].  

 Regularized:  

Regulariation consists in controlling the 

complexity of a classifier in order to 

prevent overtraining. A regularized 

classifier has good generalization 

performances and is more robust with 

respect to outlying patterns [25] [26]. 

  Table 1: Types of Classifying Methods for BCI 

 

As for the features themselves, there is a broad spectrum of elements that engineers have attempted to 

incorporate into BCI systems including: EEG amplitude [27]; Band Powers; Power Spectral Density 

[28]; AutoRegressive parameters [29]; time-frequency features [30]; and inverse model-based features 

[31]. Additionally, there are several other parameters and properties that must be considered when 

designing the feature extraction system (Table 3) [19] [20] [21]. 

 

 Noise and outliers:  

BCI features are noisy or contain 

outliers because EEG signals have poor 

signal-to-noise ratio. 

 High dimensionality:  

In BCI systems, feature vectors are 

often of high dimensionality [32]. 
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Several features are generally extracted 

from several channels and time 

segments before being concatenated 

into a single feature vector. 

 Time information:  

BCI features should contain time 

information as brain activity patterns 

are typically related to specific EEG 

time variations. 

 Non-stationary:  

BCI features are non-stationary since 

EEG signals may rapidly vary over 

time and between sessions. 

 Small training sets:  

Training sets are relatively small, since 

the training process is both time 

consuming and demanding for BCI 

subjects. 

  Table 2: BCI Properties for Feature Extraction 

 

 Particular time-variations of EEG across specific frequency bands are used for BCI. As such, 

the time course of these signals must be considered during the design of the BCI system: this data will 

be vital in the feature extraction stage of the BCI [21] [33]. Accordingly, researchers typically follow 

one of three different approaches: concatenation of features from different time segments (extracting 

features from different time segments and concatenating them into a single feature vector)[34]; 

combining classifications at different time segments (performing the feature extraction stage on 

multiple time segments and then combining the results) [35]; dynamic classification (extracting 

features from several time segments to build a sequence of feature vectors)[34] [36]. The method used 

most commonly is the concatenation of features across several time segments. 

  Once features are extracted and classified, output devices can be given a predefined set of 

instructions and a proportional feedback signal can be given to the user [21] [35]. Feedback is vital to 

BCI systems; it provides information for users that allows them to better learn, isolate and control the 
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mental imagery/behavior to be classified for operation of the output device. This feedback signal can be 

visual or auditory in nature, and some systems even applies haptic/tactile technology to this end [37]. 

 Overall, BCI systems generally fall into two categories: synchronous and asynchronous. In 

synchronous BCI systems, every feature of the signal is extracted and then processed in sequence. 

Once the first instruction is completed, the system will then process a new set of features [38] [39]. The 

subject is directed along a repetitive scheme to switch from one mental task to the next. This cue-based 

(occasionally called “cue-ball” [37]) thus features time-locked EEG phenomena, where a cue is given 

to the subject to provide a sequence of very specific input over a specific time interval: these intervals 

are often called “trials,” which typically are 4-10 seconds in duration [40].  Asynchronous BCI systems, 

however, are more dynamic.  

 The asynchronous system can accept and process features one after another without waiting for 

the first instruction to be completed: the subject makes voluntary decisions on when to initiate mental 

tasks. For this reason, asynchronous BCI is often referred to as “self-paced” [37] [41]. Because of this, 

asynchronous BCI systems require continuous analysis of EEG input. This is to ascertain if the subject 

is in an Intentional Control State (IC): if the user is producing the correct input brain activity to trigger 

the BCI to send the predesignated command to the output device [39] [37].  

 The major difference between synchronous and asynchronous BCI systems is in their utility. 

Synchronous systems are ideal for research/analysis purposes, as it provides a model for a target brain-

activity in a controlled environment. Asynchronous systems, more geared towards practical BCI 

devices, would be much less organized for data-analysis, but is far more adaptable and allows the user 

complete control over the system [37] [38]. Using the two systems in conjunction allows the researcher 

to calibrate the system for the subject by using a synchronous calibration program, maximizing the 

accuracy and efficacy of the following asynchronous trials by passing recorded parameters that will 

help in the feature extraction/classification process of the subject's brain waves [40].  
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 The output device of the BCI can be as simple as a computer cursor or as complex as a robotic 

arm. Some researchers are even exploring the utilization of BCI in computer and video game control 

[41]. A BCI system can be designed to interact with any electrical technology, but the output device 

that this research focuses upon is an above-the-knee prosthetic leg system.  

 The specific aim of this study is to modify a BCI system designed to detect a subject’s motor 

intentions in order to increase its accuracy and then to evaluate its performance. This was done by 

testing the system in online synchronous trials using the original system and the modified system 

before performing post-processing to run offline tests to directly compare the accuracy of the old 

system versus the new system.  
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Band Frequency  

Delta 1-4 Hz 

Theta 4-7 Hz 

Alpha ~7-13 Hz 

Beta ~13-30 Hz 

Gamma 30+ Hz 

   Table 3: Standard EEG Bands and Associated Frequencies 

 

 

 

Figure 2: Sensorimotor Rhythm in Action, Energy vs Time) [Hugo Gamboza Dez 2005] 

Figure 1: 10-20 International Electrode Placement System [www.bci2000.org] 
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 Figure 3: Comparison of Closed and Open Loops [www.micromo.com] 

 

 

 

 

 

 

Figure 4: Basic Closed Loop BCI Systems [www.micromo.com] 

 

 

 

 

 

  

Figure 5: Sample EEG Data [Sample Data from EEG Lab Matlab Toolbox] 
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3. Methodology 

 

 The experiment and the ensuing research consisted of several devices and programs. Before 

going into each part of the methodology, here is a simplified overview of the methodology involved in 

this work prior to the post-test processing.  

 EEG system is set up, connecting the subject to the amplifier. 

 The amplifier is connected wirelessly to the investigator's laptop via Bluetooth. 

 The calibration program is run to identify the proper thresholds. 

 Calibration data is passed to the detection program which is then run to test system 

accuracy. 

 

 3.1  EEG System 

 The EEG system features seven electrodes across the central nodes (Figure 6) placed against the 

head using either a headband or an EEG cap (both were used in this experiment); this placement is 

based on the 10/20 128 electrode system. A conductive gel was used as a medium between the 

electrodes and the scalp to reduce the effects of skin impedance. Electrodes are attached to the earlobe 

to provide a reference voltage. Finally, the ends of these leads are then plugged into the amplifier. 
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3.2 The Amplifier 

 The amplifier used in this experiment is the Texas-Instruments ADS1299 (Figure 7), a 

low-noise, 8-channel, 24-bit analog front-end for biopotentials designed to be used with EEG and ECG. 

It features eight low-noise PGAs with high resolution simultaneous sampling. It has a very low input- 

referred noise at 1.0 μVpp (70-Hz BW). It has a power of 5 mW/channel and an input bias current of 

300 pA. The data rate is 250 SPS to 16 kSPS. Finally, the device has a CMRR of 110 dB. The amplifier 

is programmed for an overall gain of 8000. The amplifier was then wirelessly connected to the 

investigator's laptop using Bluetooth and interfaced with Dr. Ou Bai's BCI2VR Matlab toolbox, a BCI 

system with virtual reality simulations intended for similar experiments. Several rounds of data-

collecting were performed upon various subjects to test the connectivity between the laptop and the 

amplifier.  

 

 3.3 The Calibration Module 

 Before subject volition can be accurately recorded, Dr. Bai's system must be properly calibrated. 

The purpose of the calibration module is to observe the brain waves of the subject in time frames 

corresponding to motor imagery and relaxation in order to find the threshold parameters to be used for 

volition recognition. This is done by a synchronous test where the subject, connected to the EEG-BCI 

system made up of the EEG, amplifier and laptop, is given visual and audio cues to either begin to 

imagine motor control or to just relax. The raw data was sampled at 250 Hz . Originally, the alpha band 

is observed using a bandpass filter (Figure 8) though in later trials, the beta band is observed instead. 

After several trials (20-40) the average value of the resting threshold and the volition threshold are 

computed and recorded. These values are then exported to a calibration file which will then be passed 

to the detection module.  
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 3.4  The Detection Module 

 Once the calibration is complete, the accuracy of the system and the calibration configuration is 

tested using the detection module. Like the calibration module, this program is a synchronous BCI test 

where the user is given visual and audio cues that correspond to periods of mental motor imagery and 

rest. Unlike the calibration system, the detection module weighs the online recorded  EEG power 

against a threshold value defined by the user's calibration profile (the average of the resting and the  

active thresholds recorded during the calibration). If the power output of the signal drops below the 

threshold (within a configurable sensitivity) during an “action” step, this is recorded as a true positive. 

If it drops below the threshold during a “relax” step, this is recorded as a false positive. Likewise, if the 

power output remains above the threshold during a “relax” step, this is recorded as a true negative, and 

if it remains above the threshold during an “action” step, this is recorded as a false negative.  This 

approach varies from traditional BCI systems which typically require the subject to modulate their 

brain activity in some abnormal fashion; instead—if successful—the program allows for subjects to 

organically control the system by their thoughts. The accuracy of the system is measured at the end of 

all trials through weighing the number of true positives and true negatives against false positives and 

false negatives, where ACC is the accuracy, TP is the number of true positives, TN the number of true 

negatives, and X the total number of positives and negatives both true and false: 

ACC = (TP + TN) / X 

Finally, the subject is provided visual feedback as he completes the trials, a bar with a cursor that rises 

and falls in sequence with their EEG signal power output. The threshold is also shown as a static bar, 

allowing the subject to see how close or far he is from a successful activation. 

 

 3.5 Post-Processing 

 Post-processing was done after several trials using the alpha rhythm for the calibration and 
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detection modules that yielded poor accuracy. First, the electrode headband was swapped out for a 

traditional EEG cap. This did not result in any numerically significant difference. Next, the alpha band 

was removed from the equation in order to focus upon the beta band with a bandpass of 13-30 Hz 

(Figure 9). When the results of this were promising, the earlier results were revisited. The offline 

detection data and the corresponding calibration profiles were used to re-examine the earlier tests to see 

if they were more accurate under the new configuration. Like the original, this program processes data 

in three second steps with a sampling rate of 250 Hz for a total number of 750 samples. The modified 

functions (see appendix) used are as similar to the original program as possible to ensure that the 

results of the tests will be as close as possible to an online equivalent. The pre-recorded data is run 

through the offline program which then filters out everything outside the beta band and compares the 

data against the thresholds passed on by the calibration profile. The same algorithms are used to detect 

and record the number of true/false positives and true/false negatives. Finally, the accuracy of the new 

trial is calculated using the formula: 

ACC = (TP + TN) / X 

The data is then returned in a multidimensional array consisting of the original signal in the structure  

N x 7 x 750 for a trial with N epochs / steps (the 7 corresponds to the number of channels to average 

and the 750 corresponds to the number of samples per channel in each epoch), the filter used to process 

the signal (in this case always the beta bandpass filter shown in Figure 9) and the calculated accuracy.  
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Figure 7: TI ADS1299 Diagram [Texas Instruments] 

Figure 6: Electrode Distribution (in red) 
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Figure 8: Alpha Band, Magnitude (dB) / Phase (radians) vs. Frequency (Hz) 

Figure 9: Beta Band, Magnitude (dB) / Phase (radians) vs Frequency (Hz) 



 

 

18 

 

 

 

 

 

4. Results  

 

 The results of the experiment can be broken into two sections. The first deals with the online 

testing of data collected both first-hand in the VCU EEG-BCI lab and second-hand from a concurrent 

experiment run by Dr. Bai and the McGuire Veteran's Hospital in Richmond, Virginia. The second 

section covers the post-processing of this data. 

 

 4.1 Online Testing 

 The results of the online testing using the validation system was as follows: 

Test Calculated Accuracy 

Detection 1 – Subject 1 55.89% 

Detection 2 – Subject 1 43.51% 

    Table 4: April 18th, 2014, Subject 1  

 

This was some initial testing done on April 18, 2014, with the subject in question being the 

investigator. This demonstrated the functionality of the system and was what brought attention to the 

poor accuracy rate of the system. Several attempts to improve the accuracy by changing the 

configuration of the program were made (detection threshold sensitivity, and on April 21, 2014, more 

tests were run.  
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Test Calculated Accuracy 

Detection 1 – Subject 1 66.10% 

Detection 2 – Subject 1 40.28% 

Detection 3 – Subject 1 88.40% (Beta) 

    Table 5: April 21st, 2014, Subject 1 

As can be seen, there was little improvement between the two tests and the previous set. Both of these 

short sets of tests were performed with the alpha band included in the experiment. Observation of the 

feedback in the closed synchronous BCI system prompted the investigator to remove the alpha band 

and focus on the beta band. Detection 3 on this set showed significant improvement, showing 

considerable potential for this technique. 

 The following set of experiments on April 22, 2014 (again using only the beta band, but this 

time including the primary investigator as well as the investigator) yielded these results:  

Test Calculated Accuracy 

Detection 1 – Subject 1 81.20% 

Detection 2 – Subject 1 80.26% 

    Table 6: April 22st, 2014, Subject 1  

These results seemed quite promising given the high accuracy rate. This prompted the investigator to 

design the offline algorithm to test the accuracy from previous experiments using the alpha band. 

Before this was done, however, another set of trials were run on April 23rd, 2014 in a different 

experiment run by Dr. Ou Bai. The data was used in this study second hand without the inclusion of 

any identifying information. These were more extensive and cast doubt upon the beta band theory. 
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Test Calculated Accuracy 

Detection 1 – Subject 2 75.90% 

Detection 2 – Subject 2 63.10% 

Detection 3 – Subject 2 41.14% 

Detection 4 – Subject 2 33.06% 

Detection 5 – Subject 2 38.30% 

Detection 6 – Subject 2 24.80% 

Detection 7 – Subject 2 19.12% 

Detection 8 – Subject 2 22.91% 

Detection 9 – Subject 2 31.75% 

Detection 10 – Subject 2 44.30% 

Detection 11 – Subject 2 16.22% 

Detection 12 – Subject 2  7.20% 

    Table 7: April 23rd, 2014, Subject 2 

These results seemed bizarre and anomalous. There is an obvious decline in accuracy, followed by a 

brief rise and a subsequent drop (modeled in Figure 10). Detection 12 used 50 trials as opposed to the 

typical 30 trials.   

 

   Figure 10: Accuracy Variability Across April 23rd Trials 

 

3 Accuracy Variability Across April 23rd Trials 
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 This prompted further analysis of the system. Initially the investigator believed there might be 

electromagnetic interference from nearby machinery, but as there was no electrical activity present that 

had not been present previously, this theory was discarded. Next, the raw EEG was studied. Other than 

typical issues such as baseline wander and noise (both of which would have been eliminated by the 

filter), there was a peculiar artifact present (Figure 11).  An electrical impulse was present across 

several channels. This was clearly not physiological, given the artifact's huge size. It was most likely 

caused by a packet loss during the wireless communication between the amplifier and the laptop. This 

is a behavior inherent in wireless connections, and given the algorithms and filters used in the 

experiment, it could not have impacted system performance significantly.  Besides this, the EEG did 

not seem to exhibit any unusual traits or behavior, i.e. the signal acquisition was working as intended.  

 4.2 Offline Testing 

     To further test if motor intention could be reliably detected using the beta-band, the offline detection 

program described in the methodology was designed. The objective of this part of the experiment was 

to revisit the earlier data collected using the original bandpass and see if the accuracy of the system was 

affected significantly by the new system. Given the promising results of the last trial on April 21 and 

the trials on April 22, the investigator expected significant improvement to the prior data. 

Test Original 

Accuracy 

New Accuracy 

April 18 – 

Detection 1 

55.89% 60.28% 

April 18 – 

Detection 2 

43.51% 40.92% 

April 21 – 

Detection 1 

66.10% 65.57% 

April 21 – 

Detection 2 

40.28% 43.19% 

        Table 8: Offline Testing Revisited Using the Beta-band 
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Despite the researcher's expectations, changing the bandpass of the filter did not have an appreciable 

effect upon the earlier data. There was neither a distinct positive or negative bias in the accuracy 

changes. With more data, perhaps one could be determined, but this data does not support the 

investigator's theory of the beta band being the optimal signal target for this experiment. 
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 Figure 11: Complete EEG signal (Volts vs. Time) -- Subject 1 (Investigator and Author) 
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5    Discussion  

 

 5.1 Online and Offline Results and Research Direction 

 The online testing using the alpha band exhibited low accuracy across both sets of trials. The 

average accuracy of the experiments on the 18th was 49.7%, and the average of the experiments on the 

21st was 53.19%. The overall accuracy of the system across these two days of testing was 51.45%. For 

reference, some BCI studies that enjoy higher accuracy during online testing (for activities such as 

driving a motorized wheelchair) report accuracies often in the range of 70-80% [42] [43].  

 When the beta band was the only signal used in the test, initial results seemed to exhibit high 

accuracy. With the three complete detection tests across two days, the average accuracy of the initial 

tests was 83.29%. This is a promising figure that initially suggested the system would be appropriate  

for use in motor related activities requiring precision and effective real-time processing. When the new 

algorithm was tested extensively, however, it became apparent that the alpha/beta change did not fully 

address the low accuracy issue (if it even did address it at all).  

 The tests that were run on the 23rd started out promising, but as experiments went on, the 

accuracy of the system steadily dropped. Overall, the average accuracy of the system was 31.63%. The 

accuracy variability of the testing on this day has been plotted out in Figure 10, illustrating this trend. 

This odd trend seemed to indicate that the more extensive the synchronous testing, the lower the 

accuracy. It is possible that there may have been some persistent technical issue affecting the results of 

the study, but if so, the investigator was unable to identify it. Alternatively, there may have been a 
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physiological phenomenon interfering with the signal, the extra information overlaying on the target 

and leading to an increase in neural activity. 

Another possibility is that the beta activity unique to each subject may or may not be ideal for 

this algorithm depending on the individual. This is certainly true for the SMR (sensorimotor rhythm) 

which has been observed to exist in different frequency ranges for different individuals (within a 

deviation of 1-5 Hz typically). However, it is important to note that the accuracy for the first two tests 

were over 70% and 60% respectively: they had a fairly high success rate, especially when compared to 

the following trials. It may be possible that the first two were anomalous, but given the nature of the 

subject as well as the clearly identifiable trend indicated in Figure 10, this seems unlikely. 

 The offline results, which the investigator had hoped would hold significant improvement over 

the prior work using the alpha band, did not show a distinct increase or decrease in accuracy when the 

target signal was processed using the beta band. The average accuracy of the original system was 

51.45% and the accuracy of new system was 52.49%, with an increase of 1.04%—not a significant 

difference. This would thus suggest one of two possibilities: that the shift from the alpha to beta bands 

likely did not confer any increase in accuracy, and a different factor was responsible for the increased 

accuracy; or that a neurophysiological phenomenon (such as described in the previous paragraph) 

interfered with the earlier tests. The investigator finds the second theory more plausible (and more 

appealing) as while there were far fewer trials in the earlier days of testing, every day of testing 

(excluding the 22nd, where each subject tested only underwent one trial), there is a noticeable decrease 

in accuracy between the first and second trial.  

 The investigator's new hypothesis is that the low accuracy of the system is caused a concurrent 

neural process that can be observed during—or may even be provoked by—part of the online 

synchronous testing. Further research could be done to test this theory and, assuming it is true, identify 

this signal and a way to circumvent this issue to achieve accurate motor intention detection.  
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 5.2 Future Direction of Technology 

 This kind of technology—interfaces that allow for the interpretation and detection of motor 

commands rapidly and in real time—would lead to significant advances in biomechatronic assistive 

technology. Historically, devices such as wheelchairs and prosthetic limbs have been stiff, non-

responsive devices that rely purely on mechanical interaction for their operation. Today, significant 

advances have been made such that these devices are often mechatronic in nature: many modern 

wheelchairs are motorized and can be controlled by a joystick; many modern prosthetic limbs have 

biomimetic functions that the wearer can control to some extent albeit limited by unwieldy interfaces.  

A system that observes the user's brain activity and recognizes when they are initiating a certain 

action (flexing of the hand or foot, for example) would allow for intuitive control over modern devices. 

Today, a man with no arms can use modern prosthetics and his shoulder muscles to slowly and 

carefully grasp a glass of water and bring it to his lips. Tomorrow, that man could use an interface like 

this one to perform the same action using only his thoughts. Years from now, using technology like 

this—and a sophisticated prosthetic limb—that man might be able to play the piano. Future work in 

brain computer interfacing may lead to great advances in assistive technology by establishing a 

software framework for controlling future devices. In the meantime, a concurrent study has used this 

system to attempt to connect the function of a BioM prosthetic leg—a biomechatronic limb designed 

by Hugh Herr—to its wearer's brain activity. A similar study, one featuring a different interface, has 

used an operator's brainwaves to drive a motorized wheelchair with high accuracy [43]. Dramatized 

BCI technology is an ever popular trope in science fiction, but, apart from the researchers who work to 

develop it, few understand how far the scientific community has come in making the fantasy a reality. 

As research continues to unlock the meaning contained within the electrical activity of the human 

brain, engineers will be able to design BCI systems of increased sophistication and efficacy. 
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APPENDIX 

 

 

The following code was modified from the original BCI module designed by Dr. Ou Bai. Its 

purpose is to run offline testing with only the beta band using the same functions and platforms as the 

original online tests: 

 
function btv_ProstheticSwitch_Beta_cali_vr_OFFLINE(varargin) 

 %% Brain-Computer Interface to Virtual reality (BCI2VR) 

%% Offline version of btv_ProstheticSwitch_Beta_cali_vr: a reconfiguration of 

%%Ou Bai's program intended for offline data use. Calculates the accuracy of 

%%EEG data given in epochs of 750 samples, corresponding with the amplifier's  

%%sampling rate of 250 Hz in steps with a 3 second duration. 

%% Ver. 1.0.0 04-02-11 Copyright by Ou Bai-Modification by Chris Hagerty-Hoff 

%% 

 

global btv; 

 

if nargin == 0,                                                       

 %% Initialze Parameters for Virtual Environment 

 

btv.vr.settings.SubjectName = 'Subject';            

 %% Subject Name 

 

btv.vr.settings.numberOfRepeats = 30;                   

 %% Number of Repeats between active motor imagery and relax 

    

btv.vr.settings.eegChanIndex = 1:7;                 

 %% List all EEG channels that will be used 

 

btv.vr.settings.betaDecimate = 3;                   

 %% Decimate rate for beta filtering 

 

btv.vr.settings.betaFilterLeng = 64;                 

 %% Filter length for the beta bandpass filter 

  

btv.vr.settings.barRange = [0 2];             
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 %% Bar axis range 

 

btv.vr.OfflineLength = 750 ; 

 %% The number of samples to be processed per offline epoch. 

 

btv.vr.settings.samplesCorrection = 10;                  

 %% The average value across channels and freqeuncy band, the data will 

 %% be rejected, i.e. no detection will be made. 

 

btv.vr.settings.falsePositiveTolerant    =   0.05;                 

  %% The expected false positive rate 

 

elseif ischar(varargin{1})                                             

  %% INVOKE NAMED SUBFUNCTION OR CALLBACK 

    try 

        eval([ 'feval(' varargin{:} ');']); 

    catch ErrCode 

        errordlg(ErrCode.message, ['BCI2VR: ' mfilename]); 

        vr_stop; 

    end 

end 

return %% END MAIN 

 

The following code decimates the raw data and filters it across the beta band using the filter 

shown in Figure 9 before averaging the output across all seven signals: 

function feature=featureExtract(sig) 

global btv; 

 

bLeng=length(decimate(sig(:,1),btv.vr.settings.betaDecimate)); 

 

bxx=zeros(bLeng,size(sig,2)); 

 

for i=1:size(sig,2) 

    bxx(:,i)=decimate(sig(:,i),btv.vr.settings.betaDecimate); 

end 

 

bxx=filter(btv.vr.ersdsw.buf.bbBeta,1,bxx); 

 

bfx=mean(abs(bxx(btv.vr.settings.betaFilterLeng+1:end,:))); 

 

feature=mean(bfx);           

 %% Average across channels for beta activity  

 

return 

 

Feature extraction is handled by the following code: 
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function flag=detectIntention 

global btv; 

%% Feature extraction 

 

fSamples=mean(btv.vr.ersdsw.buf.ersPow(btv.vr.ersdsw.buf.trialSaved-

btv.vr.settings.detectMovAvg+1:btv.vr.ersdsw.buf.trialSaved,:,:)... 

    -btv.vr.ersdsw.buf.erdPow(btv.vr.ersdsw.buf.trialSaved-

btv.vr.settings.detectMovAvg+1:btv.vr.ersdsw.buf.trialSaved,:,:),1); 

 

cSamples=zeros(1,750);  

 %%Creates an empty array for data transcription of epochs with 750 samples 

 

for i=750  

 cSamples(1,i)=fSamples(1,btv.vr.ersdsw.buf.fIndex(i,1), 

 btv.vr.ersdsw.buf.fIndex(i,2)); 

end 

 

[a,b,c]=mldpredict(2,cSamples,btv.vr.ersdsw.buf.detectModel); 

 

dMLDist=c.gx(:,1)-c.gx(:,2); 

 

if dMLDist>=btv.vr.ersdsw.buf.detectThreshold 

    flag=1; 

else 

    flag=2; 

end 

 

 

Next, classification is done in the same manner as the original program: 

%% Create classification model 

if btv.vr.ersdsw.buf.currentNumberRepeat >= 20, 

    

samples=[btv.vr.ersdsw.buf.samplesActive(1:btv.vr.ersdsw.buf.currentNumberRep

eat,:);btv.vr.ersdsw.buf.samplesRelax(1:btv.vr.ersdsw.buf.currentNumberRepeat

,:)]; 

    

targets=[ones(btv.vr.ersdsw.buf.currentNumberRepeat,1);2*ones(btv.vr.ersdsw.b

uf.currentNumberRepeat,1)]; 

 

    mldModel=mldtrain(targets,samples); 

 

    [plabels,accuracy]=mldpredict(targets,samples,mldModel); 

 

    aa=find(plabels(btv.vr.ersdsw.buf.currentNumberRepeat+1:end,1)==1); 

 

    fPosRate=length(aa)/(length(plabels==1)); 

 

    mldModel.accuracy=accuracy; 

 

    mldModel.plabels=plabels; 

 

    mldModel.fPosRate=fPosRate; 

 

    mldModel.std=sqrt(pinv(mldModel.pinvCov)); 
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