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ABSTRACT  

Human pluripotent stem cells (hPSCs), including human embryonic stem cells 

(hESCs) and induced pluripotent stem cells (iPSCs) hold great promise in the fields of 

drug development and regenerative medicine. If iPSCs reprogrammed from patient cells 

replicate what is seen in vivo they may be used as a model of disease. A process that is 

disrupted in many neurodegenerative diseases is mitochondrial biogenesis. One of 

these diseases is amyotrophic lateral sclerosis (ALS), which is characterized by loss of 

motor neurons in the brain and spinal cord. Differentiation of hPSCs into motor neurons 

offers a way to study a previous unavailable cell type and may further our understanding 

of human motor neuron biology. The aims of the present study were to differentiate 

motor neurons from hESCs and iPSCs in low oxygen conditions and to explore 

mitochondrial biogenesis and electrical maturation during this process. After three 

weeks of treatment with retinoic acid and purmorphamine, a sonic hedgehog agonist, 

cells increased expression of post mitotic spinal motor neuron markers. One week later 

electrophysiological analysis revealed voltage-gated currents and action potential 

generation. Mitochondrial biogenesis signaling and expression of respiratory chain 

proteins increased with motor neuron differentiation. Respiration analysis revealed a 

decrease in glycolysis in motor neurons compared to neural stem cells. Interestingly, 

this was not accompanied by an increase in basal respiration or mitochondrial mass. 

These findings enhance our understanding of motor neuron mitochondrial biogenesis, a 

process impaired in ALS. 

 

 
  



 

 

1 

CHAPTER ONE: INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease 

characterized by loss of motor neurons in the brain and spinal cord. Despite extensive 

study, the mechanisms underlying the pathogenesis of sporadic ALS (sALS) are 

currently unknown. Recent studies in our laboratory and others have identified 

increased mitochondrial DNA (mtDNA) deletions, decreased electron transport chain 

(ETC) subunits, and decreased mitochondrial biogenesis (mitobiogenesis) signaling in 

post mortem tissue from sALS patients [1-5]. This bioenergetic impairment may provide 

evidence as to why motor neurons are specifically vulnerable in this disease. If ALS 

patient cells are unable to maintain a healthy population of mitochondria this could lead 

to mitochondrial dysfunction, decreased ATP production, and death of vulnerable cells 

like motor neurons. In order to study mitobiogenesis in human motor neurons, the 

current project uses human pluripotent stem cells (hPSCs) from healthy patients. The 

following chapter will review our current understanding of mitochondrial biogenesis 

signaling, differentiation of motor neurons in vivo and how we can replicate this in vitro 

in order to study the mechanisms underlying motor neuron death in ALS. 

 

1.1 Mitochondrial biogenesis  

Mitochondria play a role in many vital cell functions including ATP synthesis, 

calcium homeostasis, reactive oxygen species (ROS) production, and apoptosis. In high 

energy requiring post-mitotic tissues like brain, skeletal muscle, and heart, mitochondrial 

dysfunction is particularly damaging because cells cannot rid themselves of defective 

mitochondria by replicating. These cells rely on mitobiogenesis to produce mitochondrial 
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components, and mitophagy, fission and fusion as “quality control” mechanisms to 

maintain a population of functional mitochondria.  

 

1.1.1 Mitobiogenesis signaling 

Mitochondria are unique organelles in that they have their own genome. The 

double-stranded, circular mammalian mitochondrial genome encodes 13 proteins that 

are essential for respiratory chain function and oxidative phosphorylation, 2 rRNAs and 

22 tRNAs [6, 7]. Mitochondria are not self-sufficient, however, and rely on the nuclear 

genome to encode most of the ~1200-1500 proteins they require. Mitochondrial DNA 

(mtDNA) is particularly susceptible to damage by ROS because it has no histones, it is 

physically close to the respiratory chain where most ROS are generated, and 

mitochondria have only limited enzymes for repair of oxidatively damaged DNA. 

Deletions in mtDNA may arise from aberrant repair of oxidatively damaged mtDNA, 

have been found in tissues including the brain, skeletal muscle, and heart, and 

accumulate with age [8].  Low levels of these deletions would not be immediately 

harmful because cells have thousands of copies of mtDNA. However, with age or 

disease, mutations and deletions can accumulate [9, 10] and lead to decreased 

mitochondrial respiration and ATP production. Most mtDNA deletions and mutations are 

heteroplasmic, meaning the cell has a mixture of normal and mutated mitochondrial 

DNA, but mutations can be homoplasmic as well [11]. 

As depicted in Figure 1, mitobiogenesis is the process by which cells increase 

their mitochondrial components, which includes transcription of genes encoded by both 

the mitochondrial and nuclear genomes. Peroxisome proliferator-activated receptor 
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gamma, co-activator 1-α (PGC-1α) is an upstream regulator of transcription factors 

involved in mitobiogenesis and respiration including nuclear respiratory factors 1 and 2 

(NRF1, NRF2) and mitochondrial transcription factor A (TFAM) [12, 13].  For this reason 

PGC-1α is thought to be the ‘master regulator’ of mitobiogenesis. PGC-1α is regulated 

by chromatin remodeling [14, 15] as well as posttranslational modification [16]. PCG-1α 

interacts directly with NRF1 and 2 and estrogen-related receptor α (ERRα) which then 

translocate to the nucleus [17-19]. This results in an increased transcription of genes 

including those encoding ETC subunits and TFAM, which are then localized to the 

mitochondria [20]. TFAM is required for mtDNA maintenance and stimulates its 

bidirectional transcription [21]. A mitochondrial DNA-directed RNA polymerase 

(POLRMT) and mitochondrial DNA polymerase gamma (POLG) then perform mtDNA 

transcription and replication, respectively [22]. 
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Figure 1. Mitobiogenesis signaling. PGC-1α binds to NRF1/2 and ERRα,  

initiating gene expression of mitochondrial components  
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1.1.2 Mitobiogenesis in ALS 

 Mitochondrial dysfunction has been well characterized in a number of 

neurodegenerative diseases including Parkinson’s disease, Alzheimer’s disease, and 

ALS. ALS is characterized by loss of both upper motor neurons in the cerebral cortex 

and lower motor neurons in the brainstem and spinal cord. Death of lower motor 

neurons leads to progressive muscle weakness and atrophy with respiratory failure 

being the leading cause of death an average of three to five years after diagnosis [23, 

24]. ALS presents in late adulthood, is more common in men than women, and affects 

2-5 per 100,000 people worldwide [25]. Over 90% of cases have no family history of the 

disease, which thus occurs sporadically in most (sALS). 

Mitobiogenesis appears to be impaired in post mortem tissues of patients with 

sALS. PGC-1α and its downstream targets showed decreased expression in post 

mortem spinal cord and muscle from sALS patients [5]. Additionally, there was 

decreased activity of ETC subunits and increased mtDNA deletions in isolated post 

mortem spinal motor neurons [1-3] and skeletal muscle [4] of sALS patients. 

Mitochondrial encoded gene expression was significantly depressed in peripheral blood 

mononuclear cells (PBMCs) of sALS patients compared to neurologically healthy 

controls [26]. This suggests a systemic bioenergetic impairment. Interestingly, healthy 

human oculomotor neurons isolated from post mortem tissue showed increased gene 

expression related to mitochondrial function when compared to spinal motor neurons 

[27]. Upregulation of mitobiogenesis could be a protective mechanism and may be one 

reason why oculomotor neurons and PBMCs are spared in ALS. 
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The most widely studied form of ALS is the inherited form of the disease, familial 

ALS (fALS), which composes only 5-10% of all cases. The first genetic mutation 

associated with ALS was found in the enzyme Cu, Zn superoxide dismutase 1 (SOD1) 

and occurs in approximately 20% of fALS patients, less than 2% of total cases. Even 

less common genetic mutations known to cause ALS are in the RNA-binding proteins 

TAR DNA-binding protein 43 (TDP43) and fused in sarcoma (FUS), among many 

others. Recently, hexanucleotide repeats in the non-coding region of the C9ORF72 

gene was found to be responsible for approximately 22% of fALS cases and is present 

in 4% of sALS cases [28].  

A murine model has been created that expresses human mutant SOD1 at supra-

physiological levels. This model replicates some components of the disease, however it 

does not fully mimic the human disease condition. Much of our understanding of the 

mechanisms of ALS comes from studies using these mice, however translation of drugs 

and therapies identified by this model into patients has been disappointing. The only 

FDA approved treatment for ALS is riluzole; however, it was shown to only increase 

patient survival by two to three months and does not reverse progression of the disease 

[29]. 

 

1.2 Differentiation of motor neurons in vivo 

 There are unique signaling cascades during development that define the identity 

of every type of cell in the body. In order to make motor neurons in vitro we need to 

understand what normally happens during human development in vivo. 
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1.2.1 Signaling during development 

Spinal motor neurons are some of the most well characterized cell types in terms 

of their embryonic origin. Early in development the inner cell mass of the blastocyst 

specifies into the three germ layers: endoderm, ectoderm, and mesoderm. The 

patterning of the nervous system is due to repressing and activating signals from a 

multitude of transcription factors and other proteins [30]. This process is summarized in 

Figure 2, adapted from [31]. The dorsal portion of the ectoderm becomes the nervous 

system through inhibition of bone morphogenic proteins (BMPs) and activin signaling 

[32, 33]. After formation of the neural tube the hindbrain and spinal cord is specified 

from the forebrain and midbrain along the rostro-caudal axis by retinoic acid [34] (RA; 

Figure 2A). Following this, dorsoventral signaling specifies cell types [35] (Figure 2B). 

Motor neurons derive from the ventral portion of the neural tube and receive a high 

concentration of sonic hedgehog (SHH) signaling from the notochord and floor plate 

(FP). Opposing SHH is a concentration of BMP/TGFβ signaling from the roof plate. Also 

during this time RA is continuing to be released from somites [34]. These signaling 

gradients produce a grid-like order to the 5 progenitor domains of the spinal cord, V0-V3 

interneurons and motor neurons  (Figure 2B). SHH signaling activates homeodomain 

domain protein Nkx6.1, which induces transcription of MNR2, among others [30, 36]. 

MNR2 is a transcription factor is critical to the differentiation of motor neurons [36]. 

Following its expression cells exit the cell cycle and express Islet 1 and 2 (Isl1, Isl2) and 

the motor neuron specific transcription factor HB9 [30]. 
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Figure 2. Motor neuron specification in the developing embryo A) 

Motor neurons derive from the dorsal ectoderm in response to inhibition of 

BMP and activin signaling and retinoic acid B) BMP signaling from the roof 

plate (RP) opposes sonic hedgehog (SHH) signaling from the notochord 

(NC) and floor plate (FP). Retinoic acid (RA) is released from the somites 

(S). 
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1.2.2 Electrical properties of embryonic spinal motor neurons  

As motor neurons differentiate there is a dramatic change in passive membrane 

properties as well as an increase in soma size and neurite complexity. Passive 

membrane properties including input resistance and membrane time constant decrease 

during postnatal development of rat motor neurons [37]. Resting membrane potential 

becomes more hyperpolarized during late embryonic development of rat motor neurons 

[38] but then remains unchanged from neonatal to adult cells [37]. Membrane 

capacitance (Cm), an indicator of cell surface area, is increased during embryonic 

development of rat spinal motor neurons [39]. Many of these findings are replicated in 

motor neurons differentiated from human embryonic stem cells (hESCs). Input 

resistance, but not resting membrane potential, decreased [40] and soma size and 

complexity of neurite outgrowth increased during hESC-derived motor neuron 

maturation [40]. 

Voltage-gated ion channels are critical to proper motor neuron function. The 

major currents that underlie motor neuron resting membrane potential and action 

potential are sodium, potassium, and calcium currents. These currents are present at a 

very early stage in development and undergo changes during motor neuron maturation.  

All four voltage gated sodium channel subunits expressed in the central nervous 

system are also expressed in embryonic rat motor neurons, Nav1.1, 1.2, 1.3, and 1.6 

[41]. Previous studies in multiple animal models have identified that the upswing of the 

motor neuron action potential is underlay by the fast inactivating sodium current. The 

action potential is kept short by the fast inactivation of these channels and the necessity 

to return to the resting membrane potential before reactivation allows for a refractory 
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period in which another action potentials cannot be initiated. In this way recovery from 

inactivation of voltage gated sodium channels can control action potential firing 

frequency. Detailed activation and inactivation kinetics are difficult to study in motor 

neurons using voltage-clamp techniques. Due to their large size, the membrane takes 

more time to charge and extensive dendritic processes make it difficult to control the 

voltage of the cell (space clamp). 

Potassium currents play important roles in motor neuron resting membrane 

potential, action potential shape, and firing behavior.  Both transient (IA) and delayed 

rectifier (IK) potassium currents are seen in motor neurons in vivo [42] as well as in 

hESC-derived motor neurons [40]. These currents are responsible for the rapid 

repolarization of the membrane during an action potential. Potassium channels also 

underlie the afterhyperpolarization (AHP), a period of membrane hyperpolarization that 

occurs after an action potential is generated. The AHP can be broken down into fast, 

medium, and slow components. Large conductance (BK) and small conductance (SK) 

calcium-activated potassium channels underlie the fast and medium components of the 

AHP, respectively. It is unknown what channels underlie the slow AHP, but previous 

studies implicate potassium channels in the KCNQ family [43]. 

In isolated chick motor neurons there were slightly more sodium currents than 

potassium currents (~70 pA/pF compared to ~60 pA/pF)[44]. From E4-E11 sodium 

current density increased 60% and correlated with increased action potential amplitude. 

During this time there was a large increase (16 fold) in IA and a small (25%) increase in 

IK. The increase in IA resulted in a shortening of action potential duration with motor 

neuron maturation[44]. Calcium currents matured last, with L- and N- type currents 
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increasing slightly during E4-11 and T-type currents decreasing[45]. Calcium currents 

were very small compared to sodium currents, and the fact that TTX blocked action 

potential generation suggests that action potential generation is sodium channel 

dependent during this time period.  

 

1.3 Intrinsic susceptibility of motor neurons 

Alpha (α)-motor neurons are selectively vulnerable in ALS, with fast fatigable 

(FF) motor units degenerating faster than slow (S) motor units [46]. Interestingly, there 

are two populations of motor neurons that are spared in the disease. Motor neurons in 

Onuf’s nucleus in the sacral section of the spinal cord that control voluntary bladder and 

rectal sphincters, and oculomotor nuclei in the brainstem that control voluntary eye 

movements are spared in both sporadic and genetic forms of ALS [27]. It is unknown 

why only specific cell types, even within the motor neuron population, are lost in this 

disease. However, by looking at the properties that distinguish these cells from other 

cell types may give us insights into why they are more vulnerable.  

 

1.3.1 Calcium buffering 

Control of motor neuron excitability is vital to optimal development of sustained 

muscle contractions [47]. Calcium is a second messenger in many signaling cascades 

and plays an important role in the repetitive firing properties of motor neurons. An 

increase in calcium depolarizes the cell and makes it more likely to fire action 

potential(s). However, increased intracellular calcium could lead to greater reliance on 

mitochondria to buffer calcium and therefore exacerbate mitochondrial damage caused 
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by normal aging. Combined with a genetic susceptibility to ALS and/or environmental 

factors this could lead to ALS pathology. 

Motor neurons are predicted to have problems handling large amounts of calcium 

because of their low content of calcium buffering molecules such as calbindin-D2sK and 

parvalbumin [48], and their large size [49]. For this reason, they rely on intracellular 

organelles like mitochondria to take up excess calcium. Previous studies using rat and 

mouse spinal motor neurons in vitro revealed an increased reliance on mitochondria to 

buffer calcium as compared to other neuron types [50, 51]. In brainstem slices from 

mice mitochondrial dysfunction induced by blocking complex IV of the ETC or 

uncoupling ATP synthesis resulted in increased intracellular calcium and excitability of 

motor neurons [52]. Because mitochondria accumulate cytosolic calcium mainly in a 

membrane potential (ΔψM)-dependent manner through the calcium uniporter, 

bioenergetic impairments and/or excessive “leak” of protons across a damaged inner 

membrane are predicted to lower ΔψM and reduce mitochondrial calcium buffering. 

Unfortunately, mitochondria show a decline in bioenergetic function with age and 

disease. Therefore, aging itself may contribute to motor neuron death due to a reduced 

capacity for calcium buffering leading to calcium-mediated activation of cell death 

signaling. 

Motor neurons also have a large number of calcium permeable glutamate 

receptors. Glutamate is an excitatory neurotransmitter and an increase in glutamate 

leads to an influx of sodium and calcium into the cell. One type of ionotrophic glutamate 

receptors is the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor. 

Normally pre-mRNA for the GluA2 subunit of the AMPA receptor is edited by adenosine 
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deaminase acting on RNA 2 (ADAR2) at a specific site, converting adenosine to 

inosine. During translation, this site is read as an arginine (R) instead of a glutamine 

(Q). AMPA receptors containing the edited GluA2 subunit conduct mainly sodium; 

however the lack of this subunit or improper editing allows the channel to conduct 

calcium as well. Human spinal motor neurons contain a large number of calcium 

permeable AMPA receptors that lack the GluA2 subunit when compared to other neuron 

types [53, 54]. Additionally, human oculomotor neurons showed increased expression of 

the GluR2 subunit compared to spinal motor neurons [27]. Additionally, increased 

glutamate has been found in the cerebral spinal fluid of sALS patients [55]. This may be 

explained by loss of the glial glutamate transporter EAAT2 in spinal cord and motor 

cortex of sALS post mortem tissue [56]. EAAT2, predominately expressed in astrocytes, 

allows for the uptake of excess glutamate in the extracellular space. 

Motor neurons are also unique in their expression of voltage gated calcium 

channels. They express both high-voltage-activated and low-voltage-activated calcium 

channels that play a role in action potential duration [42]. High-voltage-activated L-type 

channels, specifically subtype Cav1.3, have been shown to mediate the persistent 

inward current (PIC) that underlies plateau potentials in spinal motor neurons [57, 58]. 

Cav1.3 channels open at approximately -55 mV, near the resting membrane potential 

and 20 mV below the other L-type calcium channel expressed in the mammalian 

nervous system, Cav1.2 [59]. This allows calcium influx even at rest or with small 

depolarizations. In mice there is low expression of Cav1.3 in spinal motor neurons at 

birth but expression increases as motor neurons mature, reaching adult levels by 
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postnatal day 18 [57, 60]. The expression of Cav1.3 channels in human motor neurons 

has not been studied.  

 

1.3.2 Plateau potentials  

Another property of motor neurons is the ability to generate plateau potentials. 

Plateau potentials are characterized by sustained membrane depolarizations after a 

stimulus has been terminated. Plateau potentials are activated by excitatory synaptic 

input or membrane depolarization, which then activates PICs of calcium and sodium. 

PICs act to amplify incoming signals [61-63]. The sodium PIC is activated quickly but 

quickly inactivates, and plays an important role in initiating action potentials during 

repetitive firing [61, 62, 64]. The calcium PIC activates slowly but is persistent and 

increases in amplitude with repeated excitatory stimulation [62, 65].  

 

1.3.3 Repetitive firing  

Increased intracellular sodium and calcium and/or a decreased potassium results 

in a cell that is more likely to fire action potentials. The generation of repetitive action 

potential firing in response to a sustained stimulus is a characteristic of mature motor 

neurons. Repetitive firing is modulated by the afterhyperpolarization (AHP). AHP is a 

period of hyperpolarization after an action potential is fired in which the neuron’s 

membrane potential is lower than normal, inhibiting further action potentials. The AHP 

can be broken down into fast, medium and slow components (fAHP, mAHP, and sAHP). 

It is unknown exactly which channels underlie the sAHP, but voltage-gated potassium 

channels in the KCNQ family have been implicated. Large (BK) and small conductance 
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calcium-activated potassium (SK) channels underlie the fAHP and mAHP, respectively. 

When these channels are opened by calcium binding, they allow the efflux of 

potassium, repolarizing the cell. An increase in SK channel conductance would result in 

fewer action potentials, while a decrease would result in repetitive firing of action 

potentials. Motor neurons rely heavily on these channels to mediate the proper balance 

of repetitive firing.  

Lengthening the AHP after an action potential is fired, by activating SK channels, 

may be beneficial to hyperexcitable motor neurons in sALS patients. Additionally, SK 

channel activation would result in decreased intracellular calcium through negative 

feedback on NMDA receptors. When glutamate binds NMDA receptors there is no influx 

of calcium until there is membrane depolarization, relieving a magnesium block of the 

channel. When this happens, an increase in intracellular calcium activates SK channels, 

potassium effluxes, and the membrane repolarizes. Riluzole, the only FDA-approved 

treatment for ALS, decreases the excitable neurotransmitters glutamate and sodium in 

the synapse [66]. A recent study suggests that riluzole activates SK channels as well 

[67]. The fact that riluzole has many targets may explain why it is not more effective in 

treating ALS. If we were able to determine which mechanism(s) of action were most 

beneficial for motor neuron survival, we may be able to develop improved drugs that 

have less unintended activity.  

Another current that underlies bursts of action potentials is the hyperpolarization-

activated current (Ih). Channels that underlie Ih are permeable to both sodium and 

potassium and Ih acts to return the membrane back to resting after being hyperpolarized 

[37]. Ih increases with postnatal maturation and underlies rebound depolarizations. This 
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current may play a role in rebound bursts of action potential firing seen after inhibitory 

synaptic input in both native and hESC-derived motor neurons [40, 42]. 

 

 

1.3.4 Properties altered in ALS 

Hyperexcitability has been seen in ALS patients [68-70] and in a mouse model of 

ALS [71, 72]. In mice, hyperexcitability is one of the earliest phenotypes, occurring long 

before symptom onset, and appears to be due to active rather than passive membrane 

properties. There was no change in the resting membrane potential, input resistance, 

action potential duration, amplitude, or threshold, or in afterhyperpolarization between 

mice carrying a G93A mutation in SOD1 and controls [71, 72]. There was, however, a 

significant increase in action potential firing frequency and the amount of current 

necessary to fire an action potential (rheobase) in the mutant mice [71-73]. This 

increase in excitability could be due to a number of factors, including increased inward 

and/or decreased outward currents.  

In ALS patients there is evidence for an imbalance of sodium and potassium 

channels [74, 75]. Increased sodium conductance was seen in motor neurons from 

fALS patients. In contrast, one study found a decrease in the voltage gated potassium 

channel Kv1.2 was found in the ventral roots of sALS patients but no change in sodium 

channels [76]. Alteration in sodium and potassium currents is also seen in the SOD1 

mouse model. Motor neurons from SOD1 mutant mice show increases in both sodium 

and calcium PICs and develop mature action potentials faster than their wild-type 

counterparts [66]. Isolated embryonic motor neurons from SOD1 mutant mice show 
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increased recovery from fast inactivation of voltage gated sodium channels when 

compared to mice expressing normal human SOD1 and wild type mice [77]. This could 

decrease the refractory period after an action potential is fired, leading to an increase in 

firing rates. 

 

1.4 hPSCs 

The classification of human pluripotent stem cells (hPSCs) includes both human 

embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). hESCs are 

derived from the inner cell mass of a pre-implantation blastocyst [78]. These cells can 

divide indefinitely while remaining pluripotent, or can be differentiated into any cell type 

in the body. Initially there was much hope for hESCs in disease modeling and cell 

replacement therapies. However, ethical issues and transplantation rejection concerns 

have limited their use in humans. iPSCs, on the other hand, could be derived from the 

patients’ own cells and therefore have the same genetic background. This would be 

particularly important for modeling complex diseases like ALS in which there is no one 

gene mutation that causes the disease. If motor neurons derived from ALS patient 

iPSCs replicate features seen in the disease they may be useful for understanding ALS 

pathology and testing therapies. 

 

1.4.1 Reprogramming of somatic cells 

 Initial reprogramming studies found that somatic cells could be reprogrammed 

into pluripotent cells by nuclear transfer into oocytes [79] or by fusion with ESCs [80, 

81]. This suggests that there are soluble factors that determine pluripotency. In 2006 
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retroviral transduction of four transcription factors, Oct3/4, Sox2, c-Myc, and Klf4, was 

sufficient to induce reprogramming of mouse fibroblasts [82]. The next year the same 

was found for human fibroblasts [83]. Since then other cells have been reprogrammed 

including blood cells [84, 85].  

 Although integration of foreign DNA is efficient at reprogramming somatic cells, 

these types of cells would not be safe for clinical use because of their potential for DNA 

mutations. To address this issue many protocols have been developed to deliver 

recombinant proteins or mRNA. However, the efficiency of reprogramming using these 

methods is extremely low and the proteins must be delivered multiple times for a period 

of several weeks. Another option is to express the reprogramming factors using a non-

integrating plasmid. The latent origin of plasmid replication (oriP) and one viral protein, 

Epstein-Barr Nuclear Antigen 1 (EBNA1) from the Epstein-Barr virus has been shown to 

be sufficient for replication of the viral plasmid [86] and adding these elements to a 

plasmid containing four reprogramming factors allows their expression without DNA 

integration. Expression of the Simian virus 40 (SV40) large T antigen allows for 

enhanced reprogramming efficiency and the foreign DNA is spontaneously lost after 10-

12 passages [87-89]. It is unknown exactly how expression of the SV40 T antigen 

increases reprogramming efficiency, however it may act to increase transcription 

replication of the plasmid. This plasmid system has been used to reprogram human 

peripheral blood mononuclear cells (PBMCs) with a single transfection in as little as 14 

days and the epigenetic profile of iPSCs derived from PBMCs shows promoter DNA 

methylation status more similar to human ES cells than iPSCs derived from fibroblasts 

[89]. In 2012 a protocol was described that increases the efficiency of PBMC 
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reprogramming with an improved EBNA1/OriP-based plasmid expressing five 

reprogramming factors (Oct4, Sox2, Klf4, c-Myc, and Lin28) as a single unit separated 

by 2A peptide sequences which allows for the co-translational cleavage into individual 

peptides [90].  PBMCs isolated from as little as five milliliters of peripheral blood can be 

used fresh or after freezing and lymphocytes are eliminated before reprogramming to 

reduce the chance of somatic recombination found in T lymphocytes [90]. In addition to 

having a favorable epigenetic profile after reprogramming, PBMCs are less invasive to 

obtain than fibroblasts, and are exposed to fewer environmental mutagens. Also, 

PBMCs need less time in culture before reprogramming and generate colonies faster 

after reprogramming than fibroblasts [89]. 

 

1.4.2 Using iPSCs to study ALS 

The reprogramming of fibroblasts from patients with fALS with a mutation in 

SOD1 into iPSC and subsequent motor neuron differentiation was first reported in 2008 

[91]. Since then many types of fALS have been modeled using iPSCs from patient 

fibroblasts including TDP43 [92, 93], C9ORF72 [94, 95], and vamp-associated protein 

B/C (VAPB)[96]. Only one study to date has used iPSCs from sALS patients [97]. All of 

these studies describe the chemical characteristics of iPSC derived motor neurons, 

including immunostaining for the motor neuron transcription factors HB9 and Islet1, 

followed by expression of choline acetyltransferase (ChAT). Many also show functional 

characterization of ion channel and action potential formation by whole cell patch clamp. 

There are data to suggest that these cells retain disease-causing mutations 

during reprogramming and display a phenotype similar to what is seen in patients. 
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Motor neurons differentiated from patient iPSCs with mutations in TDP43 conserved 

genetic mutations and increased vulnerability to cell stress [92, 93].  

Recent findings suggest that iPSCs from fALS patients show some of the same 

characteristics of intrinsic hyperexcitability seen in the disease. ALS iPSC-derived motor 

neurons with mutations in three different genes displayed increased spontaneous firing 

when compared to healthy or isogenic controls [98]. Upon further investigation the 

authors found decreased magnitude of delayed-rectifier potassium currents but no 

change in sodium currents. Treatment with retigabine, an activator of delayed-rectifier 

potassium channels, decreased spontaneous firing and increased survival of ALS 

patient derived motor neurons [98]. 

Another study found that motor neurons derived from ALS patients with a 

hexanucleotide repeat in C9ORF72 are more susceptible to glutamate toxicity. This 

could be rescued by antisense oligonucleotides targeting C9ORF72 or by knockdown of 

an RNA binding protein, ADARB2. ADAR proteins mediate editing of the GluR2 AMPA 

receptor, making it calcium impermeable. Without this editing, as happens in sALS [99], 

AMPA receptors are calcium permeable and may contribute to excitotoxicity [95]. 

 
1.4.3 Mitochondrial regulation in hPSCs 
 

Respiration analysis suggests that hPSCs produce the majority of ATP through 

anaerobic glycolysis compared to mitochondrial oxidative phosphorylation (OXPHOS) in 

somatic cells [100-103]. The details of this reversible switch remain unclear, and may 

vary between different cell lineages. Initial studies reported that hPSCs had few, 

underdeveloped mitochondria [104-106]. Recent studies have shown that while they 

rely on glycolysis for ATP production, hPSCs have active respiratory chain complexes 



 

 

21 

and respire at maximal capacity [100, 107]. Glycolysis is not as efficient at making 

energy but is faster and produces less ROS than OXPHOS. The switch to OXPHOS 

during differentiation would require increased mitochondrial respiratory capacity. There 

is evidence to suggest that this is achieved by an increase in mitochondrial mass, ATP 

and subsequent ROS production during spontaneous differentiation of hPSCs [108, 

109]. This process is reversed during reprogramming of somatic cells into iPSCs. 

Recent studies have started to shed light on the mechanisms underlying the 

switch from glycolysis to OXPHOS during cellular differentiation. One protein thought to 

be involved in this switch is uncoupling protein 2 (UCP2). UCP2 is a mitochondrial 

protein located in the inner membrane and is thought to uncouple the ETC from the 

production of ATP by allowing protons to leak through the membrane. The exact 

function of UCP2 remains unknown but recent findings implicate it in the metabolic 

change from glycolysis to OXPHOS during cellular differentiation by decreasing glucose 

utilization by mitochondria [110, 111].  UCP2 expression decreased during neuronal 

differentiation of mouse embryonic stem cells [112]. Hypoxia-inducible factor one alpha 

(HIF1α) is another protein that appears to be important for iPSC reprogramming. A 

recent study found increased HIF1α in undifferentiated cells and activation of HIF1α 

resulted in increased glycolysis and improved reprogramming [113]. 

 

1.4.4 Low oxygen conditions  

Normal cell culture conditions grow cells in room air containing approximately 

20% oxygen. This is much higher than what cells are exposed to in the developing or 

adult nervous system. Interstitial tissue oxygen levels in the mammalian brain range 
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from ~1-5% [114]. Low oxygen conditions (2-5%) have been shown to enhance 

proliferation, differentiation and survival of stem cells and neurons [115-118], including 

spinal motor neurons [117]. No ALS iPSC studies to date have used low oxygen 

conditions. 

 

1.5 Aims of the study 

The hypothesis to be tested in the current study states that differentiation of 

human pluripotent stem cells into electrically excitable motor neurons will result in 

increased mitochondrial biogenesis. 

 

The specific aims are: 

1. To generate motor neurons from hESC- and iPSC-derived human neural stem 

cells 

2. To determine the effect of motor neuron differentiation on mitobiogenesis in 

human neural stem cells in 5% oxygen conditions 

3. To examine the electrophysiological maturation of hPSC-derived motor neurons  
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CHAPTER TWO 

GENERAL METHODS 

 

2.1 Culture of hESC-derived hNSCs 

GIBCO® Human Neural Stem Cells were purchased from Life Technologies 

(Grand Island, NY). These cells are derived from the NIH approved human embryonic 

stem cell line H9 (WA09) and retain a normal human female karyotype for multiple 

passages. They can be differentiated into neurons, oligodendrocytes, or astrocytes. To 

remain in an undifferentiated state cells were grown in KnockOut D-MEM/F-12 

containing 2 mM GlutaMAX-I supplement, 20 ng/mL human recombinant basic 

fibroblast growth factor (bFGF) and epidermal growth factor (EGF) and 2% StemPro 

neural supplement up to passage 32. Medium was changed every 2-3 days and cells 

were maintained between 50 and 90% confluence. When cells were ~90% confluent 

they were dissociated using TrypLE™ and plated on culture vessels coated with 

CELLStart™. All cultures were grown at 37°C in 5% oxygen and 5% CO2 conditions. 

 

2.2 iPSC generation and neural induction 

Peripheral blood was collected from one healthy male control patient, age 62, in 

accordance with a Virginia Commonwealth University IRB-approved protocol at the 

Parkinson’s and Movements Disorder’s Center. Integration-free iPSCs were generated 

from human peripheral blood mononuclear cells (PBMCs) using a previously described 

protocol[90], with modifications. Specifically, blood was collected in sodium citrate 

vacutainers and PBMCs were isolated using Ficoll-Paque Premium (GE Healthcare) 



 

 

24 

density gradient centrifugation within 4 hours of draw time. PBMCs were expanded by 

culturing for two weeks in PBMC medium that supports erythroblast expansion and 

eliminates lymphocytes.  Lymphocytes were not used for reprogramming because of 

their high incidence of somatic rearrangements. The pEB-C5 and pEB-Tg plasmids 

were obtained from Addgene (Cambridge, MA) and grown in the VCU Macromolecular 

Core Lab.  The pEB-C5 plasmid contains five reprogramming factors (OCT4, SOX2, 

KLF4, c-MYC, and Lin28) and the pEB-Tg plasmid contains the SV40 large T antigen 

that enhances reprogramming efficiency. 3x106 PBMC were electroporated with the 

plasmids using an Amaxa Nucleofector 4D (Lonza, Allendale, NJ).  This technique uses 

electrical pulses to permeabilize the cell membrane in order to allow the plasmid access 

to the cytosol. Immediately following electroporation an equal volume of 37 °C RPMI 

medium was added to the cuvette and the cells allowed to recover for 10 min at 37 °C 

before returning to culture in PBMC medium. Transfected cells were co-cultured on 

mouse embryonic fibroblasts beginning at day 2 and the schedule of medium changes 

outlined in the protocol were followed.  On day 14 maintenance medium was changed 

to mTeSr (Stem Cell Technologies, Vancouver, BC) and colonies with PSC morphology 

were picked to wells of a 96 well plate beginning at about day 21.  Viable colonies were 

expanded in mTeSR medium on Geltrex (Life Technologies, Grand Island, NY) coated 

plates at 37° C in a humidified CO2 incubator with the oxygen level held at 5%. Growth 

medium supplemented with 10 uM ROCK inhibitor Y27632 (R&D Systems, Minneapolis, 

MN) was used for the first 24 hours after colonies were split.  

Neuralization of iPSCs was accomplished using PSC Neural Induction Medium 

(Life Technologies) according to protocol [119] with modifications.  This protocol allowed 
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for a faster, less labor-intensive, and consistent neural induction protocol. Briefly, iPSC 

colonies were maintained in PSC Neural Induction Medium beginning at day 1 after 

splitting.  On day 5 colonies with good morphology were picked to fresh Geltrex coated 

dishes and induction continued for another 5 days.  On day 10 colonies were detached 

using Accutase (Life Technologies), passed through a 100 um strainer, centrifuged at 

300 x g for 4 min. and plated in neural expansion medium on Geltrex coated dishes.  

Cultures were maintained at 37° C in a humidified CO2 incubator with the oxygen level 

held at 5%.   Growth medium supplemented with 10 uM ROCK inhibitor Y27632 (R&D 

Systems, Minneapolis, MN) was used for the first 24 hours after the neural stem cells 

were split through passage 4. 

 

2.3 Differentiation of hNSCs into motor neurons 

For differentiation of hESC-derived hNSCs into motor neurons media was 

changed to neurobasal medium containing 2% B-27 serum-free supplement and 2 mM 

GlutaMAX-I supplement plus 0.1 µM retinoic acid (RA) for 7 days followed by 7-21 days 

of 0.1 µM RA plus 0.5 µM purmorphamine (PM) [117, 120-126]. Media was changed 

every 2-3 days and cultures received half media changes except on days 0 and 7, when 

cultures received full media changes. RA and PM concentrations and timing were 

chosen based on previous studies [120, 127].  

After neural induction, iPSCs were differentiated as described previously, with 

some modifications [128]. Briefly, adherent cells were grown in neural induction media 

containing DMEM/F12 with 0.2 µM LDN-193189 (LDN; Stemgent), 10 µM SB431542 

(SB; Stemgent), 10 ng/ml BDNF (R&D systems), 0.4 ug/ml L-ascorbic acid (Sigma), 2 
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mM GlutaMAX-I supplement, 1% N-2 supplement, and 1% nonessential amino acids 

(NEAA). Two days later 1 µM RA was added. On day four LDN/SB was stopped and 1 

µM smoothened agonist (SAG; Calbiochem or Santa Cruz) and 0.5 µM PM were added. 

On day 14 cells were switched to neurobasal media containing 2 mM GlutaMAX-I, 2% 

B-27, 1% NEAA, 0.4 ug/ml AA, 10 ng/ml GDNF (R&D), 10 ng/ml CNTF (R&D). Media 

was replaced every 2-3 days. Unless otherwise specified, all cell culture materials were 

purchased from Life Technologies. All cultures were grown at 37°C in 5% oxygen and 

5% CO2 conditions. 

 

2.4 Nucleic acid isolation and cDNA synthesis 

For qPCR analysis of hESC-derived cells DNA and RNA were extracted at 

seven-day time points through day 28 using the AllPrep DNA/RNA Mini Kit (Qiagen) 

according to manufacturer instructions. In order to achieve increased yield and quality, 

for iPSC-derived cells RNA was extracted at D0 and D21 with the RNeasy or RNeasy 

Plus Micro Kit (Qiagen) and DNA was extracted with the DNeasy Blood and Tissue Kit 

(Qiagen) according to manufacturer instructions. Quantification of isolated DNA and 

RNA was performed using a Nanodrop 2000c spectrophotometer (Thermo Scientific). 

RNA was reverse transcribed into cDNA using the iScript or iScript Advanced cDNA 

synthesis kit (BioRad) which uses both random hexamer and oligo dT primers, following 

the manufacturer’s protocol.  

 

 

 



 

 

27 

2.5 Quantitative PCR 

For qPCR, 25-50 ng cDNA or 0.1 ng of DNA per well was loaded into a 96-well 

plate and analyzed with the CFX-96 Real-Time PCR Detection System (BioRad) using 

relative quantitation methods. All samples were analyzed in triplicate. Neuronal markers 

(NEFL, MAP2, and TUBB3), TFMB2, and mtDNA-encoded genes (12s rRNA, ND2, 

CO3, ND4) were measured using a multiplex qPCR assay. Endogenous reference 

genes (TOPO1, 14-3-3-Z, GAPDH, B2M, CYC1, AND UBC), pluripotency genes (KLF4, 

CMYC, LIN28, OCT4, SOX2) mitochondrial biogenesis genes (PGC-1α, POLG, 

POLRMT, TFAM, ERRα, NRF1, NRF2), glial markers (GL1-1 and GFAP), NSE was 

measured individually using EvaGreen PCR. Primers for PGC-1α were specifically 

designed in a region to detect all major isoforms. Primer sequences can be found in 

Figure 3. Reagents included SsoFast EvaGreen® Supermix (BioRad) and primers 

designed with Beacon Designer software (Premier Biosoft international, Palo Alto, CA) 

and supplied by Eurofins MW Operon (Huntsville, AL). PCR conditions were 30 seconds 

at 95 °C, followed by 40-45 cycles of 10 seconds at 95 °C and then 15 seconds at Tm 

(primers) -5 °C. Melt curve analysis was used to verify primer specificity, and efficiency 

was determined using standard curve analysis of commercially available human fetal 

brain total RNA (Clontech, Mountain View, CA).  

All gene expression analysis were conducted using the qbasePLUS® relative 

quantitation method (Biogazelle qbasePLUS®, http://www.biogazelle.com), which is a 

modification of the ΔΔCq method that allows normalization with multiple reference 

genes. Data was normalized to the geometric mean of two reference genes determined 
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to have the greatest stability using the software qbasePLUS-GeNorm (BioGazelle; 

14.3.3.Z and CYC1 for cDNA and CYC1 and GAPDH for gDNA for both cell types). 

 

MtDNA encoded genes 
ND2  PROBE [6-FAM]CACGCAAGCAACCGCATCCATAAT[BHQ1a-Q] 
ND2  SP AAGCTGCCATCAAGTATTTCC 
ND2   ASP GTAGTATTGGTTATGGTTCATTGTC 
      
COX3  PROBE [5TET]CGAAGCCGCCGCCTGATACTG[BHQ1a-Q] 
COX3  SP TTTCACTTTACATCCAAACATCAC 
COX3  ASP CAATAGATGGAGACATACAGAAATAG 
      

ND4  PROBE 
[AminoC6+TxRed]AGCCAGAACGCCTGAACGCAG[BHQ2a-
Q] 

ND4  SP TGGCTATCATCACCCGATG 
ND4  ASP GGTGTTGTGAGTGTAAATTAGTC 
      
12SrRNA PROBE [Cy5]CGCCAGAACACTACGAGCCACAG[BHQ3a-Q] 
12SrRNA SP CCTCAACAGTTAAATCAACAAAAC 
12SrRNA ASP CTGAGCAAGAGGTGGTGAC 

 
Mitobiogenesis genes 

POLg SP TGGTCAAACCCATTTCACTG 
  ASP AGAACACCTGGCTTTGGG 
      
ERRa SP CTTCGCTCCTCCTCTCATC 
  ASP CTGGAGTCTGCTTGGAGTTAT 
      
NRF1 SP TTTGTATGCCTTTGAAGAT 
  ASP AACCTGGATAAGTGAGAC 
      
NRF2 SP GTTACAACTAGATGAAGAGACA 
  ASP ATCCACTGGTTTCTGACT 
      
TFAM SP AATCTGTCTGACTCTGAA 
  ASP CACATCTCAATCTTCTACTT 
      
TFMB2 SP GTATCTTATTCAAATGATTCCTC 
  ASP TAAGTGGTCTATTACAGTGG 
  Probe [5TET]ACCAAGA...AACT[BHQ1a-Q] 
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PGC1a SP GATGTGAACGACTTGGAT 
  ASP TTGAAGGCTCATTGTTGTA 
      
POLRMT SP AAGATACTGGAGAAGGATAAGC 
  ASP GCTCTGGAATGGCATCTG 
      
Isl1 SP GTTGGAGAAAGTGGGAAAT 
  ASP CTACCATATCACCTTGTCATT 
      
VACht SP ACTCCTCAACCTTGACTTC 
  ASP CCATTGGACAAGAGAGAAAG 
      
HB9 SP GTGAGAAGAACCGACCCACC 
  ASP CTCCAGAGGCGGTTTCAAGT 

 
Reference genes 

TOPO1 SP TGAGCCAGATAACAAGAA 
  ASP TTGATGCCTTCAGGATAG 
      
14-3-3-Z SP GTAGACCATTTGTCATCCAT 
  ASP AGAAGTAACATAAACCTGTCATA 
      
CYC1 SP ACTGCGGGAAGGTCTCTA 
  ASP TGCCATCGTCAAACTCTAAG 
      
B2M SP TATCCAACATCAACATCT 
  ASP TTCCAATAATCCTGTCAA 
      
UBC SP ATTTTAGGACGGGACTTG 
  ASP CGAGAAGGGACTACTTTT 
      
GAPDH SP GTCGGAGTCAACGGATTT 
  ASP CAACAATATCCACTTTACCAGAG 

 
Pluripotency genes 

KLF4 SP CCTTGCTGATTGTCTATT 
  ASP AAGTCAACGAAGAGAAGA 
      
CMYC SP CGCATCCACGAAACTTTG 
  ASP CTTGCTCGGGTGTTGTAA 
      
LIN28 SP CCAGAGTGAAATGATTAAGTA 
  ASP GAGGATACAAGATGTGAAAA 
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OCT4 SP AGGAAGCTGACAACAATG 
  ASP TGGTTCGCTTTCTCTTTC 
      
SOX2 SP ATGGTTGTCTATTAACTTGT 
  ASP TCTCTCCTCTTCTTTCTC 

 
Neuronal genes 

NEFL SP CTCCCGAAATCAGGTCAA 
  PROBE [5-FAM]CCATCACCAACCAACCAACCAG[BHQ1a-Q] 
  ASP GAGGAAATTCATAGCACAACA 
      
MAP2 SP CAGGAGACAGAGATGAGAA 
  PROBE [5TET]ACAGTTCTATCTCTTCTTCAG[BHQ1a-Q] 
  ASP GGAGTGATGGCAGTAGAC 
      
TUBB3 SP CATCCAGGAGCTGTTCAA 

  PROBE 
[AminoC6+TxRed]CGCATCTCCGAGCAGTTCAC[BHQ2a-
Q] 

  ASP GTCGTTCATGTTGCTCTC 
      
NSE SP TGAGGGATGGAGACAAAC 
  ASP GAGACCTGAGCTGATGAG 

 
Glial genes 

GFAP SP CCGTCTGGATCTGGAGAG 
  ASP TCCTCCTCGTGGATCTTC 
      
GLT-1 SP GACAGTCATCTTGGCTCAG 
  ASP GAGCAGCAGATTCTTCCC 

 

Figure 3. Primer sets used in the present study including sense (SP) and 

antisense primers (ASP). For multiplex assays, probe sequences are given. 
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2.6 mtDNA copy number 

MtDNA copy number was determined using a four-color multiplex qPCR assay 

targeting human mtDNA-encoded genes around the mitochondrial genome (12s rRNA, 

ND2, CO3, ND4). Absolute quantification of DNA samples was based on human mtDNA 

copy number standards run on the same plate. The mtDNA standards were prepared as 

described previously [129]. Briefly, human genomic DNA was purchased from Roche 

and treated with limiting amounts of Plasmid-Safe ATP-dependent DNase (Epicentre 

Biotechnologies, Madison, WI) according to manufacturer recommendations. This 

procedure selectively digests all forms of DNA but does not affect closed circular or 

nicked circular double-stranded DNA, leaving only circular mtDNA. MtDNA was further 

purified according to protocols for the UltraClean GelSpin DNA purification kit (MO BIO 

Laboratories, Calsbard, CA) and quantified with a DNA Quant-iT assay kit (Invitrogen, 

Calsbard, CA) and the linear band was visualized on a 0.8% agarose gel. 

 

2.7 Confocal microscopy and immunofluorescence  

For immunocytochemistry analysis cells were seeded in 35 mm glass bottom 

confocal dishes. On D21 cells were fixed in 4% paraformaldehyde and 4% sucrose in 

PBS at room temperature for 15 minutes. Cells were incubated for 60 minutes in 

blocking buffer (5% goat serum, 1% BSA, 0.1% Triton-X in PBS). Cells were incubated 

overnight at 4°C with primary antibody (1:100) diluted in 5% goat serum. Primary 

antibodies included rabbit anti-ChAT (Millipore), mouse anti-nestin (abcam), mouse anti-

TOMM20 (abcam), mouse anti-Isl1/2 and HB9 (MNR2; DHSB), and rabbit anti-MAP2 

(Millipore). Alexa Fluor conjugated secondary antibodies (1:400, Life Technologies) 
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were added for 60 minutes at room temperature. After washes, VECTASHIELD 

mounting media with DAPI was added for visualization of nuclei. Images were obtained 

with an Olympus FV1000 confocal microscope. For TOM20 and percent positive 

quantitation, ten representative fields were taken and analyzed using MetaMorph image 

analysis software (Molecular Devices). For TOMO20 staining pixel values were 

normalized to number of cells in each image, identified by DAPI nuclear staining. 

 

2.8 Western blot analysis 

Cell homogenates were prepared by dissociating cells with TrypLE™ and 

washing three times with PBS. After the last wash samples were resuspended in RIPA 

buffer (50 mM Tris-HCl, 1% NP-40, 0.25% Na deoxycholate, 150 mM NaCl, 1 mM 

EGTA, 1 mM Na orthovanadate, 1 mM Na fluoride, pH 7.4) with 10 ul/ml Protease 

Inhibitor Cocktail Set I (Calbiochem) and 10 ul/ml of 100 mM PMSF (Sigma), followed 

by water bath sonication for 2 minutes. Samples were incubated on ice for 30 minutes 

and vortexed every 5 minutes prior to centrifugation at 15,000 x g for 10 minutes at 4°C 

to remove cellular debris. The supernatant was transferred to a new microcentrifuge 

tube and stored at -20°C for later analysis.  

Equal concentration (20-25 ug) of total cell protein from each sample was 

separated on a 4-12% Bis-Tris Criterion precast gel at 200 V for 1 hour using sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The proteins were 

transferred to nitrocellulose membranes using the iBlot transfer system (Invitrogen). 

After blocking the membrane for 1 hour with Odyssey® blocking buffer (LI-COR 

Biosciences) the membrane was probed primary antibody overnight at 4°C. Primary 
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antibodies were diluted in blocking buffer with 0.1% Tween 20 and included the 

MitoProfile® Total OXPHOS Human WB Antibody Cocktail (1:200, ab110411, Abcam), 

mouse anti-VDAC1 (1:1000, Abcam), and rabbit anti-beta actin (β-actin; 1:500, Abcam). 

The membrane was probed with 800CW goat anti-mouse or 680 goat anti-rabbit 

secondary antibodies (1:15000, LI-COR) at RT for 1 hour and band intensity was 

quantified using the Odyssey infrared imaging system (LI-COR, Lincoln, NE).  

 

2.9  XF24 extracellular flux analyzer 

Cell metabolic rates were measured using an XF24 Extracellular Flux Analyzer 

(Seahorse Bioscience) in unbuffered DMEM, pH 7.4 as described previously by our 

group [130]. Briefly, on day 16 cells were seeded onto an XF24 Cell Culture Microplate 

(Seahorse Bioscience) at 60,000 cells/well with 10 µM Y-27632 dihydrochloride, a 

selective inhibitor of Rho-associated protein kinase (ROCK; Tocris) and incubated at 

37°C in 5% oxygen. After 3 days hNSCs were seeded onto the same XF24 Cell Culture 

Microplate at 40,000 cells/well with 10 µM ROCK inhibitor and incubated at 37°C 5% 

oxygen for 24 hours. iPSC-derived cells (D0 and D21) were plated at 60,000 cells/well 

the day before recording. Each cell type was tested at three to four concentrations to 

determine the most reliable plating density. Inhibitors included oligomycin (1 µM) and 

FCCP (0.5-1 µM). OCR and ECAR were normalized to protein concentration (Micro 

BCA Kit, Pierce) for all experiments to account for differences in cell size.  
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2.10 Lentiviral generation and infection 

For generation of the HB9::GFP lentivirus services and products generated by 

the VCU Massey Cancer Center Biological Macromolecule Shared Resource, 

supported, in part, with funding from NIH-NCI Cancer Center Support Grant P30 

CA016059 were used. Addgene plasmid 37080 [124] was cotransfected with packaging 

and envelope plasmids cCMVR8.74 and MD2G. Transfection and viral concentration 

were performed using standard published protocols. Virus titer was 5 x 10^7 TU/mL in 

PBS. Cells were infected at a multiplicity of infection (MOI) of 3-5 with 8 ug/ml protamine 

sulfate 5 days before recording. 

 

2.11 Electrophysiology  

For whole-cell patch-clamp experiments cells were differentiated for 28 days. 

Two days before recording cells were moved to 12 mm diameter circular glass 

coverslips (neuvitro). On the day of recording coverslips were placed in a recording 

chamber on the stage of an inverted microscope (Olympus). An Axopatch 200B 

amplifier (Molecular Devices) and pClamp 10 software (Axon Instruments) were used to 

record whole-cell currents. Patch pipettes were pulled from thick-walled borosilicate 

glass capillaries to resistances of 2-4 mΩ and filled with internal solution containing 120 

mM KCl, 2 mM MgCl2, 1 mM CaCl2, 10 mM EGTA, 10 mM HEPES, 2 mM Na2ATP (pH 

7.2). Extracellular solution consisted of 135 mM NaCl, 5 mM KCl, 2 mM MgCl2, 1 mM 

CaCl2, 10 mM HEPES, and 10 mM glucose (pH 7.4). Action potential threshold was 

determined as the voltage at which the d(V)/d(T) function deviated from zero. Action 
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potential height was determined by measuring the threshold to the peak of the action 

potential.  

 

2.12 Statistical analysis 

All results are expressed as the mean ± standard error of the mean (SEM). The 

number of experiments performed is denoted by n.  Outliers were excluded at the 

p<0.05 level by Grubbs’ test. Statistics were calculated using one-way ANOVA or 

unpaired t-test in Prism software (GraphPad, Prism). P-values <0.05 were considered 

statistically significant.  
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CHAPTER THREE 

Generation of motor neurons from embryonic and iPSC-derived human neural 

stem cells 

3.1 Rationale and Hypothesis 

 The present study tested the ability of factors crucial for the patterning of motor 

neurons in the developing spinal cord to differentiate human neural stem cells (hNSCs) 

into motor neurons in culture. This will allow for the study of a cell type currently only 

accessible in post mortem tissue or in animal models. Additionally, reprogramming cells 

from patients may prove beneficial in the modeling of complex diseases with no single 

genetic cause, including ALS. Since iPSCs have the same genetic profile as living 

patients they may replicate disease pathology. There is evidence that disease 

processes begin decades before symptom onset, so these ‘young’ cells may give us 

insights into disease mechanisms. 

Previous studies have differentiated hESCs and iPSCs derived from fibroblasts 

into motor neurons [91-97, 128, 131-134]. As summarized in Figure 4, this study uses 

human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) from 

healthy individuals and lays the groundwork for replicating these studies using patient 

cells. Peripheral blood mononuclear cells (PBMCs) were used for reprogramming 

instead of fibroblasts (Figure 4). iPSCs derived from PBMCs display an epigenetic 

profile closer to hESCs than iPSCs derived from fibroblasts [89] and PBMCs are 

exposed to fewer environmental mutagens. Previous studies have shown that PBMCs 

can be reprogrammed into iPSCs but it remains to be shown if they can differentiate into 

motor neurons.  
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Figure 4. Schematic of motor neuron differentiation. Neural stem cells from hESC 
and iPSC-derived cells will be differentiated into motor neurons  
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3.2 Statement of contributions 

 This chapter contains data collected by three individuals. Amy Ladd generated 

that data represented in Figure 5 showing mtDNA encoded gene expression in ALS and 

control PBMCs. This figure was reproduced from a recent publication from our lab [26]. 

For iPSC generation Amy Ladd and I isolated PBMCs from peripheral blood and Paula 

Keeney performed all of the cell culture work to generate the iPSC cell line (Figure 6 

and 7B). I performed all cell culture and experiments with the H9 hESC-derived cell line 

and the iPSC cell line after neural induction (Figures 7A, 9, and 10) 

 

3.3 Results 

3.3.1 Generation of iPSCs from PBMCs. 

Peripheral blood samples from nine sporadic ALS (sALS) patients and 11 controls 

were collected according to an IRB approved protocol. If possible, spouses were used 

as controls. This allowed for a convenient, relatively age-matched, gender balanced 

control group. Additionally, these individuals likely lived together and would therefore be 

exposed to a similar environment. Although ALS iPSCs are not used in this study, 

isolated PBMCs are frozen for future reprogramming use from all patients.  

Following isolation, PBMCs were cultured for two weeks in conditions favoring 

erythroblast expansion and eliminating lymphocytes. This is an important step, as 

lymphocytes (70-90% of PBMCs) commonly rearrange their DNA and thus stem cell 

lines derived from them may have an increased rate of forming lymphomas [135]. 

Additionally, this culture protocol enriches for CD34+ hematopoietic stem cells without 

the need for cell sorting. Interestingly, PBMCs from ALS patients have decreased 



 

 

39 

mitochondrial DNA encoded gene expression compared to controls [26]. This mirrors 

what is seen in post mortem spinal cord from sALS patients[26]  and may suggest a 

systemic bioenergetic impairment in these individuals. These findings, along with 

decreased growth rates and survival of the sALS iPSC cell lines support the hypothesis 

that ALS cells may be more sensitive to stress, as seen in familial ALS (fALS) derived 

cells [93]. 

As described in Figure 4, after expansion, PBMCs were reprogrammed into iPSCs 

by electroporation of five reprogramming factors, Oct4, Sox2, Klf4, c-Myc, and Lin28 as 

well as a plasmid containing the SV40 large T antigen. As shown in Figure 5A, two 

weeks after reprogramming live cells express TRA-1-60, a human stem cell antigen and 

early marker of pluripotency. As iSPC colonies formed, starting at day 21, they were 

identified and expanded. To confirm pluripotency of the iPSC cell line, three colonies 

were chosen for qPCR analysis. Figure 5B shows increased expression of genes 

encoded by the reprogramming plasmid including Oct4, Sox2, and Lin28 in iPSC 

colonies compared to PBMCs (Figure 5B; *p<0.05, **p<0.01).   

After 10 days in neural induction media, NSC colonies were picked and expanded. 

qPCR revealed decreased expression of the plasmid encoded genes Oct4, Sox2, and 

Lin28 in NSCs (Figure 5B; *p<0.05, **p<0.01). This suggests that the plasmid is no 

longer being expressed.  
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Figure 5. Generation of iPSCs from blood A) Expression of TRA-1-60, an early 
marker of pluripotency, after reprogramming B) Expression of genes encoded by the 
reprogramming plasmid in peripheral blood mononuclear cells (PBMCs), induced 
pluripotent stem cells (iPSCs), and neural stem cells (NSCs) (*p<0.05, **p<0.01). SOX2 
expression was undetectable in PBMCs 
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3.3.2 Neural induction of iPSCs 

In order to confirm successful neural induction of iPSCs, cells were stained with the 

human neural stem cell (hNSC) marker, nestin. Nestin is an intermediate filament 

protein expressed in neuroepithelial precursors that become neurons and glia [136]. A 

representative confocal image is shown in Figure 6A. 67% of cells stained positive for 

nestin. To test if iPSC-derived hNSCs display an early commitment to a particular 

lineage, expression of a panel of neuronal and glial genes were assessed by qPCR. 

Neuronal markers neural filament light chain (NEFL), microtubule-associated protein 2 

(MAP2), and beta III tubulin (TUBB3) increased expression during neural induction 

(Figure 6B; *p<0.05). 
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Figure 6. Neural induction of iPSCs. A) A representative confocal image showing 
expression the neural stem cell marker nestin (green) and DAPI nuclear staining (blue) 
after neural induction B) qPCR analysis of neuronal markers in iPSCs and after neural 
induction (*p<0.05) 
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3.3.3 Spontaneous differentiation of NSCs into neurons, astrocytes and 

oligodendrocytes 

While the iPSC cell line was being established, experiments were performed using 

commercially available hNSCs. The hNSC line used is derived from NIH approved H9 

(WA09) hESC cells. These cells have a normal human female karyotype and can 

remain in an undifferentiated state in the presence of growth factors or can differentiate 

into neurons, astrocytes or oligodendrocytes. Starting from hNSCs instead of hESCs 

allowed for an accelerated differentiation protocol since neural induction had already 

been completed. In addition, these cells are easier to culture since they are adherent, 

compared to hESC and iPSCs, which are often cultured and differentiated as floating 

embroyid bodies. Over 90% of these cells stained positive for the neural stem cell 

marker nestin on day 0 (D0; Figure 7). Many D0 cells also stained positive for the 

neuronal marker MAP2 but did not stain positive for the glial markers GalC or GFAP 

(Figure 7). 

In order to test the differentiation capacity of hNSCs, growth factors bFGF and EGF 

were withdrawn from cell culture media for 14 days. This resulted in loss of nestin 

staining and spontaneous differentiation of cells into neurons (MAP2+), 

oligodendrocytes (galactocerebroside, GalC+), and astrocytes (GFAP+; Figure 7).  
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Figure 7. Neuronal and glial markers after spontaneous differentiation. Expression 
of the neural stem cell marker nestin, the neuronal marker MAP2, and the glial markers 
GALC and GFAP at day 0 (D0) and day 14 (D14) after spontaneous differentiation in 
hESC-derived cells 
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3.3.4 Motor neuron differentiation of hESC-derived cells 

 To test the ability of commercially available hNSCs to differentiate into 

specialized cell types we induced motor neuron differentiation with retinoic acid (RA) 

and purmorphamine (PM), a sonic hedgehog (SHH) agonist. SHH has been shown to 

regulate ventralization of neural tissues [35]. As shown in Figure 8A, qPCR analysis 

revealed that after 21 days of differentiation (D21) cells significantly increased 

expression of post mitotic motor neuron genes ISL1 and HB9 (t-test D0 vs D21, 

*p<0.05, **p<0.01). Phase contrast images on D21 revealed morphological changes 

including an extensive network of processes (Figure 8B). On D21 46% of cells stained 

positive for both MAP2 and HB9 and 51% stained positive for MAP2 and ISL1/2 (Figure 

8C). GFAP staining was not observed in these cultures. Collectively, these findings 

suggest that cells acquire a motor neuron molecular phenotype by D21. Analysis 

comparing different passage numbers revealed that higher passage numbers resulted 

in more variable gene expression data, therefore all data were generated from cells with 

passage numbers less than 33. 
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Figure 8. Motor neuron differentiation of hESC-derived hNSCs. A) qPCR 
expression of spinal motor neuron markers HB9 and ISL1 on day 0-28 (D0-D28) of 
motor neuron differentiation (*p<0.05, **p<0.01) B) Representative phase contrast 
images of D0 and D21 cells C) Immunostaining of MAP2 (red), HB9 or ISL1 (green), 
and DAPI (blue) on D0 and D21 
 
 
 

 

 

 

 

 

 

 

 



 

 

47 

3.3.5 Differentiation of motor neurons from iPSC-derived cells 

 For motor neuron differentiation of iPSC-derived cells the protocol was modified 

based on a recent publication [128]. The differentiation schematic is shown in Figure 

9A. RA and PM concentrations remained the same, but small molecules SB435142 

(SB) and LDN193189 (LDN) were used to induce neuralization by inhibition of SMAD 

signaling. Smoothened agonist (SAG) was added in addition to PM to further increase 

sonic hedgehog signaling. For increased neurotrophic support, GDNF and CNTF were 

added after day 14. Preliminary data revealed wide variations in gene expression in 

cells of different passage number; therefore all cells were cultured for a minimum 

amount of time, 4-6 days after thawing, before motor neuron differentiation was started. 

Figure 9B shows representative phase contrast images of D0 and D21 cells and is very 

similar to what was seen in hESC-derived cells. Expression of motor neuron markers 

HB9 and ISL1 were undetectable in D0 cells by qPCR and increased significantly on 

D21 (Figure 9C; **p<0.01, ***p<0.001). The expression of vesicular acetylcholine 

transporter (VACHT) was also significantly increased on D21 compared to D0, 

suggesting that these cells are cholinergic neurons (Figure 9C). To further confirm 

motor neuron identity, cells were stained with HB9, ISL1/2, and MAP2. Figure 9D 

shows staining for these markers on D21 but not on D0. 
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Figure 9. Motor neuron differentiation of iPSC-derived hNSCs. A) Schematic of the 
motor neuron differentiation protocol showing timing of neuralization with SB and LDN, 
caudalization with RA, induction of sonic hedgehog signaling with SAG and PM, as well 
as neurotrophic support from day 14 on with CNTF and GDNF B) Representative phase 
contrast images of D0 and D21 cells C) Expression of motor neuron genes HB9, ISL1, 
and VACHT (**p<0.01, ***p<0.001) D) Immunostaining of MAP2 (red), HB9 or ISL1 
(green), and DAPI (blue) on D0 and D21 
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3.4 Summary 

 In summary, these studies demonstrate the ability to generate iPSC cell lines 

from PBMCs without viral expression or DNA integration of plasmid. The finding of 

decreased mtDNA encoded gene expression in sALS PBMCs suggests that these cells 

may replicate disease pathology since this mirrors what is seen in post mortem spinal 

cord from sALS patients. Secondly, commercially available hNSCs were differentiated 

into multiple neuronal cell types, including motor neurons. This accelerated protocol, 

without the need for suspension culture, may prove to be advantageous in labs without 

access to or experience with culturing stem cells. Finally, iPSCs were successfully 

induced to become motor neurons, based on multiple gene and protein markers. These 

cells may be used to understand human motor neuron physiology. Collectively, these 

studies set the stage for the study of human motor neurons and reprogramming and 

differentiation of ALS patient cells in the future. 
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CHAPTER FOUR 

Mitochondrial biogenesis increases as cells differentiate from neural stem cells 

into motor neurons 

 

4.1 Rationale and Hypothesis 

 Previous studies have demonstrated that both hESCs and iPSCs produce ATP 

mainly through glycolysis and that during differentiation there is a switch to energy 

production by oxidative phosphorylation (OXPHOS). The mechanism underlying this 

switch remains unknown, but an increase in mitochondrial mass, mtDNA copy number 

and ATP production has been seen during spontaneous differentiation of hESCs into all 

three germ layers [108, 109]. Based on these findings, this series of experiments 

hypothesized that mitochondrial biogenesis would increase during motor neuron 

differentiation. Mitochondrial biogenesis is the process by which cells increase their 

mitochondrial components and includes upstream mRNA signaling, mtDNA copy 

number and gene expression, electron transport chain protein expression, and 

mitochondrial mass. Although many of these processes are regulated by the same 

mechanisms, they may also act independently of each other, resulting in an increase of 

one without an increase in all of them. Figure 10 depicts how mitochondrial biogenesis 

‘master regulator’ PGC1-α increases transcription of genes encoding mitochondrial 

proteins as well as mitochondrial and non-mitochondrial sources of cellular ATP 

production.  
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Figure 10. Mitochondrial biogenesis and ATP production. A) Anaerobic glycolysis is 

the process by which glucose is converted to pyruvate. Pyruvate can be converted into 

lactate anaerobically or oxidatively decarboxylated by the TCA cycle to electrons (e-) 

that reduce NAD+/FAD+ to NADH/FADH which are then oxidized by the electron 

transport chain (ETC) to generate ATP during oxidative phosphorylation (OXPHOS) B) 

Mitochondrial biogenesis regulator PGC-1α binds to NRF1/2 and ERRα, initiating gene 

expression of mitochondrial components. 
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4.2 Results 

4.2.1 Mitobiogenesis signaling increases with motor neuron differentiation 

 In order to assess mitochondrial biogenesis as cells differentiate from hESC-

derived hNSCs to motor neurons, qPCR targeting biogenesis genes was performed at 

seven-day time points. Figures 11A and B shows increased levels of PGC-1α at D21, 

POLG at D28, and ERRα, NRF1 and POLRMT at D21 and D28 compared to D0 (n=4-6, 

p<0.01, one-way ANOVA, *p<0.05, **p<0.01, ***p<0.001, Dunnett’s multiple 

comparisons test). NRF2, TFAM, and TFMB2 expression remained unchanged (p<0.05, 

one-way ANOVA). Based on these findings D21 was chosen as the time point for 

analysis of iPSC-derived cells. There was no change in PGC-1α, POLG, POLRMT, or 

TFAM expression but there was an increase in ERRα at D21 in iPSC-derived cells 

(Figure 11C; n=3, *p<0.05, unpaired t-test).  
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Figure 11. Mitochondrial biogenesis signaling during motor neuron 
differentiation. Expression of upstream (A) and downstream (B) mitochondrial 
biogenesis genes in hESC-derived cells at D0 (hNSCs) and on day 7-28 of motor 
neuron differentiation C) Expression of mitochondrial biogenesis genes in iPSC-derived 
cells at D0 (hNSCs) and D21 (motor neurons). *p<0.05, **p<0.01, ***p<0.001 
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4.2.2 Mitochondrial encoded genes increase with motor neuron differentiation. 

 The nuclear genome encodes most of the proteins that mitochondria require; 

however, mitochondria have their own genome that encodes 13 proteins essential for 

respiratory chain function. To determine if mitochondrial gene expression was increased 

during motor neuron differentiation we measured with qPCR expression of four mtDNA-

encoded genes. Figure 12A shows an increase in ND2 and ND4 expression on D21 

and D28 compared to D0 in hESC-derived cells (n=4-6, *p<0.05, one way ANOVA, 

*p<0.05, Dunnett’s multiple comparisons test). However, there was no statistically 

significant increase in iPSC-derived cells on D21 compared to D0 because of variability 

in the D21 samples (Figure 12B, n=3, p>0.05, unpaired t-test). 

qPCR was also performed with genomic DNA as the input. When analyzed using 

a standard curve of human mtDNA samples we were able to determine the mtDNA copy 

number. This analysis revealed a non-significant decrease in mtDNA copy number in 

hESC-derived cells (Figure 12C), as well as a significant decrease in mtDNA copy 

number in iPSC-derived cells with motor neuron differentiation (Figure 12D; *p<0.05). 

Because the four genes chosen are spatially distributed around the mitochondrial 

genome we are also able to detect mtDNA deletions using this method. Since there are 

no differences in the expression levels of the four genes at any time point we know that 

there are likely no major mtDNA deletions in those areas. 
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Figure 12. Mitochondrial encoded gene expression and mtDNA copy number. A) 
Expression of mitochondrial encoded genes in hESC-derived cells at D0 (hNSCs) and 
on day 7-28 of motor neuron differentiation B) Expression of mitochondrial encoded 
genes in iPSC-derived cells at D0 (hNSCs) and D21 (motor neurons) C) mtDNA copy 
number in hESC-derived cells, and D) iPSC-derived cells. *p<0.05 
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4.2.3 Glycolysis decreases as cells differentiate into motor neurons 

 For respiration analysis oxygen consumption rate (OCR) and extracellular 

acidification rate (ECAR) were measured simultaneously in adherent cultures using the 

XF24 Extracellular Flux Analyzer. This instrument allows measurement from 20 wells of 

cells plus 4 control wells. ECAR is measured in milli-pH units (mpH) and measures the 

change in pH resulting from the release of protons from the cell during glycolysis. In 

order for these readings to be accurate they must be within the linear range of the XF24 

instrument. In order to determine optimal cell density three or four densities, ranging 

from 20,000 to 80,000 cells per well, were measured for each cell type. The iPSC cell 

line is denoted C42 here. Figure 13 shows basal OCR and ECAR as a function of cell 

number. As seen with both hNSC lines (H9 D0 and C42 D0), 80,000 cells per well gives 

signals beyond the linear range of the XF24 instrument (Figure 13A and C). Based on 

these data as well as variability between wells (data not shown), we chose 40,000 cells 

per well for H9 D0 and 60,000 cells per well for H9 D21, C42 D0, and C42 D21. 

 In order to assess electron transport chain function, a number of inhibitors are 

commonly used including oligomycin, FCCP, rotenone, and antimycin A. Oligomycin is 

added to inhibit ATP synthase, followed by the protonophore FCCP to dissipate the 

proton gradient and measure maximal OCR in an uncoupled state, rotenone to inhibit 

complex I and antimycin A to inhibit complex III. Starting concentrations of these 

inhibitors were chosen based on published protocols [130, 137]. Interestingly, the 

starting concentration of 0.3 µM FCCP was insufficient to uncouple respiration in both 

hESC- and iPSC-derived cells. Since an excess of FCCP can uncouple the plasma 

membrane, it was important to determine the lowest concentration required to uncouple 
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mitochondrial respiration. 0.5-2 µM FCCP were tested in both cell types optimal 

concentration was chosen based on an increase from oligomycin inhibited levels (0.5 

µM for hESC-derived and 1 µM for iPSC-derived). Interestingly, no concentration of 

FCCP increased OCR above basal levels in either cell type. This suggests that cells are 

respiring at maximum capacity. 

Figure 14A shows a representative recording of iPSC-derived cells on D0 

(green) and D21 (blue). Temperature control wells are shown in teal. Dotted lines 

represent an average of the three time points. Respiration analysis was performed on 

hESC- (Figure 14B) and iPSC-derived cells (Figure 14C). There was no change in 

basal respiration or after addition of any of the inhibitors on D21 compared to D0 in 

either cell type (p>0.05, unpaired t-test). We did not detect changes in oxygen 

consumption coupled to ATP synthesis or max respiratory capacity in either cell type.  

ECAR was measured simultaneously in these cultures. There was a significant 

decrease in ECAR at D21 compared to D0 in both hESC-derived cultures (Figure 15A), 

as well as iPSC-derived cultures (Figure 15B; *p<0.05). This suggests a decreased 

usage of glycolysis in motor neurons compared to hNSCs.  
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Figure 13. OCR and ECAR values as a function of cell density A) hESC-derived 
cells (H9) on D0 and B) D21 C) iPSC-derived cells (C42) on D0 and D) D21 
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Figure 14. Bioenergetic profile of hNSCs and motor neurons. A) Representative 
measurements from iPSC-derived cells showing oxygen consumption rate (OCR) after 
the addition of various electron transport chain inhibitors. (1) represents OCR coupled to 
ATP synthesis, (2) is the amount of proton leak across the mitochondrial inner 
membrane, and (3) is max respiratory capacity B) OCR normalized to cell protein in 
hESC-derived cells C) iPSC-derived cells 
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Figure 15. ECAR in hNSCs and motor neurons. Extracellular acidification rate 
(ECAR), a measure of glycolysis, normalized to cell protein in hESC-derived cells (A), 
and iPSC-derived cells (B). *p<0.05 
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4.2.4 Electron transport chain proteins, but not mitochondrial mass, increase with 

differentiation 

 To further investigate mitochondrial biogenesis as hNSCs differentiate into motor 

neurons we measured protein expression of electron transport chain proteins. As shown 

in Figure 16B, in hESC-derived cells, levels of complex II (CII) and complex V (CV) 

proteins were significantly increased on D21 and D28, respectively (n=3-4). All other 

proteins were increased at both time points but did not reach statistical significance. To 

increase statistical power, respiratory proteins normalized to their representative D0 

were combined and this revealed a significant increase on D21 and D28 (Figure 16C). 

In iPSC-derived cells there was a significant increase in complex III (CIII) and complex 

V (CV) on D21 (n=4, Figure 16E). When combined, respiratory proteins were 

significantly increased on D21 (Figure 16F).  

 To measure mitochondrial mass protein expression of an outer mitochondrial 

membrane protein, voltage-dependent anion channel 1 (VDAC1), was analyzed. 

Interestingly, the VDAC1 protein levels were unchanged in hESC-derived cells on D21 

and D28 (Figure 17A) and iPSC-derived cells on D21 compared to D0 (Figure 17B). 

To further confirm that mitochondrial mass is unchanged during motor neuron 

differentiation, hESC-derived cells were immunostained for the translocase of outer 

mitochondrial membrane, TOM20. Localization of mitochondria changed from 

perinuclear in hNSCs to extended into long processes on D21. However, when TOM20 

fluorescence in 10 representative fields was normalized to cell number there was no 

difference in fluorescence between D0 and D21 (Figure 17D). 
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Figure 16. Respiratory chain protein expression in hNSCs and motor neurons. A) 
Representative western blot of hESC-derived cells B) Western blot quantitation 
normalized to beta actin C) Respiratory chain protein expression in hESC-derived cells 
D) Representative western blot of iPSC-derived cells E) Quantitation normalized to beta 
actin F) Respiratory chain protein expression in iPSC-derived cells. *p<0.05, **p<0.01, 
***p<0.001 
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Figure 17. Mitochondrial mass in hNSCs and motor neurons. A) VDAC1 protein 
expression in hESC-derived cells normalized to beta actin B) VDAC1 protein expression 
in iPSC-derived cells normalized to beta actin C) Representative image of TOM20 
staining in hESC-derived cells E) Quantitation of TOM20 staining in hESC-derived cells 
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4.3 Summary 

 In summary, this series of experiments demonstrated that mitochondrial 

biogenesis signaling and electron transport chain protein expression increases during 

motor neuron differentiation of hNSCs. This is not accompanied by an increase in 

mtDNA copy number or mitochondrial mass, suggesting that the total amount of 

mitochondria in the cell is not changing. Although there is no change in respiration rates 

there is a significant decrease in glycolysis between hNSCs and motor neurons. 

Together, these results indicate that mitochondrial biogenesis is increased during motor 

neuron differentiation and is accompanied by a reduction in glycolysis. 
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CHAPTER FIVE 

Electrophysiological changes as cells differentiate into motor neurons 

 

5.1 Rationale and Hypothesis  

 Development of voltage-activated currents and the generation of action potentials 

are crucial to motor neuron maturation in vivo. In order to explore these properties in 

vitro we performed whole cell patch clamp on hESC- and iPSC-derived motor neurons. 

We expected that after four weeks of motor neuron differentiation cells would display 

currents characteristic of excitable cells and generate action potentials following 

depolarizing current injection. These findings will set the stage for further analysis of 

voltage gated ion channels underlying motor neuron excitability in healthy and disease 

states. 

 

5.2 Results 

5.2.1 Identifying motor neurons in live culture 

 In order to identify motor neurons in live cultures a lentivirus was generated with 

GFP under control of a motor neuron specific transcription factor (HB9). To increase the 

rate of viral infection, cells were treated with the cationic polymer protamine sulfate. This 

polymer was chosen over polybrene, a commonly used viral infection enhancer, 

because this latter agent was toxic to motor neurons used in this study. Optimal 

multiplicity of infection (MOI) and virus incubation time was determined for each cell 

type. Cells were infected with the lentivirus 5 days before recording and replated on 

glass coverslips 2 days before recording. 
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5.2.2 Passive membrane properties of hESC and iPSC-derived cells  

 Passive membrane properties were recorded after the whole cell patch clamp 

configuration was acquired and monitored over the course of the recording on day 28 of 

motor neuron differentiation. Membrane capacitance (Cm) was 14.88 ± 1.42 pF for 

hESC-derived cells (n=5) and 9.75 ± 0.45 pF for iPSC-derived cells (n=7; Figure 18A). 

Resting membrane potential (Vm) was -39 ± 3.84 mV (n=6) in hESC- and -31.6 ± 4.82 

mV (n=10) in iPSC-derived cells (Figure 18B). Membrane resistance (Rm) was 2±0.3 

GΩ in hESC-derived cells (n=5) and 3.77±0.85 GΩ in iPSC-derived cells (n=6; Figure 

18C). None of these parameters were statistically different between cell types. 
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Figure 18. Passive membrane properties in hNSC-derived motor neurons. A) 

Membrane capacitance (Cm), B) Resting membrane potential (Vm), and C) Membrane 

resistance (Rm) in hESC- and iPSC-derived motor neurons. 
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5.2.3 Voltage gated currents characteristic of excitable cells 

 A series of voltage steps from a holding potential for -60 revealed inward and 

outward currents characteristic of sodium and potassium currents, respectively. Figure 

19A (i) shows a representative recording from an iPSC-derived motor neuron on D28. 

The presence of sodium channels was confirmed by the addition of 2 µM tetrodotoxin 

(TTX, Figure 19A (ii)). In order to determine current densities normalized to cell size, 

peak current amplitude was divided by cell capacitance. Mean sodium current density 

was -29.10 ± 8.29 pA/pF (n=5) for hESC-derived cells and -37.51 ± 5.39 pA/pF (n=7) for 

iPSC-derived cells (Figure 19B). Mean potassium current density was 29.55 ± 9.25 

pA/pF (n=5) for hESC-derived cells and 78.91 ± 8.04 pA/pF (n=7) for iPSC-derived cells 

(Figure 19C). Interestingly, iPSC-derived motor neurons had a significantly higher 

potassium channel density than hESC-derived cells.  
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Figure 19. Voltage gated currents in hNSC-derived motor neurons. A) (i) A 

representative voltage clamp trace from an iPSC-derived motor neuron (ii) the same cell 

after the addition of 2 µM (TTX) to block voltage activated sodium channels. B) Mean 

sodium current density and C) Mean potassium current density in hESC- and iPSC-

derived cells ***p<0.001 
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5.2.4 Action potential firing of stem cell derived motor neurons 

 Action potentials were elicited by a series of current pulses of increasing injected 

current amplitude under the current clamp mode of the patch clamp technique. 

Approximately 40% of hESC-derived cells and 60% of iPSC-derived cells fired action 

potentials on D28. A representative trace from a hESC-derived cell is shown in Figure 

20A. After action potential generation was confirmed, the minimum amount of current 

injection necessary to generate an action potential, rheobase, was determined by 

increasing the current injection by 0.01 nA. Rheobase was 23.75 ± 9.44 pA in hESC-

derived motor neurons (n=4) and -10.75 ± 11.88 pA in iPSC-derived motor neurons 

(n=4; p>0.05; Figure 20B). The fact that some iPSC-derived cells fire action potentials 

after hyperpolarizing current injection suggests the ability for spontaneous action 

potential formation. The threshold potential for the upstroke of the action potential and 

action potential height was similar for both cell types (Figure 20B). 
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 Vm (mV) Rheobase    

(pA) 

AP threshold    

(mV) 

AP height 

(mV) 

hESC-

derived 

-39.0 ± 3.84 23.75 ± 9.44 22.66 ± 7.48 -41.73 ± 10.14 

iPSC-

derived 

-31.6 ± 4.82 -10.75 ± 11.88 24.72 ± 4.18 -41.12 ± 5.02 

 

Figure 20. Action potential generation in hNSC-derived motor neurons. A) A 

representative current-clamp recording showing action potential formation in a hESC-

derived motor neuron B) The resting membrane potential (Vm), minimum current 

injection required to fire an action potential (rheobase), action potential (AP) threshold, 

and AP height for both cell types 
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5.3 Summary 

 Taken together, these preliminary results provide evidence that cells develop 

voltage gated channels characteristic of excitable cells and are able to generate action 

potentials on D28 of motor neuron differentiation. Similar effects were seen in hESC- 

and iPSC-derived cells. Combined with mRNA and protein analysis, these findings 

suggest that hNSC-derived cells are developing into functional motor neurons. These 

studies set the stage for future analysis of stem cell derived motor neurons including the 

alteration of excitability by pharmacological means. 
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CHAPTER SIX: DISCUSSION 

 

6.1 Generation of motor neurons from hNSCs 

 The goal for the first set of studies was to generate motor neurons from hNSCs. 

In order to develop a protocol for patient cell use we reprogrammed PBMCs into iPSCs. 

Following neural induction 67% of these cells stained positive for the hNSC marker 

nestin. These cells, as well as commercially available hESC-derived hNSCs (>90% 

nestin positive) were further differentiated into motor neurons. After 21 days of motor 

neuron differentiation cells had significantly increased expression of genes normally 

found in motor neurons including the motor neuron specific transcription factor HB9. 

~45% of hESC- and ~10% of iPSC-derived cells co-stained positive for markers of post-

mitotic spinal motor neurons and a more general neuronal marker. The findings in 

hESC-derived cells were consistent with a previous study using a similar protocol which 

reported ~30% motor neurons, but iPSCs showed a much lower rate of motor neuron 

generation. These results demonstrate for the first time that iPSCs derived from PBMCs 

can differentiate into motor neurons.  

There was a higher percentage of motor neurons in hESC- compared to iPSC-

derived cultures (~45% vs ~10%, respectively). This may be due to more efficient neural 

induction since hESCs were >90% nestin positive compared to 67% in iPSC-derived 

cells. This could be also be due to changes in the protocol including a shortened 

embryoid body stage and only four days of dual SMAD inhibition compared to seven in 

the previous study [128]. 
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Motor neurons derived from hPSCs give us the ability to study a cell type 

previously only accessible in post mortem tissue. However, the artificial environment in 

which they are grown has limitations. We have shown that retinoic acid (RA) and 

purmorphamine (PM) exposure is sufficient to induce motor neuron differentiation in 

hESC-derived cells but there are a number of other signaling molecules present in the 

developing embryo that were not added in vitro. In order to more closely replicate 

physiological conditions for the iPSC-derived motor neuron differentiation protocol, we 

added small molecules to inhibit SMAD signaling and BDNF during early differentiation 

and GDNF/CNTF for trophic support after day 14. Previous studies have shown that 

SMAD inhibition efficiently neutralizes hNSCs [138, 139]. Another artificial aspect of this 

culture environment is that it does not allow motor neurons to interact with other cell 

types including glia. The lack of GFAP staining is consistent with a previous study using 

a similar protocol [128] and suggests that there are no astrocytes, but we did not 

perform oligodendrocyte staining. Furthermore, these motor neurons do not form 

functional synapses with muscle, their in vivo targets. Previous studies have shown the 

ability of hESC- and iPSC-derived motor neurons to make functional synapses on 

muscle cells in culture but we do not yet know how this affects motor neuron maturation 

and firing. Finally, traditional cell culture grows cells in a single layer, compared to the 

three dimensional nature of tissue. There has been recent interest in developing three-

dimensional cell culture systems but much work remains if this is to be a feasible model 

for more than a few select labs (for a review see [140]. A three-dimensional culture 

system would provide the spatial organization of tissue, in addition to allowing more 

accurate gradient signaling important during development. 
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 PBMCs were chosen as starting material for reprogramming over fibroblasts, 

which are more commonly used. Collecting peripheral blood is a much simpler and less 

invasive procedure than a skin punch for fibroblast collection. Since these cells are not 

exposed to environmental mutagens they may be clinically more favorable due to less 

DNA mutations. Furthermore, PBMCs have a DNA methylation profile that more closely 

resembles hESCs [89], suggesting that they may reprogram more easily. Indeed, a 

previous study found that PBMCs could be reprogrammed with greater efficiency and 

two weeks faster than fibroblasts [89]. PBMCs may also more accurately replicate 

disease pathology. The current study showed that PBMCs from sALS patients had less 

mtDNA encoded genes compared to control patients [26]. This replicates what is seen 

in post mortem spinal cord of ALS patients [26]. Blood cells are unaffected in ALS and 

this decrease in mitochondrial gene expression may represent a systemic bioenergetic 

impairment that has not been previously characterized. If motor neurons derived from 

these cells share the same decreased expression they may be a useful model of sALS. 

Furthermore, if mtDNA gene expression is consistently decreased in all ALS patients 

this panel of genes may be used as a biomarker for ALS. 

 

6.2 Mitobiogenesis signaling in hPSC-derived motor neurons 

 The goal for this series of experiments was to investigate mitochondrial 

biogenesis during motor neuron differentiation. Gene expression of mitochondrial 

biogenesis ‘master regulator’ PGC-1α and many of its downstream targets were 

increased in hESC-derived cells during differentiation and expression peaked on day 

21. This is consistent with PGC-1α activating ERRα and NRF1 to increase transcription 
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of downstream POLG and POLRMT. Expression of mitochondrial transcription factors 

TFAM and TFMB2 was unchanged, consistent with no significant change in mtDNA 

copy number in these cells. iPSC-derived cells increased expression of ERRα on day 

21. The finding that not all mitobiogenesis genes were increased could mean that these 

cells increase mitobiogenesis gene expression earlier or later in the differentiation 

process, given that only one time point was analyzed in these cells. Expression of two 

mtDNA-encoded genes, ND2 and ND4, was also increased in hESC-derived cells on 

D21. However, there was too much variation in iPSC-derived samples to determine a 

statistically significant increase. In contrast, mtDNA copy number was decreased 

slightly in hESC- and significantly decreased in iPSC- derived motor neurons.  

Respiration analysis revealed no change in basal respiration between hNSCs 

and motor neurons, but there was a decrease in glycolysis. One limitation of this series 

of studies is that cells were grown and differentiated in 5% oxygen but respiration 

analysis was performed in room air (~20% oxygen). Efforts were made to keep D0 and 

D21 cells in as similar conditions as possible (similar passage number, similar time in 

culture, etc.) but the change in oxygen concentration may have affected the cells. 

Interestingly, neither D0 nor D21 cells increased OCR levels above basal after the 

addition of FCCP. FCCP uncouples the proton gradient across the inner mitochondrial 

membrane, measuring maximum oxygen consumption. The fact that this value never 

exceeds basal levels suggests that the ETC is already running at maximum capacity in 

both cell types. 

Although a decrease in glycolysis may result in increased OXPHOS, it doesn’t 

necessarily mean there is an increase in mitochondrial mass. Mitochondrial mass could 
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remain the same but there could be more ETC complexes or they could be more 

efficient in OXPHOS. Indeed, we found an increase in respiratory proteins but no 

increase in mitochondrial mass. The proteins increased included complex II and V in 

hESC-derived cells and complex III and V in iPSC-derived motor neurons compared to 

hNSCs. One limitation of measuring ETC proteins this way is that each complex is 

composed of many proteins and we only analyzed one for each complex. Additionally, 

we are measuring protein expression; this does not ensure that proteins are assembled 

correctly and that the complex is functioning properly.  

Similarly, an increase in ETC protein expression does not necessarily mean an 

increase in respiration. Respiration is a tightly controlled process. Potential ATP 

production and oxygen consumption capacity could be much greater than what is 

measured at basal levels. The observed increase in ETC protein expression may 

represent potential functioning of the ETC chain. For example, after strenuous exercise 

oxygen consumption and ATP production could be three times what it was at rest 

without any increase in mitochondrial mass. Uncoupling the proton gradient with FCCP 

showed maximal oxygen consumption but says nothing about ATP synthesis. Future 

studies to investigate this may compare ATP generation between hNSCs and motor 

neurons.  

 In summary, this series of studies suggest that some, but not all, mitobiogenesis 

processes increase with motor neuron differentiation of hNSCs. There may be 

differences in the timing of gene expression hESC- vs. iPSC-derived cells but it appears 

that both cell types decrease glycolysis and increase ETC protein expression without a 

change in mitochondrial mass during motor neuron differentiation. One process that the 
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current studies do not address is mitochondrial autophagy (mitophagy). Mitophagy is 

the cellular process that degrades dysfunctional mitochondria. This process could play a 

crucial role in the differentiation process and future studies could explore this.  

 

6.3 Electrical maturation of hPSC-derived motor neurons 

The aim of the last series of studies was to investigate the change in electrical 

properties of cells as they differentiated into motor neurons. Capacitance (Cm) was 

substantially lower in hNSC motor neurons (14.88 ± 1.42 pF in hESC-derived and 9.75 

± 0.45 pF in iPSC-derived) than rat spinal motor neurons at days 15-16 of gestation 

(E15-16; birth is E21-22; Cm = 29.3 ± 1.0 pF) [39]. Similarly, resting membrane potential 

was more depolarized (-39 ± 3.84 mV in hESC-derived and -31.6 ± 4.82 in iPSC-

derived) than in E16 rat motor neurons (-49.3 ± 5.9 mV) [38]. Since Cm increases and 

Vm decreases with motor neuron maturation this may suggest that these cells are still 

very early in development and that later time points may reveal characteristics of more 

mature cells. 

Similarly, sodium channel density was lower than what is seen in embryonic day 4 

(E4) chick spinal motor neurons (-29.10 ± 8.29 pA/pF in hESC0-derived and -37.51 ± 

5.39 pA/pF in iPSC-derived compared to ~70 pA/pF E4). Potassium channel density is 

lower in hESC-derived motor neurons (29.55 ± 9.25 pA/pF) than in embryonic day 4 

(E4) chick spinal motor neurons (~65 pA/pF) but iPSC-derived motor neurons showed 

similar values (78.91 ± 8.04 pA/pF). Previous studies suggest that both current densities 

increase with motor neuron maturation so future studies may wish to investigate these 

properties in cells that were differentiated longer. There was a lot of variability in the 
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mean peak inward and outward currents, consistent with varying rates of maturation. 

Assessing later time points may also result in a greater similarity in maximal currents. 

Action potentials were seen on D28 with threshold and rheobase values similar to a 

previous study [40]. The fact that some iPSC-derived cells fired action potentials in 

response to hyperpolarizing current injection is unusual and may be due to a number of 

factors, including rebound depolarization (Ih) that reached threshold. Future studies are 

planned to confirm this finding as well as to investigate repetitive action potential firing.  

 

6.5 Use of hPSC-derived motor neurons for disease modeling  

 One potential use of patient iPSC-derived motor neurons is their use in modeling 

disease. If these cells replicate disease pathology they may be useful for testing 

promising drug compounds. Both hESC- and iPSC-derived motor neurons from this 

study have been used in preliminary studies to test molecules that mimic the 

neurotrophins, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). 

Neurotrophins promote neuronal growth and survival, but their structure does not allow 

them to pass the blood brain barrier (BBB) [141]. Dr. Achilleas Gravanis developed 

small molecules, called microneurotrophins, and three analogues were kindly provided 

for our studies. Unlike NGF and BDNF, microneurotrophins can pass the BBB. After 

hESC-derived motor neurons were treated with 100 nM of the three neurotrophin 

analogues, NGF, or vehicle control for four or 24 hours RNA was isolated and sent for 

microarray screening. Gene expression analysis was then performed to identify which of 

the three compounds activated pathways most similar to NGF. The BNN124 analogue 

most closely resembled NGF at both 4 and 24 hours. Based on these promising results, 
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we treated hESC- and iPSC-derived motor neurons with the three analogues, NGF, 

BDNF, or vehicle control for 24 hours and isolated RNA for RNA-sequencing (RNA-

seq). RNA-seq data will be analyzed in the coming months and the findings will be 

published soon after. Both RNA-seq and microarray analyze gene expression; however, 

RNA-seq has a number of advantages. One advantage of RNA-seq is that it can detect 

very low expressing genes because it quantitates absolute rather than relative 

expression. Microarray technology is based on fluorescence and can only detect 

expression over baseline. Another advantage of RNA-seq is that it can detect novel 

isoforms and mutations because it does not require a known sequence like microarray 

does. Microneurotrophins have potential use in many neurodegenerative diseases 

including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, as well 

as in stroke and nerve injury (for a review see [142]).  

  

6.7 Summary and conclusions 

In summary, we have demonstrated the ability to differentiate motor neurons 

from both hESC- and iPSC- derived cells in three weeks. The hypothesis that 

differentiation of human pluripotent stem cells into electrically excitable motor neurons 

will result in increased mitochondrial biogenesis was confirmed at multiple levels.  

Expression of upstream regulatory genes increased, along with increased transcription 

of mtDNA-encoded genes, and increased levels of representative ETC proteins. Despite 

these increases, mitochondrial mass remains unchanged. During this time cells develop 

voltage-gated currents characteristic of excitable cells and are able to fire action 

potentials in response to depolarizing current. 
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6.8 Significance and perspectives 

The findings from this study have implications in multiple areas. Motor neurons 

are lost in a number of other diseases including progressive bulbar palsy, pseudobulbar 

palsy, primary lateral sclerosis, progressive muscular atrophy, and spinal muscular 

atrophy. Being able to generate motor neurons from patient blood cells may aid in the 

development of treatments for these devastating diseases by better understanding 

disease mechanisms and having predictive models to test promising compounds. The 

current study also sets the stage for looking at mitobiogenesis in other cell types lost in 

neurodegenerative disease including Parkinson’s and Alzheimer’s disease. Since 

mitochondrial dysfunction is a common theme in many neurodegenerative diseases a 

better understanding of how this pathway is regulated may lead to more effective drug 

targets. The findings in the present study suggest that PGC-1α acts through a NRF1-

ERRα mediated pathway to increase mitobiogenesis in hESC-derived cells and this may 

represent a target to increase mitobiogenesis. Together, findings from this study provide 

the first evidence that iPSCs from blood can differentiate into electrically active motor 

neurons and that mitobiogenesis is increased during motor neuron differentiation in both 

hESC- and iPSC-derived cells. Future studies are planned to investigate the effects of 

microneurotrophins and SK channel activators on the electrical excitability of these stem 

cell derived motor neurons.  
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