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In this study, we explore the effects of NURF depletion on the growth of tumors in immune-

competent mice. NURF depletion in tumors results in reduced tumor growth in immune-

competent mice, suggesting enhanced anti-tumor immunity. Analysis of the tumor 

microenvironment by flow cytometry revealed a significantly elevated CD8 and progressively 

elevated activated CD8 phenotype in Bptf KD tumors, possibly contributing to the increase in 

cell death and decrease in tumor weight observed. Examination of antigen presentation was 

evaluated using the OT-1 and Pmel-17 models, though no significant difference in cytotoxicity 

was observed as measured by LDH and/or IFNγ assays. This indicates possible novel antigen 

presentation mechanisms in tumor cells, and not increased presentation of existing antigens, 

contributes to the decreased tumor weight observed in Bptf KD tumors.
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INTRODUCTION 

Cancer affects millions of people worldwide each year. Even considering the great 

advances made in the past 25 years, resulting in a 10-18% decrease in death rate, 1 in 4 deaths in 

the United States continues to be attributed to cancer [1].  With these statistics looming over us, 

it’s no surprise that the research community has been focused on not only what causes cancer, 

but how to overcome or even cure cancer for future generations. Immunotherapies, a relatively 

new concept focusing on the ability to manipulate and take advantage of our body’s existing 

defense mechanisms, have gained notoriety with their ability to mitigate diseases that previously 

had a grim outlook and little to no available therapy. Today’s immunotherapies include both 

passive and active immunotherapies, with passive therapies encompassing tumor-targeting 

monoclonal antibodies (mAbs), adoptive cell transfer (ACT), and oncolytic viruses, and active 

immunotherapies including many anticancer vaccines, dendritic cell based therapies, 

immunomodulatory mAbs, and introduction of immune-stimulating cytokines [2,3,4,5,6]. 

Although current immunotherapies have made great strides in modern medicine and research, 

there are still many avenues yet to be exploited. One area of research harboring potential 

therapeutics is epigenetics and its included chromatin remodelers. 

Epigenetics 

Deoxyribonucleic acid (DNA), the hereditary material of life, is present in the nucleus of 

every cell; with a single cell being only 5-6µm in diameter on average, a significant amount of 

compaction must occur to fit approximately 6 feet of DNA into the nucleus [7]. In order to 
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complete this compaction, DNA goes through a series of folding to create a complex structure 

called chromatin (Figure 1). At its fundamental level, approximately 150 base pairs (bp) of DNA 

then wrap around a histone octamer core 1.7 times, forming a nucleosome [7,8]. Nucleosomes 

continue to fold tightly on themselves, creating a chromatin fiber, which can further fold into a 

chromosome that is visible during metaphase.  

 

Figure 1: Compaction of DNA Inside the Nucleus. DNA is compacted into chromatin, the 

basic unit of which is the nucleosome. [9] 

 

While chromatin provides a means for DNA to fit inside the nucleus, it also presents a 

problem; approximately 80 percent of DNA is wrapped around nucleosomes, and the segments 

of DNA wrapped around these histone octamers are generally inaccessible to transcription 

factors which are required for gene expression [10]. Epigenetics solves this problem with the 

introduction of histone variants and reversible modifications on histones including methylation, 

acetylation, and phosphorylation. These histone modifications are then recognized in part by 

chromatin remodeling complexes. In one example, the SWI/SNF family of chromatin 

remodeling complexes slides the nucleosome 10 bp in either direction in an adenosine 

triphosphate (ATP)-dependent manner, thereby exposing previously inaccessible sites [11,12]. 



 

Exposure of inaccessible sites allows transcription factor binding which can in turn 

transcription. 

 

NURF 

Nucleosome Remodeling Factor (NURF), a member of

remodeling complexes, slides the nucleosome in 

stable position of DNA sequence

tail of histone H4 must be present, as well a

three distinct subunits; the Bromodomain PHD

largest subunit, the ATPase SNF2L, and

aspartic acid (WD) repeat combine to create the human form of NURF

Figure 2: The NURF Complex 

Bptf, SNF2L, and pRABP46/48 subunits. [

 

Previous work has shown

candidate to manipulate for studies of 

embryogenesis as well as thymocyte maturation, and has been shown to be embryonic lethal, but 

is not cell essential [15,16]. These 

illustrating its potential as a therapeutic agent

3 

Exposure of inaccessible sites allows transcription factor binding which can in turn 

Nucleosome Remodeling Factor (NURF), a member of the ISWI family of 

remodeling complexes, slides the nucleosome in 10 bp increments onto a thermodynamically 

position of DNA sequence [11,12,13]. For nucleosome remodeling by NURF to occur, the 

tail of histone H4 must be present, as well as its N-terminal residues [14]. NURF consists of 

Bromodomain PHD-finger containing transcription factor (Bptf), the 

SNF2L, and the pRBAP46/48 subunit containing a tryptophan

combine to create the human form of NURF (Figure 2)

 

 in Humans. The NURF complex in humans consists of the 

Bptf, SNF2L, and pRABP46/48 subunits. [8] 

Previous work has shown the subunit Bptf to be unique to NURF, making 

studies of this chromatin remodeler [8]. Bptf plays a role in mouse 

embryogenesis as well as thymocyte maturation, and has been shown to be embryonic lethal, but 

ese characteristics highlight the importance of Bptf while

its potential as a therapeutic agent against cancer.  

Exposure of inaccessible sites allows transcription factor binding which can in turn regulate 

family of chromatin 

thermodynamically 

. For nucleosome remodeling by NURF to occur, the 

NURF consists of 

finger containing transcription factor (Bptf), the 

tryptophan-

(Figure 2) [8].  

The NURF complex in humans consists of the 

unique to NURF, making it the preferred 

Bptf plays a role in mouse 

embryogenesis as well as thymocyte maturation, and has been shown to be embryonic lethal, but 

ght the importance of Bptf while 
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NURF in Cancer 

The gene encoding the Bptf subunit of NURF is located on the long arm of chromosome 

17 [2]. Previous studies have demonstrated this arm of chromosome 17 is duplicated frequently 

in primary human cancers including breast, brain, liver, and lung cancers, implicating Bptf may 

play a role in tumorigenesis [17,18,19,20]. One study has identified a non-reciprocal 

translocation (der(X)t(X;17)) in lung cells maintained in continuous culture  that occurs within 

the Bptf gene, and further showed elevated Bptf messenger ribonucleic acid (mRNA) levels and 

increased cell proliferation in cells containing this translocation [21]. 

 

 

Tumorigenesis 

Tumorigenesis occurs when cells that functioned normally no longer respond to growth 

and differentiation control mechanisms. Tumors begin when a single cell obtains a sustainable 

genetic mutation that increases its ability proliferate when it would typically be eliminated [22]. 

This hyperplastic cell continues to proliferate, creating a population of cells with similar genetic 

makeup. At some point, possibly years later, one of these hyperplastic cells can acquire an 

additional genetic mutation, resulting in further abnormal growth and appearance, and the 

establishment of cancerous cells [22,23]. These cancerous cells may continue to acquire 

mutations that will allow them to become invasive and likely metastatic.  

Accumulation of mutations in cancer cells provides them with the characteristics required 

to evade established proliferation control mechanisms. These characteristics include self-

sufficiency for growth signals, insensitivity to anti-proliferative signals, and evasion of 
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apoptosis, among others [24]. One mechanism for the continued growth of cancer cells is 

avoidance of detection and destruction by the immune system [25, 26, 27]. 

 

Role of the Immune System 

A major player in the recognition of harmful cells within an organism is the body’s 

immune system. The adaptive immune system comes into play when the body’s innate, or 

immediate, immune system is overwhelmed and cannot fully eliminate its intended target [28]. 

The adaptive immune system consists of a variety of specialized cells that sample the 

surrounding environment and present the information to effector cells capable of responding 

appropriately [29].  

Antigen presenting cells (APCs) such as macrophages and dendritic cells, members of the 

innate immune system, sample the environment by endocytosis [30].  Information taken in is 

then processed and presented on the surface of the cell as a peptide in complex with a Major 

Histocompatibility Complex (MHC) molecule. APCs then travel to a peripheral lymphoid organ, 

such as a lymph node, where they interact with and activate effector T cells recognizing the 

specific antigen presented [31].  

The effector cells of the adaptive immune system include cluster of differentiation marker 

(CD) 4 and CD8 T cells. CD4 and CD8 T cells become activated when their surface T-cell 

receptor (TCR) interacts with the peptide:MHC complex on the APC [32]. While CD4 cells, also 

known as helper T cells, assist in the activation or production of other immune cells to eliminate 

pathogens, CD8 cells or cytotoxic T lymphocytes have both direct and indirect cytotoxicity 

mechanisms.  
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CD8 cells eliminate pathogens and infected cells by inducing apoptosis. Induction of 

apoptosis is achieved through a variety of mechanisms including induction of the Fas/TRAIL 

pathway [32], release of cytotoxic granules including perforin and granzyme [32], or cytokines 

such as interferon (IFN)-γ [33]. While cytotoxic granule release induces apoptosis by forming 

holes in target cell membranes and activating caspases in the target cell that eventually act to 

degrade target cell DNA [28,33], IFN-γ acts by increasing MHC Class I molecule levels on the 

target cell surface [34]. Increase of MHC Class I levels increases the likelihood a target cell will 

be recognized and apoptosis induced. IFN-γ also activates APCs and recruits them to the site of 

interest [28]. 

The activation of effector T cells depends on the recognition of a specific antigen by the 

TCR, as previously mentioned. This antigen is presented to the TCR by the peptide:MHC 

complex on the APC’s cell surface [31]. In addition to their effector functions, CD4 and CD8 

cells differ in the class of MHC molecule they recognize, with CD4 cells recognizing antigen 

presented by MHC Class II molecules and CD8 cells recognizing antigen presented by MHC 

Class I molecules [28]. NURF has been shown to preferentially regulate nucleosome occupancy 

across the MHC locus over other sites in the genome, implying it may have a role in regulating 

gene expression at the MHC, thereby regulating its activity (Figure 3A) [35]. Consistent with this 

model were observed significant changes in genes around MHC in multiple cells including 

embryonic stem cells (ESCs), mouse embryonic fibroblasts (MEFs), and double positive (DP) 

thymocytes with knock-out (KO) of Bptf (Figure 3B).   
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Figure 3: NURF Regulation of the MHC Locus and Associated Genes. (A) NURF 

preferentially regulates nucleosome occupancy across the MHC as compared to other loci in 

multiple cell types including embryonic stem cells (ESC), double positive thymocytes (DP), and 

mouse embryonic fibroblasts (MEF). (B) Microarray data from MEF, DP thymocyte, and ESC 

Bptf KDs show dysregulation of genes involved in tumorigenesis and antigen processing. 

Antigen processing genes shown include the TAP genes located within MHC genes at the MHC 

locus. 

 

MHC Class I Peptide Presentation 

Presentation of peptides on the cell surface of APCs via MHC molecules is regulated by a 

complex known as the proteasome in conjunction with the transporter associated with antigen 

process (TAP) complex [36]. The proteasome is responsible for degrading proteins into peptide 

fragments that are then transported from the cytosol into the endoplasmic reticulum (ER) via the 

TAP complex [37,38]. MHC Class I molecules preferentially present peptides of 8 to 11 amino 

acids in length [39]. When the proteolytic subunits of the proteasome core are replaced by the 

LMP2 and LMP7 catalytic subunits, the immunoproteasome is formed [40,41]. 

Immunoproteasome formation is induced by interferons and leads to a different cleavage pattern 

preference [40,41,42].  This differential cleavage pattern results in increased generation of 

peptides with a hydrophobic base and basic COOH termini – peptide fragments that are favored 
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by the TAP complex for uptake into the ER and have optimal binding to MHC Class I molecules 

(Figure 4) [40,41,43].  

 

Figure 4: MHC Class I Antigen Processing. Proteins are broken down into peptide fragments 

in the cytosol (gray) by the proteasome. Peptide fragments are transported into the endoplasmic 

reticulum (white) by the TAP complex (green) for presentation on MHC Class I molecules 

(yellow) [28]. 

 

Previous Work in the Landry Lab 

To begin investigating the role of Bptf in cancer, the Landry Lab injected cancer cell 

lines with control or Bptf shRNA retrovirus introduced knock down (KD) into the fourth 

mammary fat pad or flank of the respective syngeneic mouse strain. The two separate cancer cell 

lines and their derived tumors used were 4T1 and B16F10. The first cell line, 4T1, is an animal 

model for stage IV human breast cancer [44]. 4T1 cells grow in BALB/c mice and generate 

extremely tumorigenic and invasive tumors that can spontaneously metastasize from the site of 

the primary tumor to a variety of distant sites including lymph nodes, liver, lung, and brain [45]. 
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Because of its metastatic characteristics, as well as the ability to remove the primary tumor 

surgically [46], 4T1 cells provide a reasonable mouse model for studying human breast cancer 

and has such become well characterized and frequently used in cancer research [47, 48, 49]. 

Another cancer cell line used was B16F10. B16F10 cells grow in C57BL/6 mice and are a well-

established and frequently used mouse model for melanoma [50] and, similar to 4T1, are capable 

of spontaneously metastasizing to sites such as lymph nodes, lung, and brain [51, 52]. 

Previous work in the lab involving the injection of 4T1 Bptf KD and control cell lines 

into the fourth mammary fat pad of BALB/c mice which resulted in a significant decrease in the 

weight of Bptf KD tumors compared to tumors derived from control cell lines (Figure 5A). 

However, when injected into immune compromised NSG mice, a return to control phenotype of 

the tumors was observed, implicating the immune system as a major contributor to the decreased 

weight of Bptf KD tumors (Figure 5B). Similar studies using the B16F10 tumor model show 

reduced tumor sizes when Bptf KD cells are introduced into the flank of immune competent 

C57BL/6 mice (Figure 5C). 
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Figure 5: Weights of Bptf KD Tumors Decreased in BALB/c and C57BL/6 but not NSG 

Mice. (A) 4T1 Bptf KD cell lines injected into the fourth mammary fat pad of immune 

competent BALB/c mice created tumors of significantly decreased weight as compared to 

controls. (B) Reappearance of control phenotype in Bptf KD tumors when 4T1 cell lines were 

injected into immune deficient NSG mice. (C) B16F10 Bptf KD cell lines injected into the flank 

of immune competent C57BL/6 mice were significantly decreased in weight as compared to 

controls. 

 

In addition to the return to control phenotype observed in immune compromised mice, 

previous data demonstrating that NURF preferentially occupies the MHC locus strongly 

implicated the immune system playing a critical role in the molecular mechanism behind the 

observed decreased weight of Bptf KD tumors [35]. The MHC locus is also known to include 

TAP and LMP genes [43]. Armed with all of this information, microarray data was collected to 

determine what genes may be dysregulated in Bptf KD cells. Results from these experiments 

illustrated dysregulation of a variety of genes, most interesting of which were upregulation of the 

TAP and LMP genes.  
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Figure 6: Similar MHC Class I Expression in Bptf Control and KD Cells. (A) qPCR analysis 

of the MHC Class I genes H2D1, H2K1, and B2m in 4T1 showing no significant difference 

between control and Bptf KD lines. (B) qPCR analysis in B16F10 showing no significant 

difference between control and Bptf KD lines. (C,D) Flow cytometry analysis of MHC Class I 

expression molecules including H2-A, H2-D, and H2-K in both 4T1 and B16F10 lines. 

Upregulation of H2-K is seen in 4T1, and upregulation of both H2-K and H2-D are seen in 

B16F10. Isotype is shown in gray, control in black, and two separate Bptf KD lines shown in 

blue and red.  

 

 

With TAPs and LMPs play a role in MHC Class I antigen processing, studies were 

conducted to determine if these upregulated genes correlated with an increase in MHC Class I 

expression on the cell surface. Flow cytometry analysis of protein levels showed an increase H2-

K in 4T1, and an increase in both H2-K and H2-D in B16F10 (Figure 6). These results were 

inconsistent with mRNA levels measured using qPCR. Data obtained through qPCR revealed 

that none of the MHC Class I genes in mice, including H2-K, H2-D, and β2-microglobulin 

(B2M), had significantly different expression levels in Bptf KD cell lines when compared to 

controls (Figure 6).  
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Microarray data was also confirmed by quantitative polymerase chain reaction (qPCR), 

showing an upregulation of TAP1, TAP2, LMP2, and LMP7 in 4T1 and B16F10 cell lines with 

Bptf KD as compared to controls (Figure 7).   

  

Figure 7: Upregulation of MHC Class I Antigen Processing Associated Genes. (A) qPCR 

analysis of antigen processing genes associated with MHC Class I antigen presentation showing 

a significant increase in expression of the Lmp2, Lmp7, Tap2, and Tap2 genes in 4T1 Bptf KD 

cells as compared to control. (B) Similar qPCR performed on B16F10 cells showing a significant 

increase in expression of Lmp2, Lmp7, Tap1, and Tap2 in Bptf KD as compared to control. 

 

Data was collected showing the importance of CD8 T cells in obtaining the phenotypic 

difference between Bptf KD and control tumors. Through systematic depletion of CD4, CD8, 

and natural killer (NK) cells using antibodies against each of the cell types, it was revealed that 

CD4 and CD8 cells are required in the mechanisms at play in Bptf KD cells. This is illustrated in 

Figure 8, which shows a reappearance of control phenotype in Bptf KD tumors when mice were 

depleted of either CD4 or CD8 T cells. 

 

  



13 

 

  

Figure 8: Systematic Depletion of CD4 and CD8 Cells Diminishes Reduced Growth of Bptf 

KD Tumors. (A,B) Systematic depletion of CD4, CD8, and NK cells using monoclonal 

antibodies against each, showing reappearance of control phenotype in Bptf KD lines when CD4 

or CD8 T cells are depleted in both 4T1 and B16F10. 

 

Lactate dehydrogenase (LDH) and IFN-γ cytotoxicity assays also provided evidence 

suggesting that CD8 T cells are important in Bptf KD tumor regression. To measure cell death 

by LDH cytotoxicity assay, supernatants from cultures containing target (tumor) cells in the 

presence of effector (CD8+ T cells) are obtained. LDH is a stable cytosolic enzyme that is 

released from cells upon cell lysis [61] into the culture supernatant. When placed in the presence 

of tetrazolium salt, the NADH released via LDH is oxidized, and a red formazan product is 

formed. Presence of red formazan product as detected by absorbance at 490nm is proportional to 

the number of cells lysed.  
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When released by activated CD8 T cells, IFN-γ is able to bind to its receptor and activate 

downstream pathways such as the JAK-STAT pathway and further induce apoptosis [62]. An 

ELISA assay specific for mouse IFN-γ was performed using culture supernatants from control 

and Bptf KD cells in the presence of CD8 T cells. To detect IFN-γ presence, cells are placed in 

primary capture antibody, a following secondary detection antibody, placed in the presence of 

Avidin-horseradish peroxidase (HRP), and finally combined with tetramethylbenzidine (TMB) 

substrate solution. The addition of Avidin-HRP produces hydrogen peroxide which, in the 

presence of TMB, oxidizes TMB and creates a soluble blue reaction product, turning the reaction 

solution from red to blue [63]. Analysis of the presence of blue reaction product is detected by 

absorbance at 450 nm and is proportional to the presence of IFN-γ released by CD8 T cells. 

Results from these assays demonstrated that CD8 T cells obtained from the spleen of a 

BALB/c (for 4T1) mouse and primed on Bptf KD targets are able to kill Bptf KD tumor cells 

more effectively than CD8 cells primed on control targets are able to kill control tumor cells 

(Figure 9). 
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Figure 9: CD8+ T Cells Show Enhanced Killing of Bptf KD Tumor Cells. (A) LDH and  

(B) IFN-γ cytotoxicity assays reveal CD8+ T cells kill Bptf KD cells (shRNA 1 and 2) more 

efficiently than control cells. Ratios shown (5.1, 10.1, 20.1) represent the effector to target ratios 

utilized.   

 

This data illustrates the likelihood of antigen presentation as well as CD8 cells playing 

critical roles in the difference in tumor regression between Bptf KD and control tumors. 

Hypothesis/Aims of the Study 

We have shown through antibody depletion and cytotoxicity assays, that CD8 T cells are 

crucial for Bptf KD tumor regression, however little is known about the CD8 T cell population 

phenotype in vivo. Our first aim is to determine if Bptf KD tumors showed differential 

recruitment or activation of CD8 T cells in comparison to control tumor cells. We 

hypothesize that Bptf KD tumors will show a more activated CD8 T cell population when 

compared to control tumor cells. 
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It has previously been shown that Bptf preferentially occupies the MHC locus. 

Microarray and qPCR data have also revealed that Bptf upregulates genes involved in antigen 

processing and presentation for MHC Class I molecules (i.e. TAPs and LMPs). It is, however, 

unknown whether Bptf KD tumor cells present antigen on their cell surface with greater 

efficiency or if they instead present novel antigens to CD8 T cells. In our second aim, we 

hypothesize that Bptf KD tumor cells will show similar antigen presentation as controls, 

indicating novel antigen presentation is the likely mechanism for the observed Bptf KD 

tumor phenotype.  
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MATERIALS AND METHODS 

 

Cell Culture and Maintenance 

Mouse breast cancer (4T1 from Fred Miller, Wayne State University) and melanoma 

(B16F10 from ATCC) cell lines were maintained in Dulbecco’s Modified Eagle’s Medium 

(DMEM) (Gibco) supplemented with 10% fetal bovine serum (FBS), 1X non-essential amino 

acids (NEAA), 2mM glutamine, and 100 units/mL penicillin and 100 µg/mL streptomycin at 

37.0° Celsius (C )and 5.0% CO2. Media was changed every 2-3 days.  

 

Creating Bptf KD Cell Lines 

Mouse breast cancer (4T1) and melanoma (B16F10) cell lines were plated on 6-well 

plates and, upon reaching 30-50% confluence, transduced with retroviral shRNA (pSIREN 

Retro-Q, Clontech) targeting Bptf and containing puromycin resistance. Cells were incubated 

with retrovirus for 48 hours, then placed into media containing 5µg/mL puromycin (Gibco) for 

selection of cells successfully incorporating the desired shRNA. Cells surviving puromycin 

selection were split and either frozen or utilized for protein extraction. Bptf KD cell lines were 

confirmed via Western blot analysis off of 6 well plates, and again off of 10 cm plates to ensure 

KD consistency. Cell lines were then frozen down and stored in liquid nitrogen. 
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Creating OVA Cell Lines 

Melanoma (B16F10) cells were plated and co-transfected with DNA for both the 

ovalbumin (ova) and zeocin resistance genes. Ovalbumin DNA received from the Wang lab was 

altered to remove the existing puromycin resistance gene. Cells were transfected with the 

ovalbumin and zeocin resistance DNA and Lipofectamine 2000 (Invitrogen) for 48 hours, then 

placed into media containing 0.2% zeocin (Invitrogen) over multiple weeks for selection of cells 

incorporating the desired segments. Single clones were isolated and screened for incorporation of 

ovalbumin by flow cytometry utilizing staining with OVA257-264 peptide bound to H-2Kb (BD 

Pharmingen) on the BD FACS Calibur Flow Cytometer. Two separate cell lines (out of 15 

screened) incorporating ovalbumin were then utilized to create Bptf KD and control cell lines as 

described above. Both Bptf KD and ovalbumin expression were confirmed by Western blot 

analysis. 

 

Solid Tumor Flow Cytometry 

Spleens from Bptf KD and control tumor-bearing mice and tumors were extracted from 

mice and placed on ice. Tumors were weighed, then mechanically minced by razor blade in a 

petri dish. Tumors were subsequently digested in enzyme solution containing 1µg/mL 

Collagenase Type IV (Sigma) and 20 µg/mL DNase I (Sigma) in PBS (10mL of enzyme solution 

for tumors 1 cm² in size) for 90 minutes in a 37°C water bath. During the 90 minute incubation, 

digests were inverted every 15 minutes. Digests were then filtered through a 40 µm filter and 

centrifuged at 1500 rpm for 5 minutes at room temperature. After removal of the supernatant, 

cells were resuspended in 9 mL 40% Percoll (Sigma) diluted in PBS and carefully layered on top 
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of 4 mL of 70% percoll containing 10 µL 0.5% phenol red dye (Sigma) in PBS, creating a 

discontinuous gradient. Percoll gradients were centrifuged at 3000 x g for 30 minutes at room 

temperature with minimal acceleration and brake. Cells at the interface were collected and 

diluted with 30 mL PBS, then centrifuged at 1500 rpm for 5 minutes. Supernatant was removed, 

and cells were resuspended in 1 mL of cold FACS buffer. Cells were then counted in a 1:1 ratio 

of 0.2% trypan blue viability dye and split evenly into two tubes.  

Spleens, utilized for compensation controls in addition to being samples, were placed on 

a petri dish in 1 mL cold FACS buffer and sliced in half lengthwise with a razor blade. 

Splenocytes were massaged out with the flat end of a sterile 5 mL syringe plunger and filtered 

through a 40 µm filter. Splenocytes were separated into multiple tubes for samples and controls 

and centrifuged at 500 g for 5 minutes at room temperature. Supernatants were removed and 

cells were resuspended in 500 µL RBC lysis buffer (155 mM NH�CL, 12 mM NaHCO�,  

0.1 mM EDTA in molecular grade water). The RBC lysis reaction continued room temperature 

for 4-5 minutes and was stopped with 1 mL PBS. Splenocytes were centrifuged at 500 g for 5 

minutes and resuspended in 1 mL cold FACS buffer (2% FBS in Hank’s balanced salt solution 

(HBSS)). 

All samples were stained with a combination of CD8 (FITC), TCRβ (PE), or CD69 (PE) 

antibodies (BD Pharmingen) for 20 minutes, shielded from light. Cells were washed twice in 1 

mL cold FACS buffer and resuspended in 500µL FACS buffer containing 2 ng/mL 7AAD 

(Sigma) for analysis by flow cytometer (BD FACS Calibur Flow Cytometer). Flow cytometry 

data was analyzed using FlowJo software. 
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Cell Culture Flow Cytometry 

Cells cultured to approximately 80% confluence were washed twice with 1X PBS and 

placed in 1 mL Cellstripper (Cellgro) solution at 37°C until single cell suspension was reached. 

Cells were then centrifuged at 350 g for 5 minutes, resuspended in 1 mL FACS buffer, and 

stained with OVA(257-264) peptide bound to H-2Kb (eBioscience, 12-5743-81) for 20 minutes, 

shielded from light. Cells were washed twice in 1 mL cold FACS buffer and resuspended in  

500 µL cold FACS buffer for analysis by flow cytometer (BD FACS Calibur Flow Cytometer). 

Flow cytometry data was analyzed with FlowJo software. 

 

ELISA 

eBioscience ELISA Ready-Set-Go! protocol was followed as provided by the company. 

Briefly, 96-well plates were coated with capture antibody and incubated overnight at 4°C. Wells 

were washed with provided Wash Buffer, blocked for 1 hour at room temperature in diluted 

Assay Diluent, and then washed again. Standards and samples were added (100 µL/well) and 

incubated overnight at 4°C. Wells were washed the next morning, placed in primary (detection) 

antibody for 1 hour at room temperature, washed, placed in secondary (Avidin-HRP) antibody 

for 30 minutes at room temperature, and washed again. Finally, 100µL of Substrate Solution was 

added to each well for 15 minutes at room temperature before 50µL Stop Solution was added to 

each well and the plate was read at 450 nm and 570 nm by spectrophotometer (Synergy H1 

Multi-Mode Plate Reader, BioTek). 
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LDH Cytotoxicity Assay 

Promega CytoTox 96 Non-Radioactive Cytotoxicity Assay protocol was followed as 

provided by the company. Briefly, a 96-well plate was plated with 1,000 effector cells/well and 

incubated overnight at 37°C. The following morning, target cells were added to all experimental 

wells and appropriate control wells in pre-determined effector:target ratios, and the plate was 

centrifuged for 4 minutes at 250 g. The plate was then incubated at 37°C overnight, after which 

provided 10X Lysis Solution was added to appropriate. Supernatant (50µL) from each of the 

wells was then transferred to an enzymatic assay plate where 50 µL of Substrate Mix was added 

to each well. The enzymatic assay plate was covered and incubated for 30 minutes at room 

temperature, shielded from light. Finally, after the 30 minute incubation, 50 µL Stop Solution 

was added to each well and the absorbance was read at 490 nm by spectrophotometer (Synergy 

H1 Multi-Mode Plate Reader, BioTek).  

Western Blot 

Cultured cells were washed twice with PBS, then placed in 1 mL of TRI reagent (Sigma) 

and incubated at room temperature for 10 minutes. The 1 mL of TRI reagent was then forcefully 

pipetted over the cells multiple times to homogenize the extract. The sample was placed into a 

1.5 mL centrifuge tube and 200 µL chloroform was added. Samples were vortexed for 15 

seconds, allowed to sit at room temperature for 10-15 minutes, and centrifuged at 12,000 x g at 

4°C for 15 minutes. The upper clear aqueous layer containing RNA and thin viscous interphase 

containing DNA were removed by vacuum and 1 mL isopropanol was added to the organic layer. 

The sample was inverted to mix and incubated at room temperature for 10 minutes while a while 

precipitate (protein) formed. Samples were then centrifuged at 12,000 x g at 4°C for 10 minutes 

and the supernatant was aspirated. To the protein pellet, 1.5 mL of 0.3 M guanidine in 95% 
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ethanol was added. The pellet was dislodged and the sample was placed on a rocker at 4°C 

overnight. The next day, samples were centrifuged at 12,000 x g at 4°C for 15 minutes. After 

aspiration of the supernatant, 1.5 mL 100% ethanol was added and incubated at room 

temperature for 20 minutes. Samples were subsequently vortexed and spun down at 12,000 x g at 

4°C for 15 minutes and the supernatant was aspirated. To the pellet, 200 µL 8M urea in 1% SDS 

was added and samples were incubated at 65°C overnight. The following morning, protein was 

quantified for each sample against standards (0 mg/mL, 0.75 mg/mL, 1.5 mg/mL, and 3 mg/mL 

all in BSA) using BioRad DC Protein Assay reagents, incubated at room temperature for at least 

10 minutes, and absorbance was measured at 750 nm by spectrophotometer (Pharmacia LKB 

Ultrospec III). 5X SDS loading buffer and 8M urea in 1% SDS were added to bring each sample 

to a protein concentration of 2 mg/mL. 

Cell protein extracts (40µg) were then run on a 4%, 6%, 10%, or 15% Tris/Glycine gel 

(depending on protein size) for 1 hour at 200 V and 200 mA. Protein extracts were then 

transferred to Immuno-Blot polyvinylidene difluoride (PVDF) membrane (Bio-Rad) by Western 

blot in either CAPS buffer (10 mM CAPS pH 10.5, 00025% 1 M DTT in diH2O) or 1X 

Tris/Glycine transfer buffer (25 mM Tris, 190 mM Glycine) for 17 hours at 20 V and 20 mA. 

Membranes were removed and blocked in 5% NFDM in PBST (PBS, 0.001% Tween-20) for 1 

hour, then placed in 10 mL 5% NFDM in PBST and primary antibody and incubated on an 

orbital shaker overnight at 4°C. Primary antibody concentrations added were as follows: 3 µL α-

Bptf (Landry), 10 µL α-Ovalbumin (Santa Cruz Biotechnology, 3G2E1D9), or 10 µL Pmel17 

(Santa Cruz Biotechnology, H-300) per membrane. After incubation in primary antibody, 

membranes were rinsed with PBST 3 times for 7 minutes each, and blocked in 10 mL 5% NFDM 

in PBST and secondary antibody for 1 hour. Secondary antibody concentrations added were as 
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follows: 1µL anti-mouse IgG (Cell Signaling Technology, #7076), or 1 µL anti-rabbit IgG (Cell 

Signaling Technology, #7074). Membranes were then rinsed again in PBST 3 times for 7 

minutes each. Membranes were bathed in 500 µL ECL (Thermo Scientific SuperSignal West 

Femto), wrapped in a single layer of cling wrap and placed on x-ray film for varying lengths of 

time. Films were developed using an automated tabletop processor. 

 

Quantitative Western Blot 

Cell protein extracts (40µg) were run on a 6%, 10%, or 15% Tris-Glycine gel for 1 hour 

at 200 V and 200 mA. Protein extracts were then transferred to Immuno-Blot PVDF membrane 

(Bio-Rad) by Western blot in CAPS buffer or Tris/Glycine transfer buffer for 17 hours at  

20 V and 20 mA. Membranes were removed and blocked in 5% NDFM in PBST for 1 hour, then 

placed in 10 mL 5% NFDM in PBST and primary antibody and incubated on an orbital shaker 

overnight at 4°C. Primary antibody concentrations added were as follows: 3 µL α-Bptf (Landry), 

10 µL α-Ovalbumin (Santa Cruz Biotechnology, 3G2E1D9), 10 µL Pmel17 (Santa Cruz 

Biotechnology, H-300), or 1 µL cyclophilin B (abcam, ab3565) per membrane. After incubation 

in primary antibody, membranes were rinsed with PBST 3 times for 7 minutes each, and blocked 

in 10 mL 5% NFDM in PBST and secondary antibody for 1 hour. Secondary antibody 

concentrations added were as follows: 1 µL anti-mouse IgG (Cell Signaling Technology, #7076), 

or 1 µL anti-rabbit IgG (Cell Signaling Technology, #7074). Membranes were bathed in 500 µL 

ECL (Thermo Scientific SuperSignal West Femto) and placed on the provided tray and inserted 

into the Odyssey Fc (LI-COR) imaging system for quantitative image capture and analysis.
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RESULTS 

 

Bptf KD Tumors Display an Elevated CD8 T Cell Population 

It was previously observed through systematic depletion of immune cells that CD8 cells 

are an essential part of the mechanism involved in the phenotypic difference seen between 

control and Bptf KD tumors. Prior experiments also revealed that CD8 T cells primed on Bptf 

KD cells kill Bptf KD cells more effectively than T cell primed on control cells kill control cells 

in vitro. To determine whether the mechanism behind the increased cytotoxicity of Bptf KD T 

cells was due to an increase in activated CD8 T cells in Bptf KD tumors, flow cytometry was 

performed on Bptf KD and control solid tumors obtained the same day.  

The presence of tumor infiltrating CD8 cells was evaluated by staining cells for both CD8 

and TCRb in both 4T1 and B16F10 control and Bptf KD tumors. A stepwise gating strategy 

(Figure 10). First, the lymphocyte population was isolated, then gating specifically on live cells, 

and finally gating on the CD8 positive population within the TCRb population was employed. 

Percentages, as opposed to cell counts, were utilized to account for the difference in tumor 

weight as well as variability in cell counts between samples of the same tumor, and to enable 

direct comparisons between tumors.  

 

 



25 

 

 

Figure 10: Gating Strategy for Determining CD8 Populations. (A) Gating strategy utilized in 

tumors. The lymphocytes population was first gated off of, followed by the live population of 

lymphocytes. TCRb+ cells were then gated out of the live population, and of that population, 

CD8+ (double positive for TCRb and CD8) T cells were determined. (B) The same gating 

strategy as described in A shown for spleens. 

 

The T cell population was considered to be all cells staining positive for TCRβ, after 

isolation of live lymphocytes. Exact gating strategies employed for extraction of the CD8 cell 

population in tumors and spleens are illustrated in Figure 10. 
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Figure 11: CD8+ T Cell Population in 4T1 and B16F10 Tumors. Dot plots showing 

TCRb+/CD8+ cells in a single tumor for control and Bptf KDs in 4T1 (A) and B16F10 (B) 

tumors.   
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Figure 12:  CD8+ T Cell Population in Tumors and Spleens. Representative Bptf KD (red) 

and control (black) CD8+ populations by tumor weight showing a significant difference between 

Bptf KD and control tumor CD8+ populations in 4T1 (A) and B16F10 (B) tumors. Similar 

analysis of CD8+ populations in spleens by tumor weight in both 4T1 (C) and B16F10 (D) mice 

showing no significant difference. 

 

Dot plots for the percentage of CD8+ T cells in single 4T1 and B16F10 control, Bptf KD 

1, and Bptf KD 2 tumors are provided in Figure 11. Analysis of the microenvironment of 

multiple tumors derived from both the 4T1 and B16F10 cell lines showed significant differences 

in CD8+ T cell populations between control to Bptf KD tumors. There were significantly more 

CD8+ T cells in Bptf KD tumors as compared to control tumors for both 4T1 (p-value = 0.03) 

and B16F10 (p-value = 0.05), as shown in Figure 12. Trends between CD8+ T cell levels and 

tumor weights were also visualized. As tumor weight decreased, the presence of CD8+ cells 

increased in both 4T1 (Figure 12A) and B16F10 tumors (Figure 12B). In splenocytes from 4T1 
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and B16F10 tumor-bearing mice, however, the opposite trend was shown in all but one 

population. For spleens from 4T1 control, Bptf KD (Figure 12C), and B16F10 control tumor-

bearing mice (Figure 12D), as tumor weight increased, the percentage of CD8+ splenocytes also 

increased. Conversely, in splenocytes from B16F10 Bptf KD tumor-bearing mice, it was seen 

that the CD8+ population decreases with increasing tumor weight (Figure 12D). 

 

Figure 13: Gating Strategy for Determining Active CD8 Populations. (A) Gating strategy 

utilized in tumors. The lymphocytes population was first gated off of, followed by the live 

population of lymphocytes. CD8+ cells were then gated out of the live population, and of that 

population, CD69+ (double positive for CD8 and CD69) T cells were determined. (B) The same 

gating strategy as described in A shown for spleens. 

 

Tumors derived from 4T1 and B16F10 cell lines were also analyzed for CD8 T cell 

activation status. Exact gating strategies employed for determination of the active CD8 

population in tumors and spleens are illustrated in Figure 13. Dot plots for active (CD69+) CD8+ 

T cell determination in single 4T1 and B16F10 control, Bptf KD 1, and Bptf KD 2 tumors are 

provided in Figure 14. While significant differences in active CD8+ T cell populations were not 

observed between control to Bptf KD tumors, a clear trend was again visualized. As tumor 

weight decreased, the presence of active CD8+ cells in the tumor microenvironment increased in 
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4T1 Bptf KD and control tumors (Figure 15A), as well as B16F10 Bptf KD tumors (Figure 15B). 

The microenvironment of B16F10 control tumors showed an opposing correlation, with active 

CD8 cell status increasing with increasing tumor weight (Figure 15B). Analysis was also 

performed on the spleens of 4T1 and B16F10 Bptf KD and control tumor-bearing mice. No 

significant differences were observed between control and Bptf KD groups, however a similar 

trend was detected. In splenocytes from 4T1 Bptf KD or control tumor-bearing mice (Figure 

15C) or B16F10 control tumor-bearing mice (Figure15D), activation status of CD8 cells 

decreased as tumor weight increased. The activation status of CD8 cells in splenocytes from 

B16F10 Bptf KD tumor-bearing mice did not follow this trend as definitively as other groups 

(Figure 15D). 
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Figure 14: Active CD8 T Cell Population in 4T1 and B16F10 Tumors. Dot plots showing 

CD8+/CD69+ cells in a single tumor for control and Bptf KDs in 4T1 (A) and B16F10 (B) 

tumors. 
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Figure 15: Active CD8 Population Decreases with Increasing Tumor Weight.  

(A) Representative Bptf KD (red) and control (black) CD69+ populations by tumor weight 

illustrating the trend that as tumor weight decreases, presence of CD69+ CD8 T cells increases in 

Bptf KD and control 4T1 tumors. (B) Similar analysis of B16F10 Bptf KD and control tumors. 

Similar analysis of CD8+ populations in spleens by tumor weight in both 4T1 (C) and B16F10 

(D) mice showing a decrease in CD69+ population as tumor size increases. 

 

Bptf KD Tumors do not Present OVA or Pmel-17 Antigen with Greater Efficiency 

 Previous data gathered or provided evidence for the upregulation of genes involved in 

MHC Class I antigen processing. Additional experimental data went on to illustrate no 

significant increase in the overall presence of MHC Class I molecules on the cell surface. With 

this information, we set out to determine if Bptf KD cells alter antigen presentation. Specifically, 

we wanted to extrapolate whether antigen is presented with greater efficiency on the surface of 

Bptf KD tumor cells as compared to control tumor cells.To determine if Bptf KD tumors present 
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antigen in greater amounts on the cell surface, two separate model systems utilizing known 

antigen were evaluated.  

OT1 Model 

The OT-1 model is well characterized and frequently used for investigation into antigen 

presentation and CD8 T cell responses to antigen [53,54,55,56]. OT-1 mice are C57BL/6 mice 

transgenic for the OT-1 T-cell receptor, producing CD8 T cells that are MHC class I restricted 

and ovalbumin (257-264) specific [57]. OVA, the gene encoding for the hen egg protein 

ovalbumin, is not native to the B16F10 cell line. With previous data showing KD of Bptf results 

in dysregulation of MHC Class I associated genes, dysregulation of genes associated with 

antigen processing for MHC Class I molecules, and the importance of CD8+ T cells in the 

mechanism used in Bptf KD tumors, use of the OT-1 model (with a known non-native antigen 

specific for MHC Class I that utilizes restricted CD8+ T cells) was chosen. Once incorporated 

into the desired cell line(s), presentation of OVA (257-264) in the context of MHC Class I 

haplotype H2-Kb can be evaluated to determine antigen presentation efficiency and CD8 T cell 

cytotoxicity.  

The ovalbumin (OVA) gene was introduced into B16F10 cells to create the parents cell 

lines used for this model. Flow cytometry of the lines was utilized to confirm expression of OVA 

on the cell surface (Figure 16).  



33 

 

 

Figure 16: Confirmation of Ovalbumin Gene Incorporation and Expression in B16F10 Cell 

Lines. Expression of OVA(257-264) complexed with H2-Kb on B16F10 cells. Isotype (gray), 

B16F10 control without OVA (black), two B16F10 lines transfected with OVA (red).  

 

 Bptf KD lines were created from the B16F10 clones incorporating the OVA gene, and 

expression of both OVA and Bptf were confirmed via Western blot (Figure 17A). Cell lines were 

then evaluated for OVA expression by quantitative Western blot and flow cytometry. For 

quantitative western blot data analysis, OVA expression was determined as the ratio of OVA 

expression to that of cyclophilin B as loading control for each sample. Analysis revealed no 

significant difference in OVA expression from control to Bptf KD lines (Figure 17B).  

 OVA expression of Bptf control and KD cell lines was also evaluated by flow cytometry. 

The OVA antibody used for flow cytometry analysis was for OVA(257-264) peptide complexed 

with the H2-Kb molecule. Analysis of both MHC Class I molecule H2-Kb and OVA expression 

revealed a slight increase in H2-Kb expression in Bptf KD cell lines, but no discernable 

difference in cell surface OVA expression levels (Figure 17D). Analysis of H2-Kb alone ensured 

any observed change in OVA expression localized to the cell surface was not due to an increase 

in cell surface MHC Class I H2-Kb. Mean fluorescence intensity (MFI) of both H2-Kb and OVA 

were also calculated from flow cytometry data. OVA expression for control and Bptf KD cell 
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lines was calculated as a ratio of OVA MFI to H2-Kb MFI. This analysis revealed a visible but 

insignificant decrease of cell surface OVA expression in Bptf KD cells (Figure 17C). 

 

Figure 17: Relative OVA Expression of Bptf Control and KD Cell Lines as Determined by 

Flow Cytometry Analysis. (A) Western blot analysis confirming ova expression in OVA cell 

lines and not control. Bptf KD was also confirmed, with B16F10+OVA lines with Bptf KD 

showing no expression of Bptf compared to controls. Ponceau staining provided as loading 

control. (B) Quantitative Western blot analysis of OVA expression shown as a ratio of OVA 

expression to the loading control cyclophilin B. (C) MFI of OVA expression as a ratio of OVA 

to H2-Kb in control and Bptf KD B16F10+ova cells, determined by flow cytometry. (D) Flow 

cytometry of H2-Kb and OVA expression in B16F10+ova Bptf KD and control cell lines. 

Isotype (gray), B16F10+OVA control (black), B16F10:OVA Bptf KDs (red and green).  
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 T cells obtained from an OT-1 mouse were then placed onto B16F10+OVA control and 

Bptf KD cell lines to determine cell death in vitro. A preliminary LDH cytotoxicity assay 

performed revealed no significant difference in cell death from B16F10+OVA control to Bptf 

KD cell lines (Figure 18). 

  

Figure 18: LDH Cytotoxicity of Bptf Control and KD OVA-Expressing T Cells. No 

significant difference was revealed between control and Bptf KD B16F10+OVA cells 

concerning cell death efficiency as determined by preliminary LDH cytotoxicity assay.  

 

Pmel-17 Model 

 A second model used focused on presentation of a known native antigen, as opposed to 

the non-native antigen introduced through the OT-1 model. The Pmel-17 model focuses on the 

presentation of the naturally expressed Pmel-17 antigen in C57BL/6 mice. Pmel-17 is a naturally 

expressed antigen found on both normal melanocytes, as well as a large portion of malignant 

melanomas in humans [58,59]. Analysis of the expression of pmel-17 on B16F10 control and 

Bptf KD cell lines will allow examination of antigen presentation efficiency and cytotoxicity in 

the same manner as the OT-1 model, but provide insight into the antigen presentation status of 

native antigens. 
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 Expression of Pmel-17 and Bptf were confirmed in existing control and Bptf KD B16F10 

cell lines by Western blot (Figure 19). These cell lines were then evaluated for expression of 

Pmel-17 by Western blot analysis (Figure 19).  

 

Figure 19: Stable Bptf KD and Pmel-17 Expression of B16F10 Cell Lines. Western blot 

analysis confirming expression of Pmel-17 and appropriate levels of Bptf in control and Bptf KD 

B16F10 cells. Ponceau staining provided as loading control.  

 

 T cells obtained from a Pmel-17 mouse were then placed onto B16F10 control and Bptf 

KD cell lines to determine cytotoxicity and cell death in vitro. Preliminary LDH cytotoxicity 

assays revealed a decrease in cytotoxic effect of T cells to Bptf KD tumor cell targets as 

compared to control tumor cell targets (Figure 20A). Preliminary analysis of cell death by 

ELISA was also performed, showing evidence in concurrence with LDH cytotoxicity assay 

results. Figure 20B illustrates the decrease in IFN-γ release induced by Pmel-17 T cells placed on 

Bptf KD tumor cell targets as compared to Pmel-17 T cells placed on control tumor cell targets 

seen through IFN-γ ELISA analysis. 
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Figure 20: LDH Cytotoxicity of Pmel-17 T Cells Similar on Bptf Control and KD Cell 

Lines. Preliminary LDH cytotoxicity assay (A) and IFN-γ ELISA (B) results showing a decrease 

in cell death of Bptf KD cells by Pmel-17 sensitive CD8+ T cells. 
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DISCUSSION 

 

While advances in cancer treatment have been made over the past 25 years, 1 in 4 deaths 

in the United States continues to be attributed to cancer [1].  Of the treatments available, 

immunotherapies are relatively recent and have gained notoriety with their ability to mitigate 

diseases that previously had a grim outlook and little to no available therapy, including cancer. 

Even with great strides being made in immunotherapies, epigenetics is an avenue of 

immunotherapy yet to be fully exploited for its therapeutic possibilities. 

  Through studies of the Bptf subunit, the chromatin remodeler NURF presents itself as a 

potential therapeutic target, with prior research demonstrating its necessity for embryonic 

development through Bptf KO cells, but also showing Bptf is not cell essential through use of 

cell-type specific Bptf KO studies [15,16]. Previous data revealing a decrease in tumor weights 

when Bptf is knocked-down heighten its therapeutic possibilities. With data indicating Bptf acts 

through manipulation of the immune system, Bptf begins to present itself as a target for future 

immunotherapies.  

While Bptf is a likely candidate for immunotherapies, further investigation into the 

particular mechanism by which Bptf acts on the immune system will present even greater 

therapeutic possibilities.   Once a mechanism is elucidated, manipulation of multiple portions of 

said mechanism could provide a variety of different clinically relevant areas of attack in the 

battle against cancer.  
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To begin to illuminate the mechanism by which Bptf decreases tumor weight, we 

examined the microenvironment of the tumor itself utilizing flow cytometry of two separate cell 

lines: 4T1 and B16F10.  After digestion of the tumor and isolation of lymphocytes, cells were 

stained with a combination of antibodies for TCRβ, CD8, CD69. From a combination of these 

stains, we were able to determine the percentage of live CD8 cells present in the tumor 

microenvironment, as well as the percentage of live active CD8 cells present.  

A total of 6 representative 4T1 tumors (3 control and 3 Bptf KD) and 6 melanomas (3 

control and 3 Bptf KD) derived from the B16F10 cell line in addition to spleens from tumor-

bearing mice were obtained and analyzed by flow cytometry for this project. In 4T1 and B16F10, 

we observed a significant increase in the percentage of CD8+ T cells in Bptf KD tumors as 

compared to controls. While no significant differences were realized in other relationships, 

multiple trends developed, including that of an increase in active CD8 T cells as tumor weight 

decreased.  These insignificant differences may be realized as significant with additional data 

collection and analysis, due to time restrictions associated with this project.  

From currently available data, there is an elevation of CD8+ T cells in the Bptf KD tumor 

microenvironment of both 4T1 and B16F10 cell line origin as compared to control. At this time, 

it is likely beneficial to reserve judgement on data obtained from B16F10 tumors, as they did not 

provide consistent results and analysis was based on a low number of available T cells. B16F10 

tumors are known to harbor fewer T cells than other cancer cell lines [60]. This could not only 

make the recovery of T cells more difficult, but could contribute to any insignificance of data 

gathered, as greater cell counts contribute to more consistent and more reliable data analysis. 

With further adjustments made on the protocol utilized to obtain lymphocytes, including 

compilation of multiple control or Bptf KD tumors into one sample, elevated and consistent T 
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cell counts could be obtained. Once consistent results are obtained, more weight would be given 

to B16F10 data. At this time, a higher level of confidence is had in the data obtained from 4T1 

tumors, which provided a more reasonable number of T cells for analysis.  

CD8+ cells are activated once they recognize and come in contact with the antigen:MHC 

Class I complex on a cell [28]. In the immunological environment of a tumor, CD8+ cells can be 

presented with novel antigens or native antigens. Analysis of CD8 T cell activation status in the 

tumor microenvironment by flow cytometry showed that as tumor weight decreased, active CD8 

T cell population increased. To explain a more active CD8+ T cell phenotype seen in Bptf KD 

tumors, CD8+ cells are likely either presented with novel antigens from the tumor, or tumors are 

exhibiting increased presentation of native antigens. Novel antigen presentation could attract 

more attention from the immune system and increase the activation of CD8+ cells, likely 

increasing cell death and providing definitive therapeutic potential. An increase in the efficiency 

of antigen presentation would provide more opportunities for recognition by cytotoxic CD8+ 

cells and therefore an increased chance of tumor cell death by CD8 cytotoxicity mechanisms, but 

provide a less clear-cut therapeutic opportunity. 

While ongoing studies in the Landry Lab are investigating the possibility that Bptf KD 

tumor cells display novel antigens, the studies contained in this project explore the concept of 

increased antigen presentation occurring on Bptf KD tumor cells. Two separate models with 

known antigens were utilized for analysis of antigen presentation efficiency.  

After we incorporated the ovalbumin gene into B16F10 cell lines for use of the OT-1 

model, and subsequently introduced control or Bptf KD shRNA, we began analyses. OVA 

expression was consistently shown to have no significant difference in expression from control 

to Bptf KD cell lines. With no significant difference in presentation of the OVA antigen on the 
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cell surface, it was anticipated that no difference in cell death would be seen between OVA-

expressing control and Bptf KD cells when exposed to CD8+ cells restricted to OVA. For use of 

the Pmel-17 model, CD8+ T cells were purified from the spleen of a Pmel-17 mouse and assays 

investigating cell death began. Cell death was measured through LDH cytotoxicity assay and/or 

IFN-γ ELISA.  Only preliminary data for both the OT-1 and Pmel-17 models was obtained for 

this project. Initial data obtained by LDH cytotoxicity assay for the OT-1 model showed no 

significant difference between B16F10+OVA control and Bptf KD cell lines. Preliminary LDH 

cytotoxicity assay data for Pmel-17 showed a decrease in Bptf KD cell death when exposed to T 

cells from a Pmel-17 mouse as compared to controls. Preliminary IFN-γ ELISA data for Pmel-17 

showed a decrease in IFN-γ production in wells containing Pmel-17 CD8 T cells placed on Bptf 

KD tumor cells as compared to wells with T cells placed on control tumor cells. 

From data gathered during this project, the possible mechanisms behind decreased tumor 

weights in Bptf KD tumors begin to be narrowed down. IFN-γ and LDH cytotoxicity assays of 

both the OT-1 and Pmel-17 models, in combination with flow cytometry and quantitative 

Western blot analysis, reveal Bptf KD cells are likely not presenting antigen more efficiently on 

tumor cell membranes. These results support the model of a novel or tumor-associated antigen 

being presented on the surface of tumor cells. Flow cytometry of control and Bptf KD tumor 

microenvironments revealed Bptf KD tumors have an increased presence of CD8+ T cells that 

likely have an increased activation status as compared to controls. While much additional 

information must be gathered before making definitive conclusions, it is possible that Bptf KD 

tumor cells are presenting an antigen not normally expressed on that cell type/stage, resulting in 

an increase CD8+ and active CD8+ cell presence and increased tumor cell death by direct CD8 

cytotoxicity mechanisms. These direct cytotoxicity mechanism could include release of perforin 
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and granzyme, release of IFN-γ and subsequent induction of the JAK/STAT pathway, or 

induction of the Fas/TRAIL pathway.  

As stated previously, there are multiple limitations of this study. When use of tumors 

obtained the same day is required in any experiment, troubleshooting can be a significant source 

of delay, as we must have mice readily available for injection of cells that will take weeks to 

form tumors. If additional control and Bptf KD tumors are able to be gathered and analyzed, 

more distinct trends may be elicited. In regards to flow cytometry analysis of T cells obtained 

from B16F10 tumors, the minimal recovery of T cells may hinder the consistency of data 

obtained, requiring additional replicates to be completed for accurate results. Due to time 

restraints, all LDH cytotoxicity assay and ELISA data is to be considered preliminary, with 

replicates to be completed in the future for confirmation of results. 
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