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Abstract 

TITRATING AND EVALUATING MULTIPLE DRUG REGIMENS 
WITHIN SUBECTS 

By Margaret Shih, Bachelor of Science at the University of California at Berkeley 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University. 

Virginia Commonwealth University, 2001 

Research Directors: Dr. Walter H. Carter, Jr., Chairman, Department of Biostatistics 
Dr. Chris Gennings, Associate Professor, Department of Biostatistics 

The dosing of combination therapies is commonly undertaken empirically by prac-

ticing physicians, and there is a lack of a coherent algorithm to approach the problem of 

combination dosing. Current methods of evaluating multiple drug combinations in clini-

cal trials generally do not provide information regarding the location of more effective 

dosages when the combination is not found to differ from the standard, even though the 

absence of a difference does not necessarily mean the new combination is ineffective. 

Additionally, if a new combination is found to be more effective, often a large proportion 

of the subjects has not benefited from the trial. This may lead to problems with patient 

enrollment and adherence to the study protocol, and even with early stopping rules, the 

time patients spend on inferior treatments may have lasting detrimental effects. This 



XI 

paper describes an evolutionary operation (EVOP) direct-search procedure to titrate com

bination doses within individual patients . The Nelder-Mead simplex direct-search method 

is used to titrate a combination of drugs within individual subjects. Desirability functions 

are incorporated to define the main response of interest and additional responses or con

straints. Statistical methodology for determining whether the titrated treatment combina

tion has resulted in an improvement in patient response and for evaluating whether a 

therapeutic synergism exists is developed. Inferences can be made about the efficacy of 

the combination or about the individual drugs that comprise the combination. This 

approach allows every patient the potential to benefit from the combination under study 

and permits the consideration of multiple endpoints simultaneously. 



Chapter 1 

Introduction 

1.1 Motivation 

I.I.I Combination Therapies and Clinical Practice 

The use of multiple medications in the treatment of individual patients is an increasingly 

commonplace occurrence. The elderly population, who consume the most drugs and in 

whom relative drug consumption continues to increase, is rapidly growing in the United 

States and other developed nations. The pace of new drug development, from drug dis

covery to drug production, has accelerated greatly, and single diseases are now treated 

with multiple drugs targeting different biochemical pathways or different aspects in the 

pathophysiology of a disease. This increase in drug consumption brings with it a dramatic 

increase in the potential for drug interactions and adverse drug reactions. New approaches 

to treatment and prescribing are needed to address these increasingly complicated dosing 

regimens. 

Dose titration with single compounds is a relatively straightforward process 

employed by physicians to identify appropriate dose levels which produce improved 



responses in patients while simultaneously minimizing the adverse side effects a 

patient may experience. After taking into account a patient's age, weight, and other fac

tors specific to the patient, the physician will prescribe an initial dose which may be 

increased or decreased as needed, depending on how the patient responds. This titration 

continues until a favorable balance between the desired response and undesirable side 

effects is achieved. 

2 

The difficulty arrives in attempting to translate this approach to determining dos

ages in the case where multiple drugs are being prescribed in the treatment of a single disc 

ease, or where the consideration of multiple endpoints is needed in the case where a single 

treatment is prescribed. There is currently no systematic or efficient method for determin

ing dosages in multi-drug regimens. The physician generally either chooses to address the 

problem empirically, or will employ an ad-hoc approach, varying the levels of one drug 

while keeping the doses of all the other drugs in the combination fixed. Unfortunately, 

this approach does not account for potential interactions among the drugs, which may be 

crucial when searching for the most desirable therapy. 

1.1.2 Combination Therapies and Clinical Trials 

Not only is combination dosing difficult for practicing physicians in the day-to-day care of 

their patients, but it also presents a problem in both clinical trials research and drug evalu

ation research. Suppose we are evaluating a novel two-drug combination, which is com

posed of a new therapy plus the standard therapy. A typical approach which may be used 
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is to randomize half of the subjects to the standard drug group and the other half to the 

two-drug combination. There are several problems with this approach. The first problem 

is that if no difference in response is found between the groups, this does not necessarily 

mean that the new combination is ineffective. The lack of effect may lie in the dose cho

sen for use in the study. Secondly, this approach does not provide any information regard

ing the location of more effective doses ifthe combination is not found to differ from the 

standard. On the other hand, if the new combination is found to be more effective, 

approximately half the subjects enrolled in the study, those randomized to the standard 

treatment, have not benefited from the trial. Finally, even with early stopping rules, the 

time a patient spends on the inferior treatment can have lasting detrimental effects. These 

problems can lead to difficulties with patient recruitment and adherence to the study pro

tocol. 

1.1.3 Combination Therapies and Response Surface Methods 

Outside of the clinical trials arena, a common approach which has been used to evaluate 

combination therapies is the use of response surface methodology (RSM). With this 

approach, an experiment is carried out using a grid of fixed dose combinations. The fixed 

combinations are administered to subjects, often using a factorial design, and the response 

is observed over the range of dose combinations. The resulting response surface can then 

be used to identify areas of improved response. This is an effective approach, but one lim

ited in its application by several aspects. Firstly, this approach requires the use ofprede-
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termined, fixed combinations, none of which may actually correspond to the best 

treatment. Also, the ideal treatment may lie entirely outside of the range of doses used in 

the study. Furthermore, these studies quickly become expensive due to the numerous dose 

combinations required. Finally, RSM requires the pre-specification of the dose-response 

relationship, which is usually unknown. This requires an additional assumption that the 

dose-response relationship is well approximated by the equation specified. 

1.1.4 Research Objectives 

The goal of our research has been to develop a more systematic and efficient, yet practical 

and flexible, method for titrating combination therapies within individual patients and for 

evaluating the efficacy of multiple drug therapies. We have addressed the problem using 

an evolutionary operation (EVOP) approach and by incorporating desirability functions, 

both of which have been successfully applied in industrial settings but which until now 

have not seen much application in the field of medicine. The methodology described 

allows each subject to benefit by receiving a personalized 'best' therapy. The titration is 

carried out using practical therapeutic units (e.g. whole pills) and permits the consider

ation of multiple endpoints simultaneously. Finally, inferences can be made regarding 

therapeutic synergism and the efficacy of combination therapies without requiring the 

specification of either the dose-response relationship or distributional assumptions. 



1.2 Prospectus 

Chapter 2 is a literature review ofEVOP, EVOP direct-search methods, and desirability 

functions. Chapter 3 is written in the format of a paper submitted for journal publication 

and contains an overview of the mechanics of the titration process as well as a more 

detailed discussion of statistical inference and methodological issues. The figures and 

tables are provided at the end of the chapter. Chapter 4 contains a discussion of possible 

clinical applications ofEVOP direct-search methods and an example of a proposed study 

protocol employing this methodology in the titration of a two-drug combination therapy 

for the treatment of type 2 diabetes. Chapter 5 is a summary of the simulation studies 

which were conducted to examine the effectiveness of the multi-drug titration algorithm in 

combination dosing and the effects of the sample size, the number of steps, the shape of 

the desirability function, and the initial step size. Chapter 6 is a research summary. 

References for the sample study protocol are listed at the end of Chapter 4. All 

other references are listed in the main Reference section after Chapter 6. 

5 



Chapter 2 

Literature Review 

2.1 Evolutionary Operation (EVOP) 

The optimization of functions of multiple variables has always been of interest to statisti

cians (Hotelling, 1941). Friedman and Savage (1947) proposed a sequential one-factor-at

a-time optimization procedure, and Box and Wilson (1951) discussed the simultaneous 

optimization of multiple factors, which was the groundwork for the evolutionary operation 

procedure (EVOP) eventually introduced by Box in 1957. The EVOP technique has since 

been widely and successfully applied in the industrial setting, particularly in manufactur

ing processes, where it is used as a method of increasing plant efficiency by increasing the 

rate at which improvements to production can be made. 

The evolutionary operation technique allows one to search for improved condi

tions while a process is in production by observing the effects of small, deliberate changes 

in the operating conditions which result in a type of forced or artificial evolutionary pro

cess. Traditional applications of EV OP have involved the use of factorial designs (Fisher, 

1935; Yates, 1935; D.R. Cox, 1958; and Snedecor and Cochran, 1980) to introduce varia

tions in the operating conditions. EVOP utilizes information from the process itself to 

6 
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make improvements to the resulting product and has proven useful in optimizing multidi-

mensional relationships without requiring specification of either a model or distribution 

(Box, 1957; Box and Draper, 1969; Spendley, Hext, and Himsworth, 1962). 

Whereas response surface methods are a static research technique, evolutionary 

operation can be applied as a continuous and automatic production-line method. Hunter 

and Kittrell (1966) present an extensive review of various industrial applications of 

EVOP, most of which take place in the chemical industry, although applications in the 

automotive and food industries are also discussed. For a more detailed, in-depth discus

sion ofEVOP techniques, one is referred to the text by Box and Draper (1969). 

As an example of how EVOP would work in practice, suppose we are trying to 

optimize the response of an ongoing industrial manufacturing process, and suppose the 

response to be optimized is the yield of chemical product. The yield of the product would 

be continuously monitored, as would the operating conditions, which might consist of the 

temperature, pressure, and amount of starting material. Minor variants in the operating 

conditions are then introduced in a factorial pattern. When a significant change in the 

yield is found in either a positive or negative direction, the operating conditions which 

produced the change in yield can be identified and subsequently adjusted in the direction 

of optimizing the yield. The monitoring process would then resume and could be contin

ued indefinitely. 

Two of the most appealing aspects ofEVOP are the simplicity with which it can be 

carried out and the fact that it is conducted as an inherent part of a normal process, not as 

an artificially conducted experiment. The everyday application ofEVOP techniques does 
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not require the input of professional mathematicians or statisticians, and after the initial 

setup, the EVOP process can continue indefinitely, with new variables being added or old 

variables being removed at any time. 

There are several issues which arise in adapting EVOP, in its original form, to the 

problem of finding therapeutic treatment combinations which result in an improved out

come status in individual patients. The first problem is that traditionally, EVOP requires 

the use of many design points. Use ofa factorial design would require the introduction of 

multiple small variations in treatment dosages which would be applied continuously to 

each patient. This presents obvious ethical problems regarding patient treatment, which 

overshadow other relatively minor issues of patient compliance and inefficiency in the 

design. 

A second problem arises from the traditional application of a statistical test of sig

nificance to determine whether movement should be made to a new experimental region. 

Movement to a new dose region would not be made until there was statistical evidence 

that this would result in an improved patient response. In this case, the patient would be 

given multiple but varying doses of the drug combination within a limited dose range. 

The same set of doses would be repeatedly administered until there was evidence that 

changing the dose levels would benefit the patient. While it is appropriate that changes to 

the dose levels should not be made until there is some apparent benefit to be gained, this is 

again inefficient and results in a slower optimization process. 

An automatic EVOP procedure, which is more easily adapted to the clinical arena, 

was introduced by Spendley, Hext, and Himsworth (1962). Their sequential simplex 
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method, a modification of Box's original approach, is automatic, does not utilize a facto

rial design, and does not require hypothesis testing before each movement. Instead, they 

use a direct search method approach to optimizing multiple factors. Direct search meth

ods are a group of procedures also referred to as hill-climbing or steepest ascent proce

dures, which are often used for minimizing or maximizing functions . Pre-specification of 

the dose-response relationship is not necessary, one is not limited to predetermined combi

nations, and compounds can be added or removed from the combination under study at 

any time. 

This initial simplex EVOP method was later modified by Nelder and Mead 

(1965), who developed a more flexible method termed the Nelder-Mead Simplex proce

dure. Their method has the advantage of allowing the simplex to accelerate and adapt to 

the contour to the response surface. Segreti (1977) has discussed the use of the Spendley, 

Hext, and Himsworth EVOP method in combination chemotherapy studies, and more 

recently, Berenbaum (1990) has discussed another modified approach, the partition 

method, in relation to the problem of optimizing cancer chemotherapy regimens in animal 

studies. Box also modified the procedure, creating complexes and incorporating con

straints (1965). However, all of these applications refer to patients or animals randomized 

to a single treatment group and do not discuss dose optimization within individual 

patients. 

In our simulation studies, described in more detail in Chapter 5, we use the Nelder

Mead Simplex algorithm to carry out the titration of combination therapies within each 

patient. While numerous other optimization methods, such as those listed in the previous 
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paragraphs could be applied, we elected to use the Nelder-Mead method because of its 

simplicity in application and the rapidity and efficiency with which it optimizes processes. 

2.2 Titration with the Nelder-Mead Simplex Procedure 

The Nelder-Mead procedure has been widely applied to a broad range of problems. In our 

simulations, the Nelder-Mead simplex algorithm was used to carry out the within-patient 

titration. The first step of the procedure is to establish an initial simplex, a geometric fig

ure with a fixed number of vertices. In the p-dimensional case, where pis the number of 

variables being evaluated, the number of vertices required for the simplex is p+ 1. At each 

step, the simplex adapts its form, moving away from the vertex with the lowest response 

toward the direction of maximum response. 

This is most easily illustrated in the two-dimensional case where the simplex is a 

triangle. More specifically, if we are evaluating a two-drug combination, each vertex A, 

B, and C, of the triangle (Figure 2.1) would represent different dose levels of the combina

tion. At the initial step, the subject's response is measured at each of these three dose 

combinations, and the composite desirability resulting from the administration of each 

combination is compared, with the simplex reflecting away from the least desirable 

response, through the centroid of the face created by the remaining vertices to a new point, 

E. In addition to reflection, the simplex can also extend, contract, or perform a shrinkage 



contraction, depending on the contour of the response surface. The possible cases are 

F 

N 

2 
Q 

Drug 1 

Figure 2.1: Nelder-Mead simplex ABC with possible subsequent points (Table 2.1) 

listed in Table 2.1 and correspond to the diagram in Figure 2.1. 

The initial simplex step size, which specifies how far apart the initial vertices are, 

and the reflection and expansion coefficients used by the Nelder-Mead procedure, which 

Table 2.1: Conditions governing the formation of subsequent simplex. (Adapted from 
Olsson and Nelson, 1975) 

Condition Action New Simplex 

f(C) ~f(E) ~f(B) Reflect BCE 

f(E) <f(C) Extend BCF 

f(A) <f(E) Contract BCG 

f(B) <f(E) ~f(A) Contract BCH 

f(A) ~f(G) orf(E) ~f(H) Shrink A 'B'C 

11 
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determine how far the simplex can move or expand in one step, must be carefully speci-

fied by working with experts knowledgeable about the response and process variables 

being evaluated. Our application of the Nelder-Mead algorithm to within-patient titration 

is described in more detail in Chapter 3. 

2.3 Desirability Functions 

Desirability functions also address the problem of optimizing multiple responses simulta

neously. However, while EVOP techniques focus on monitoring and optimizing the dif

ferent operating conditions to optimize a single response, desirability functions are used to 

optimize multiple endpoints. The desirability function approach was first introduced by 

Harrington (1965) and later modified by Derringer and Suich (1980). Gibb (1998) further 

extended the methodology to desirability functions which are continuous and differentia

ble. 

Desirability functions have been successfully applied in the industrial setting. 

Each endpoint of interest is transformed to a continuous desirability function, di, with val

ues ranging from 0 to 1, where a value of 0 designates the response as not at all desirable, 

while a value of 1 is assigned to the most desirable response. The basic shape of the func

tion is determined by whether one is trying to maximize or minimize the response, or aim 

for a range of target values. The exact shape of each desirability function is determined in 

collaboration with physicians or other experts knowledgeable about the disease under 

study and the therapeutic effects of the treatments being administered. 
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Gibb (1998) describes the use of both the normal cumulative distribution function 

and logistic cumulative distribution function in defining continuous desirability functions , 

but any function which maps the response to the (0,1) interval and which is continuous 

and differentiable could be used. In this study, a logistic cumulative distribution function 

was used. With the logistic function, the form of the 'bigger-is-better' or maximizing 

desirability function is 

[ (Y-a)]-1 
di(m ax ) = 1 + exp- ~ , 

l 

where 

• 
Y; - Y;• • 
-~--, Y;• < Y;, and Y; E (0, 1). 

21nC-=~) 
Y; 

The parameter '1j is an average of the upper (Yi*) and lower (Yi*) bounds of the response 

level being targeted, bi controls the function spread, and Yi is such that d;( Y;.) = Y; and 

d/ Y;) = 1 - Y;. An example of a maximizing desirability function is given in Figure 2.2. 
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0 10 20 30 40 50 60 70 80 90 100 

y 

Figure 2.2: Example ofa maximizing desirability function. Yi*= 20, yi* = 40, Yi =0.05 . 

The 'smaller-is-better' or minimizing desirability, shown in Figure 2.3, is obtained 

1.0 

0.9 

0.8 

0.7 

di(min) 0·6 
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0.4 

0.3 

0.2 
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0 10 20 30 40 50 60 70 80 90 100 

y 

Figure 2.3: Example ofa minimizing desirability function. Yi* = 60, Yi*= 80, Yi= 0.05. 
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simply by reversing the sign of the exponential argument, having the resulting form, 

[ ((Y -a))]-1 
di(min) = 1 +exp 'b ' . 

l 

A target desirability function, shown in Figure 2.4, can then be constructed by multiplying 

a minimizing and a maximizing desirability such that di(tar) = di(max) x di(min) . This 

allows the researcher to incorporate asymmetry into the desirability function. The param-

eters ai, bi, and Yi, allow the researcher flexibility in defining the desirability function and 

the degree of conservativeness to incorporate. These individual desirability functions can 
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y 

Figure 2.4: Example of a target desirability function. This function is the product of the 
maximizing desirability function, di(max)' shown in Figure 2.1, and the minimizing desir

ability function, di(min)' shown in Figure 2.2. 

then be combined using the geometric mean to arrive at a single continuous measure of the 

overall composite desirability, D, such that D=( d 1 *d2 * ... *dk) Ilk_ 
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Derringer (1994) has also described the use of weights, in the specification of the 

desirability function, so that different responses can be assigned different levels of impor-

tance. Each response is weighted by an exponent, wi, so that the composite desirability 

with weights has the form 

D 
I I LW; 

(dw1dw2 dwk) . 
I · ·· k , 1 1, . . . , k. 

In our simulation studies, unweighted desirability functions are used. Specific examples 

of the application of desirability functions are detailed in Chapter 3. 



Chapter 3 

Titrating and Evaluating Multi-Drug Regimens within 
Subjects 

3.1 Introduction 

The use of multiple medications in the treatment of a single disease in an individual 

patient is an increasingly common occurrence. With single compounds, dose titration is 

relatively straightforward. Dose titration of single compounds is commonly employed by 

practicing physicians to find appropriate dose levels which produce improved responses in 

patients, or to maintain response levels as a disease progresses, while limiting the side 

effects a patient experiences. The physician, depending on a number of patient factors, 

chooses a starting dose which he or she may later increase or decrease incrementally 

depending on how the patient responds. Treatment changes continue to occur until a 

favorable balance between response and undesirable factors is achieved. However, this 

has never been extended for use in determining dosages in a multi-drug regimen and there 

is currently no accepted algorithm in use for combination titration. The physician gener-

ally approaches the problem empirically, or undertakes an ad hoc approach, where levels 

17 
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of one drug are varied while the other drugs in the combination are kept fixed at a constant 

dose. Such an approach does not account for potential interactions among the drugs, 

which may be crucial when one is searching for the most desirable therapy. 

In this paper, we address the problem of titrating and evaluating multi-drug regi-

mens using an evolutionary operation (EVOP) approach to climb through the dose space 

to a location of improved patient response. EVOP techniques have been successfully 

applied in the industrial setting (Hunter and Kittrell, 1966), where they have proven useful 

in optimizing multidimensional relationships and do not require specification of either a 

model or distribution (Box, 1957; Box and Hunter, 1959; Box and Draper, 1969; Spend-

ley, Hext, and Himsworth, 1962). With EVOP, one searches for improved conditions 

while a process is in production by observing the effect of small changes in the environ-

ment or operating conditions. No movement is made toward a new experimental region 

until there is evidence the changes will result in an improved response. 

EVOP can be effectively adapted to the clinical setting where a combination of 

drugs is being used for treatment or being evaluated for efficacy. While the multidimen-

sional dose-response relationship is unknown, it can be observed at specific treatment 

combinations, and a predetermined algorithm can be followed to adjust the therapeutic 

doses toward improving patient outcome. For example, a patient may make periodic visits 

to a physician who monitors the patient for improvements in outcome in response to the 

multiple drugs being prescribed. The physician or researcher can use an EVOP direct 

search procedure to adjust the doses comprising the treatment combination in response to 

the patient's continuously evolving condition. The titration is carried out within each 



patient, allowing every patient to benefit from the therapy ifthere is any benefit obtain

able. 
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Direct search methods are a group of procedures also referred to as hill-climbing 

or steepest ascent procedures, which are often used for minimizing or maximizing func

tions. Using direct search methods allows compounds to be easily added or removed from 

the combination under study and does not require specification of distributional assump

tions. There are several direct search algorithms that can be applied to the titration pro

cess. The first automatic simplex EVOP algorithm was introduced by Spendley, Hext, and 

Himsworth in 1962. Nelder and Mead modified the procedure, adding the adaptive fea

ture, which allows the simplex to conform to the characteristics of the response surface 

(Nelder and Mead, 1965). M.J. Box (1965) also modified the procedure, creating com-

plexes and incorporating constraints. Segreti (1977) has discussed the use of the Spend

ley, Hext, and Himsworth EVOP method in combination chemotherapy studies, and more 

recently, Berenbaum (1990) has discussed another modified approach, the partition 

method, in relation to the problem of optimizing cancer chemotherapy regimens in animal 

studies. However, both of their approaches refer to patients or animals randomized to a 

single treatment group and do not discuss dose optimization within individual patients. 

In the current paper, the within-patient titration is described using the Nelder

Mead algorithm, which is more flexible than the Spendley, Hext, and Himsworth method, 

permitting acceleration and adaptation to the response surface. In order to extend the flex

ibility of this approach, we utilize a continuous desirability function (Gibb, 1998), which 

incorporates both the main response of interest and additional responses or constraints, as 



the overall measure of response. In this way, the main response or responses may be 

improved while simultaneously satisfying multiple additional constraints. 
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This paper describes an EVOP direct-search procedure to titrate doses within indi

vidual patients. It also discusses statistical methodology useful for determining whether 

there has been an improvement in response and whether a therapeutic synergism exists 

among the drugs comprising a multi-drug regimen. 

3.2 Methods 

3.2.1 Desirability Functions 

The desirability function approach was developed by Harrington (1965) and later modi

fied by Derringer and Suich (1980). Gibb (1998) extended the methodology to desirabil

ity functions which are continuous and differentiable. Desirability functions have been 

successfully used in the industrial setting. Each response of interest is transformed to a 

continuous desirability function, d;, with values ranging from 0 to 1, where a value of 0 

designates the response as not at all desirable, while a value of 1 is assigned to the most 

desirable response. The index i represents the i1h desirability function or the i1h response 

of interest. The basic shape of the function is determined by whether one is trying to max

imize or minimize the response, or aim for a range of target values. The exact shape of 

each desirability function is determined in collaboration with physicians or other experts 

knowledgeable about the disease under study and the therapeutic effects of the treatments 

being administered. 
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In this study, a logistic cumulative distribution function was used for the desirabil-

ity, but any function which maps the response to the (0, 1) interval and which is continuous 

and differentiable could be used. With the logistic function, the form of the 'bigger-is-bet-

ter' or maximizing desirability function (Gibb, 1998) is 

where 

[ ( Y- a)]-1 
di(max) = 1 + exp- T , 

I 

y* - Y • 
--'(-1-_-y_,·.)-, Yi*< Y;, and Yi E (0, 1) . 
2ln --' 

Yi 

The parameter 3.j is an average of the upper (Yi*) and lower (Yi•) bounds of the response 

level being targeted, bi controls the function spread, and Yi is such that di(Y;.) = Yi and 

di(Y ;) = 1 - yi . The 'smaller-is-better' or minimizing desirability is obtained simply by 

reversing the sign of the exponential argument, having the resulting form, 

[ ( (Y - a ))]-1 
di(min) = 1 + exp 'b ' . 

I 

A 'target' desirability function can then be constructed by multiplying a set of 

desirability functions, such as a minimizing desirability and a maximizing desirability to 

give di(target) = di(max) x di(min). This allows the researcher to incorporate asymmetry 

into the desirability function. The parameters ai, bi, and Yi allow the researcher flexibility 
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in defining the desirability function and the degree of conservativeness to incorporate. 

These individual desirability functions can then be combined using the geometric mean to 

arrive at a single continuous measure of the overall composite desirability, D, such that 

D=(d1 *d2* ... *diJ 11k. Derringer (1994) has also described the use of weights, in the speci-

fication of the desirability function, so that different responses can be assigned different 

levels of importance. Each response is weighted by an exponent, wi, so that the composite 

desirability with weights has the form 

1, . .. , k. 

In our simulation studies, we use unweighted desirability functions. 

As an example, consider the case where a physician is treating a type 2 diabetes 

patient with a combination of a sulfonylurea and metformin. There are numerous clinical 

endpoints the physician may monitor, including fasting plasma glucose (FPG), glycosy-

lated hemoglobin levels (HbA 1 c), the patient's lipid profile, weight, and blood pressure, 

and the number of adverse gastrointestinal and hypoglycemic events the patient experi-

ences. For any or all of these endpoints, a specific target, maximizing, or minimizing 

desirability function can be assigned and incorporated into the composite desirability 

function. Note that this method tends to weight small desirability values heavily so that if 

any of the individual desirabilities are small, the overall desirability remains small. 

As a simple case, suppose we only wish to monitor two endpoints, the patient's 

fasting plasma glucose (FPG) and the patient's body weight. Suppose we would like to 
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target the patient's FPG to be within the 80-140mg/dL range. Additionally, we want to 

minimize the increase in weight the patient may experience due to the treatment. Example 

desirability functions for each response are specified in Figure 3.1. 

Table 3.1 describes three cases which could occur. In Case 1, the patient has rea

sonable fasting plasma glucose values and has experienced minimal weight gain. Refer

ring to the desirability functions specified in Figure 3.1, the glucose value of 140 

corresponds to a desirability (d1) of0.95, and the weight gain of 10 corresponds to a desir

ability (d2) of 1. This gives an overall desirability (D) of0.98. This high desirability sug

gests that the patient is doing well with the current treatment. In the second case, the 

patient has a less desirable glucose value of 155, which corresponds to a desirability of 

0.19, and a weight gain of30 lbs, which corresponds to a desirability of0.5. This patient 

has an overall desirability of0.31, which indicates that changes to the patient's current 

therapeutic regimen may be needed to improve the treatment of this patient. The last 

example is of a patient with a high serum glucose value which is further outside the desir

able limits, corresponding to a desirability of0.05, but one who has experienced no weight 

gain and so has a weight gain desirability of 1. Although this patient is doing well in 

terms of preventing weight gain, the glucose level is objectionably high, so the overall 

desirability decreases to 0.22. 

The application of desirability functions to within-patient titration can be useful 

for both the multiple drug case and the single agent case where multiple endpoints are 

being monitored. In the single agent case, desirability functions can provide the physician 

or researcher with a more objective way of evaluating the overall effect of a therapy and 
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can provide information about individual clinical endpoints and side effects. In the muli-

ple drug case, by combining desirability functions with EVOP direct-search methods, we 

can titrate combination therapies within individual subjects and make inferences about the 

efficacy of the combination. 

3.2.2 Titration Procedure 

Once the individual desirability functions are defined, they are incorporated into the over-

all composite desirability function, which becomes the response undergoing optimization 

during the titration process. In our simulations, the Nelder-Mead simplex algorithm was 

used to carry out the within-patient titration. The first step of the procedure is to establish 

an initial simplex, a geometric figure with a fixed number of vertices. In the p-dimen-

sional case, where p is the number of drugs comprising the combination under evaluation, 

the number of vertices required for the simplex is p+ 1. This is most easily illustrated in 

the two-dimensional case where the simplex is a triangle. Each vertex of the triangle rep-

resents different dose levels of the two-drug combination. At the initial step, the subject's 

response is measured at each of these three dose combinations, and the composite desir-

ability resulting from the administration of each combination is compared, with the sim-

plex reflecting away from the least desirable response, through the centroid of the face 

created by the remaining vertices to a new point. In addition to reflection, the simplex can 

also extend, contract, or perform a shrinkage contraction, depending on the contour of the 

response surface. 

The Nelder-Mead algorithm is run on a continuous scale, and therefore the new 
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dose combination determined by the algorithm is not given in units of whole pills or whole 

dose units. To enhance the practicability of the EVOP titration approach, the dose combi-

nations are adjusted to whole units (e.g. whole pills). The new dose combination to be 

administered is determined by either rounding to the nearest whole dose unit, or more con-

servatively, by rounding down to the dose unit. 

The initial simplex step size, which specifies how far apart the initial dose combi-

nations are, and the reflection and expansion coefficients used by the Nelder-Mead proce-

dure, which determine how far the simplex can move or expand in one step, are decided in 

collaboration with the physician expert, and can be modified to be more or less conserva-

tive depending on factors such as the therapeutic index of the drug involved. The step size 

of the initial simplex will depend on the potency and toxicity of the drugs under study, 

with smaller initial step sizes prudent for compounds of higher potency and/or toxicity. In 

the case where the drugs are already being used in combination in practice, a reasonable 

starting combination would be the number of pills or dose units with which the practicing 

physician generally initiates therapy. With a new and yet untested combination of drugs, 

where one cannot draw from previous experience, a more conservative approach is advis-

able. 

Each subject begins the process by being evaluated at each of the p+ 1 combina-

tions of p drugs in the regimen. The subject receives the initial combination and the 

response is recorded. The subject then receives the second combination, which is deter-

mined by the initial step size, and the response is measured after a time interval sufficient 

to preclude carryover effects. This continues for each of the p+ 1 drug combinations. It 
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should be noted that in the situation where there is a lengthy time to response, EVOP may 

not be practical due to the time required in setting up the initial simplex. After the initial 

simplex is established, the new simplex is formed, determining the next dose combination 

to be administered. This process repeats until the subject has passed through a fixed num-

her of steps or until other specific stopping criteria are reached and further titration is 

deemed unnecessary. The simplex movement can be continuously monitored by the phy-

sician, and the reflection, expansion, and contraction coefficients can be modified ifthe 

simplex expands to a dose with which physician is uncomfortable. Otherwise, a dose con-

straint can be put in as a boundary to prevent the simplex from moving above a certain 

dose in one or more dimensions. At the final step, the last simplex is evaluated and the 

combination producing the most desirable response is determined to be the 'best' treat-

ment combination. Possible stopping criteria include running the process until conver-

gence to a 'best' treatment or until an ' acceptable ' response is reached. Since disease 

processes are dynamic and often chronic, the physician may continue to periodically mon-

itor subjects after the initial optimized dose level is reached, and may restart the titration 

process if changes in the patient's status are observed. 

After a group of subjects has passed through the titration process, the initial and 

final dose locations and corresponding initial and final responses are used to determine 

whether there has been an improvement in response and whether a therapeutic synergism 

exists among the drugs comprising the combination. 

3.3 Inference about the Patient Population 
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The set of final treatment dose combinations observed from then subjects enrolled in the 

study can be considered a sample from a multivariate distribution. We would like both to 

test for an improvement in response after all subjects have passed through the titration 

process and to test the efficacy of the combination or individual components of the combi-

nation. The first goal can be accomplished by identifying it as a one-sample location 

problem on paired responses which can easily be addressed using existing tests, which are 

described in section 3.3.1. The second goal can be accomplished by construction of a p-

dimensional confidence ellipsoid about the central location of the 'cloud' of final dose 

combinations in the p-dimensional dose space. Both a parametric approach and nonpara-

metric approach are described in section 3.3.2. Based on the estimated confidence ellip-

soid, we can evaluate whether a therapeutic synergism (Mantel, 1974) exists between all 

treatments comprising the combination, and we can also estimate a region of improved 

therapy (Carter, 1982). 

3.3.1 The One-Sample Location Problem 

To test for an improvement in response, it is possible to apply the Wilcoxon Signed Rank 

Test (Wilcoxon, 1945) or Fisher Sign Test (Fisher, 1925). We define diff; = Y(k)i - Y(O)i , i = 

1, ... , n, where Y(k)i is the response of the ith subject after undergoing k steps of the titra-

tion process and Y(O)i is the response of the ith subject at baseline. For the signed rank sta-

tistic, we assume the diffj are independent and each comes from a common distribution 

symmetric about 8. We wish to test the hypothesis: 
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where without loss of generality, an increase in response indicates improvement. Forming 

the absolute differences jdiff11, ... jdiff0 I and letting R; denote the rank of the absolute dif-

ferences in the joint ranking from least to greatest of jdiff11,. . .,jdiff0 j, we define 

= {1 if (diffi > O)} . = 
lJ!i 0 if (diffi < 0) ' 1 l,. . ., n 

and 

n 

T+ = I RilJ!i . 
i = I 

A large sample approximation is: 

• T 

Thus, we reject Ho if T • ;::: Za. 

T+- [n(n;l)J 

-;::::::=====-N(O, 1). 

[n(n+ 1)(2n2; l)J 

For the Sign Test, we assume the dif~ are independent and each comes from a dis-

tribution with median 8. We wish to test the hypothesis: H 0 : (8 ~ 0) vs. H 1: (8 > 0). 

We define 

n 

B LlJ!i, 
i = I 

where lJ!i is defined as above, so that Bis the number of positive dif~'s. We reject H0 if 
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B::O:Bin(a,n,~ , 

where Bin( a, n, 112) satisfies 

P0[B~Bin(a,n,DJ a. 

Rejection of the hypothesis of 'no improvement' indicates that the titration process has 

been successful in finding a dose combination which improves the patient's response from 

a baseline response. The responses used in these tests are from the desirability functions 

discussed in section 3 .2.1. Therefore an improved response indicates not only an 

improvement in the primary endpoint of interest but improvement in the overall health sta

tus of the patient, as defined by the physician through the desirability function. Determi

nation of sample size and power requirements for the Wilcoxon signed-rank and Fisher 

sign tests are detailed in Lehmann (1975). 

3.3.2 Construction of the Confidence Ellipsoid About a Multivariate Location 

We would like to estimate a region of improved therapy based on the estimated confidence 

ellipsoid about the location of the multivariate distribution of each individual's final treat

ment combination. If the combination treatment includes p elements, the multivariate 

sampling model involves n independent, identically distributed p-component random vec

tors x1, ... , xn, each with the p-variate distribution function F(t 1 - 8 1, .. . , tp - 8p), where F 

is absolutely continuous with continuous marginal distribution functions 
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tains the marginal medians, and if each Fj is symmetric, 8 is also the vector of marginal 

means. 

A parametric inferential approach would be to assume a form for F and to con-

struct the confidence ellipsoid for 8. One obvious choice of distribution is the multivariate 

normal. Let x1,x2, ••• ,x0 be a p-variate sample which is i.i.d. 

Np(8 = [81 82 ..• SP]'' L) . The maximum likelihood estimate for 8 is 

n 
1 -I xi, 
n 

i = I 

and an unbiased estimate (Morrison, 1976) for Lis 

where A 
n 

S = - 1-A 
n - 1 ' 

I (xi - x)(xi- x)' . Since fn(x - 8) - NP(O, L), replacing L with its con

i = I 

sistent and unbiased estimate and recalling the relationship between Hotelling 's T2 and the 

F distribution, an exact 100( 1-a )% confidence ellipsoid for 8 is 

{8 . (- 8)'S- 1(- 8) dn - l)pp } . n x - X - - n _ P 1 - a ; p,n-p · 

For small or medium-sized samples, a more robust approach, which does not 

require distributional assumptions, would be to construct a confidence ellipsoid about the 

multivariate median. An efficient estimator of8 associated with Wilcoxon's Signed Rank 

statistic is the Hodges-Lehmann estimator based on ranks (Hodges and Lehmann, 1963). 
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Let x1,x2,. •• ,xn be a p-variate sample which is i.i.d. F such that the p-vector of marginal 

medians for Fis e = [81 82 ••. SP]' and Fis diagonally symmetric about 8. We can esti-

A 

mate 8 using signed rank statistics (Hettmansperger, 1984). Let Si be the p-vector of 

the sample medians of Walsh averages (Tukey, 1949) with components 

- • IJ I I < . < ., < . -, {(x + x.,.) } 
ej - median 2 , l _1_1 _n , J - 1, ... ,p. 

If W(l)j :o; W(Z)j :o; ... :o; W(N)j, are the ordered Walsh averages, where N = n(n + 1) 12 , 

the 100(1-a)% confidence interval for 8j is (W(a; + I)j' W(N _ a;)i] , where aj can be 

approximated by 

_ n(n + 1) n(n + 1)(2n + 1) 
aj - 4 - 0.5 - z a 24 

1- 2 

A 

Finding Si is equivalent to finding Si such that the signed rank statistic 

n RS °"' ::..=.!l...::.lsign(x - 8) 
L,. n + 1 IJ J 

i = I 

is approximately equal to zero, where Rijej is the rank of /xij - Si/ among 

1 w = Diag(Yw, 1, • •• , Yw, p) such that 

Yw, j = 2 [ £f(x)dx,j 
-00 

1, ... , p ' 
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and v w is a pxp matrix such that 

and vw,jj = 113 (Hettmansperger, 1998). A consistent estimate of Yw,j> j = 1, ,, . , p is 

found from the asymptotic length ofa confidence interval for ej based on the Walsh aver-

ages(Lehmann, 1975) 

' 
Yw, j 

When the variability is such that a large proportion of subjects arrives at the same, 

or similar, final dose locations, an inordinate number of ties results due to the effect of 

rounding to whole units. As a consequence, w(aj + J)j and w(N - aj)j become identical, 

and the confidence interval for 8j , [W (ai + 1 )j' W (N _ ai)j] , goes to zero. To correct for 

this, we use the smallest viable interval of 2s=0.5 as the lower limit for W(N _ ai)j -

Yw, j 

A consistent estimate of vw, jj'' j , j' 1, .. . , p (Hettmansperger, 1998), is 
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Replacing vw and r w with consistent estimates, an approximate 100(1-a)o/o confidence 

ellipsoid for e is 

After the confidence ellipsoid is established, the ellipsoids can be evaluated using 

the approach described by Carter, et al. (1982). The confidence ellipsoid is evaluated 

along a grid of points on each single axis. As an illustration, in the 2-dimensional case, it 

is determined whether the ellipsoid a) contains the origin, implying the combination is not 

different from no treatment at all; b) contains both axes but not the origin, implying that 

treatment with the combination is better than having no treatment, but that the same 

response could be obtained by using either drug by itself; c) contains only one axis, imply-

ing that treatment with the combination is no better than treatment with the single drug, or 

d) does not contain either axis, implying the presence of a therapeutic synergism, that the 

combination of drugs produces a greater response than either drug alone (Figure 3.2). 

3.4 Simulation Study 

3.4.1 The Response Surface 

A simulation study was performed to examine the effectiveness of the multi-drug titration 

algorithm in combination dosing and the effects of the number of steps, the shape of the 
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desirability function, and the initial step size. The estimated dose response surface was 

obtained from a published multicenter, factorial design clinical trial studying the efficacy 

of the combination therapy of the diuretic hydrochlorothiazide (HCTZ) and a slow-release 

formulation of diltiazem hydrochloride (DLTZ), a calcium channel blocker, in the treat

ment of mild to moderate hypertension (Burris, et.al., 1990). 

The trial was conducted over a period of six weeks, following a 4- to 6-week pla

cebo 'run-in' period. A 4 by 5 factorial grid of treatment do1ieS was used, with 4 twice-a

day doses ofhydrochlorothiazide ranging from 0 to 25 mg, and 5 twice-a-day doses of dil

tiazem hydrochloride ranging from 0 to 180 mg. Mild-to-moderate essential hypertension 

was defined as supine diastolic blood pressure in the range of95 to 110 mmHg. The goal 

of treatment was to achieve a supine diastolic blood pressure ofless than 90 mmHg, with 

no limiting adverse experience. 261 patients completed the six-week treatment protocol, 

with 13 to 17 patients randomized to each treatment group. 

Using Proc RSREG in SAS, Version 6.12 (SAS Institute, Cary, NC), data from the 

plots published in the study were used to generate the response surfaces for the three main 

variables of interest: diastolic blood pressure (DBP), 4.16+ l .60xHcTZ+0.39xDLTZ-

0.12x2HcTZ+ 0.020x2DLTZ-0.033xHcTZ*xnLTz; serum cholesterol (CHO), 

0.12+0.092xHcTZ+0.033xnLTz-0.0073x2HcTZ- 0.0032x2DL TZ-0.0013xHcTZ*xnLTz ; and 

serum glucose (GLU), -0.12+0.076xHcTZ-O.Ol lxDL TZ-0.0001 lx2HcTZ+ 0.0030x2DLTZ-

0.001 lxHcTZ*xnLTZ· The dose units were converted from milligrams to whole pill 

counts. One pill was equivalent to 3.125mg ofHCTZ or 15mg ofDLTZ. 



35 
A desirability function was defined for each of these three variables, d 1-d3 (Figure 

3.3) and combined into an overall desirability function, D=(d1 *d2*d3) 113. The Nelder-

Mead simplex procedure was then used to carry out the titration using the composite desir-

ability. The Nelder-Mead algorithm is run on a continuous scale to maintain the flexibility 

allowed by simplexes of differing shapes. Therefore at each step, to determine the next 

dose combination, the doses output by the algorithm are rounded to the nearest whole dose 

unit. As discussed previously, it is also possible to round down to the nearest integer 

value. 

3.4.2 Simulation Example 

For each subject, the starting dose for the initial simplex was chosen to be the same as the 

smallest combination dose used in the original study: 6.25mg (2 pills) ofHCTZ and 60mg 

(4 pills) ofDLTZ. The initial step size was chosen to be the initial dose combination 

increased by four pill counts. 

In order to simulate subject responses more realistically, a mixed effects model 

with a first order autoregressive covariance structure was used. Let Yij=xi/P+i::ij> where Yij 

represents the jth response from the ith subject, xi;=[l xi1 xiz xi12 xi22 xi1xi2] represents the 

6x 1 vector of doses and dose functions for the ith subject at the jth time point, p represents 

the 6x 1 vector of parameters taken from the study, and Eij represents the random error. 

The covariance between two observations w time intervals apart on the same subject is 

crE2pw, where pis the correlation between adjacent observations within the same subject, 
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and w is the number of time intervals between the observations. For this study, the root 

MSE for DBP, aDBP, was 6.2mmHg (pers. comm.), and 0.35mmol/L was used for both 

CHO, crcHo , and GLU, crGLU· 

The simulated response at each vertex of the simplex was obtained in triplicate and 

the responses were averaged. The desirability for each averaged response was compared, 

and the location of the next dose combination to be given was determined by the Nelder-

Mead algorithm, rounding to the nearest whole pill. The titration continued through the 

specified fixed number of steps (either 16 or 32). At the last step, the final simplex was 

evaluated and the dose combination associated with the most desirable response was taken 

as the final treatment combination. Figure 3.4 demonstrates the final dose locations for a 

simulated group of 175 subjects who have completed the titration process. The mean final 

dose combination was 4.6 pills HCTZ and 16.2 pills DLTZ with a simulated mean 

decrease in DBP of 17.7mmHg. Figure 3.5 shows the asymptotic confidence ellipsoid 

about the central location estimate for the Wilcoxon Signed Rank statistic. A correlation 

between successive blood pressure observations of p=O. 7 was used and the process con tin-

ued for 16 steps. 

3.4.3 Simulation Results 

Five groups of 100 simulations were run using sample sizes ofN=l 75 with 16 and 32 

steps. The simulations were run first using the desirability function for DBP alone, d1 

(Fig. 3a), and then repeated using the composite desirability function, D=(d1*d2*d3) 1/ 3, 

which took into account serum cholesterol and serum glucose measurements in addition to 
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the DBP. Additionally, to examine the effect of the correlation between successive obser-

vations, p, the correlation was varied from 0.1 to 0.8. In the simulations with the compos-

ite desirability function, the correlation between successive DBP measurements was 

varied from 0.1 to 0.8, while the correlations for both CHO and GLU were fixed at 0.7. 

Using the desirability function for DBP, d1, we see in Table 3.2 that the proportion 

of subjects showing improvement over the baseline was 1 (i.e. 100%) for all cases, using 

either the Fisher Sign test or the Wilcoxon Signed Rank test. All subjects also showed 

improvement when the final response was compared to the simulated response to single 

drug treatment with 25mg ofHCTZ, the highest dose used in the study. A similar result 

was seen in comparing the response to treatment with a 180mg dose ofDLTZ. The mean 

decrease in DBP, shown in the far right column, did not appear to change as the number of 

steps was increased from 16 to 32. However, the size of the reduction in DBP did appear 

to increase as the correlation increased. Table 3.3 shows the percentage of confidence 

ellipsoids which included the origin, included the hydrochlorothiazide axis only, included 

the diltiazem axis only, or included both axes, also using the desirability for DBP alone. 

The final central dose locations for hydrochlorothiazide and diltiazem are also given in the 

far right columns, using both the mean and the Wilcoxon Signed Rank statistics as mea-

sures of central location. Using Mardia's test (1974), in many instances the multivariate 

distribution of the final dose locations for each simulation showed some departure from 

normality, suggesting the nonparametric approach to be most appropriate. As the correla-

tion was increased from 0.1to0.8, the simplex appeared to move further up the DLTZ 

axis, resulting in a higher final dose ofDLTZ and a tighter confidence ellipsoid. Increas-
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ing the number of steps from 16 to 32 did not appear to have much effect, suggesting that 

the simplex had already arrived at a final dose after 16 steps. 

From our simulations, it appears that the evolutionary simplex approach is effec-

tive in arriving at dose combinations producing improved responses in patients being 

treated with multiple drug regimens, although inferences on the location do not appear to 

be as sharp as inferences on the response. In comparing the simulation results with the 

original response data, the final dose locations were found to correspond well with the 

area of higher response seen in the Burris, et.al. study. 

The simulations were then repeated using the composite desirability function, D, 

which combined the main outcome of interest, DBP, with two other endpoints which the 

study authors reported, serum glucose and serum cholesterol. The correlation for succes-

sive DBP measurements within a patient was increased from 0.1 to 0.8, while the correla-

tion for both CHO and GLU were fixed at 0.7. In Tables 3.4 and 3.5, we see that the 

simplex does not move as far along the DLTZ axis or HCTZ axis when these other end-

points are taken into consideration. However, from Table 3.4, we see that even at these 

doses, there is still a significant improvement in the response for all subjects in all cases. 

We were also interested in determining how sensitive the titration method was to 

variability in the chosen desirability function. To determine whether small modifications 

in the desirability function had any effect on the resulting dose locations and responses, 

we ran simulations using three modified desirability functions in addition to d1, the desir-

ability function for DBP, with 16 steps, a correlation of0.7, and a sample size of 175. 

Tables 3.6 and 3.7 show that sharpening the peak desirability as with da, increasing the 
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width of the desirability function as with db, or decreasing the width and sharpening the 

peak simultaneously as with d0 did not result in any appreciable change in the outcome 

with respect to either response or dose location. There was little or no change in the 

decrease in DBP or final dose combinations, indicating that the process is robust, or rela

tively insensitive, to small changes in the definition of the desirability function. So while 

desirability functions should be defined carefully, there is some room for variation when 

deciding on the parameters. 

To examine the effect of changing the initial step size, the step size was changed 

from an increase of 6 pills in the HCTZ axis and 8 pills in the DLTZ axis, to an increase of 

only 5 pills/7 pills, or 4 pills/6 pills over the initial dose combination. After 16 steps, 

using the desirability function for DBP, a correlation of0.7, and a sample size of 175, 

there was a slightly smaller decrease in the DBP response. In addition, the final dose com

binations also decreased as the initial step size became smaller. This would suggest that 

either the simplex has not had enough time to reach the same improved dose as with the 

larger step size, or perhaps the simplex has reached a plateau and the variability is too 

large for it to moye further along the dose response surface. However, increasing the 

number of steps from 16 steps to 32 steps did not noticeably change the results, suggesting 

that the latter situation might be the cause of the differences in the outcome measures. 

This underscores the need to be prudent in choosing the parameters for the Nelder-Mead 

algorithm. 

3.5 Discussion 
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In this paper, we have demonstrated the application of a method for titrating and evaluat-

ing multiple drug combinations within individual patients. This approach is well suited to 

the treatment of chronic diseases with long courses, where the condition of the patient is 

constantly evolving, and it lends itself especially well to conditions with a readily mea-

sured response, where there are regular treatment intervals, and where dose escalation 

within a patient is reasonable. After the patient completes an initial titration, the patient 

can continue to be monitored with periodic measurements of the response or marker of 

interest, and the simplex can be restarted ifthe treatment appears to need later adjustment. 

Some care must be used when determining parameters to use for the initial step size, for 

the reflection, expansion, and contraction coefficients, and for the stopping criteria. This 

requires a close collaboration between the statistician and physician investigator. The 

choice of these parameters will be affected by the variability in the response and the thera-

peutic index of the drugs involved. However, there is flexibility built into the procedure 

which allows one to start with a more cautious approach and to modify the conservative-

ness as the titration progresses. 

This method of patient titration can be used in a modified clinical trials setting to 

evaluate the efficacy of a therapy composed of a combination of therapeutic agents. The 

first step would be for the physician researcher and statistician to define the desirability 

function for each response of interest, develop a composite desirability, and specify the 

parameters for the direct-search algorithm. A regular treatment or visit schedule should be 

set up so the physician can regularly monitor the patient response. The patient will be 

treated with each of the dose combinations comprising the initial simplex, with a change 
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in the treatment dose occurring at pre-specified intervals. After the initial simplex is 

established, the physician can run the direct search procedure himself, using specially 

designed software to determine the next combination of doses to administer; or, he can 

report the results to a central statistician or agency who can then advise the physician on 

the next dose combination to prescribe. This titration is then continued for the duration of 

the study. Inference on the sample of patients can then be made using the methods 

described in this paper. 

This method has several advantages over the approach often used in clinical trials. 

One key advantage is that each patient has the potential to benefit from the treatment 

being administered. In contrast, in the typical clinical trials setting, a large percentage of 

patients, specifically, those randomized to the placebo group, often receive no benefit 

from the trial, leading to problems with patient recruitment and compliance with the study 

protocol. Another important advantage is the flexibility inherent in this approach. While 

this method is easily automated, it allows the investigator to incorporate his own experi

ence and knowledge about the response and to include multiple outcomes of interest as 

well as multiple constraints, mirroring the way physicians approach dose titration in prac

tice. 

This approach also has advantages over the response surface methods sometimes 

used to evaluate multiple drug combinations. Response surface methods usually require 

the inclusion of many dose levels and dose combinations. This results in studies that are 

expensive and where there is no guarantee that any of the study subjects receives the opti

mum dose. Furthermore, the response surface approach requires an assumption that the 
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dose-response relationship is well approximated by the equation specified. 

The method discussed in this paper does not require specifying the form of the 

dose-response relationship and automatically takes into account interactions between ther

apeutic components. It allows investigators to easily evaluate for the presence or absence 

of therapeutic synergism and to determine whether subjects have experienced an improve

ment in outcome. 

In our simulation studies, we simulated how this method would work in titrating 

two blood pressure medications within patients with mild to moderate hypertension, using 

the response surface data provided in the study by Burris, et.al. Our studies demonstrated 

that with proper choice of the initial simplex and step size, all simulated subjects experi

enced an improvement in response over the baseline, with a significant decrease in the 

diastolic blood pressure. Minor changes to the desirability function did not appear to 

modify the results significantly, demonstrating some resilience in the specification of the 

desirability function. Modifying, or more specifically, decreasing, the size of the initial 

step in the Nelder-Mead algorithm, did appear to have some effect on the final dose loca

tions, emphasizing that the careful choice of the initial step size, reflection, expansion, and 

contraction coefficients, is critical in the application of this methodology. Use ofMardia's 

multivariate test for normality showed that the final dose locations did not generally fol

low a multivariate normal distribution, suggesting that the use of the nonparametric 

approach when constructing confidence ellipsoids would be more appropriate. The confi

dence ellipsoid then provides a way to evaluate therapeutic synergism and to make infer

ences about the treatment efficacy of individual therapeutic components. 
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There are several limitations to this approach that should be addressed. One possi-

hie criticism is that there is no control group in the titration process to provide internal val-

idation. As a result, it could be argued that the improvement in response displayed by the 

group ofn patients may be due simply to physician attention or the possibility that the dis-

ease has gone into remission. This should be considered when interpreting the results of 

the statistical tests discussed in section 3.3.1. One possible solution is for researchers to 

provide some form of external validity. For example, the investigator may find published 

reports on a similar patient population showing a lack of patient improvement in untreated 

patients or patients undergoing monotherapy. 

This method is also likely to be sensitive to the number of drugs comprising the 

combination under evaluation. As the number of therapies in a combination increases 

above a certain level, this method may become cumbersome due to time constraints and 

compliance problems in establishing the initial simplex. The subject would be required to 

rotate through numerous sets of different dose combinations to establish the initial simplex 

before information useful for treatment could be collected and applied. On the other hand, 

the alternative, using response surface methodology, would also be impractical because of 

the extremely large number of subjects which would be required. In addition, it is unlikely 

that the number of drugs in a combination would reach the level where this might become 

problematic. 

Another limitation is that this method may be less efficient in specific cases, e.g., 

when the variability in the response value is large relative to the effect, resulting in too 

much noise in the system, or when the time required to observe a response is overly long, 



making the establishment of the initial simplex impractical. Additionally, the simplex 

movement may move too slowly to be of benefit in treating the patient. 
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In conclusion, we have described an evolutionary operation approach to evaluating 

multiple drug therapies while simultaneously titrating therapies within individual patients, 

where every patient has the potential to benefit from the combination being studied. This 

flexible approach is useful not only in titrating multiple agents, but also can similarly be 

applied to the titration of single agents with multiple endpoints. The utilization of desir

ability functions allows us to emulate how physicians approach dose titration in the single 

drug case, allowing the consideration of multiple endpoints and constraints. Practicing 

physicians may find this approach useful for improving the way both single therapies and 

combination therapies are prescribed for individual patients. Clinical researchers may 

find this methodology useful for evaluating whether therapeutic synergism exists within 

specific drug combinations and for evaluating individual therapeutic components. 

The current procedure is not far from the one described by Box in 1958. He envi

sioned using evolutionary methods which "might in fact be used to get maximum informa

tion from the normal treatment of patients by practicing practitioners. It would be 

necessary for a central agency to obtain agreement that doctors, in using a particular ther

apy in normal practice (as contrasted with special research studies), would vary the ther

apy slightly in accordance with a prescribed plan. With a suitable statistical plan, 

differences arising from small deliberate changes in the therapy can be detected when the 

information is collected. In this way a steady evolution in medical practice might be set in 

motion to augment more specialized research studies." This 'evolution in medical prac-
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tice' was anticipated by Box over 40 years ago, where practicing physicians would apply 

evolutionary principles in the treatment of their patients, with a parallel evolvement in the 

conduct of clinical research studies. Certainly there is technology currently available 

which would allow the physician to enter the patient data directly into a handheld com-

puter or personal digital assistant, to calculate the desirabilities, and to run the evolution-

ary direct search procedure at the bedside to obtain an immediate prescription. With drug 

consumption continuing to rise, and along with that the dramatic increase in the potential 

for drug interactions, new approaches to prescribing and treatment are needed. Our meth-

odology may be useful for both treating the individual patient and for characterizing new 

drug combinations. 
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3.6 Figures 
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Figure 3.1: Examples of desirability functions: (a) target desirability function for fasting 
plasma glucose; (b) minimizing desirability function for increase in body weight. Cases 
are from Table 3 .1. 
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Figure 3.3: Desirability functions: (a) decrease in diastolic blood pressure; 
(b) increase in cholesterol; ( c) increase in glucose. 
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Figure 3.5: Asymptotic confidence ellipsoid based on the Wilcoxon signed rank statistic 
for a group of 175 subjects using the desirability function in Figure 3.3a. 
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3.7 Tables 

Table 3.1: Desirability example for differing fasting plasma glucose and weight gain 

levels . D=(dl *d2) 112 . 

Case 1 

Case 2 

Case 3 

FPG (mg/dL) d1 Weight Gain (lbs) dz D 

140 

155 

160 

0.95 

0.19 

0.05 

10 

30 

0 

1.0 0.98 

0.5 0.31 

1.0 0.22 
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Table 3.2: Proportion of improved responses using the Fisher sign test or Wilcoxon 
signed-rank test. Simulations were done using the desirability function for diastolic blood 
pressure alone (d1) . The mean decrease in DBP is shown in the far right column. 

HCTZ DLTZ 
Decrease 

N Steps p Baseline 
Alone Alone 

inDBP 
(mmHg) 

175 16 0.1 Fisher(SE) I 6.4 

Wilc(SE) 

0.3 Fisher(SE) 16.8 

Wilc(SE) 

0.5 Fisher(SE) 16.9 

Wile( SE) 

0.7 Fisher(SE) 17.7 

Wilc(SE) 

0.8 Fisher(SE) 18.6 

Wilc(SE) 

32 0.1 Fisher(SE) 16.3 

Wilc(SE) 

0.3 Fisher(SE) 16.9 

Wilc(SE) 

0.5 Fisher(SE) 17.1 

Wilc(SE) 

0.7 Fisher(SE) 18.2 

Wilc(SE) 

0.8 Fisher(SE) 18.6 

Wilc(SE) 
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Table 3.3: Evaluation of the confidence ellipsoids using a parametric and nonparametric 
approach. Simulations were done using the desirability function for diastolic blood 
pressure alone (d 1). The columns show the percentage of confidence ellipsoids (SE) 
containing the origin, containing the DLTZ axis only, containing the HCTZ axis only, or 
containing both axes. The rightmost columns show the final dose locations for HCTZ and 
DLTZ using either the mean or Wilcoxon signed-rank statistic as the measure of central 
location. 

N Steps Origin 
HCTZ DLTZ 

Both Axes 
Final Dose Final Dose 

p 
Axis Only Axis Only HCTZ DLTZ 

175 16 0.1 Mean(SE) 0 0 97.2(1.30) 2.8(1.30) 4.5(0.03) 14.0(0.02) 

Wile( SE) 1.6(1.52) 13.4(2.92) 39.0(2.92) 23.2(4.97) 4.4(0.03) 14.2(0.03) 

0.3 Mean(SE) 0 0 99.6(0.89) 0.4(0.89) 4.5(0.02) 14.5(0.01) 

Wilc(SE) 0.8(0.45) 9.6(2.70) 43.4(4.22) 16.2(3.27) 4.4(0.03) 14.7(0.01) 

0.5 Mean(SE) 0 0 100 0 4.5(0.02) 15.2(0.02) 

Wilc(SE) 0 4.8(1.92) 51.2(5.12) 8.2(2.17) 4.4(0.02) 15.5(0.03) 

0.7 Mean(SE) 0 0 100 0 4.6(0.02) 16.2(0.02) 

Wilc(SE) 0 0.4(0.89) 64.6(5.50) 0.4(0.89) 4.5(0.02) 16.6(0.03) 

0.8 Mean(SE) 0 0 100 0 4.6(0.02) 17.1(0.02) 

Wilc(SE) 0 0 68.0(3.94) 0 4.5(0.03) 17.3(0.03) 

32 0.1 Mean(SE) 0 0 99.4(0.55) 0.6(0.55) 4.4(0.01) 14.2(0.05) 

Wilc(SE) 0.6(0.55) I 0.8(4.87) 49.4(4.10) 21.8(4.44) 4.2(0.02) 14.4(0.05) 

0.3 Mean( SE) 0 0 100 0 4.4(0.01) 14.7(0.06) 

Wilc(SE) 0.2(0.45) 8.2(0.84) 54.0(3.87) 17.6(2.30) 4.3(0.02) 15.0(0.07) 

0.5 Mean(SE) 0 0 100 0 4.4(0.02) 15.3(0.03) 

Wile (SE) 0 2.6(1.14) 61.4(8.88) 5.6(1.95) 4.3(0.02) 15.7(0.02) 

0.7 Mean (SE) 0 0 100 0 4.5(0.02) 16.4(0.01) 

Wile (SE) 0 0 71.0(3.87) 0 4.4(0.02) 16.7(0.02) 

0.8 Mean (SE) 0 0 100 0 4.5(0.004) 17.1(0.04) 

Wile (SE) 0 0 75.4(2.30) 0 4.4(0.01) 17.4(0.05) 
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Table 3.4: Proportion of improved responses using the Fisher sign test or Wilcoxon 
signed-rank test. Simulations were done using the composite desirability function (D). 
The correlation between successive DBP measurements was varied from 0.1 to 0.8, while 
the correlations for both CHO and GLU were fixed at 0.7. The rightmost columns show 
the mean decrease in diastolic blood pressure, the mean change in cholesterol and the 
mean change in serum glucose. 

HCTZ OLTZ 
Decrease Change Change in 

N Steps p 
Baseline Alone Alone 

inDBP in Chol Glu 
(mmHg) (mmol/L) (mmol/L) 

175 16 0. 1 Fisher (SE) I 1.9 0.24 0.29 

Wile (SE) 

0.3 Fisher (SE) 11.9 0.25 0.29 

Wile (SE) 

0.5 Fisher (SE) I 1.9 0.25 0.3 1 

Wile (SE) 

0.7 Fisher (SE) 12.0 0.24 0.29 

Wile (SE) 

0.8 Fisher (SE) 12.1 0.24 0.27 

Wilc (SE) 

32 0.1 Fisher (SE) 11.3 0.25 0.27 

Wile(SE) 

0.3 Fisher (SE) 11.3 0.27 0.26 

Wile (SE) 

0.5 Fisher (SE) 11.6 0.25 0.3 1 

Wile (SE) 

0.7 Fisher (SE) 11.9 0.24 0.27 

Wile (SE) 

0.8 Fisher (SE) 11.8 0.23 0.27 

Wilc (SE) 
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Table 3.5: Evaluation of the confidence ellipsoids using a parametric and nonparametric 
approach. Simulations were done using the composite desirability function (D). The 
correlation between successive DBP measurements was varied from 0.1 to 0.8, while the 
correlations for both CHO and GLU were fixed at 0.7. The columns show the percentage 
of confidence ellipsoids (SE) containing the origin, containing the DLTZ axis only, 
containing the HCTZ axis only, or containing both axes. The rightmost columns show the 
final dose locations for HCTZ and DLTZ using either the mean or Wilcoxon signed-rank 
statistic as the measure of central location. 

HCTZ DLTZ Axis 
Final Final 

N Steps p Origin 
Axis Only Only 

Both Axes Dose Dose 
HCTZ DLTZ 

175 16 0.1 Mean (SE) 0 0 34.0(5.70) 66.0(5.70) 3.1(0.02) 9.2(0.02) 

Wile (SE) 9.0(1.41) 0 61.4(2.07) 38.6(2.07) 3.0(0.02) 9.2(0.02) 

0.3 Mean (SE) 0 0 35.6(3.05) 64.4(3.05) 3. 1(0.02) 9.2(0.02) 

Wilc(SE) 8.8(4.92) 0 60.8(4.32) 39.2(4.32) 3.0(0.02) 9.3(0.03) 

0.5 Mean (SE) 0 0 38.2(4.44) 61.8(4.44) 3. 1(0.02) 9.3(0.02) 

Wile (SE) 9.8(2.28) 0 61.4(2.70) 38.6(2.70) 3.0(0.02) 9.4(0.02) 

0.7 Mean (SE) 0 0 44.0(5.24) 56.0(5.24) 3. 1(0.02) 9.4(0.02) 

Wile (SE) 8.8(3.27) 0 61.4(5.77) 38.6(5.77) 3.0(0.0 1) 9.5(0.02) 

0.8 Mean (SE) 0 0 51.4(3.58) 48.6(3.58) 3. 1(0.02) 9.5(0.02) 

Wile (SE) 9.2(2. l 7) 0 59.8(4.21 ) 40.2(4.21) 3.0(0.02) 9.6(0.03) 

32 0.1 Mean (SE) 0 0 36.4(3. 71) 63.6(3.71) 3.0(0.02) 9.2(0.03) 

Wilc(SE) 9.2(1.64) 0 59.2(5.26) 40.8(5.26) 2.8(0.03) 9.3(0.03) 

0.3 Mean (SE) 0 0 38.6(3.78) 6 1.4(3.7£) 3.0(0.02) 9.2(0.04) 

Wile (SE) 6.4(1.67) 0 56.4(3. 13) 43.6(3. 13) 2.8(0.02) 9.3(0.04) 

0.5 Mean (SE) 0 0 40.8(3.56) 59.2(3.96) 3.0(0.0 l) 9.3(0.05) 

Wilc(SE) 5.2(2.05) 0 55.0(3.39) 45.0(3.39) 2.8(0.01) 9.4(0.05) 

0.7 Mean (SE) 0 0 48.6(4.1 6) 5 1.4(4.16) 2.9(0.01) 9.4(0.03) 

Wile (SE) 7.0(2.55) 0 59.4(2.07) 40.6(2.07) 2.8(0.02) 9.5(0.03) 

0.8 Mean (SE) 0 0 54.2(1.92) 45.8(1.92) 2.9(0.0 l) 9.5(0.04) 

Wile (SE) 6.8(2.17) 0 53.0(3.54) 47.0(3.54) 2.8(0.02) 9.6(0.04) 
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Table 3.6: A comparison of desirability functions. The table shows the proportion of 
improved responses using the Fisher sign test or the Wilcoxon signed-rank test. The 
parameters for the modified desirability functions are shown, with the mean decrease in 
diastolic blood pressure given in the rightmost column. 

N=l75 
HCTZ DLTZ 

Decrease 
Dsbl Steps= l6 cv,.-,v,'·) cv,.- ·,v:··l Baseline 

Alone Alone 
inDBP 

p=0.7 (mmHg) 

d1 Fisher (SE) (0,10) (30,40) 17.7 

Wilc(SE) 

da Fisher (SE) (0,20) (20,40) 17.5 

Wile (SE) 

db Fisher (SE) (-5, 10) (30,45) 17.5 

Wi lc(SE) 

de Fisher (SE) (10,20) (20,30) 17.5 

Wile (SE) 
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Table 3.7: A comparison of desirability functions. The columns show the percentage of 
confidence ellipsoids (SE) containing the origin, containing the DLTZ axis only, 
containing the HCTZ axis only, or containing both axes. The parameters for the modified 
desirability functions are shown, with the rightmost columns giving the final dose 
locations for HCTZ and DLTZ using either the mean or Wilcoxon signed-rank statistic as 
the measure of central location. 

N= l 75 
Dsbl Steps= 16 (Yi'',Y(") (Y;•",Y;"') Origin 

p=0.7 

d1 Mean (SE) (0, 10) (30,40) 0 

Wilc(SE) 0 

da Mean (SE) (0,20) (20,40) 0 

Wilc(SE) 0 

db Mean (SE) (-5,10) (30,45) 0 

Wile (SE) 0 

de Mean (SE) (I 0,20) (20,30) 0 

Wile (SE) 0 

HCTZ 
Axis 
Only 

0 

DLTZ 
Axis Only 

100 

Both 
Axes 

0 

Final 
Dose 

HCTZ 

4.6(0.02) 

Final Dose 
OLTZ 

16.2(0.02) 

0.4(0.89) 64.6(5.50) 0.4(0.89) 4.5(0.02) 16.6(0.03) 

0 100 0 4.6(0.01) 16.3(0.03) 

0.2(0.45) 64.0(3.81) 0.2(0.45) 4.5(0.02) 16.6(0.04) 

0 100 0 4.6(0.02) 16.3(0.02) 

0.4(0.55) 66.8(3.90) 0.4(0.89) 4.4(0.03) I 6.6(0.04) 

0 100 0 4.6(0.01 ) 16.3(0.02) 

0.2(0.45) 63.6(3.44) 0.2(0.45) 4.5(0.02) 16.6(0.04) 



Chapter 4 

Applications of EVOP Titration 

4.1 Discussion of Clinical Applications 

There are many diseases or clinical syndromes to which the evolutionary operation direct

search titration methodology could be applied. The characteristics of a condition which 

would favor its use include an easily and rapidly measured response, a lengthy time 

course, and a condition where dose escalation within a patient is reasonable. Examples of 

diseases or syndromes which may benefit from this treatment approach are hypertension, 

diabetes, rheumatoid arthritis, asthma, AIDS, and some cancers. 

It is important that the responses being monitored are easily measureable and 

reproducible. In the ideal case, they might consist of laboratory tests or measurements 

that are already performed periodically as part of the regular standard of care so as to min

imize additional discomfort or inconvenience to the patient. Accuracy and reproducibility 

of measurement are also important to ensure that the simplex is moving purposefully 

according to the clinical endpoint (or signal) rather than moving haphazardly in response 

to a large variability in the measurement (or noise). Some examples of suitable clinical 
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endpoints are blood pressure, fasting plasma glucose, forced expiratory volume, and the 

reported number of side effects a patient is experiencing each week. 

In the situation where a lengthy time to response is required, the use ofEVOP may 

not be appropriate. A sufficient time interval between measurements must be allowed to 

preclude any carryover effects from the previous treatment. In this case, the time required 

to set up the initial simplex may become impractical, and the subsequent simplex move

ment may be too slow to be of benefit in treating the patient. EVOP titration may also be 

problematic when the number of therapies in a combination is extremely large. Establish

ing the initial simplex may become cumbersome due to time constraints, and problems 

with patient compliance are more likely. EVOP would also be of limited application when 

the course of a disease is too brief to provide substantial information. 

On the other hand, the application ofEVOP is very well suited to the treatment of 

chronic conditions with long time courses. This allows sufficient time for the establish

ment of the initial simplex and for titration to a maintenance therapy. Since disease pro

cesses are dynamic, EVOP can be continued indefinitely to track the patient's progress. 

After an initial maintenance dose is identified, the physician can continue to periodically 

monitor the patient, and the titration process can be restarted when changes to the patient's 

status are observed. 

The following section is an example of a study protocol applying the evolutionary 

operation direct-seach methodology to the treatment of type 2 diabetes patients. 



4.2 Study Protocol using EVOP Direct-Search Methodology 

A comparison of multi-drug titration with glyburide and metformin to 
treatment with Glucovance 

4.2.1 Hypothesis 
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Drug titration within individual patients using the two drug combination of glyburide and 

metformin results in a higher proportion of patients achieving target HbA1c when com-

pared to fixed dosing with Glucovance. 

4.2.2 Specific Aims 

Preliminary 

To conduct a twenty week pilot study to determine the proportion of subjects achieving a 

target HbA 1 c < 7% after treatment with a 2-drug titration approach using glyburide and 

metformin in combination, and to adjust, if necessary, the titration parameters to be used 

in the primary study. 

Primary 

To determine whether a 2-drug titration approach using glyburide and metformin in com-

bination is superior to fixed dosing with Glucovance in achieving acceptable serum glu-

cose levels, using a test of proportions to determine whether the proportion of subjects 

achieving a target HbA 1c < 7% using the titration approach is as large as that for Gluco-
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vance after 24 weeks. 

Secondary 

To determine whether a 2-drug titration approach using glyburide and metformin in com

bination results in a more desirable outcome status after 24 weeks than treatment with 

Glucovance, using a test of mean final desirability scores. 

4.2.3 Background and Significance 

It is estimated that approximately 16 million people in the U.S. have diabetes, only one

third of which are diagnosed. Type 2 diabetes accounts for 90-95% of all patients diag

nosed with diabetes. An additional 15 million people have impaired glucose tolerance, 

putting them at a high risk for developing type 2 diabetes. Diabetes is currently the 4th 

leading cause of death by disease in the U.S., the leading cause of blindness in adults 20-

74 years old, and the leading cause of end-stage renal disease. Sixty to seventy percent of 

diabetics have some form of mild to severe neuropathy, and diabetes is associated with a 2 

to 4 fold increase in risk for both heart disease and stroke. The considerable morbidity and 

mortality associated with this disease is estimated to cost $98 billion each year in direct 

medical costs and indirect costs to industry (1). 

Recent reports (2,3) have added to the evidence that tighter glycemic control may 

delay or prevent both macrovascular disease and microvascular and neuropathic complica

tions. Therefore it is of significant interest, both from the point of view of reducing mor-



62 

bidity and mortality and of controlling health care costs, to find the most efficient strategy 

for applying our current arsenal of diabetes therapies to achieve the tightest glycemic con

trol. 

In recent years, several new oral therapeutic agents have been introduced to treat 

diabetes, which has opened up new options for managing this disease. Diabetes treatment 

is typically first approached by recommending changes to both diet and activity levels. If 

treatment with lifestyle changes alone is unsuccessful, the physician has a choice of sev

eral oral agents that may be added alone or in combination to the treatment plan, including 

sulfonylureas, biguanides (metformin), alpha-glucosidase inhibitors and the thiazo

lidinediones. 

The current therapeutic approach to treating type 2 diabetes is often first to find an 

effective dose with a single drug and then to incrementally increase levels of the drug to 

maintain the effect as time progresses. Currently, all type 2 diabetes treatments show sec

ondary failure over time (4,5), with HbA1c levels increasing by 0.2 to 0.3 percent per year 

(4). Therefore, all treatments must be subject to continuous adjustment and periodic 

increases. When the maximum dose of the single drug is reached or the single drug is no 

longer sufficient to maintain acceptable glucose levels, a new compound is often added to 

keep serum glucose measurements within the allowable range while keeping the first com

pound at its maximum dose. Such an approach, however, does not account for potential 

interactions among the drugs, and it is possible that the patient is not receiving the best 

available treatment. In addition, several studies have examined the use and benefits of 
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combination therapies, including the combination of sulfonylureas with metformin 

(6,7,8), and there is some evidence that these drugs, used in combination, provide better 

glucose control than either drug by itself ( 6, 7). One company, Bristol-Myers Squibb, has 

combined the sulfonylurea, glyburide, with the biguanide, metformin, into a single tablet, 

recently approved and currently sold in the U.S. under the name Glucovance. 

A preliminary study often type 2 diabetes patients will be conducted over a period 

of twenty weeks using an evolutionary operation (EVOP) approach to titrating the 2-drug 

combination of glyburide and metformin within each subject. The preliminary study will 

allow the fine tuning of the parameters used in the titration procedure before beginning the 

primary study. An estimate will also be obtained of the proportion of subjects attaining a 

HbA1c < 7%, which will be used to calculate the required sample size for the primary 

study. 

The purpose of the primary study is to determine whether titration with the 2-drug 

combination of glyburide and metformin in type 2 diabetes reduces HbA 1 c levels more 

effectively than treatment with fixed doses of Glucovance over a period of 24 weeks. 

4.2.4 Review of Therapeutic Agents 

Sulfonylureas (tolbutamide, chlorpropamide, tolazamide acetohexamide, glyburide, glip
izide, glimepiride) 

The sulfonylureas are a group of agents that increase insulin secretion by stimulating pan-

creatic beta cells (9). They are effective in lowering glycemia in about 50 percent of 



64 

patients who are unable to control their glycemia with diet and exercise alone (10). The 

effectiveness declines as the failure of the beta cells progresses, resulting in a secondary 

failure rate of3 to 10 percent per year (10). The average decrease in HbA1c is 1 to 2 per

cent (11). There is a small risk of hypoglycemia with use of the sulfonylureas and a mod

est associated weight gain. The effects on the lipid profile are minimal, with minor 

decreases in triglyceride levels. Treatment should be initiated at the lowest recommended 

dose and increased every four to seven days until the desired effect or maximum dose is 

reached. 

Glyburide is a second generation sulfonylurea, administered twice a day in doses 

ranging from 1.25mg to 5mg, with a maximum daily dose of 20mg. 

Biguanides (metformin) 

Metformin is the only biguanide currently approved for use in the U.S. by the FDA. It acts 

on the liver to decrease hepatic glucose production and also promotes insulin sensitivity in 

both the liver and peripheral tissues (12). Treatment with metformin has been shown to 

decrease fasting and postprandial glycemia by 60-70mg/dL (13), with an average decrease 

in HbA 1cof1.5 to 2 percent (13). Metformin shows initial effectiveness in approximately 

75 to 80 percent of type 2 diabetes patients (9) and does not cause hypoglycemia. It is 

associated with less weight gain than the sulfonylureas (12) and is often used in combina

tion with the sulfonylureas or with other agents. It also appears to have favorable effects 

on the lipid profile and is associated with small decreases in total cholesterol, LDL and 



65 ' 

triglyceride levels (14). There are some gastrointestinal side effects, most notably nausea 

or diarrhea, which can be minimized by taking metformin with meals, and by initiating 

treatment at a low dosage and increasing the dose slowly over a period of several weeks. 

The most serious side effect is lactic acidosis (15), particularly in patients with impaired 

renal function. Therefore, metformin cannot be used when the creatinine clearance is 

greater than 1.4mg/dL in women, and greater than l .5mg/dL in men. Metformin is also 

contraindicated in cardiac failure and pulmonary disease patients or anybody with a dis

ease condition which interferes with lactate removal. Treatment with metformin is usually 

initiated at a dose of 500 mg, which may be increased in 500 mg increments every one to 

two weeks, with the maximum effect seen at a dose of2000mg per day. 

Glucovance 

Glucovance is a combination of the sulfonylurea, glyburide, and the biguanide, met

formin. It has been approved for use both as an initial adjunct therapy to diet and exercise 

and a second-line therapy in patients who have not successfully controlled their hypergly

cemia with diet, exercise, or treatment with a sulfonylurea or metformin alone. Gluco

vance is available in fixed combination doses of l .25mg glyburide/250mg metformin, 

2.5mg/500mg, and 5mg/500mg, with a maximum daily dose of20mg/2000mg. An 

unpublished study of 806 previously untreated type 2 diabetes patients, summarized on the 

package insert (16), found a mean change from baseline HbA1c of 1.48% at 20 weeks 

treatment with Glucovance l .25mg/250mg compared to a mean change from baseline of 
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1.24% for glyburide, and 1.03% for metformin. Information from another unpublished 

study, also summarized on the Glucovance package insert, involved 639 type 2 diabetes 

patients whose blood sugar was inadequately controlled with sulfonylureas alone. These 

patients were either given glyburide 20mg, metformin 500mg, Glucovance 2.5/500mg, or 

Glucovance 5/500mg. At the end of 16 weeks, the mean HbA 1 c value of patients given 

either dose of Glucovance was reported as 1. 7% lower than those treated with glyburide 

alone, and 1.9% lower than those treated with metformin alone (16, 17). 

Current ADA Guidelines for Glycemic Control (18) 

Preprandial Glucose 80-120 mg/dL 
Bedtime Glucose 100-140 mg/dL 
HbAlc < 7% 

4.2.5 Preliminary Progress/Data Report 

A logistic regression analysis was performed using data from the study of 806 drug-naive 

type 2 diabetes patients printed in the package insert (16) to determine whether there was 

an interaction effect between the 2.5mg of glyburide and 500mg ofmetformin. The likeli-

hood ratio x2 statistic associated with the test of additivity (i.e. no interaction) was 5.975, 

with a p-value of0.0145, indicating the presence of a significant interaction between the 

two drugs. In addition, the coefficient of the interaction term was negative (-0.887), indi-

eating that the interaction was antagonistic between the two drugs at the given doses . It 

should be noted that these were the starting doses given to the patients for a period of 4 

weeks, after which the dose could be increased up to a maximum of four tablets daily. 
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This initial analysis emphasizes the need for a more systematic yet flexible approach to 

combination dosing. Presumably these two drugs, glyburide and metformin, are used in 

combination with the goal that they interact synergistically, or at least in an additive fash-

ion. This analysis indicates that with the doses used in the study, the two drugs appear to 

be antagonistic to each other, rather than synergistic or additive. However, it should be 

emphasized that the combination of glyburide and metformin may be additive or synergis-

tic at dose combinations other than those used in the study. Unfortunately the design of 

the study reported does not allow the identification of other possibly more favorable 

doses. An advantage of the titration approach proposed in this study is that it will be help-

ful in identifying the dose area producing the most favorable interaction response and in 

avoiding doses where the interaction is antagonistic. 

4.2.6 Research Method and Design 

Pilot Study 

A 20 week pilot study will be conducted. Ten newly diagnosed type 2 diabetes patients, 

men and women, will be emolled using the following eligibility criteria: 

Inclusion Criteria 
Men and women newly diagnosed with type 2 diabetes and receiving no current or 
previous pharmacological treatment 
HbA1c < 10% 

Informed Consent 



Exclusion Criteria 
Women who are pregnant or nursing 
Subjects who have previously been treated with other diabetes therapies 
Subjects with hepatic or renal impairment 
(creatinine > 1.4mg/dL in women,> 1.5mg/dL in men) 
Subjects with concomitant CHF or pulmonary disease 
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Each subject will begin the study by rotating through each of three starting combi-

nations. Before beginning treatment, baseline values of fasting plasma glucose (FPG), 2-

hour postprandial plasma glucose (PPG), fingerstick HbA 10 and HbA 1 c will be recorded. 

The patient will be randomized to one of six sequences of initial dose combinations: ABC, 

ACB, BAC, BCA, CAB, or CBA where A=one 2.5mg tablet glyburide, one 500mg tablet 

metformin, B=two 2.5mg tablets of glyburide, one 500mg tablet metformin, or C=one 

2.5mg tablet glyburide, two 500mg tablets metformin. Each dose combination will be 

administered for a period of2 weeks. The patient will be instructed to keep a daily journal 

of his or her fasting glucose measurements and 2-hour postprandial glucose measure-

ments. At the end of the first treatment period and each subsequent two week period, the 

fasting glucose measurements and 2-hour postprandial glucose measurements, recorded 

by the patient over the previous one week, will be reported to and averaged by the physi-

cian, along with a fingerstick HbA1c measurement. In addition, the number ofreported 

hypoglycemic episodes and the number ofreported negative GI effects over the previous 

one week will also be recorded. Unless an office visit is requested by the patient at the end 

of each treatment period, the averaged fasting and 2-hour postprandial glucose measure-

ments, the fingerstick HbA10 the number of hypoglycemic episodes, and the number of 
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GI complaints will be reported to the physician over the telephone at the end of the second 

week. The measurements will be combined into a single desirability measure (Appendix 

4.A) and the Nelder-Mead algorithm (Appendix 4.B) will be used to determine the next 

dose combination to be administered to the patient. If the physician is uncomfortable with 

the algorithm determined dose, the physician will be permitted to adjust the dose, and the 

actual dose prescribed by the physician will be recorded, together with the algorithm 

determined dose. The following treatment dose will again be determined by the Nelder

Mead algorithm, using the adjusted dose information. 

The study will continue for a period of20 weeks. The dose combination for each 

patient will be titrated until an average fasting glucose of < 150 or an average 2-hour post

prandial glucose of< 180 is achieved or until the end of the study period. After a mainte

nance dose is established, bi-monthly reports with data collection and monitoring will 

continue for the duration of the study period. 

Laboratory Studies 

BP, ALT, serum creatinine, cholesterol, HbA1c (initial and final visit), fingerstick HbA1c 

Data Collection and Monitoring 

The patient will keep a diary of daily fasting glucose and 2-hour postprandial glucose 

measurements. The measurements recorded by the patient over the previous one week 

will be averaged and recorded at each visit. Fingerstick HbA 1 c will also be measured at 
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each visit. Serum HbA 1 c will be measured at the initial visit and final visit. 

Primary Study 

Men and women with newly diagnosed type 2 diabetes will be emolled into the study and 

randomized to either the 2-drug titration group or the Glucovance group. The number of 

subjects to be emolled will be determined by the estimate of the proportion of subjects 

achieving a HbA1c < 7% after twenty weeks in the preliminary study, together with Table 

1 in the Statistical Analysis section. An estimate of the proportion of subjects achieving a 

HbA1c < 7% with Glucovance after twenty weeks has already been reported (16). Sub

jects will be blinded as to which treatment approach they are receiving. 

Glyburide+Metformin titration group 

This group will follow the same study protocol as in the pilot study, with the exception 

that the study will continue for a period of 24 weeks. 

Glucovance Group 

Subjects will be treated using regular standard of care. The patient will be instructed to 

keep a daily journal of his or her fasting glucose measurements and 2-hour postprandial 

glucose measurements. The fasting glucose measurements and 2-hour postprandial glu

cose measurements will be reported to the physician, along with a fingerstick HbA1c mea

surement every two weeks. The number of reported hypoglycemic episodes and the 
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number of reported negative GI effects over the previous one week will also be recorded. 

Unless an office visit is requested by the patient at the end of each treatment period, the 

averaged fasting and 2-hour postprandial glucose measurements, the fingerstick HbA 10 

the number of hypoglycemic episodes, and the number of GI complaints will be reported 

to the physician over the telephone at the end of every other week. 

Laboratory Studies 

BP, ALT, serum creatinine, cholesterol, HbA1c (initial and final visit), fingerstick HbA1c 

Data Collection and Monitoring 

The patient will keep a diary of daily fasting glucose and 2-hour postprandial glucose 

measurements. The measurements recorded by the patient over the previous one week 

will be averaged and recorded at each visit. Fingerstick HbA1c will also be measured at 

each visit. Serum HbA1c will be measured at the initial visit and final visit. 

4.2.7 Statistical Analysis 

To test the primary hypothesis of equal proportions HbAlc < 7% between treatment 

groups, a continuity corrected x2 test will be used. 

To test the secondary hypothesis of no difference in mean desirability score 

between treatment groups, a 2-sided t-test of means will be used. 

The following table shows the sample size estimates for testing the primary 
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hypothesis of equal proportions HbA le < 7% in the group treated with a titrated combina-

tion of glyburide and metformin vs. fixed doses of Glucovance. 

Table 4.1 : N per group required for x2 test of equal proportions for two groups (continuity 
corrected) 

Powei=80% GrouE 1 Ero~ortion, 7t 1 

a=0.05 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.80 0.85 0.90 
Group 2 

proportions 
n2=0. 15 270 134 83 57 42 33 26 22 18 15 13 I I IO 9 
n2=0.20 11 34 3 13 15 1 9 1 62 45 35 28 22 19 16 13 II 10 
n2=0.25 1291 349 165 98 66 48 36 28 23 19 16 13 II 
n2=0.30 141 7 376 176 103 68 49 37 29 23 19 15 13 
n2=0.35 15 11 396 183 106 70 49 37 28 22 18 15 
n2=0.40 1574 408 186 107 70 49 36 28 22 17 
n2=0.45 1605 412 186 106 68 48 35 26 20 
n2=0.50 1605 408 183 103 66 45 33 25 
n2=0.55 1574 396 176 98 62 42 30 
n2=0.60 1511 376 165 91 57 38 
n2=0.65 141 7 349 15 1 83 5 1 
n2=0.70 129 1 313 134 72 
n2=0.75 1134 270 11 3 
n2=0.80 945 219 
n2=0.85 726 
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4.2.9 Appendices 

Appendix 4.A 

Overview of Desirability Functions I 9, 20, 21 • 22 

Each response of interest is transformed to a continuous desirability function, di , with val-

ues ranging from 0 to 1, where a value of 0 designates the response as not at all desirable, 

while a value of 1 is assigned to the most desirable response. The basic shape of the func-

tion is determined by whether one is trying to maximize or minimize the response, or aim 

for a range of target values. The exact shape of each desirability function is determined in 

collaboration with the physician or other experts knowledgeable about the disease under 

study and the therapeutic effects of the treatments being administered. The following is 

the mathematical form of a maximizing desirability function 

[ [
Y. -a.)]-1 

l +exp- T 
di(max)= , where 

Y. + y' b y' -Y. y y• 
Q. = l l ' . = l I ' ·• < . 

I 2 I 2ln(l- yj ) I I 

Y; 

The parameter a; is an average of the upper (Yi*) and lower (Yi•) bounds of the response 

level being targeted, bi controls the function spread, and Yi is defined so that the desirabil-

ity at Yi* equals Yi, and the desirability at Yi* equals 1- Yi· A minimizing desirability is 

obtained by reversing the sign of the exponential argument. A target desirability function 
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can then be constructed by multiplying a minimizing (di(min)) and a maximizing (di(max)) 

desirability function such that di=di(max) *di( min)· The parameters a;, b;, and y;, allow the 

researcher flexibility in defining the desirability function and the degree of conservative-

ness to incorporate. These individual desirability functions can then be combined using 

the geometric mean to arrive at a composite measure of the overall desirability, D, such 

that D=(d1 *d2* ... *dk) l/k. It is also possible to assign different weights to the individual 

desirabilities. 

The following desirability functions will be used in the study and incorporated into a 

composite desirability measure D=(dl *d2*d3*d4*d5)115• 
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70 80 90 100 110 120 130 140 150 160 17C 

Fasting Plasma Glucose (mg/dl) 

Figure 4.1. Target desirability function for fasting plasma glucose. The function is speci

fied using the following parameters: dl(max): Y1 •' = 80, Y 1 •, = 100, y1' = 0.05, 

di(minf Y1•" = 140, Y1•,,=160, y1" = 0.05 

di= d1(max)*d1(min) 
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Figure 4.2. Target desirability function for 2-hour post-prandial plasma glucose. The func

tion is specified using the parameters: d2(max) : Y 2.' = 80, Y 2" = 100, Y2' = 0.05, d2(min): 
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Figure 4.3. Minimizing desirability function for fingerstick HbAic· The function is speci

fied using the parameters: d3(min): Y3• = 6, Y3 * = 10, Y3 = 0.05 
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Figtrre 4.4. Minimizing desirability function for ntrrnber of hypoglycemic episodes per 

week. The function is specified using the parameters: d4(min): Y4• = 1, Y/ = 5, y4 = 0.05 
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Figure 4.5. Minimizing desirability function for number of gastrointestinal complaints per 

week. The function is specified using the parameters: ds(minf Y s• = 1, Y 5 * = 7, y5 = 0.05 
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Appendix 4.B 

Description of the evolutionary titration procedure using the Nelder-Mead Simplex 

procedure23 

Once the individual desirability functions are defined, they are incorporated into a com-

posite desirability function, D, which is the response undergoing optimization during the 

titration process. An evolutionary operation (EVOP)24• 25 approach is used to titrate the 

combination of drugs within each subject. The first step of the procedure is to establish an 

initial simplex, a geometric figure with a fixed number of vertices. In the two drug case, 

the simplex is a triangle. Each vertex A, B, and C, of the triangle (Figure 4.6) represents 

different dose levels of the two drug combination. At the initial step, the subject's 

response is measured at each of these three dose combinations, and the composite desir-

ability resulting from the administration of each combination is compared, with the sim-

plex reflecting away from the least desirable response, through the centroid of the face 

created by the remaining vertices to a new point, E. In addition to reflection, the simplex 

can also extend (point F), contract (points H or G), or perform a shrinkage contraction 

(points A',B', and C), depending on the contour of the response surface. The conditions 

for subsequent movement are listed in Table 4.2 and correspond to Figure 4.6. 



F 

Drug 1 

Figure 4.6: Nelder-Mead simplex ABC with possible subsequent points. 

Table 4.2. Conditions governing the formation of subsequent simplex. f(x) denotes the 
response evaluated at point x. Here a lower value represents a more favorable response. 

Adapted from Olsson and Nelson26. 

Condition Action New Simplex 

f(C) ~ f(E) ~ f(B) Reflect BCE 

f(E) < f(C) Extend BCF 

f(A) < f(E) Contract BCG 

f(B) < f(E) ~ f(A) Contract BCH 

f(A) ~ f(G) or f(E) ~ f(H) Shrink A'B'C 
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The new dose combination determined by the algorithm is not given in units of 

whole pills or whole dose units, so the dose combinations are adjusted to whole units. The 

new dose combination to be administered is determined by either rounding to the nearest 

whole pill, or more conservatively, by rounding down to the dose unit. The initial simplex 

step size, which specifies how far apart the initial dose combinations are, and the reflec

tion and expansion coefficients used by the Nelder-Mead procedure, which determine how 

far the simplex can move or expand in one step, are decided in collaboration with the phy

sician, and can be modified to be more or less conservative depending on factors such as 

the therapeutic index of the drug involved 

Each subject begins the process by being evaluated at each of the p+ 1 combina

tions ofp drugs in the regimen. The subject receives the initial combination and the 

response is recorded. The subject then receives the second combination, which is deter

mined by the initial step size, and the response is measured after a time interval sufficient 

to preclude carryover effects. This continues for each of the p+ 1 drug combinations. 

After the initial simplex is established, the new simplex is formed using the rules in Table 

4.2, determining the next dose combination to be administered. This process repeats until 

the subject has passed through a fixed number of steps or until other specific stopping cri

teria are reached and further titration is deemed unnecessary. The simplex movement can 

be continuously monitored by the physician, and the reflection, expansion, and contraction 

coefficients can be modified ifthe simplex expands to a dose the physician is uncomfort

able with. A dose constraint can also be put in as a boundary to prevent the simplex from 

moving above a certain dose in one or more dimensions. At the final step, the last simplex 



83 

is evaluated and the combination producing the most desirable response is determined to 

be the 'best' treatment combination. 



Chapter 5 

Simulation Study 

5.1 Overview of Simulation Study 

A series of simulation studies was performed to examine the effectiveness of the EVOP 

multi-drug titration algorithm in dosing a combination of therapeutic agents and to deter

mine the effect of modifying the number of steps, the sample size, the shape of the desir

ability function, and the initial step size. The estimated dose response surface used in the 

simulations was obtained from a published multicenter, factorial design clinical trial con-

ducted by Burris, et.ai.24, which studied the efficacy of the combination therapy of the 

diuretic hydrochlorothiazide (HCTZ) and a slow-release formulation of diltiazem hydro

chloride (DLTZ), a calcium channel blocker, in the treatment of mild to moderate hyper-

tension. 

The trial was conducted over a period of six weeks, following a 4- to 6-week pla

cebo 'run-in' period. A 4 by 5 factorial grid of treatment doses was used, with 4 twice-a

day doses ofhydrochlorothiazide ranging from 0 to 25 mg, and 5 twice-a-day doses of dil

tiazem hydrochloride ranging from 0 to 180 mg. Mild-to-moderate essential hypertension 

was defined as supine diastolic blood pressure in the range of 95 to 110 mmHg. The goal 
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of treatment was to achieve a supine diastolic blood pressure ofless than 90 mmHg, with 

no limiting adverse experience. 261 patients completed the six-week treatment protocol, 

with 13 to 17 patients randomized to each treatment group. 

Using Proc RSREG in SAS, Version 6.12 (SAS Institute, Cary, NC)25, data from 

the plots published in the study were used to generate the response surfaces for the three 

main variables of interest: diastolic blood pressure (DBP), 4.16+ 1.60xHcTZ+0.39xnLTZ-

0.12x2HcTZ+ 0.020x2nLTZ-0.033xHcTZ*xnLTz; serum cholesterol (CHO), 

0.12+0.092xHcTZ+0.033xnLTz-0.0073x2HcTZ- 0.0032x2nLTz-0.0013xHcTZ*xnLTZ; and 

serum glucose (GLU), -0.12+0.076xHcTZ-O.Ol lx0 LTz-0.0001 lx2HCTZ+ 0.0030x20 LTZ-

O.OOl lxHcTZ*xoLTZ· The dose units were converted from milligrams to whole pill 

counts. One pill was equivalent to 3.125mg ofHCTZ or 15mg ofDLTZ. 

A desirability function was defined for each of the three responses, DBP, CHO, 

and GLU. The three functions, d1-d3 (Figs 5.1-5.3), were combined into an overall 

unweighted composite desirability function, D = (d1*d2*d3) 1/ 3. The Nelder-Mead sim-

plex procedure was used to carry out the within-patient titration using the composite desir-

ability. 
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Figure 5.1: Target desirability function for diastolic blood pressure (d1). This function is a 

product of a minimizing desirability function (d1 ' )with parameters Y1 •' = 0, Y 1 •, = 10, 

y1' = 0.05, and a maximizing desirability function (d1 ")with parameters Y1." ' = 30, Y 1 •., 

= 40, Y1" = 0.05. 
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Figure 5.2: Minimizing desirability function for increase in cholesterol (d2) with parame

ters Y2• = 11.6, Y2 * = 27.1 , y2 = 0.05. 
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Figure 5.3: Minimizing desirability function for increase in serum glucose (d3) with 

parameters Y3• = 7.2, Y3 * = 14.4mmoVL, y3 = 0.05. 

5.2 Simulation Example 

For each subject, the starting dose for the initial simplex was chosen to be the same as the 

smallest combination dose used in the original study: 6.25mg (2 pills) ofHCTZ and 60mg 

(4 pills) ofDLTZ. The initial step size was chosen to be this initial dose combination 

increased by 6 pills in the HCTZ axis and by 8 pills in the DLTZ axis. 

In order to simulate subject responses more realistically, a mixed effects model 

with a first order autoregressive covariance structure was used. Let Yij=xi/P+cii' where Yij 

represents the jth response from the ith subject, xij=[ 1 xil xi2 xi12 xi/ xi1 xi2] represents the 

6x I vector of doses and dose functions for the ith subject at the jth time point, P represents 
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the 6x 1 vector of parameters taken from the study, and Eij represents the random error. 

The covariance between two observations w time intervals apart on the same subject is 

crE 2p w, where p is the correlation between adjacent observations within the same subject, 

and w is the number of time intervals between the observations. For this study, the root 

MSE for DBP, crDBP, was 6.2mmHg (pers. comm.), and 0.35mmol/L was used for both 

CHO, crc80, and GLU, crcLu· 

The simulated response at each vertex of the simplex was obtained in triplicate and 

the responses were averaged. The desirability for each averaged response was compared, 

and the location of the next dose combination to be given was determined by the Nelder-

Mead algorithm, rounding to the nearest whole pill. Figure 5.4 is an example showing the 

2 

+ 

F 

* 
* 

lJ) 20 22 26 

DLTZ(~ills) 

Figure 5.4: Simplex movement for one subject in a two-dimensional dose space. The 
subject is evaluated at each of three initial dose combinations (1,2,3) [2 pills HCTZ/4 
pills DLTZ; 8 pills/4 pills; and 2 pills/12 pills]. The simplex reflects away from the 
combination producing the least desirable response (in this example, point 1). The final 
optimized dose combination (F) after 20 steps is 3 pills HCTZ and 19 pills DLTZ, corre
sponding to a simulated decrease in diastolic blood pressure of 18.4mmHg 
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simplex movement for a single subject. The titration was continued for 20 steps. At the 

last step, the final simplex was evaluated and the dose combination associated with the 

most desirable response was taken as the final treatment combination. This subject 

arrived at a final dose combination of3 pills HCTZ and 19 pills DLTZ, with a simulated 

decrease in DBP of 18.4mmHg. Figure 5.5 demonstrates the simplex movement for the 

same subject starting with a smaller initial step size increase of 4 pills in the HCTZ axis 

and 6 pills in the DLTZ axis, with titration continuing for 20 steps. The final dose combi-

+ 

+ 
F 

* * 
+ + 

1) l2 20 22 24 26 

DLTZ(pills) 

Figure 5.5: Simplex movement for one subject in a two-dimensional dose space with 
smaller initial steps. The subject is evaluated at each of three initial dose combinations 
(1,2,3) similarly to above, but the initial simplex is smaller [2 pills HCTZ/4 pills DLTZ; 
6 pills/4 pills; and 2 pills/10 pills] . Note that the process ends with a combination simi
lar to that reached above, 3 pills HCTZ and 18 pills DLTZ, corresponding to a simulated 
decrease in diastolic blood pressure of 15.7mmHg. 

nation reached was 3 pills ofHCTZ and 18 pills ofDLTZ, similar to that obtained with the 

larger step size. The corresponding decrease in DBP was 15.7mmHg. 
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Figure 5.6 demonstrates the final dose locations for a simulated group of 175 sub-

jects who have completed the titration process, and Figure 5.7 shows the asymptotic confi-

dence ellipsoid about the central location estimate for the Wilcoxon Signed Rank statistic 

and Figure 5.8 shows the confidence ellipsoid about the mean. A correlation between sue-

cessive blood pressure observations of p=0.7 was used and the process continued for 16 

steps. 

12 

Figure 5.6: Pyramid plot of final dose locations for a simulated group of 175 subjects who 
have completed the 16 steps of titration, using a correlation of0.7. In this simulation, the 
desirability function for DBP shown in Figure 5.1 was used to target a reduction in dias
tolic blood pressure (DBP). The mean decrease in DBP was 17.7mmHg. The mean final 
dose combination was 4.6 pills HCTZ and 16.2 pills DLTZ. 
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Figure 5.7: Asymptotic confidence ellipsoid based on the Wilcoxon signed rank statistic. 
A group of 175 subjects was simulated using the desirability function for DBP in Figure 
5.1. 
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Figure 5.8: Asymptotic confidence ellipsoid based on the mean. A group of 175 subjects 



92 

was simulated using the desirability function for DBP in Figure 5.1. 

5.3 Simulation Results 

For the main simulation study, five groups of 100 simulations were run using sample sizes 

ofN= l 75 with 16 and 32 steps. The simulations were run first using the desirability func-

ti on for DBP alone, d1 (Fig. 5.1 ), and then repeated using the composite desirability func-

tion, D=(d1 *d2*d3) 1/ 3, which took into account serum cholesterol and serum glucose 

measurements in addition to the DBP. Additionally, to examine the effect of the correla-

tion between successive observations, p, the correlation was varied from 0.1 to 0.8. In the 

simulations with the composite desirability function, the correlation between successive 

DBP measurements was varied from 0.1 to 0.8, while the correlations for both CHO and 

GLUwere fixed at 0.7. 

5.3.1 Number of Steps and Correlation Between Successive Observations within a 
Patient 

Desirability function for diastolic blood pressure, d1 

Using the desirability function for DBP, d1, we see in Table 5.1 that the proportion 

of subjects showing improvement over the baseline was 1 (i.e. 100%) for all cases, using 

either the Fisher Sign test or the Wilcoxon Signed Rank test. All subjects also showed 

improvement when the final response was compared to the simulated response to single 

drug treatment with 25mg ofHCTZ, the highest dose used in the study. A similar result 

was seen in comparing the response to treatment with a 180mg dose ofDLTZ. The mean 
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decrease in DBP, shown in the far right column, did not appear to change as the number of 

steps was increased from 16 to 32. However, the size of the reduction in DBP did appear 

to increase as the correlation increased. Table 5.2 shows the percentage of confidence 

ellipsoids which included the origin, included the hydrochlorothiazide axis only, included 

the diltiazem axis only, or included both axes, also using the desirability for DBP alone. 

The final central dose locations for diltiazem and hydrochlorothiazide are also given in the 

far right colunms, using both the mean and the Wilcoxon Signed Rank statistics as mea

sures of central location. Using Mardia's test, in many instances the multivariate distribu

tion of the final dose locations for each simulation showed some departure from 

normality, suggesting the nonparametric approach to be most appropriate. As the correla

tion was increased from 0.1 to 0.8, the simplex appeared to move further up the DLTZ 

axis, resulting in a higher final dose ofDLTZ and a tighter confidence ellipsoid. Increas

ing the number of steps from 16 to 32 did not appear to have much effect, suggesting that 

the simplex had already arrived at a final dose after 16 steps. 
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Table 5 .1: Proportion of improved responses using the Fisher sign test or Wilcoxon 
signed-rank test. Simulations were done using the desirability function for diastolic blood 

pressure alone (d1). The mean decrease in DBP is shown in the far right column. 

HCTZ OLTZ 
Decrease 

N Steps p Baseline 
Alone Alone 

inDBP 
(mmHg) 

175 16 0.1 Fisher(SE) 1(0) 1(0) 1(0) 16.4 

Wilc(SE) 1(0) 1(0) 1(0) 

0.3 F isher(SE) 1(0) 1(0) 1(0) 16.8 

Wilc(SE) 1(0) 1(0) 1(0) 

0.5 Fisher(SE) 1(0) 1(0) 1(0) 16.9 

Wilc(SE) 1(0) 1(0) 1(0) 

0.7 Fisher(SE) 1(0) 1(0) 1(0) 17.7 

Wil c(SE) 1(0) 1(0) 1(0) 

0.8 Fisher(SE) 1(0) 1(0) 1(0) 18.6 

Wilc(SE) 1(0) 1(0) 1(0) 

32 0.1 Fisher(SE) 1(0) 1(0) 1(0) 16.3 

Wilc(SE) 1(0) 1(0) 1(0) 

0.3 Fisher(SE) 1(0) 1(0) 1(0) 16.9 

Wilc(SE) 1(0) 1(0) 1(0) 

0.5 Fisher(SE) 1(0) 1(0) 1(0) 17.1 

Wilc(SE) 1(0) 1(0) 1(0) 

0.7 Fisher(SE) 1(0) 1(0) 1(0) 18.2 

Wilc(SE) 1(0) 1(0) 1(0) 

0.8 Fisher(SE) 1(0) 1(0) 1(0) 18.6 

Wilc(SE) 1(0) 1(0) 1(0) 
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Table 5.2: Evaluation of the confidence ellipsoids using a parametric and nonparametric 
approach. Simulations were done using the desirability function for diastolic blood 

pressure alone ( d 1). The columns show the percentage of confidence ellipsoids containing 

the origin, containing the HCTZ axis only, containing the DLTZ axis only, or containing 
both axes. The rightmost columns show the final dose locations for HCTZ and DLTZ 

using either the mean or Wilcoxon signed-rank statistic as the measure of central location. 

HCTZ DLTZ 
Final Final 

N Steps p Origin 
Axis Only Axis Only 

Both Axes Dose Dose 
HCTZ DLTZ 

175 16 0.1 Mean(SE) 0 0 97.2(1.30) 2.8(1.30) 4.5(0.03) 14.0(0.02) 

Wile(SE) 1.6(1.52) 13.4(2.92) 39.0(2.92) 23.2(4.97) 4.4(0.03) 14.2(0.03) 

0.3 Mean(SE) 0 0 99.6(0.89) 0.4(0.89) 4.5(0.02) 14.5(0.01) 

Wile(SE) 0.8(0.45) 9.6(2.70) 43.4(4.22) 16.2(3.27) 4.4(0.03) 14.7(0.01) 

0.5 Mean(SE) 0 0 100 0 4.5(0.02) 15.2(0.02) 

Wi lc(SE) 0 4.8(1.92) 51.2(5.12) 8.2(2.17) 4.4(0.02) 15.5(0.03) 

0.7 Mean(SE) 0 0 100 0 4.6(0.02) 16.2(0.02) 

Wilc(SE) 0 0.4(0.89) 64.6(5.50) 0.4(0.89) 4.5(0.02) 16.6(0.03) 

0.8 Mean(SE) 0 0 100 0 4.6(0.02) 17.1(0.02) 

Wile(SE) 0 0 68.0(3.94) 0 4.5(0.03) 17.3(0.03) 

32 0.1 Mean(SE) 0 0 99.4(0.55) 0.6(0.55) 4.4(0.01) 14.2(0.05) 

Wile(SE) 0.6(0.55) I 0.8(4.87) 49.4(4.10) 21.8(4.44) 4.2(0.02) 14.4(0.05) 

0.3 Mean(SE) 0 0 100 0 4.4(0.01) 14.7(0.06) 

Wile(SE) 0.2(0.45) 8.2(0.84) 54.0(3.87) 17.6(2.30) 4.3(0.02) 15.0(0.07) 

0.5 Mean(SE) 0 0 100 0 4.4(0.02) 15.3(0.03) 

Wile (SE) 0 2.6(1.14) 61.4(8.88) 5.6(1.95) 4.3(0.02) 15.7(0.02) 

0.7 Mean (SE) 0 0 100 0 4.5(0.02) 16.4(0.01) 

Wile (SE) 0 0 71.0(3.87) 0 4.4(0.02) 16.7(0.02) 

0.8 Mean(SE) 0 0 100 0 4.5(0.004) 17.1(0.04) 

Wile (SE) 0 0 75.4(2.30) 0 4.4(0.01) 17.4(0.05) 
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Composite desirability function, D 

The simulations were then repeated using the composite desirability function, D, 

which combined the main outcome of interest, diastolic blood pressure, with two other 

endp'oints which the study authors reported on, serum glucose and serum cholesterol. In 

these simulations, the correlation between successive DBP measurements within a patient 

was increased from 0.1 to 0.8, while the correlations for both CHO and GLU were fixed at 

0.7. Tables 5.3 and 5.4, show that the simplex does not move as far along the HCTZ axis 

or DL TZ axis when these other endpoints are taken into consideration, indicating that one 

or both of these endpoints are acting as constraints. However, from Table 5.3, we see that 

even at these doses, there is still a significant improvement in the response for all subjects 

in all cases. 
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Table 5.3: Proportion of improved responses using the Fisher sign test or Wilcoxon 
signed-rank test. Simulations were done using the composite desirability function (D). 

The correlation between successive DBP measurements was varied from 0. 1 to 0.8, while 
the correlations for both CHO and GLU were fixed at 0.7. The rightmost columns show 

the mean decrease in diastolic blood pressure, the mean change in cholesterol and the 
mean change in serum glucose. 

HCTZ DLTZ 
Decrease Change Change in 

N Steps p Baseline 
Alone Alone 

inDBP in Chol Glu 
(rnmHg) (mmol/L) (rnmol/L) 

175 16 0.1 Fisher (SE) 1(0) 1(0) 1(0) 11.9 0.24 0.29 

Wilc(SE) 1(0) 1(0) 1(0) 

0.3 Fisher (SE) 1(0) 1(0) 1(0) 11.9 0.25 0.29 

Wilc(SE) 1(0) 1(0) 1(0) 

0.5 Fisher (SE) 1(0) 1(0) 1(0) 11.9 0.25 0.3 1 

Wile (SE) 1(0) 1(0) 1(0) 

0.7 Fisher (SE) 1(0) 1(0) 1(0) 12.0 0.24 0.29 

Wile (SE) 1(0) 1(0) 1(0) 

0.8 Fisher (SE) 1(0) 1(0) 1(0) 12. 1 0.24 0.27 

Wile (SE) 1(0) 1(0) 1(0) 

32 0. 1 Fisher (SE) 1(0) 1(0) 1(0) 11.3 0.25 0.27 

Wi le (SE) 1(0) 1(0) 1(0) 

0.3 Fisher (SE) 1(0) 1(0) 1(0) 11.3 0.27 0.26 

Wi lc(SE) 1(0) 1(0) 1(0) 

0.5 Fisher (SE) 1(0) 1(0) 1(0) 11.6 0.25 0.3 1 

Wile (SE) 1(0) 1(0) 1(0) 

0.7 Fisher (SE) 1(0) 1(0) 1(0) 11.9 0.24 0.27 

Wile (SE) 1(0) 1(0) 1(0) 

0.8 Fisher (SE) 1(0) 1(0) 1(0) 11. 8 0.23 0.27 

Wilc(SE) 1(0) 1(0) 1(0) 
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Table 5.4: Evaluation of the confidence ellipsoids using a parametric and nonparametric 
approach. Simulations were done using the composite desirability function (D). The 

correlation between successive DBP measurements was varied from 0.1 to 0.8, while the 
correlations for both CHO and GLU were fixed at 0.7. The columns show the percentage 

of confidence ellipsoids (SE) containing the origin, containing the HCTZ axis only, 
containing the DLTZ axis only, or containing both axes. The rightmost columns show the 
final dose locations for HCTZ and DLTZ using either the mean or Wilcoxon signed-rank 

statistic as the measure of central location. 

HCTZ 
OLTZ Axis 

Final Final 
N Steps p Origin Axis 

Only 
Both Axes Dose Dose 

Only HCTZ OLTZ 

175 16 0.1 Mean (SE) 0 0 34.0(5.70) 66.0(5 .70) 3.1(0.02) 9.2(0.02) 

Wi lc (SE) 9.0(1.41) 0 61.4(2.07) 38.6(2.07) 3.0(0.02) 9.2(0.02) 

0.3 Mean (SE) 0 0 35.6(3.05) 64.4(3.05) 3.1(0.02) 9.2(0.02) 

Wile (SE) 8.8(4.92) 0 60.8(4.32) 39.2(4.32) 3.0(0.02) 9.3(0.03) 

0.5 Mean (SE) 0 0 38.2(4.44) 61.8(4.44) 3.1(0.02) 9.3(0.02) 

Wilc(SE) 9.8(2.28) 0 61.4(2.70) 38.6(2.70) 3.0(0.02) 9.4(0.02) 

0.7 Mean (SE) 0 0 44.0(5.24) 56.0(5.24) 3.1 (0.02) 9.4(0.02) 

Wilc(SE) 8.8(3.27) 0 61.4(5.77) 38.6(5.77) 3.0(0.0 1) 9.5(0.02) 

0.8 Mean (SE) 0 0 51.4(3.58) 48.6(3.58) 3.1(0.02) 9.5(0.02) 

Wile (SE) 9.2(2.17) 0 59.8(4.21) 40.2(4.21) 3.0(0.02) 9.6(0.03) 

32 0.1 Mean (SE) 0 0 36.4(3. 71) 63.6(3.71) 3.0(0.02) 9.2(0.03) 

Wilc(SE) 9.2(1.64) 0 59.2(5.26) 40.8(5.26) 2.8(0.03) 9.3(0.03) 

0.3 Mean (SE) 0 0 38.6(3.78) 61.4(3.78) 3.0(0.02) 9.2(0.04) 

Wile (SE) 6.4(1.67) 0 56.4(3.13) 43.6(3. 13) 2.8(0.02) 9.3(0.04) 

0.5 Mean (SE) 0 0 40.8(3.56) 59.2(3.96) 3.0(0.01) 9.3(0.05) 

Wilc(SE) 5.2(2.05) 0 55.0(3.39) 45 .0(3.39) 2.8(0.01) 9.4(0.05) 

0.7 Mean (SE) 0 0 48.6(4. 16) 51.4(4.16) 2.9(0.01) 9.4(0.03) 

Wilc(SE) 7.0(2.55) 0 59.4(2.07) 40.6(2.07) 2.8(0.02) 9.5(0.03) 

0.8 Mean (SE) 0 0 54.2(1.92) 45 .8( 1.92) 2.9(0.01) 9.5(0.04) 

Wi lc(SE) 6.8(2.17) 0 53.0(3.54) 47.0(3.54) 2.8(0.02) 9.6(0.04) 
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5.3.2 Initial Step Size 

Tables 5.5 and 5.6 show the results of changing the initial step size from an increase of 6 

pills in the HCTZ axis and 8 pills in the DLTZ axis, to an increase of only 5 pills/7 pills, or 

4 pills/6 pills over the initial dose combination. After 16 steps, using the desirability func-

tion for DBP, a correlation of 0.7, and a sample size of 175, there was a slightly smaller 

decrease in the DBP response. In addition, the final dose combinations also decreased as 

the initial step size became smaller. This would suggest that either the simplex has not 

had enough time to reach the same improved dose as with the larger step size, or perhaps 

the simplex has reached a plateau and the variability is too large for it to move further 

along the dose response surface. 

Table 5.5: A comparison of initial step sizes. Simulations were done using the desirability 
function for diastolic blood pressure alone (d1), with 16 steps, p=0.7. The table shows the 
proportion of improved responses using the Fisher sign test or the Wilcoxon signed-rank 

test. The effect of decreasing the initial step size is shown, with the mean decrease in 
diastolic blood pressure given in the rightmost column. 

Step Size 
HCTZ OLTZ 

Decrease 
(pills HCTZ/ Baseline 

Alone Alone 
in DBP 

pills OLTZ) (mmHg) 

+61+8 Fisher (SE) 1(0) 1(0) 1(0) 17.7 

Wilc(SE) 1(0) 1(0) 1(0) 

+5/+7 Fisher (SE) 1(0) 1(0) 1(0) 16.7 

Wile (SE) 1(0) 1(0) 1(0) 

+4/+6 Fisher (SE) 1(0) 1(0) 1(0) 16.5 

Wile (SE) 1(0) 1(0) 1(0) 
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Table 5.6: A comparison of initial step sizes. Simulations were done using the desirability 
function for diastolic blood pressure alone (d1), with 16 steps, p=0.7. The columns show 

the percentage of confidence ellipsoids (SE) containing the origin, containing the HCTZ 
axis only, containing the DLTZ axis only, or containing both axes. The effect of 

decreasing the initial step size is shown, with the rightmost columns giving the final dose 
locations for HCTZ and DLTZ using either the mean or Wilcoxon signed-rank statistic as 

the measure of central location. 

Step Size 
HCTZ OLTZ Final Dose Final Dose 

(pills HCTZ/ Origin 
Axis Only Axis Only 

Both Axes 
HCTZ OLTZ 

pillsDLTZ) 

+6/+8 Mean(SE) 0 0 100 0 4.6(0.02) 16.2(0.02) 

Wilc(SE) 0 0.4(0.89) 64.6(5.50) 0.4(0.89) 4.5(0.02) 16.6(0.03) 

+5/+7 Mean(SE) 0 0 100 0 4.5(0.01) 15.2(0.05) 

Wilc(SE) 0 6.8(2.59) 55.4(5.18) 16.0(4.18) 4.4(0.02) 15.5(0.06) 

+41+6 Mean (SE) 0 0 90.4(1.95) 9.6(1.95) 4.2(0.02) 13.7(0.04) 

Wile (S E) 4.2(2.77) 74(2.61) 49.2(2.59) 30.4(4.62) 4.1(0.02) 13.9(0.04) 

5.3.3 Sample Size 

Tables 5.7 and 5.8 display the results of changes to the sample size. Simulations were run 

with sample sizes of25, 50, 175, and 300 subjects, using the desirability function for DBP 

alone. The between-observations correlation was fixed at 0.7, and the titration was contin-

ued for 16 steps. In general, changes to the sample size did not appear to significantly 

affect the outcomes. 

In Table 5.7, the decrease in the DBP remains similar across cases and there is a 

significant improvement in the response for all cases. In Table 5.8, the final dose combi-

nations also remain similar across the cases. 
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Table 5.7: Sample size comparison. Simulations were done using the desirability function 
for diastolic blood pressure alone ( d 1), with 16 steps, p=0.7. The table shows the 

proportion of improved responses using the Fisher sign test or the Wilcoxon signed-rank 
test. The effect of increasing the sample size is shown, with the mean decrease in diastolic 

blood pressure given in the rightmost column. 

Sample HCTZ DLTZ 
Decrease 

Baseline inDBP 
Size Alone Alone 

(mmHg) 

25 Fisher (SE) 1(0) 1(0) 1(0) 18.2 

Wilc(SE) 1(0) 1(0) 1(0) 

50 Fisher (SE) 1(0) 1(0) 1(0) 16.6 

Wile (SE) 1(0) 1(0) 1(0) 

175 Fisher (SE) 1(0) 1(0) 1(0) 17.7 

Wile (SE) 1(0) 1(0) 1(0) 

300 Fisher (SE) 1(0) 1(0) 1(0) 17.7 

Wi lc(SE) 1(0) 1(0) 1(0) 

Table 5.8: Sample size comparison. Simulations were done using the desirability function 
for diastolic blood pressure alone (d1), with 16 steps, p=0.7. The columns show the 

percentage of confidence ellipsoids (SE) containing the origin, containing the HCTZ axis 
only, containing the DLTZ axis only, or containing both axes. The effect of decreasing 
the initial step size is shown, with the rightmost columns giving the final dose locations 

for HCTZ and DLTZ using either the mean or Wilcoxon signed-rank statistic as the 
measure of central location. 

Sample 
Origin 

HCTZ OLTZ 
Both Axes 

Final Dose Final Dose 
Size Axis Only Axis Only HCTZ DLTZ 

25 Mean (SE) 0.6(0.89) 0 95.0(1.87) 3.6(1.52) 4.6(0.04) 16.3(0.08) 

Wile (SE) 0.6(0.89) 0.4(0.54) 91.8(1.64) 3.4(0.89) 4.5(0.04) 16.6(0.09) 

50 Mean (SE) 0 0 99.6(0.55) 0.4(0.55) 4.6(0.06) 16.3(0.06) 

Wilc(SE) 0 0.2(0.45) 84.0(2.24) 1.0(1.22) 4.4(0.06) 16.6(0.06) 

175 Mean (SE) 0 0 100 0 4.6(0.02) 16.2(0.02) 

Wile (SE) 0 0.4(0.89) 64.6(5.50) 0.4(0.89) 4.5(0.02) 16.6(0.03) 

300 Mean (SE) 0 0 100 0 4.6(0.06) 16.3(0.06) 

Wi lc(SE) 0 0 97.2(1.10) 2.8(1.10) 4.5(0.01) 16.6(0.01) 
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5.3.4 Variation in the Desirability Function 

We were also interested in determining how sensitive the titration method was to 

variability in the chosen desirability function. To determine whether small modifications 

in the desirability function had any effect on the resulting dose locations and responses, 

we ran simulations using three modified desirability functions in addition to d1, the desir

ability function for DBP, with 16 steps, a correlation of0.7, and a sample size of 175. 

Tables 5.9 and 5.10 show that sharpening the peak desirability as with d3 , increasing the 

width of the desirability function as with db, or decreasing the width and sharpening the 

peak simultaneously as with d0 did not result in any appreciable change in the outcome 

with respect to either response or dose location. There was little or no change in the 

decrease in DBP or final dose combinations, indicating that the process is robust, or rela

tively insensitive, to small changes in the definition of the desirability function. So while 

the desirability function has to be defined carefully, there is some room for variation when 

deciding on the parameters. 



103 

Table 5.9: A comparison of desirability functions. The table shows the proportion of 
improved responses using the Fisher sign test or the Wilcoxon signed-rank test. The 

parameters for the modified desirability functions are shown, with the mean decrease in 
diastolic blood pressure given in the rightmost column. 

N= l75 
HCTZ OLTZ 

Decrease 
Dsbl Steps= l6 (Y;o' ,Y( ') (Y;o'',Y;"') Baseline 

Alone Alone 
in DBP 

p=0.7 (mrnHg) 

d1 Fi sher (SE) (0,10) (30,40) 1(0) 1(0) 1(0) 17.7 

Wile (SE) 1(0) 1(0) 1(0) 

da Fisher (SE) (0,20) (20,40) 1(0) 1(0) 1(0) 17.5 

Wi lc(SE) 1(0) 1(0) 1(0) 

db Fisher (SE) (-5,10) (30,45) 1(0) 1(0) 1(0) 17.5 

Wilc(SE) 1(0) 1(0) 1(0) 

de Fisher (SE) (10,20) (20,30) 1(0) 1(0) 1(0) 17.5 

Wile (SE) 1(0) 1(0) 1(0) 

Table 5.10: A comparison of desirability functions . The columns show the percentage of 
confidence ellipsoids (SE) containing the origin, containing the HCTZ axis only, 

containing the DL TZ axis only, or containing both axes. The parameters for the modified 
desirability functions are shown, with the rightmost columns giving the final dose 

locations for HCTZ and DLTZ using either the mean or Wilcoxon signed-rank statistic as 
the measure of central location. 

N=l75 
HCTZ OLTZ Both 

Final 
Final Dose 

Dsbl Steps= l6 (Y;•,Y;") (Y;•",Y;"') Origin 
Axis Only Ax is Only Axes 

Dose 
OLTZ 

p=0.7 HCTZ 

d1 Mean (SE) (0,10) (30,40) 0 0 100 0 4.6(0.02) 16.2(0.02) 

Wilc(SE) 0 0.4(0.89) 64.6(5.50) 0.4(0.89) 4.5(0.02) 16.6(0.03) 

da Mean (SE) (0,20) (20,40) 0 0 100 0 4.6(0.0 1) 16.3(0.03) 

Wilc(SE) 0 0.2(0.45) 64.0(3.81) 0.2(0.45) 4.5(0.02) 16.6(0.04) 

db Mean (SE) (-5,10) (30,45) 0 0 100 0 4.6(0.02) 16.3(0.02) 

Wilc(SE) 0 0.4(0.55) 66.8(3 .90) 0.4(0. 89) 4.4(0.03) 16.6(0.04) 

de Mean (SE) (10,20) (20,30) 0 0 100 0 4.6(0.01) 16.3(0.02) 

Wi lc(SE) 0 0.2(0.45) 63.6(3.44) 0.2(0.45) 4.5(0.02) 16.6(0.04) 
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From our simulations, it appears that the evolutionary simplex approach is effec

tive in arriving at dose combinations which yield improved responses in patients who are 

being treated with a combination of multiple therapies, although inferences on the location 

do not appear to be as sharp as inferences on the response. In comparing the simulation 

results with the original response data, the final dose locations were found to correspond 

well with the area of higher response seen in the Burris study24. 



Chapter 6 

Summary 

The goal of our research has been to demonstrate a method for titrating multiple drug 

combinations within individual patients and to develop the corresponding statistical meth

odology for evaluating whether the titrated treatment combination has resulted in an 

improvement in patient response and whether a therapeutic synergism exists. An evolu

tionary operation direct-search procedure is used to titrate a combination of agents within 

individual subjects. Desirability functions are incorporated to define the main response of 

interest and additional responses or constraints. 

This approach permits every patient the potential to benefit from the combination 

under study and allows the consideration of multiple endpoints and constraints. It is well 

suited to the treatment of chronic diseases with long courses where there is a rapidly and 

easily measured response, where regular treatment intervals exist, and where dose escala

tion within a patient is reasonable. Practicing physicians may find this approach useful for 

.improving the way both mono-therapies and combination therapies are prescribed for 

individual patients. Clinical researchers may find this methodology useful for evaluating 

whether a therapeutic synergism exists within specific drug combinations and for evaluat

ing individual therapeutic components. 
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Appendix A 

Computer Programs 

The main computer programs used to perform the evolutionary operation direct-search 

titration procedure in the simulation studies are provided in this appendix. All programs 

were written in SAS®, version 6.12, for Windows. The programs are a compilation of 

code written by the author, Chris Ge1U1ings, and Vernon Chinchilli . 



Program NEWDSBSIM 

********************************************* ***** 

* 
* 
* 
* 

THIS PROGRAM USES THE NELDER-MEAD ALGORITHM 
AND DESIRABILITY FUNCTIONS TO MINIMIZE A 
GIVEN FUNCTION. IT INVOKES THE PROGRAMS 
SIMPLEX AND RANK LOC 

* 
* 
* 
* 

*************************** *************** *** *** *• 
' 

goptions ftext=centb colors=(blue) ; 

Ill 

*GOPTIONS ftext=centb NODISPLAY NOPROMPT DEVICE=cgmmw6c GSFMODE=replace 
colors=(blue) GSFNAME=PICnm; 

OPTIONS LINESIZE=BO; 

DATA ONE; 
* diastolic bp surface; 
XO= 4.16; x1=1.60; x2 = 0 .39; x1sq=-0 . 12; x2sq=.020; x1 x2 = -0.033; 
*to adjust to units of pills (hctz 1 pill=3 . 125 mg, dlt 1 pill=15 mg); 

* change in serum chol surface; 
zO = .12; z1=.092; z2=.033; z1sq= - .0073; z2sq= - .0032; z1z2=-.0013; 

*change in serum glucose surface; 
wo = -0.12; w1=0.076; w2=-0 . 011; w1sq=-0 . 00011; w2sq=0.0030; w1w2=-

0.0011; 

PROC !ML; 
USE ONE; READ ALL VAR{XO X1 X2 x1sq x2sq X1X2} INTO XX; 

READ ALL VAR{zO z1 z2 z1sq z2sq z1z2} INTO z; 
READ ALL VAR{wO w1 w2 w1sq w2sq w1 w2} INTO w; 

PRINT 'Regressions Coefficients', 'for diastolic bp' XX, 
'for serum cholesterol' z, 
'for serum glucose' w; 

NITER =16 · 
- - ' 

sig_tot 6.2; 
sig_chl .35; 



sig_glu = .35; 

print _NITER_, sig_tot sig_chl sig_glu; 

%include simprank; 

rho_bp=0.1; rho_chl=0.7; rho_glu=0.7; 
print rho_bp rho_chl rho_glu; 

sigvec=sig_totl lsig_chll lsig_glu; 
rhovec=rho_bpl lrho_chll lrho_glu; 
numvars=3; 
numcol=_NITER_+2; 
do c=1 to numvars; 

do row=1 to (numcol); 
do col=1 to (numcol); 

if abs(col-row)<=10 then; 
pwr=abs(col-row); 

else pwr=10; 
tempr=tempr 11 ( rhovec [ c J ##pwr); 

end; 
temp2=temp2//tempr; 
free tempr; 

end; 
temp3=root(temp2); 
thalf_r=(sigvec[c])#temp3; 
half_r=half_r//thalf_r; 
free temp2 temp3 thalf _r; 

end; 
START FUNCTION; 

* parms = int(parms); *rounding down to an integer; 
parms = round(parms); *rounding to the nearest integer; 

* ti tle4 
title4 

BETA = 

'Rounding down doses (in units of pills) to an integer' ; 
'Rounding doses (in units of pills) to nearest integer'; 

II PARMS[1,J II parms[2,J II PARMS[1,]##2 II PARMS[2,]##2 
I I PARMS[1,]#PARMS[2,J; 
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parms1 beta[2]; 
parms2 beta[3]; 

TEMP=O; TEMPC=O; TEMPG=O; 

DO J 1 TO 3; 
response= BETA*XX ' + part_a[j,i]; 
temp = temp+response; 

END; 

BP VALUE TEMP / 3; 
CN VALUE BETA*Z ' + part_b[i_b]; 
GN VALUE BETA*w ' + part_g(i_g]; 

* setup desirability functions; 
y1L1=0; y1U1=10; y1L2=30; y1U2=40; gamma1=0 . 05; 

a11=(y1L1+y1U1) / 2; b11=(y1U1-y1L1) / (2#log((1-gamma1) / gamma1)); 
a12=(y1L2+y1U2) / 2; b12=(y1U2-y1L2) / (2#log((1-gamma1) / gamma1)); 

d11=(1+exp(-(bp_value -a11) / b11))##(-1); 
d12=(1+exp((bp_value-a12) / b12))##(-1); 
d1=d11#d12; 

y2L=0.3; y2U=0.7; gamma2=0.05; 
a2=(y2L+y2U) / 2; b2=(y2U-y2L) / (2#log((1-gamma2) / gamma2)); 

d2=(1+exp((cn_value-a2) / b2))##(-1); 

y3L=0.4; y3U=0.8; gamma3=0.05; 
a3=(y3L+y3U) / 2; b3=(y3U-y3L) / (2#log((1-gamma3) / gamma3)); 

d3=(1+exp((gn_value-a3) / b3))##(-1); 

* overall desireability function; 
D = (d1#d2#d3)##(1/3); 

*d=d1; 
*d=d2; 
*d=d3; 

CONSTANT = O; 
IF PARMS[1,] > 16 THEN CONSTRNT=1; 
IF PARMS[2,] > 24 THEN CONSTRNT=1; 
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IF PARMS[1,] < 0 THEN CONSTRNT=1; 
IF PARMS[2,] < 0 THEN CONSTRNT=1; 
IF CONSTANT = 1 THEN fn_value = 9999999; 

ELSE IF CONSTANT = 0 THEN fn value = -D; 
i=i+1; i_b=i_b+1; i_g=i_g+1; 

FINISH; 

START SIMULATE; 
DO SAMPLE 1 TO 175; 

PARMS= 0 II O; 

z_a=normal(j(numcol,numvars,21435)); 
do rows_a=1 to 3; 

temp_a=z_a[,rows_a]'*half_r[1 :numcol,J; 
part_a=part_alltemp_a; 

end; 

z_b=rannor(j(numcol,1,34323)); 
part_b=z_b'*half_r[(numcol+1): (2*numcol),J; 

z_g=rannor(j(numcol,1,32995)); 
part_g=z_g'*half_r[(2*numcol+1):(3*numcol),J; 

i=1; i _b=1; i _g=1; 
run function; * print parms fn value en value gn_value; 
fOO_valu=-fn_value; 

i=1; i_b=1; i_g=1; 
parms = 01112; 
run function; * print parms fn value en value gn_value; 
f _O_x2a = -fn_value; 

i=1; i_b=1; i_g=1; 
parms = 011 24; 
run function; * print pa rms fn value cn_value; 
f o x2b = -fn_value; 

i=1; i_b=1 ; i_g=1 ; 

parms = Bll O; 
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run function; * print parms fn value cn_value gn_value; 
f_x1a_o = -fn_value; 

i=1; i_b=1; i_g=1; 
parms = 16//0; 
run function; * print parms fn value cn_value; 
f x1b O = -fn_value; 

i=1; i_b=1; i_g=1; 

in_parms 2//4; *in units of pills; 
in_ steps in_parms+4; 

RUN SIMPLEX; 
FO_VALUE=-FO_VALUE; 
FN_VALUE=-FN_VALUE; 

RESULTS = RESULTS II (SAMPLE 11 PARMS ' 11 f _x1 a_o 11 f x1 b o 1 1 

f _O_x2a I I f_O_x2b 
I I FOO_VALU I I FN_VALUE 

I lbp_valuel lcn_valuel lgn_value l I COUNT); 
FREE FO VALUE FN VALUE part a fn vec z_b z_g; 

END; 
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res lab 
'FUNCTN O' 

{'SAMPLE' 'X1' ' X2' ' f_x1a_O' 'f_x1b_O' 'f_O_x2a' ' f_O_x2b' 

'FUNCTION' 'DECR_BP (mmHg)' 'CHG_cho (mmol / L)' ' CHG_gl u 
( mmol IL) ' 'COUNT' } ; 

* 

* 

CREATE RESULTS FROM RESULTS[COLNAME=RESLAB]; 
APPEND FROM RESULTS; 

FINISH; 

START IMPROVE; 
PLACE=NCOL(RESULTS); 
Y = RESULTS[,PLACE-4]-RESULTS[,PLACE-5]; 
DEN = NROW(Y); 
TPLUS = SUM((Y>O)#RANKTIE(ABS(Y) )); 
TJ = DESIGN(RANKTIE(Y))[+,]; 



VAR_T = (DEN#(DEN+1)#(2#DEN+1)-.5#SUM(TJ#(TJ-1)#(TJ+1))) / 24; 
ties= (den#(den+1)#(2#den+1))/24; 
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if var_t '=ties then print group simul 'ties occur' var_t ties; free 

ties; 

* 

* 

TSTAR = (TPLUS-(DEN#(DEN+1) / 4})/SQRT(VAR_T); 
PVALUE=1-PROBNORM(TSTAR); 
IF PVALUE > .05 THEN TSTRTEST=O; ELSE TSTRTEST=1; 
PRINT 'WILCOXON SIGN RANK TEST:' TSTAR PVALUE; 

BSTAR = NCOL(LOC(Y>O)); 
PVALUEB = 1-PROBBNML(.5,DEN,BSTAR); 
IF PVALUEB > . 05 THEN BSTRTEST=O; ELSE BSTRTEST=1; 

PRINT 'FISHERS SIGN TEST: ' BSTAR DEN PVALUEB; 
free y tplus tj var_t 

Y = RESULTS[,PLACE-4]-RESULTS[,PLACE-6]; 
TPLUS = SUM((Y>O)#RANKTIE(ABS(Y))); 
TJ = DESIGN(RANKTIE(Y))[+,]; 
VAR_T = (DEN#(DEN+1)#(2#DEN+1)-.5#SUM(TJ#(TJ -1)#(TJ+1))) / 24; 
ties= (den#(den+1)#(2#den+1))/24; 
if var_t '=ties then print group simul 'ties occur' var_t ties; free 

ties; 
TSTAR2b = (TPLUS-(DEN#(DEN+1)/4))/SQRT(VAR_T); 
PVALUE=1-PROBNORM(TSTAR2b); 
IF PVALUE > .05 THEN TSTRTS2b=O; ELSE TSTRTS2b=1; 
BSTAR2b = NCOL(LOC(Y>O)); 
PVALUEB = 1-PROBBNML(.5,DEN,BSTAR2b); 
IF PVALUEB > .05 THEN BSTRTS2b=O; ELSE BSTRTS2b=1; 
free y tplus tj var_t; 

Y = RESULTS[,PLACE -4] -RESULTS[,PLACE-7]; 
TPLUS = SUM((Y>O)#RANKTIE(ABS(Y))); 
TJ = DESIGN(RANKTIE(Y))[+,]; 
VAR_T = (DEN#(DEN+1)#(2#DEN+1)-.5#SUM(TJ#(TJ-1)#(TJ+1))) / 24; 
ties= (den#(den+1)#(2#den+1)) / 24; 
if var_t ' =ties then print group simul 'ties occur' var_t ties; free 

ties; 
TSTAR2a = (TPLUS-(DEN#(DEN+1) / 4))/SQRT(VAR_T); 
PVALUE=1-PROBNORM(TSTAR2a); 



IF PVALUE > .05 THEN TSTRTS2a=O; ELSE TSTRTS2a=1; 
BSTAR2a = NCOL(LOC(Y>O)); 
PVALUEB = 1-PROBBNML(.5,DEN,BSTAR2a); 
IF PVALUEB > .05 THEN BSTRTS2a=O; ELSE BSTRTS2a=1; 
free y tplus tj var_t; 

Y = RESULTS[,PLACE-4]-RESULTS[,PLACE-8]; 
TPLUS = SUM((Y>O)#RANKTIE(ABS(Y))); 
TJ = DESIGN(RANKTIE(Y))[+,]; 
VAR_T = (DEN#(DEN+1)#(2#DEN+1)-.5#SUM(TJ#(TJ-1)#(TJ+1)))/24; 
ties= (den#(den+1)#(2#den+1))/24; 
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if var_t '=ties then print group simul 'ties occur' var_t ties; free 
ties; 

TSTAR1b = (TPLUS-(DEN#(DEN+1)/4))/SQRT(VAR_T); 
PVALUE=1-PROBNORM(TSTAR1b); 
IF PVALUE > .05 THEN TSTRTS1b=O; ELSE TSTRTS1b=1; 
BSTAR1b = NCOL(LOC(Y>O)); 
PVALUEB = 1-PROBBNML(.5,DEN,BSTAR1b); 
IF PVALUEB > .05 THEN BSTRTS1b=O; ELSE BSTRTS1b=1; 
free y tplus tj var_t; 

Y = RESULTS[,PLACE-4]-RESULTS[,PLACE-9]; 
TPLUS = SUM((Y>O)#RANKTIE(ABS(Y))); 
TJ = DESIGN(RANKTIE(Y))[+,]; 
VAR_T = (DEN#(DEN+1)#(2#DEN+1) - .5#SUM(TJ#(TJ-1)#(TJ+1))) / 24; 
ties= (den#(den+1)#(2#den+1))/24; 
if var_t ' =ties then print group simul 'ties occur' var_t ties; free 

ties; 
TSTAR1a = (TPLUS-(DEN#(DEN+1)/4))/SQRT(VAR_T); 
PVALUE=1 -PROBNORM(TSTAR1a); 
IF PVALUE > .05 THEN TSTRTS1a=O; ELSE TSTRTS1a=1; 
BSTAR1a = NCOL(LOC(Y>O)); 
PVALUEB = 1-PROBBNML(.5,DEN,BSTAR1a); 
IF PVALUEB > .05 THEN BSTRTS1a=O; ELSE BSTRTS1a=1; 
free y tplus tj var_t; 

FREE DEN y TJ VAR T TPLUS PLACE ties; 
FINISH; 



start thersyn; 
* CRITICAL VALUE FROM CHI SQUARE DISTN WITH P OF, ALPHA=.05; 

_CHI_ = 5.99; 

ddf = nrow(x)-p; 
_F_= finv( . 95,p,ddf); 
fcrit (_num_-1)*p/(_num_-p)*_f_; 

MAXX1 = X[<>,1] + 5; 
MAXX2 = X[<>,2] + 5; 
RX1 MAXX1 /30; 
RX2 MAXX2/30; 

if simul=1 then do; 
wconfO=O; wconf1=0; wconf2=0; wconf12=0; wconfts=O; 
mconfO=O; mconf1=0; mconf2=0; mconf12=0; mconfts=O; 

end; 
wflag1=0; wf lag2=0; 
mflag1=0; mflag2=0; 

* checking origin; 
Z1 

z2 

o· 
' o· 
' 

_THETA_= Z1 // Z2; 
WIL (WILCOXON-_THETA_)'*INV(TAU_W)*(WILCOXON-_THETA_); 
MU (XBAR-_THETA_) '* INV(SIGMA) *(XBAR-_THETA_ ); 

IF _WIL_ <= _CHI_ THEN WCONFO = WCONF0+1; 
IF mu <= _fcrit_ THEN MCONFO = MCONF0+1; 

*checking axis1; 
DO Z1 = rx1 TO MAXX1 BY RX1; 

z2 = o; 
THETA = Z1 // Z2; 
WIL (WILCOXON-_THETA_)'*INV(TAU_W)*( WILCOXON-_THETA_); 

_MU_ (XBAR-_THETA_) ' *INV(SIGMA)*(XBAR-_THETA_); 
IF _WIL_ <=_CHI_ THEN wf lag1=1; 
IF _mu_<= _fcrit_ THEN mflag1=1; 

END; 

*checking axis2; 
DO Z2 = rx2 TO MAXX2 BY RX2; 
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z1 = o; 

END; 

_THETA_= Z1 // Z2; 
WIL 
MU 

(WILCOXON-_THETA_)'*INV(TAU_W)*(WILCOXON-_THETA_); 
(XBAR-_THETA_)'*INV(SIGMA)*(XBAR -_THETA_); 

IF _WIL_ <=_CHI_ THEN wflag2=1; 
IF _mu_<= _fcrit_ THEN mflag2=1; 

if (wflag1=1)*(wflag2=1)=1 then wconf12=wconf12+1; 
if (wflag1=1)*(wflag2=0)=1 then wconf1=wconf1+1; 
if (wflag1=0)*(wflag2=1)=1 then wconf2=wconf2+1; 
if (wflag1=0)*(wflag2=0)=1 then wconfts=wconfts+1; 

if (mflag1=1)*(mflag2=1)=1 then mconf12=mconf12+1; 
if (mflag1=1)*(mflag2=0)=1 then mconf1=mconf1+1; 
if (mflag1=0)*(mflag2=1)=1 then mconf2=mconf2+1; 
if (mflag1=0)*(mflag2=0)=1 then mconfts=mconfts+1; 
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thersyn = thersyn I I (GROUP 11 SIMUL 11 wconfO 11 wconf1 11 wconf2 11 

wconf12 11 wconfts 11 mconfO 11 mconf1 11 

mconf2 11 mconf12 11 mconfts); 
LABEL TS {'GROUP' 'SIMUL' 'WCONFO' 'WCONF1 ' 'WCONF2' 'WCONF12' 

'WCONFTS' 
'MCONFO' 'MCONF1 ' 'MCONF2' 'MCONF12' 'MCON-

FTS'}; 

finish; 

START FORPLOT; 
* CRITICAL VALUE FROM CHI SQUARE DISTN WITH P OF, ALPHA=.05; 

_CHI_ = 5.99; 

ddf = nrow(x)-p; 
_F_= finv(.95,p,ddf); 
_fcrit (_num_-1)*p/{_num_-p)*_f_; 
MAXX1 = X[<>,1] + 5; 
MAXX2 = X[<>,2] + 5; 
RX1 = MAXX1/30; 
RX2 = MAXX2/30; 
WILCONF = WILCOXON' I I O; 



XBARCONF = XBAR' I I O; 
DO Z1 = 0 TO MAXX1 BY RX1; 

DO Z2 = 0 TO MAXX2 BY RX2; 
_THETA_= Z1 // Z2; 
_WIL_ = (WILCOXON-_THETA_)'*INV(TAU_W)*(WILCOXON-_THETA_); 
_MU_ = (XBAR-_THETA_)'*INV(SIGMA)*(XBAR-_THETA_); 
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IF WIL <= _CHI_ THEN WILCONF = WILCONF // (_THETA_' 11 _WIL_); 
IF MU <= _fcrit_ THEN XBARCONF= XBARCONF II (_THETA_' 11 

_MU_); 
END; 

END; 
LABEL = { 'X1 ' 'X2' 'VALUE'}; 
CREATE WILCONF FROM WILCONF[COLNAME=LABEL]; APPEND FROM WILCONF; 
CREATE XBARCONF FROM XBARCONF[COLNAME=LABEL]; APPEND FROM XBARCONF; 
FREE MEDCONF WILCONF WBARCONF; 

FINISH; 

START JOB; 
DO GROUP =1 TO 5; 
DO SIMUL = 1 TO 100; 

RUN SIMULATE; 

RUN IMPROVE; 

P=NROW(IN_PARMS); 
X = RESULTS[,2:P+1]; 
F=RESULTS[,P+7]; 
_num_=nrow(results); 

RUN RANK_LOC; 
RUN THERSYN; 
gvar_sig = det(var_xbar); 
gvar_w = det(var_wilc); 

LOC = LOC // (GROUP I I SIMUL I I TSTAR I I TSTRTEST I I PVALUE I I 

BSTAR 11 BSTRTEST 11 PVALUEB 11 tstar1a 11 tstrts1a 11 

bstar1 a 11 

bstrts1a 11 tstar1b 11 tstrts1b 11 bstar1b 11 bstrts1b 11 

tstar2a 11 tstrts2a 11 bstar2a 11 bstrts2a 11 tstar2b 11 

tst rts2b 11 bstar2b 11 bstrts2b); 
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FINLOC=FINLOC // (GROUP 11 SIMUL 11 WILCOXON' 11 GVAR_W 11 XBAR' 11 

GVAR_SIG 11 

median ' 11 respwlcx' 11 respxbar'); 
IF GROUP=1 THEN IF SIMUL=1 THEN RUN FORPLOT; 
IF GROUP=1 THEN IF SIMUL=1 THEN DO; 

CREATE RESULTS FROM RESULTS[COLNAME=RESLAB]; 
APPEND FROM RESULTS; 

END; 
free results; 

END; 
END; 

LABEL {'GROUP' 'SIMUL' 'TSTAR' 'TSTRTEST' ' PVALUEW' 
'BSTAR' 'BSTRTEST' ' PVALUEB' 'TSTAR1 a ' 'TSTRTS1 a' 'BSTAR1 a' 

'BSTRTS1a' 
'TSTAR1 b' 'TSTRTS1 b ' 'BSTAR1 b' 'BSTRTS1 b' 'TSTAR2a ' 

'TSTRTS2a' 'BSTAR2a' 
'BSTRTS2a' 'TSTAR2b' 'TSTRTS2b' 'BSTAR2b' 'BSTRTS2b '} ; 

FLABEL ={'GROUP' 'SIMUL' 'WIL1' 'WIL2' ' GVAR W' 'MU1' 'MU2' 
'GVAR SIG' 'MED1 ' 

'MED2' 'WIL_RESP' 'MU_RESP'}; 

CREATE LOC FROM LOC[COLNAME=LABEL]; 
APPEND FROM LOC; 

CREATE FINLOC FROM FINLOC[COLNAME=FLABEL]; 
APPEND FROM FINLOC; 

CREATE THERSYN FROM THERSYN[COLNAME=LABELTS]; 
APPEND FROM THERSYN; 

FINISH; 

RUN JOB; 

PROC SORT DATA=THERSYN; 
BY GROUP SIMUL; 

data thersyn; 
set the rsyn; by group; 
if l ast ,group; 

PROC PRINT DATA=THERSYN; 
title4 'Evaluation of Confidence Ellipsoid'; 



Proc Means data=thersyn mean n std; 

PROC SORT DATA=LOC; 
BY GROUP SIMUL; 

PROC MEANS SUM N data=loc; 
VAR TSTRTEST BSTRTEST tstrts1a bstrts1a tstrts1b bstrts1b 

tstrts2a bstrts2a tstrts2b bstrts2b; 
title4 'Number of Improved Responses'; 

proc summary data=finloc mean n var; 
va r WIL1 WIL2 MU1 MU2 MED1 MED2 WIL RESP MU_RESP; 
by group; 
output out=newfloc mean=; 

proc means data=newfloc mean n std; 
title4 'Summary of Final Locations and Final Response' ; 

PROC summary data=loc MEAN N va r ; 
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var tstar tst r t est bs t a r bstrtest tsta r 1a t strts1a bs t ar1a bstrts1a 
tstar1b tstrts1b bstar1b bstrts1b tstar2a tstrts2a bstar2a bstrts2a 
tstar2b tstrts2b bstar2b bstrts2b; 

BY GROUP; 
output out=newsumm mean=; 

proc means data=newsumm mean n std; 
title4 'TSTAR=Wilcoxon Sign Rank, BSTAR=Fisher Sign Test '; 

RUN; 

PROC GPLOT DATA=WILCONF; 
PLOT X1*X2 /HZERO VZERO ; 

label x1='HCTZ (pi lls )' x2='DLTZ (pills)'; 
TITLE4 
'ASYMPTOTIC CONFIDENCE REGION BASED ON THE WILCOXON SIGN-RANK STATIS -

TIC'; 

PROC GPLOT DATA=XBARCONF; 
PLOT X1*X2 / HZERO VZERO; 

l abel x1= 'HCTZ (pi lls )' x2=' DLTZ (pills ) ' ; 
TITLE4 



'ASYMPTOTIC CONFIDENCE REGION BASED ON THE ESTIMATED MEAN'; 

DATA RESULTS; 
SET RESULTS; 
IF FUNCTION=-9999999 THEN FUNCTION=.; 

proc print data=results; 
title4 ' '; 

proc means data=results; 
var FUNCTION DECR_BP CHG_cho CHG_glu; 
title4 'Summary of Final Responses'; 

proc freq data=results; 
tables x1*x2/noprint nocol norow nocum nopercent out=scatfreq; 

PROC GPLOT DATA=scatfreq; 
* SYMBOL1 V=STAR; 

PLOT X1*X2=count/VZERO HZERO; 
label x1='HCTZ (pills)' x2='DLTZ (pills)'; 
TITLE4 'Scatterplot of Final Locations'; 

run; 

proc g3d data=scatfreq; 
scatter x2*x1=count / xticknum=11 yticknum=20 zmin=O; 
label x1='HCTZ (pills)' x2='DLTZ (pills)'; 
title4 'Pyramid Plot of Final Locations'; 

run; 
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Program SIMPLEX 

START SIMPLEX; 

*********************************************************************** 

* This program in PROC !ML of SAS conducts the Nelder-Mead simplex 
* program for function minimization . The program is adapted from 
*Olsson (1974), Journal of Quality Technology 6, 53-57. 

* 
* The user needs to provide the module FUNCTION which contains the 

* 
* 
* 
* 

* 
* code for calculating the function given the set of parameters. For * 
* this module PARMS is the column K-vector of parameters and FN_VALUE * 
* is the function evaluated at PARMS. Also, the user needs to * 
* provide the column K-vectors of starting values IN_PARMS and * 
* initial step values IN STEPS when calling this module. * 
* * 
* There is no printed output that results from running this module. * 
* However, the column K-vector PARMS (the set of parameters which * 
*minimize the function), FN_VALUE (the function evaluated at PARMS), * 
* and COUNT (the number of iterations) are available to the user. * 

* 
* As a cautionary note, the user should not construct matrices in 
* PROC !ML with the naming convention _MATRIX_ because the modules 
* use this for all temporary matrices. 

* 
* 
* 
* 

**********************************************************************· 
' 

_EPS_=1 .OE-4;_K_=NROW(IN_PARMS);_KK_=_K_+1; 
_P_=J(_K_,_KK_,O);_Y_=J(1,_KK_,O); 
COUNT=O;_DABIT_=2.04607E-20;_BIGNUM_=1.0E38;_KONVGE_=5; 
_PBAR_=J(_K_,1,0);_PSTAR_=_PBAR_;_P2STAR_=_PBAR_; 
_RCOEFF_=1.0;_ECOEFF_=1.5;_CCOEFF_=0.5; 

**CONSTRUCT INITIAL SIMPLEX**; 

_P_[,_KK_]=IN_PARMS;PARMS=IN_PARMS;RUN FUNCTION;_A_=FN_VALUE; 
FO_VALUE=_A_; 

_Y_[_KK_]=_A_;COUNT=COUNT+1; *print count parms fO value 
DO I =1 TO _K_; 



_P_[,_I_]=IN_PARMS;_P_[_I_,_I_]=_P_[_I_,_I_]+IN_STEPS[_I_J; 
_TEMP_=_P_[,_I_J;PARMS=_TEMP_;RUN FUNCTION;_A_=FN_VALUE; 
_Y_[,_I_]=_A_;COUNT=COUNT+1; 

END; 

**SIMPLEX IS NOW CONSTRUCTED**; 

HILO: 
_YLO_=MIN(_Y_);_YNEWLO_=MAX(_Y_); 
DO _I_=1 TO _KK_; 

IF _Y_[,_I_]=_YLO_ THEN _ILO_=_I_; 
IF _Y_[,_I_]=_YNEWLO_ THEN IHI_=_I_; 

END; 

**PERFORM CONVERGENCE CHECK ON FUNCTION**; 
**THE RATIO OF THE LARGEST TO SMALLEST VERTEX FUNCTION TEST**; 

_DCHK_=(_YNEWLO_+_DABIT_)/(_YLO_+_DABIT_ )-1; 
IF ABS(_DCHK_)<_EPS_ THEN GOTO BEST; 
_KONVGE_=_KONVGE_-1; 

IF _KONVGE_=O THEN DO;_KONVGE_=5; 
DO _I_=1 TO _K_; 

_COORD1 _=_P_ [_I_ ,1]; _COORD2_=_COORD1_; 
DO _J_=2 TO _KK_; 

IF _P_[_I_,_J_]<_COORD1_ THEN _COORD1_=_P_[_I_,_J_]; 
IF _P_[_I_,_J_]>_COORD2_ THEN _COORD2_=_P_[_I_,_J_]; 

END; 
_DCHK_=(_COORD2_+_DABIT_)/(_COORD1_+_DABIT_)-1; 

END; 
END; 

IF ABS(_DCHK_)<=_EPS_ THEN GOTO BEST; 

if count>_niter_ then goto best; 

**CALCULATE _PBAR_ , THE CENTROID OF THE** ; 
**SIMPLEX VERTICES EXCEPTING THAT WITH Y VALUE 

DO I =1 TO _K_;_Z_=O; 

YNEWLO ** · 
- - ' 
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DO _J_=1 TO _KK_;_Z_=_Z_+_P_[_I_,_J_J;END ; 
_Z_=_Z_-_P_[_I_,_IHI_];_PBAR_[_I_]=_Z_/_K_; 

END; 
_PSTAR_=(1+_RCOEFF_)*_PBAR_-_RCOEFF_*_P_[,_IHI_J; 

**REFLECTION THROUGH THE CENTROID**; 

PARMS=_PSTAR_;RUN FUNCTION;_YSTAR_=FN_VALUE; 
COUNT=COUNT+1 ; *print 'reflection' count parms fn value 
IF COUNT >=_NITER_ THEN GOTO retain; 
IF _YSTAR_ >= YLO THEN GOTO NOEXT; 

**SUCCESSFUL REFLECTION, SO EXTENSION**; 

_P2STAR_=_ECOEFF_*_PSTAR_+(1-_ECOEFF_)*_PBAR_; 
PARMS=_P2STAR_; RUN FUNCTION;_Y2STAR_=FN_VALUE ; 
COUNT=COUNT+1; *print 'extension' count parms fn value 

**RETAIN EXTENSION OR CONTRACTION**; 

IF _Y2STAR_ >=_YSTAR_ THEN GOTO RETAIN; 

EXTCON: 
_P_[,_IHI_)=_P2STAR_; 

_Y_[_IHI_)=_Y2STAR_; 

GOTO HILO; 

**NO EXTENSION**; 

NOEXT: 
_L_=O; 
DO I =1 TO _KK_; 

IF _Y_ [_I_] >_YSTAR_ THEN 

END; 
IF L >1 THEN GOTO RETAIN; 

L = L +1 · - - - - ' 

**CONTRACTION ON THE REFLECTION SIDE OF THE CENTROID* *; 
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IF _L_=1 THEN DO; 
_P_[,_IHI_]=_PSTAR_; 
_Y_[_IHI_]=_YSTAR_; 

END; 

**CONTRACTION ON THE _Y_[_IHI_] SIDE OF THE CENTROID**; 

IF COUNT >= _NITER_ THEN GOTO BEST; 
_P2STAR_=_CCOEFF_*_P_[,_IHI_]+(-_CCOEFF_+1)*_PBAR_; 
PARMS=_P2STAR_ ;RUN FUNCTION;_Y2STAR_=FN_VALUE; 
COUNT=COUNT+1; *print 'contraction' count parms f n_value; 
IF COUNT>=_NITER THEN GOTO BEST; 
IF _Y2STAR_<_Y_[_IHI_] THEN GOTO EXTCON; 

**CONTRACT THE WHOLE SIMPLEX**; 

DO _J_=1 TO _KK_; 
DO _I_=1 TO _K_; 

_P_[_I_,_J_]=0.5*(_P_[_I_,_J_]+_P_[_I_,_ILO_]); 
END;_XMIN_=_P_[,_J_]; 
PARMS=_XMIN_;RUN FUNCTION;_A_=FN_VALUE;_Y_[ , _J_]=_A_; 
*print 'whole contraction' count parms fn value 

END; 
COUNT=COUNT+_KK_; 
IF COUNT>=_NITER_ THEN GOTO BEST; ELSE GOTO HILO; 

RETAIN: 
_P_ [,_IHI_]=_PSTAR_; _Y_ [_IHI_ ]=_YSTAR_;GOTO HILO; 

BEST: 

_YNEWLO_=_BIGNUM_; 
DO _J_=1 TO _KK_; 

IF _Y_ [_J_ ]<_YNEWLO_ THEN DO; 
_YNEWLO_=_Y_[ _J _ ];_IBEST_=_J _ ; 

END; 
END; 
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_Y_[_IBEST_]=_BIGNUM_;_YSEC_=_BIGNUM_; 
DO _J_=1 TO _KK_; 

IF _Y_[_J_)<_YSEC_ THEN DO; 
_YSEC_=_Y_[_J_];_ISEC_=_J_; 

END; 
END; 
_XMIN_=_P_[,_IBEST_];_XSEC_=_P_[,_ISEC_]; 
PARMS=round(_XMIN_); 
FN_VALUE=_YNEWLO_; 

FREE _EPS __ K __ KK __ P __ Y __ DABIT __ BIGNUM __ KONVGE_; 
FREE PBAR __ PSTAR P2STAR RCOEFF ECOEFF __ CCOEFF_; 
FREE _A __ I __ TEMP __ YLO __ YNEWLO __ ILO __ IHI_; 
FREE _DCHK __ COORD1 __ COORD2 __ z __ YSTAR __ L __ J_; 
FREE _XMIN __ IBEST __ YSEC __ XSEC_; 

FINISH; 
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Program RANK_LOC 

START RANK_LOC; 

N=NROW(X);P=NCOL(X); 
XBAR=X[+,]/N;XBAR=XBAR'; *print x; 

respxbar=F[+,]/N; respxbar=respxbar'; 
epsilon=0.25; 

SIGMA=((X'*X)-(N*XBAR*XBAR' )) /( N-1); 
VAR_XBAR=SIGMA/N; 
DO _!_=1 TON BY 1; 

_I1_=_I1_l IJ(1,N-_I_+1,_I_); 
_!2_ = _!2_ I I (_I_: N); 

END;FREE _I_; 
WILCOXON=J(P,1,0);MEDIAN=J(P,1,0); respwlcx=J(1,1,0); 
GAMMA_W=J(P,P,O);GAMMA_M=J(P,P,O); 

DO; _FWALSH_=(F[_I1_]+F[_I2_]) / 2; 

END; 

_FWTEMP_=_FWALSH_; 
_FWALSH_[RANK(_FWALSH_)]=_FWTEMP_; 
FREE _FWTEMP_; 
_FMID_=N#( N+1) /4; 
respwlcx=(_FWALSH_[_FMID_]+_FWALSH_[_FMID_+1]) /2 ; 
FREE _FMID __ FWALSH_; 

DO _J_=1 TOP BY 1; 
_WALSH_=(X[_I1 _ ,_J _ ]+X[_I2_,_J_])/2; 
_WTEMP_=_WALSH_; 
_WALSH_[RANK(_WALSH_),]=_WTEMP_; 
FREE _WTEMP_; 
_MID_=N#(N+1)/4; 
WILCOXON[_J_,]=(_WALSH_[ _M ID_,]+_WALSH_ [_MID_+1,]) /2 ; 
_A_=ROUND(_MID_ -0,5-(1.96#SQRT(N#(N+1) #((2#N)+1)/24))); 
_LENGTH_=(_WALSH_ [(N#( N+1) /2) -_A_,] - _WALSH_[_A_+1,]); 

129 



if _LENGTH_=O then _LENGTH_=2*epsilon; 

GAMMA_W[_J_,_J_]=(4#1.96) / (SQRT(12#N)#_LENGTH_); 
FREE _MID __ WALSH __ A __ LENGTH_; 

_XTEMP1_=X[,_J_J;_XTEMP2_=_XTEMP1_; 
_XTEMP1_[RANK(_XTEMP1_),]=_XTEMP2_; 
FREE _XTEMP2_; 
_MID_=N/2; 
IF MOD(N,2)=1 THEN MEDIAN[_J_,]=_XTEMP1_[(N+1)/2,]; 
ELSE MEDIAN[_J_,]=(_XTEMP1_[_MID_,]+_XTEMP1_[_MID_+1,]) / 2; 
_Q1 _=ROUND((N+1)/4);_Q3_=ROUND(3#(N+1) / 4); 
_IQR_=_XTEMP1_[_Q3_,]-_XTEMP1_[_Q1_,J;_HN_=_IQR_/SQRT(N) ; 
GAMMA_M[_J_,_J_]=2#SUM(ABS( MEDIAN[_J_,]-_XTEMP1_)<=_HN_) / (N#_HN_); 
FREE _MID __ XTEMP1 __ Q1 __ Q3 __ IQR __ HN_; 

END;FREE _J __ i1 __ i2_; 

NU_W=J(P,P,O);NU_M=J(P,P,O); 
DO _J1 _=1 TOP BY 1; 

_RANK1 _=RANKTIE(ABS(X[, _J1 _ ]-WILCOXON[ _J1 _ ,]))/(N+1); 
_SIGN1W_=(X[,_J1_]<=WILCOXON[_J1_,])-(X[,_J1_]>WILCOXON[_J1_, ]) ; 
_SIGN1M_=(X[,_J1_]<=MEDIAN[_J1_,])-(X[,_J1_]>MEDIAN[_J1_,]); 
DO _J2_=1 TO _J1_ BY 1; 

_RANK2_=RANKTIE(ABS(X[, _J2_]-WILCOXON[_J2_, ]))/(N+1); 
_SIGN2W_=(X[,_J2_]<=WILCOXON[_J2_,])-(X[,_J2_] >WILCOXON[ _J2_,J); 
_SIGN2M_=(X[,_J2_] <=MEDIAN[_J2_,])-( X[,_J2_]>MEDIAN[_J2_ , J); 
_T_=_SIGN1W_#_SIGN2W_; 
NU_W[_J1_,_J2_]=SUM(_RANK1_#_RANK2_#_T_) / N; 
NU_W[_J2_,_J1_]=NU_W[_J1_,_J2_J; 

_T_=_SIGN1M_#_SIGN2M_; 
NU_M[ _J1 _ ,_J2_]=SUM(_T_ ) / N; 
NU_M[_J2_ , _J1 _ ]=NU_M[ _J1 _ ,_J2_]; 

END; 
END; 
FREE _J1 _ _ J2 __ RANK1 __ RANK2 __ SIGN1W __ SIGN1 M __ SIGN2W_ SIGN2M _ _ T_; 

TAU_W=INV(GAMMA_W)*NU_W*INV(GAMMA_W); 
VAR_WILC=TAU_W/ N; 

FINISH; 
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