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To date, the search efforts have shifted from the toxic II-VI, III-V and IV-VI 

semiconductors to more environmentally friendly materials. Among Group II-V 

semiconductors, Zn3P2 has shown to be a more benign option, similar to Group IV (Ge, 

Si) materials, for future applications in photovoltaics and optoelectronics. This work is 

dedicated to the development of wet-chemical synthetic routes of (1) Zn3P2 and (2) 

Group IV (Ge, Si, Si1-xGex) nanocrystals with precise control over composition, crystal 

structure, size and dispersity by adjusting different reaction parameters such as 

temperature, time and solvent composition. Different characterizations will also be 



 
 

 

employed to probe the size- and composition-dependent physical and optical properties 

of resulting products. 

The first part of this work illustrates the synthesis of luminescent Zn3P2 nanocrystals, 

an earth-abundant and a direct-gap semiconductor possessing high absorption 

coefficient and long carrier diffusion length, which uphold promising potential in many 

optoelectronic applications.  A hot injection method by using highly reactive P and Zn 

precursors (P[Si(CH3)3]3 and diethyl zinc) in hexadecylamine and octadecene was 

developed to prepare a series of alkyl-amine-passivated tetragonal Zn3P2 crystallites 

with varying size sizes. Substantial blue shifts in the absorption onsets (2.11−2.73 eV) 

in comparison to the bulk counterpart (1.4−1.5 eV) and a clear red shift with increasing 

particle size indicates the quantum confinement effects. This is also consistent with the 

photoluminescent studies with the size-tunable maxima in the visible region (469−545 

nm) as a function of growth temperature and time. The phase purity and alkyl-amine 

passivation of the nanocrystals were determined by structural and surface analysis, 

confirming the presence of N–Zn and N–P bonds on the tetragonal Zn3P2 crystallites. 

The second part of this works focuses on the development of a colloidal synthetic 

strategy of alkyl-amine capped Si1-xGex nanocrystals with control over size- and 

composition-dependent optical properties. Despite their high miscibility at all 

compositions, developing a wet-chemical synthesis of Si1-xGex alloys in the nanoscale 

remains a challenging task, owing to the difference of their crystallization temperatures 

and the high surface oxidation of Si. Thus an adapted colloidal method is utilized to 

fabricate single-element Ge and Si nanocrystals. Powder X-ray diffraction indicates 

successful production of cubic crystalline Ge and amorphous Si nanoparticles 



 
 

 

individually in oleylamine/octadecene (surfactant/solvent) mixture at 300°C. Absorption 

onset values of 1.28 eV and 3.11 eV are obtained for resulting Ge and Si colloids, 

respectively. By alloying these two materials in their nano-regime, tunable optical 

properties can be achieved throughout the visible to the near IR region by simply 

varying their elemental compositions. The success of this bandgap engineering process 

offers more options for new material design by taking advantage of unique properties 

from each component material. 
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CHAPTER 1 

INTRODUCTION 

 

Materials with at least one of its dimensions approaching the length scale of 1–100 

nm are commonly referred to as nanomaterials, which exhibit many fundamental 

properties different from their bulk solid systems.1-3 Research in nanotechnology has 

been expanded across multiple disciplines of science and has given rise to various 

potential applications in electronics, optoelectronics, catalysis, and energy conversion. 

These potentials have led to substantial research efforts in exploring new synthetic 

methodologies and unique properties of different nanomaterials. Since several 

fabrication methods have been developed over the years, it is important to identify the 

one that produces the highest quality with acceptable yield of product so that it is more 

suitable for real life applications. Since most of the well-studied fluorescent 

semiconductor quantum dots are composed of toxic elements (Cd, As, Se, Pb), which 

are detrimental to the environment and living cells, and health concerns have prohibited 

the wider their uses in biological applications, the task to look for more benign 

alternatives has become a focus in this field of nanotechnology. This thesis is focused 

on the synthetic development of low- to non-toxic semiconductor nanocrystals (NCs) 

from group II-V and IV elements, and tuning of different synthetic conditions to achieve 

products with the desired structures and properties. This chapter is dedicated to 

describe the importance of nanotechnology, the quantum size effects in semiconductor 

nanoparticles (NPs) that are not observed in their bulk counterparts, different synthetic 
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approaches reported and why we are interested in developing colloidal synthesis of 

Zn3P2 and Group IV NPs.  

 

1.1. Nanomaterials 

The first reported syntheses of nanomaterials began as early as 1857 when Michael 

Faraday produced the aqueous solution of Au NPs.4  However, most following efforts 

were only focused on the larger sizes (>100 nm), where little to no changes occur in 

their properties as a function of size. In the last few decades, materials in the size range 

of 1–100 nm have drawn intensive research interest owing to their unique changes in 

fundamental properties that are not present in the macroscale. In general, material size 

can range from the scale where it does not matter how big it is to one where it cannot 

be divided anymore, and nanoscience is the study of matter in that intermediate regime, 

where every slight modification in sizes can lead to several changes in its fundamental 

properties. These unique changes in material properties are the scope of many 

scientific investigations in order to probe new capabilities of materials that are useful in 

technology, medicine and general uses. However, commercial manufactures of 

nanomaterials today are still limited because the high production cost still outweighs 

their improvements of properties. Thus most research efforts are directed towards 

specific novel properties that are demanded and not attainable in the bulk.  

Once a material physical size falls into the nano-regime, one of the most important 

changes is the significant increase in surface area with respect to its volume. The 

overall number of atoms in a crystal structure unit decreases dramatically, and surface 

atoms become more important to several intrinsic properties such as magnetic,5,6 
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optoelectronic7,8 and catalytic.9,10 In addition, further uses of nanomaterials have gone 

into the development of nanotechnology, which involve for miniaturization of functional 

devices. To date, production and engineering of materials in the nanoscale have grown 

tremendously in increasing number of structural and functional devices, both organic 

and inorganic, along with the investigation of their size-dependent mechanical, catalytic, 

optical, magnetic, electronic and electric properties.  

Depending on the desired application, nanomaterials can be categorized into metals, 

semiconductors and magnets that can be in crystalline or amorphous form. For 

nanostructures composed of transition metals (Co, Ni),11,12 bimetallic (CoPt, FePt),13,14  

metal pnictides (MnP, FeP)15,16 and metal oxides (FeO, CuO, NiO),17 rigorous studies 

have been done on their synthesis and characterization of their magnetic properties, 

which have been used in motors, inks and biomedical application. Magnetic Fe2O3 and 

Ni nanostructures have also been proven efficient in targeted drug delivery and bio-

labeling for cancer therapy.18,19 In catalysis industry, nanomaterials have been shown 

enhanced capability in catalyzing a variety of reactions including hydrogenation (Rh, Pt, 

Pd),20,21 hydrodesulfurization (Ni2P),22 and hydrodenitrogenation (MoS2).
23  In 

optoelectronics, a majority of studies have been performed on semiconductor 

nanostructures due to their drastic change in optical properties relative to that of the 

bulk material. This unique phenomenon has received a great deal of attention from the 

scientific community, making semiconductors the most studied type of nanomaterials.  
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1.2.  Semiconductors 

Semiconductors, by definition, belong to a group of material that displays an 

intermediate conductivity between conductors and insulators (Figure 1.1). On the 

macroscopic scale, a semiconductor is composed of a large network of ordered atoms 

that form a set of similar-energy molecular orbitals, resulting in the formation of a 

continuous band.24 At 0 K, all electrons are occupied in the lower energy level (valence 

band, VB), leaving the higher energy level (conduction band, CB) empty. One 

characteristic feature of a semiconductor is the energy difference between the VB and 

CB, bandgap (Eg), and its magnitude is normally in the range of 0.3–3.8 eV24 (Table 1.1) 

and distinct for each specific material. This band energy concept in semiconductors can 

be understood similarly to the molecular orbital theory for an individual molecule, thus 

Eg can also be defined as the minimum energy required to excite an electron from 

HOMO to LUMO. The difference in conductivity between insulators, semiconductors 

and conductors is illustrated in the difference of Eg value (Figure 1.1). The larger the 

bandgap energy, the harder it is for electrons to travel from VB to CB, resulting lower 

probability for electrons to conduct.  

When absorbing photon energy that exceeds the energy gap, an electron in the VB 

can overcome the bandgap barrier and travel up to the CB,24 leaving a positive hole in 

the VB. The electron and hole are mobilized and act as charge carriers with applied 

voltage; otherwise they exist as an electrostatically bound electron-hole pair (exciton) in 

their lowest energy state.25 These characteristic excitons possess a finite size in the 

crystal structure, known as the Bohr radius (aB), with its value estimation illustrated in eq 

1.1 
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                                                       aB  =   
ħ2∈

e2
  [

1

me
∗  + 

1

mh
∗ ]                                               (1.1)       

where ∈ is the dielectric coefficient, e is the elementary charge, me* and mh* are 

electron and hole effective masses, respectively. Since ∈, me* and mh* are specific for 

each material, aB can span a wide range of 1–100 nm.25 The difference in many 

optoelectronic properties of semiconductors depends heavily on the comparability of the 

crystallite size and the Bohr radius. When crystallite size is equal or less than that of the 

Bohr radius, materials exhibit size-dependent absorption and emission properties, which 

have been a hot topic for many scientific investigations. 

 

 

Figure 1.1. The energy gap difference between a conductor, semiconductor and an 

insulator. 
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Table 1.1. Properties and Applications of Semiconductors  

Compound Bandgap 

(eV) 

Type* Structure Lattice 

spacing (Å) 

Applications 

Group III–V 

GaP 2.25 i zinc blend 5.45 LEDs 

GaAs 1.43 d zinc blend 5.653 integrated circuits, displays 

GaSb 0.69 d  6.095 thermal imaging devices 

InP 1.28 d zinc blend 5.8687 transistors 

InAs 0.36 d zinc blend 6.058  

InSb 0.17 d  6.4787  

Group II–VI 

CdS 2.53 d wurtzite 4.136 photovoltaic cells 

CdSe 1.74 d wurtzite 4.299 photovoltaic cells 

CdTe 1.5 d zinc blend 6.477 photovoltaic cells, 

modulators 

ZnS 3.8 d wurtzite 3.814 phosphors, infrared 

windows 

ZnSe 2.58 d zinc blend 5.667 infrared windows, LEDs 

ZnTe 2.28 d zinc blend 6.101  

Group IV–VI 

PbS 0.37 d sodium 

chloride 

5.936 infrared sensors 

PbSe 0.26 d sodium 

chloride 

6.124 infrared sensors 

PbTe 0.29 d sodium 

chloride 

6.460 infrared sensors 

Group IV 

Si 1.11 i diamond 5.43 integrated circuits 

Ge 0.67 i diamond 5.66 power electronics 

 

* i. indirect gap; d. direct gap 
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When considering optical properties of semiconductors, they can be classified as 

either direct- or indirect-gap (Figure 1.2). All photon induced electronic transitions rely 

not only on the intensity of incident photon energy relative to Eg, but also the wave 

vector k. In direct-gap materials, the wave vectors of electrons are conserved during 

excitation to relaxation processes. The absorption coefficient is proportional to the 

probability of the electronic transition,24 thus direct-gap semiconductors exhibit sharp 

absorption peaks with large absorption coefficients (e.g., CdSe, PbSe). Following the k-

conserved excitation is the electron relaxation or the recombination of electron-hole 

pairs, which will emit energy in form of photons. This process is commonly known as 

radiative recombination photoluminescence. These processes are useful features of 

semiconductors since they can be used in light emitting diodes and laser applications.  

In contrast with direct-gap, the VB maximum and CB minimum of indirect-gap materials 

do not have the same wave vector k, resulting in forbidden electronic transitions due to 

non-conserving momentum condition26 (e.g., Si, Ge). Electronic transitions are still able 

to occur for indirect band structure by the presence or removal of phonons (lattice 

vibrations) (Figure 1.2).26 Nonetheless, phonon-induced transitions are rare 

phenomena, thus probability of exciton radiative recombination is much lower in indirect 

gap materials, reducing the absorption and emission efficiency. This limitation prohibits 

the use of indirect gap semiconductors (Si, Ge) in many optical and optoelectronic 

applications. In addition, non-radiative recombination of electron-hole pairs may also be 

caused by surface defects, impurities or dangling bonds that act as trapping states 

within the bandgap.24 These mid-gap states serve as non-radiative sites that can 
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capture the photogenerated electrons and holes, prohibiting the possibility of band-edge 

recombination (Figure 1.3).      

 

Figure 1.2. The difference in bandgap structure of a direct- and indirect–gap 

semiconductor. 

 

Figure 1.3. Representative energy diagram of semiconductor nanoparticles; straight 

and wavy arrows indicate band-edge and surface trap state emission, respectively. 
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1.3.  Semiconductor Nanoparticles 

In the last two decades, the enormous changes in fundamental properties of 

semiconductor materials, whose sizes approach the nanoscale, have been the most 

studied research topic in nanotechnology. Among them, the most remarkable property 

of semiconductor NPs is the unusually large change in their optical properties as a 

function of size, allowing opportunities to exploit new photophysical properties of 

materials. For example, the bandgap of CdS can be tuned from 2.5 to 4.5 eV as the size 

of the bulk material are reduced to the molecular regime.27 The melting temperature 

increases from 400 to 1600 °C28 and pressure required for structural transformation 

varies of 9 to 2 GPa.29  

When the size of a semiconductor material becomes comparable or smaller than the 

Bohr radius, bound physical space of the excitons become smaller, and they are 

considered to undergo the quantum confinement effect. When this happens, electrons 

and holes become much closer to each other, resulting in higher Coulombic interaction 

and kinetic energy due to increase in collisions.30 In addition, all the similar energy 

levels forming the continuous band in the bulk are compressed to single discrete ones 

by the confinement effect.31 This results in the splitting of VB and CB electronic bands 

into discrete energy levels, and a blue shift of Eg energy with respect to the bulk is 

observed as the particle size decreases (Figure 1.4). This inversely proportional 

relationship between the bandgap energy change (ΔE) and the particle size under 

quantum confinement effect can be explained by equation 1.2.24 

                                        ΔE  =   
ħ2π2

2R2   [
1

me
∗  + 

1

mh
∗ ]  –  

1.8e2

∈R
                                         (1.2)                        
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Figure 1.4. Continuous energy bands in bulk and discrete energy levels in 

nanoparticulate semiconductors with respect to molecular orbital theory for a single 

molecule.  

 

Although this equation 1.2 is still an incomplete validation model to quantitatively 

correlate between calculated and experimental values due to a few presumptions of 

charge carrier effective mass and dielectric constant values, it gives a good estimation 

of the change in Eg as a function of particle size and clearly demonstrates size 

confinement effects in semiconductor NPs. Owing to this unique property, absorption 

and emission of semiconducting NPs can be fine-tuned by changing the particle size in 

the range of the critical radii, below which quantum confinement is observed. These 

values are highly dependent on the material and can range from 2.2 to 50 nm for group 

II-VI, IV-VI and III-V semiconductors.24 This strong size-dependent feature is particularly 
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helpful in tuning the absorption and emission energy across a wide range of the 

electromagnetic spectrum. That is the reason semiconductor NPs have gained 

significant interest as promising candidates for solar cells,32 nonlinear optical devices,33 

light emitting diodes,34 and fluorescent bio-labelling.35  

As mentioned above, the second most pronounced change in the semiconductor 

NPs is the enhanced surface/volume ratio, which also plays an important role in their 

optical properties. Since emission properties of NPs are contributed by both core and 

surface molecules, this surface enlargement can affect the dynamics of electron-hole 

recombinations. Compared to the bulk, more molecules in NPs are exposed on the 

surface, resulting in higher degree of defects and dangling bonds. These surface 

defects collectively form a series of mid-gap intermediate energy levels between the VB 

and CB, leading to the trapping photoexcited electrons or holes (Figure 1.3).36 While 

band-edge absorption and emission are intrinsic in semiconductor NPs and exhibit 

sharp emission peaks, these trap-state energy levels reduce the probability of the band-

edge transitions and exhibit much broader emission spectra in the longer wavelength. 

This surface effect has been shown to greatly reduce the quantum yield reduction in 

many luminescent NPs. Effective capping of the NP surface can greatly reduce this 

phenomenon, thus different surfactants have been used  as a means for surface 

passivation and elimination of surface trap states.36 

 

1.4.  Synthesis of Semiconductor Nanoparticles 

To date, several synthetic routes have been developed and employed in the 

fabrication semiconductor NPs, and they are categorized into two types of top-down and 
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bottom-up techniques. In order to be used in any application, all prepared NPs will 

eventually be assembled in an orderly fashion into functional devices, hence it is crucial 

that these superstructures must be able to retain the novel properties of the building 

block particles. Thus development of a synthetic method requires high control of particle 

monodispersity along with structural and compositional purity.  Although precise control 

of these properties still faces some challenges today, numerous routes have been 

established along with intensive investigation in the nucleation and growth mechanisms 

of different types of semiconductor NPs.     

1.4.1. Top-Down techniques 

In these techniques, a macroscale bulk semiconductor is etched down to form NPs 

by electron or ion beams. Controlled size and morphologies are achievable for this 

method due to high degree of flexibility in design and physical manipulation of the NPs 

by the high energy beam, allowing for systematic investigations of the quantum 

confinement effect for various particle sizes and shapes. One of the earliest examples 

of a top-down approach is reactive ion etching, which was employed for the fabrication 

of ZnTe quantum dot arrays using CH4 and H2.
37 In this process, a radio frequency 

induced plasma breaks down the gas molecules into reactive species, which are 

allowed to react with the sample surface to form volatile species and finally evaporate. 

Other techniques include focused ion beam and electron beam lithography, which were 

also used for preparation for nanostructures, yet these methods are rather slow with low 

reaction yield and require highly specialized equipment, making it less suitable for mass 

production. Due to these practical disadvantages, there have been much more efforts 
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spent on bottom-up methods since they offer low cost approaches with large production 

yield, high control of monodispersity and phase purity for resulting NP products.   

1.4.2. Bottom-up techniques 

 Compared to the top-down approach, bottom-up technique has proven to be a more 

favorable method to fabricate semiconductor NPs, thus a number of methods, which are 

generally divided into vapor-phase and liquid-phase, have been developed.  

1.4.2.1. Vapor-phase 

This method utilizes the chemical supersaturation of vapor mixture, resulting in 

homogeneous nucleation of the gas molecules when the degree of supersaturation and 

condensation kinetics allow.38 Upon formation of the nuclei, particle growth is facilitated 

by further deposition of supersaturated molecules onto the initial nuclei to form particles. 

Since gas molecules are thermodynamically and kinetically unstable, these nucleation 

and growth processes occur rapidly in a relatively uncontrolled fashion compared to 

colloidal methods.  

In order to produce vapor supersaturation for NP fabrication, various approaches 

have been employed using either solid, liquid or vapor precursors. For solid precursors, 

targets are vaporized into gas molecules by inert gas condensation,39 pulsed laser 

ablation,40 spark discharge41 or ion sputtering.42 In case of liquid or vapor precursors, 

various methods including chemical vapor condensation, thermal plasma, photothermal 

or laser pyrolysis. Although these syntheses take advantage of a wide range chemical 

precursor that are allowed to form multi-component NPs in the gas phase without 

template, they are still subject to a high degree of NP agglomeration and polydispersity, 

which can be overcome by capping ligands in the liquid phase.38,43 
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1.4.2.2. Liquid-phase 

In contrast with harsh reaction conditions used in the vapor phase, wet 

chemical/colloidal methods have been proven to be the most favorable route for 

semiconductor NP fabrication due to better control of reaction parameters to produce 

phase pure and monodispersed particles. Besides, different ligands are utilized as a 

means of surface passivation to provide better control of the nucleation and growth 

processes. In general, classical La Mer model is used to explain the production process 

of monodispersed NPs in solution,44 as described in Figure 1.5. In a typical colloidal 

synthesis, chemical reactants are quickly injected in a coordinating solvent solution at 

relatively high temperature (150-350°C)45, creating unstable supersaturation in a 

confined space, resulting in formation of small intermediate nuclei. As high temperature 

is maintained, further consumption of precursors continually facilitates the growth of the 

particles. Due to the rapid addition of precursors, the nucleation process usually happen 

instantaneously, and is taken over by the precipitation of reactants on pre-established 

nuclei for further growth, thus no additionally new nuclei are produced. When the growth 

of all nuclei happens in the same way, uniform size distribution is observed over time. In 

other cases, a second growth phase called Ostwald ripening can occur, resulting in 

polydispersity in resulting nanoparticles. This particular process happens when the high-

surface energy small nuclei dissolve back into solution and redeposit on the larger ones. 

Depending of the anisotropy of the crystal lattice, the growth dynamics along different 

directions are not similar.46 Thus different reaction conditions such as temperature, time 

and the use of capping ligands can adjust the surface energy of the nanoparticles and 

provide better controllability of their growth kinetics. 
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Figure 1.5. Scheme depicting the nucleation and growth stages in solution for the 

colloidal synthesis of monodispersed NCs in the framework of La Mer model.45 

 

1.5.  Importance of Benign Semiconductor Nanomaterials 

To date, many of the synthetic efforts are focused on II-VI (i.e. CdSe, CdTe, 

CdS),47,48 IV-VI (PbSe, PbS, PbTe),49,50 III-V (InAs, GaAs)51,52 based semiconductors 

due to their relative ease of the synthesis and precise morphological control leading to 

basic understanding of photophysics. Accordingly, a number of potential applications 

have been suggested and successfully demonstrated.53-55 However, one major problem 

with these materials is their inherent toxicity, which is detrimental to biological and 

environmental systems. In particular, studies have been demonstrated that the toxicity 

in cadmium-based quantum dots is due to the release or Cd2+ ions and/or formation of 

free radicals that can cause deadly effects on living cells.56,57 Nevertheless, the 
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exceptional properties of semiconductor nanostructures and their promising application 

in a number of new technologies suggest the necessity to develop more 

environmentally benign materials that can potentially replace the existing highly toxic 

compounds.  

 

1.6. Group II-V Semiconductors 

In contrast to the extensive studies on Group II–VI, IV–VI and III–V, the efforts on 

Group II–V NCs are rare although these materials exhibit much larger excitonic radii58 

that can potentially demonstrate pronounced size quantization59,60 and molar 

absorptivities comparable to those of Group II–VI NCs.61,62 Various fascinating 

magnetic,63 structural64 and electronic properties65 were observed with these II-V narrow 

bandgap semiconductors, including Cd3P2, Zn3P2, Cd3As2 and Zn3P2. However 

investigations in their optical and optoelectronic properties have not been done 

systematically, with Cd3P2 nanostructures having been studied the most up to date. As 

a representative II-V semiconductor, Cd3P2 exhibits a small direct bandgap (0.55 eV)66, 

with a large exciton Bohr radius (~36 nm),59,67 high dielectric constant68 and small 

electron effective mass.69 Recently, Yu and coworkers prepared a series of Cd3P2 

quantum dots, which have shown to be a promising class of light emitting material, with 

absorption tuned from 320 nm up to 1325 nm for NC sizes from 1 nm to 8 nm.70 Along 

with Cd3P2, colloidal Cd3As2 quantum dots also showed exceptional luminescence from 

the visible to the IR region (530–2000 nm), which adds on to the availability applications 

for infrared emitters.71 
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Although possessing outstanding optical and electronic properties, most II–V 

semiconductor nanomaterials are composed of toxic elemental components (Cd, As), 

which limits their potential in commercial and biological uses. Among them, Zn3P2 is a 

more suitable option due to its environment-friendly nature and earth-abundance while 

retaining excellent properties of group II–V materials. In particular, bulk Zn3P2 exhibits 

an absorption coefficient on the order of 104 cm–1,15,16 a carrier diffusion length of 5–10 

µm,72 and a direct bandgap of 1.4–1.5 eV59,62 making it a promising candidate for solar 

cells,73,74 light emitting diodes,75 and lithium ion battery applications.76 Accordingly, 

Catalano and co–workers demonstrated the use of polycrystalline Zn3P2 in Schottky–

barriers73 and Zn3P2/ZnO hetero–junction photovoltaic devices74 with power conversion 

efficiencies up to ~6 %. Moreover, recent reports on Zn3P2 nanowire photoconductors77 

and solar cells78 provide compelling evidence for the application of Zn3P2 in optical 

technologies. Despite its tremendous potential, the lack of well-developed chemical 

routes for crystalline and luminescent Zn3P2 nanostructures has led to inconsistent 

reports on size-dependent photophysical properties. 

 

1.7. Group IV Semiconductors (Ge, Si) 

In addition to Zn3P2, Group IV semiconductors (Si, Ge) have received less attention 

due to their inherent indirect bandgap structure.79 However, there has been tremendous 

interest in the investigation of their optical properties due to their non- to less-toxic 

nature, high natural abundance and excellent compatibility with current Si–based 

electronic and photonic technologies.36-41 To date, colloidal synthesis of high quality Si 

nanoparticles (NPs) with control over size and optical properties remains a challenging 
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task. Moreover, Si NCs are prone to oxidation by atmospheric oxygen, thus effective 

surface modification is required, making it a difficult material to work with. Top-down 

synthetic approaches produced Si NCs with control over size and emissivity that no 

other methods can do, but require relatively harsh conditions (HF etching) and high 

temperatures (>1200˚C).58,59 Bottom-up approaches  have been shown to produce 

phase pure Si NCs with control over size but they exhibit much lower quantum yields 

and the full spectrum of colors were not attained.60-65 Similarly, the synthesis of Ge NCs 

requires high crystallization temperatures (>250˚C) and strong reducing reagents.66-71 

To date, the majority of the synthetic efforts for Ge NCs are bottom-up methods, in 

which functionalization of particle surface with organic ligands is required to prevent 

oxidation and aggregation. Reduction of Ge salts by sodium metals,66-69 n-butyllithium 

(BuLi),70,71 sodium naphthalide,72-75 metal hydrides,76-80 thermal decomposition81-83 and 

reduction of organogermane,84-89 are common strategies to synthesize colloidal Ge 

NCs. 

The interest in production of Si1-xGex alloy NCs arises from their miscibility at all 

compositions in the bulk,95 similarity of electronic valency and low lattice mismatch.30 

Bulk Ge exhibit a bandgap of 0.67 eV, smaller than that of Si, 1.12 eV.96 Alloying of 

these two elements in different compositions can tune their band energy in the 

intermediate range, potentially resulting in tunable absorption and emission.97,98 

Additionally, quantum confinement effect can blue shift the bandgaps of the Si1-xGex 

nanoalloys, thus optical tunability spanning throughout the UV-visible to the near IR 

region can be obtained for the alloy NCs by adjusting size and composition. In addition, 

quantum confinement effect can possibly induce a quasi-direct gap behavior for 
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nanocrystalline Si1-xGex alloys,31 which will highly increase the molar absorptivity and 

emissivity of the NC product, making it a promising candidate for optoelectronic 

applications. However, Ge1-xSix alloy NCs so far  have only been produced by high-

energy synthetic routes such as thermal evaporation,90 laser-induced91 or non-thermal 

plasmas92, using highly reactive and hazardous Si and Ge precursors (SiH4, GeH4, 

GeCl4). Hence we propose to develop robust colloidal synthetic strategies for Ge1-xSix 

NCs with size and composition tunable bandgaps with promising absorption/emission 

properties, offering new perspectives for future optoelectronic applications. 

 

1.8. Thesis Statement 

The two main goals that will be explored in this thesis are (1) to develop a 

moderately high temperature colloidal synthetic route for Zn3P2 and Si1-xGex NCs with 

precise control over structure, morphology and composition (2) along with investigation 

of their size- and composition- optical properties as a function of synthetic parameters. 

 The initial motivation for a wet-chemical synthesis of Zn3P2 NCs is due to its cost-

effective fabrication, and high control over size and dispersity by manipulation of 

nucleation and growth kinetics. In addition, the lesser number of literature reports in 

colloidal method, along with their varying structural and optical characterizations, add 

more interest in the investigation of their size tunable absorption and emission 

properties. Although earlier reports were able to probe the photoluminescence of Zn3P2 

nanoparticles more than a decade ago, it was not until recently Luber and co-workers 

confirmed the tetragonal structure of non-luminescent Zn3P2 NCs. Therefore, this thesis 

fulfills the need of a robust colloidal synthesis of crystalline, luminescent Zn3P2 NCs and 
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optimization of their size-dependent optical properties controlled by fine tuning of 

reaction parameters. 

Secondly, the interest to fabricate Si1-xGex alloy NCs stems from high miscibility of 

Ge and Si, along with their capability to exhibit tunable absorption and emission 

throughout much of the visible to near-IR region via fine tuning of elemental 

compositions. Due to quantum confinement effect in the nano-regime, Ge and Si have 

shown some promising luminescent capacities, which are not normally observed in 

indirect gap materials. In the last decade, numerous reports have demonstrated the 

emission properties of Ge and Si nanoparticles prepared using different methods. 

However, Ge still exhibits limited size control and optical tunability, and the results 

obtained for Si remain inconclusive due to high influence of surface properties and its 

proneness to oxidation.80,81 With bandgaps of 1.182 and 2.8 eV83 experimentally 

achieved for ~5 nm Ge and Si nanoparticles, respectively, fabrication of nanocrystalline 

Si1-xGex alloys can enable the compositional tunability of luminescence across the 

visible to the near-IR spectrum, offering them more promising future in optoelectronic 

applications. This thesis explores a wet-chemical route to make nanocrystalline Si1-xGex 

alloys and examine the alloying and quantum confinement effects on their optical 

tunability and efficiency.     
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CHAPTER 2 

CHARACTERIZATION TECHNIQUES 

 

Different characterization techniques are specifically employed to gain better 

understanding about the properties (structural, chemical, optical, etc.) of NC products. 

In a wet-chemical synthesis, different reaction parameters (injection temperature, 

growth time, solvent use, etc.) can influence the complete reduction of chemical 

precursors into the desired compound, which can result in metal impurities as 

byproducts. In addition, the use of different surfactants and their amounts can affect the 

coating efficiency of prepared nanoparticles, which can influence the surface oxidation 

that leads to metal oxide impurities. In order to determine the phase purity of a material 

sample, powder X-ray diffraction (PXRD) analysis is employed to determine the crystal 

structure of as-prepared NCs. Utilizing Scherrer equation, Bragg reflections in the 

PXRD pattern can also be used to estimate the crystallite sizes of NC products. To 

confirm the chemical makeup of the material compound, compositional analysis utilizing 

scanning electron microscopy (SEM) coupled with an energy dispersive spectroscopy 

(EDS) is proven helpful for air-stable material. Further surface properties are explored 

by employing thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and 

X-ray photoemission spectroscopy (XPS). These investigations are essential to gain 

better understanding of the surface chemistry of as-prepared products, which play an 

important role in many of their intrinsic properties. For microscopic studies of resulting 

NCs, transmission electron microscopy (TEM) is a most common technique used to 
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estimate the size, shape and their lattice fringes, which are important to confirm the 

identity of the material. Finally, solution absorption and photoluminescence 

spectroscopy are used to study the optical properties of the prepared NC products 

dispersed in a non-polar medium, and diffuse reflectance analysis is utilized for solid 

powder samples. These optical investigations can determine the effect of size 

confinement effect on the absorption and emission energy of the resulting NCs. In 

addition, PL quantum efficiency will also be estimated with regards to a standard 

organic dye and band-edge emissions can be confirmed by time-resolved PL studies.  

  

2.1. Powder X-ray diffraction (XRD) 

In order to gain a better understanding about the phases and crystal structures of 

prepared materials, PXRD is common choice among many analytical techniques. Each 

and every crystalline material possesses a diffraction pattern that is characteristic to its 

particular crystal phase, and it serves as a “fingerprint” structural feature for that 

material. Since X-ray radiation wavelengths are in the same order of the crystal inter-

atomic distances, electrons in atoms create strong scattering effects with the oscillating 

electric field of the X-ray, resulting in diffractions. In the crystal form, several atoms 

assemble themselves into multiple periodic arrays, thus X-ray diffraction from different 

planes of atoms provide information of the atomic arrangement and crystal structure of 

the material. 

In a typical PXRD instrument, an X-ray tube is used to generate the X-rays by 

applying an accelerating voltage and allowing the electron beam to interact with a metal 

target (e.g., Cu). A high voltage of 30,000 – 50,000 volts is used to heat a tungsten 
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filament, resulting in ejection of highly energetic electrons (Figure 2.1). When these 

incident electron beams interact with the Cu target, ionization happens by the removal 

an electron from the Cu 1s orbital (K shell). This vacant spot will be replace by electron 

either from the 2p or 3p outer shell, These electronic transitions release energies that 

are characteristic of the X-ray generated of Kα (2p – 1s transition) and Kβ (3p – 1s 

transition). Depending on which orbital the electrons come from, X-rays are categorized 

in two kinds of Kα (2p) or Kβ (3p).    

 

 

Figure 2.1. A typical X-ray tube in PXRD instrument using Cu K radiation ( = 1.5418 

Å) (adapted from Cullity).84 
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Figure 2.2. Diagram showing the formation X-ray radiation from Cu target, which occurs 

due to ionization of the 1s electron, followed by the replacement of an electron either 

from 2p or 3p orbitals resulting Kα or Kβ radiation, respectively (adapted from West).85   

 

In general, the higher energy Kα radiation is used for all PXRD experiments, and the 

lower energy Kβ is filtered away by a monochromator. Upon hitting the sample of 

interest, part of the X-ray beam is reflected off the surface plane in a mirror-like manner 

at an angle equal to incident one, while other part is transmitted into the inner planes. 

The distance these beams travel deeper into the crystal are dependent on the lattice 

spacing d of two consecutive planes. Consider there are two beams A and B coming 

into contact with the sample. X-ray A gets diffracted off the surface plane as A’, and 

beam B penetrates thought the 1st plane and is diffracted as B’ (Figure 2.3). The two 

consecutive planes are separated by a distance of d-spacing. X, Y, Z are contact points 

generated by the 2 incident beams. In the case of constructive interference, the 

1s 

2s 

2p 

3s 
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additional distances XZ + YZ is an integral of the X-ray wavelength and the diffracted 

angle is mathematically related to the d-spacing by Bragg’s law (Eq. 2.1) 

XY + YZ = nλ 

sin θ = 
𝑋𝑌

𝑑
  = 

𝑌𝑍

𝑑
   

2 sin θ =  
𝑋𝑌+𝑌𝑍

𝑑
  =  

𝑛𝜆

𝑑
  

                                                   =>     nλ  = 2d sinθ                                                    (2.1) 

 

Figure 2.3. Schematic illustration of the diffractions of X-ray beams interacting with two 

consecutive crystal planes in a solid sample. 

In order to satisfy Bragg’s law, crystallinity of the powder sample is necessary, so 

that diffracted waves can give rise to peak intensity and pattern information regarding 

structure of the crystal. The constructive interference result in diffraction peak intensity 

which is plotted against 2θ. The diffraction peak positions represent a particular pattern 

that is specific to the size and shape of the crystal unit cell. The compositions and how 

every atom is positioned in the unit cell result in different peak intensities. When it 
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comes to materials, PXRD patterns in bulk and nanoscale differ from each other in the 

peak broadness. Nanocrystallites compose of much smaller number of lattice planes 

than the bulk, thus partially interfering waves are not completely cancelled, resulting in 

broader diffraction peaks. The broadness of the peaks are inversely proportional to the 

crystallite size and determined by Scherrer equation 2.2 

                                                           t  =  
0.9 𝜆

𝐵 cos 𝜃
                                                         (2.2) 

where t is the size of crystal, λ is the X-ray wavelength used, B is the full width at half 

maxima of the peak, and θ is the diffraction angle. This calculation only allows for 

determination of the average crystal size, and might be different from size calculated 

from other spectroscopic or microscopic techniques, mainly due to the present of 

surfactants or materials coating the crystal surfaces. 

In this study, A Philips X’Pert system equipped with a Cu K radiation ( = 1.5418 Å) 

was used to record powder X–ray diffraction (PXRD) patterns of all samples. The 

crystallite sizes were estimated by employing Scherrer equation,86 after making 

appropriate corrections for instrumental broadening using a Si standard. The powder 

sample is prepared by depositing on a low background Si holder. Analyzed X-ray 

diffraction patterns are compared against the International Centre for Diffraction Data 

(ICDD) powder diffraction file (PDF) database for identification of crystal phases. 

 

2.2. UV-Visible Absorption Spectroscopy 

Among analytical techniques, this is one of the oldest and most popular techniques 

used to investigate the optical properties of compounds under the influence of photon 
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energy. For solution absorption spectroscopy, compound molecules are dissolved in an 

optically transparent solution. When ultraviolet or visible light pass through these 

molecules, part of this energy is absorbed and part is transmitted through solution. The 

transmitted part gets detected and is mathematically transformed to determine the 

absorbance value of the solution. The intensity of the absorption is directly proportional 

to the concentration of the analyte (c), the molar absorptivity (ε) and path length (l) of 

the sample holder by the Beer-Lambert law 

                                                            A = ε l c                                                            (2.3) 

In this equation, the absorptivity is highly related to the structure of the analyzed 

molecule. In semiconductor materials, absorption of light results in the transition of 

electrons from the VB to the CB, and the wavelength maxima of the absorption peak 

can be correlated to the bandgap energy of the material. Since the bandgap energy 

increases with smaller crystal size due to the quantum confinement effect, absorption 

maxima are blue shifted relative to the bulk and with respect to decreasing crystal size.  

Absorption spectra are generally broad owing to the presence of several vibrational and 

rotational levels within the electronic levels. In this thesis study, this technique was 

utilized to examine the size-dependent optical bandgaps of the resulting semiconducting 

NCs. Typically, purified samples were dispersed in non-polar medium (chloroform, CCl4) 

and contained in quartz cuvette prior to being analyzed. All solution absorption spectra 

were collected by a Cary 6000i UV–vis–NIR spectrophotometer (Agilent Technologies) 

equipped with tungsten and deuterium sources. Instrumental parameters such as slit 

width and cell path length were kept constant through all experiments. Figure 2.4 
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illustrates a typical set up of an absorption spectrophotometer equipped with a 

photodiode array detector.   

 

 

Figure 2.4. A simple schematic diagram of a typical double beam UV-Vis 

Spectrophotometer utilizing Tungsten and Deuterium sources and a PDA detector. 

 

2.3. Solid State Diffuse Reflectance UV-Visible Spectroscopy 

For powder samples that are insoluble in either organic or aqueous media, diffuse 

reflectance technique is used for analysis instead of the more common solution 

absorption method. When ultraviolet or visible light interacts with a solid sample, there 

are two types of reflections, specular and diffuse, that can occur besides transmission 

and absorption. When incident beam reflects directly off a smooth sample surface in a 

mirror-like manner, it gives rise to specular reflection. More often, radiation will interact 

with a rough solid surface and partially penetrate into the sample, leading to subsequent 

absorption, reflection and diffraction of light in all directions. These diffusively scattered 
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beams are collected for analysis since they retain the optical information of the analyte 

of interest, and this is the principle of the diffuse reflectance technique.  

To quantitatively evaluate the reflectance data, the Kubelka-Munk remission function 

is a widely applied method to obtain pseudo-absorption information of the material (eq. 

2.4)    

                                                     fKM (R) = 
(1 − R)2

2R
 = 

K

S
                                                (2.4) 

where R is the percentage diffuse reflectance of the analyte to that of the non-absorbing 

reference, K is the molar absorption coefficient and s is the scattering coefficient.87,88 

The optical energy gap information of the material is obtained from the linear 

extrapolation of the absorption onsets to the baseline intersection point. In addition to 

Kubelka-Munk, there are other methods used for acquiring the optical absorption of 

nanomaterial from diffuse reflectance spectroscopy. Among those, Tauc analysis is the 

one that accounts for the difference in electronic transitions for both direct and indirect 

gap semiconductor materials. In semiconductors, electronic transitions are subject to 

specific selection rules depending on the crystal momentum of the band structure. As 

mentioned in Chap 1, whether the band structure is considered to be direct or indirect 

essentially depends on whether the photon-assisted transition is conserving its 

momentum. Thus the Tauc analysis demonstrates the proportionality between the 

absorption coefficient (α) and the available density of states (hν – Eg) for a particular 

transition by eq. 2.5 

                                                     (αhν)n = A (hν – Eg)                                               (2.5) 
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where A is the proportionality coefficient, hν is the photon energy and Eg is the 

bandgap. The value of n (1/3, 1/2, 2 or 2/3) is determined by the interband transitions of 

indirect forbidden, indirect allowed, direct allowed or direct forbidden, respectively. 

Similar to Kubelka-Munk method, the bandgap energy values can be also obtained from 

Tauc analysis by the baseline intersection with the linear regression of the absorption 

onsets acquired from (αhν)n vs hν plot.  

For this method to work efficiently, excessive amounts of a non-absorbing matrix 

(e.g. BaSO4) are used for sample dilution in order to allow higher penetration of the 

incident beam into the sample matrix and eliminate the interferences coming from the 

specular reflection phenomenon. Typically, a dried powder sample is homogeneously 

mixed with BaSO4 powder to form a pellet prior illuminating it with UV-Vis beam. For this 

thesis experiments, a Cary 6000i UV–vis–NIR spectrophotometer (Agilent 

Technologies) equipped with an internal DRA 2500 attachment was used to perform the 

reflectance measurements. This technique serves as a complimentary one to the 

solution UV-Vis absorption technique in order to explore the optical bandgaps and 

particle size relationship under quantum confinement effects.  

 

2.4. Photoluminescence Spectroscopy 

Photoluminescence (PL) is generally referred to as an emission of light by excited 

molecules that absorb energy from an excitation source. This process is depicted in 

Figure 2.5, and it can also be considered as the result of radiative recombination of 

electron-hole pairs in a semiconductor material. In general, the ground state and excited 

state consist of many vibrational and rotational energy levels. Absorption of photon 
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energy excites molecules from singlet ground state (S0) into the 1st singlet excited state 

(S1), followed by the relaxation of electrons from S1 to S0, accompanied by the release 

of photons (Figure 2.5) This radiative process results in fluorescence energy that is 

characteristic of the material. In case absorption energy exceed that of difference 

between S1 to S0, this excess energy promotes molecules to higher vibrational levels, 

followed by their relaxation via non-radiative processes (heat) before reaching the 

ground state. When phospholuminescence happens, there is an intersystem crossing of 

molecules from excited singlet to triplet excited states, followed by relaxation to ground 

state at a much longer wavelength. This process happens when there is a presence of 

impurity, defect or a foreign species, whose energy levels are in similar order of S1. 

Excited molecules from S1 cross over into these excited T1 states before decaying into 

S0, resulting in a red shift in energy compared to fluorescence. In general, emission 

wavelengths are red shifted relative to absorption ones, owing mostly to non-radiative 

vibrational relaxation of excited electrons known as Stokes shifts.      
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Figure 2.5. A schematic illustration of absorption followed by fluorescence and 

phospholuminescence processes under the effect of light energy. 

Along with absorption spectroscopy, PL spectra are used to investigate the size-

dependent optical properties of semiconductor NCs. All emission spectra were excited 

at the photoluminescent excitation (PLE) maximum. In addition, relative emission 

quantum efficiency can also be deduced from this technique. In this thesis study, The 

PL QYs were measured relative to a standard dye, Rhodamine 6G. The optical 

densities of NC samples and Rhodamine 6G in CHCl3 were adjusted to 0.08 and the 

emission spectra were recorded with the same excitation wavelengths. The quantum 

yields were calculated based on the comparison between integrated emission spectra of 

NC samples and Rhodamine 6G under identical experimental conditions. All PL 

measurements in this thesis are performed using Cary Eclipse fluorescence 
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spectrophotometer (Agilent Technologies) equipped with a xenon arc lamp that 

produces continuous wavelengths from 200 to 800 nm.  

 

2.5. Time-Resolved Photoluminescence (TR-PL) 

This technique has been of rising demand recently owing to the development of 

various laser sources covering a wide range of energy and wavelength tunability.89 As 

mentioned above, semiconductor photoexcited excitons may undergo different modes 

of recombination, resulting in either radiative or non-radiative relaxation. When it comes 

to NCs, surface moieties or defects give rise to mid-gap states which are able to trap 

the photoexcited excitons, thus inhibiting band-edge recombination. Utilizing ultrashort 

pulse laser, TR-PL spectroscopy allows probing more information about the relaxation 

pathways of charge carries in nanomaterials. For all luminescent sample prepared in 

this study, TR-PL measurements were performed using a frequency tripled Ti:sapphire 

laser (267 nm wavelength, 150 fs pulse width, 80 MHz repetition rate) and a 

Hamamatsu streak camera with 25 ps temporal resolution. The samples drop-casted on 

silicon substrates were mounted on a closed-cycle He cryostat for measurements at 10 

K.   

 

2.6. Transmission Electron Microscopy (TEM) 

This is the most widely used microscopic technique for determination of the general 

morphology and structure of nanomaterials. For this technique, electrons are used 

instead of light for imaging purpose due to their fine tunability of wavelengths that can 

be controlled by an applied electric field. When an electron beam is allowed to hit a 
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substrate, multiple events can occur and each of them carries different information 

regarding the analyzed species (Figure 2.6). Among them, TEM utilizes the transmitted 

beam to gain more information regarding the nanomaterial size, shape and morphology.  

High resolution TEM can further determine the lattice fringes, which are specific 

fingerprints of a specific material. This information plays an important role in helping 

with the identification of the material crystal structure.  

In a typical TEM instrument, a tungsten filament crystal is often used as the source, 

which can be thermally or electrically excited to emit electrons with applied electric field. 

During an analysis, high voltages of 100–400 kV are applied and can be adjusted to 

control the wavelength of generated electrons. For a typical imaging operation, the 

sample is deposited on a copper grid coated with a thin layer of carbon, and residual 

solvent is allowed to evaporate prior to being analyzed. One of the most important 

things that need to be considered before using this technique is confirming the sample 

transparency and stability under the electron beam. For a simple mode TEM analysis, 

both transmitted and diffracted electron beams are utilized, and the imaging process is 

aided by the use of different optical lenses which help constructing the image and 

diffraction patterns. During an experiment, imaging and diffraction modes can be 

switched between each other in order to either obtain the general morphology of the 

particles or the lattice information about the crystals. 
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Figure 2.6. Different interactive phenomena of an electron beam with a solid material 

substrate. 

 

For experiments performed in this thesis study, a Zeiss Libra 120 with a Gatan 

ultrascan 4000 camera operating at 120 kV is utilized for low-resolution imaging, and 

high–resolution TEM images were recorded on a FEI Titan 8300 electron microscope 

equipped with a Gatan 794 multiscan camera operating at 300 kV.  

 

2.7. Scanning Electron Microscope – Energy Dispersive spectroscopy (SEM-

EDS) 

As shown in Figure 2.6 above, a high energy electron beam can have several 

interactions with the sample, and the reflected or transmitted beams can provide 
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different information regarding chemical or physical properties of the analyte. When a 

scanning electron microscope is coupled with an energy dispersive spectroscopy, an 

electron beam is scanned across the analyte surface, and a variety of signals are 

generated from the sample. When the beam creates a vacancy in the material molecule 

orbital, an electron is transferred from outer orbital to fulfill that spot, resulting in an 

emission of an X-ray beam characteristic of that element. Elements possess different 

characteristic atomic structures, which cause their emitting X-ray wavelengths to be 

different. This technique is can quantitatively and qualitatively help in identification of the 

elements present on the surface of the sample of interest. A Hitachi SU–70 SEM-EDS 

instrument is utilized for these characterizations. Sample preparation involves 

deposition of sample onto conducting carbon tape before putting under vacuum for 

analysis.   

 

2.8. X-ray Photoemission Spectroscopy (XPS) 

This is another powerful analytical technique to determine the surface elemental 

compositions of materials, and it is often called Electron Spectroscopy for Chemical 

Analysis (ESCA). It works by the bombardment of the sample with a monoenergetic X-

ray beam causing the ejection of electrons of from the surface atoms with discrete 

energy levels. The conservation of energy in photoemission is 

                                                    Ehν = Ek + EΦ + EB(i)                                                (2.5) 

where Ehν is the X-ray energy, Ek is the photoelectron kinetic energy, EΦ is the work 

function and EB(i) is the electron binding energy in the (ith) level. When EΦ is constant for 

particle analyzer, and Ek is determined by electron analyzer, then EB(i) can be 
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calculated based on the above relationship. Elements possess different atomic 

structures, and electrons in the core orbitals experience different nuclear forces (binding 

energy). In addition, atom of the same element does not necessarily have the same 

binding energies because it can be altered by the surrounding chemical environment. 

For example, when valence shell electrons are removed, oxidation state of the atom 

becomes more positive, there is less shielding effect imposed on the core electrons, 

thus increasing the binding energy. Besides oxidation states, ligand electronegativity, 

coordination effects are also parameters that can influence chemical shifts in binding 

energies. With this capability, XPS is an essential technique to investigate many 

surface-related properties. Since surface atoms play much more important roles in 

nanomaterials, XPS has become one of the most important characterization techniques 

to investigate size-dependent photophysical properties of semiconductor NCs. For 

experiments involved in this study, a Thermofisher ESCALAB 250 instrument equipped 

with an Al Kα source was used for all the XPS measurements. As-prepared samples are 

spread on a piece indium foil deposited on conducting carbon tape in order to account 

for the surface charging effect of the instrument, which can create a shift in the binding 

energy. XPS spectra are collected with peaks representing different binding energies of 

surface compounds. Due to the overlapping in binding energies of different compound 

oxidation states, deconvolution analysis was performed to precisely determine assign 

the appropriate peaks for different species.  
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2.9. Thermogravimetric Analysis (TGA) 

This technique is commonly used to monitor the change in mass of material as a 

function of temperature under an inert atmosphere (He, N2 or Ar). Typically, thermal 

decomposition of the solid sample is a complex process, which involves several 

physical and chemical changes of the material, as it reaches high temperature (600–

700°C), such as sublimation, vaporization, liquidation, crystal phase change, desorption, 

etc. For example, desorption of surface solvents or surfactants from as-prepared 

sample can happen differently and proceed in stage-like processes. Depending on the 

boiling point and binding affinity of those molecules on the materials, their desorption 

temperatures can vary significantly, and this evidence can reveal partial information 

about the effectiveness of the capping molecules. Besides that, TGA has often used to 

monitor the thermal and oxidative stability along with relative composition of multi-

component systems. For these studies, samples were deposited on a platinum pan and 

loaded in into a furnace under N2 flow. Typical TGA curves were recorded at heating 

rate of 10°C / min and terminated at 600°C. 

      

2.10. Fourier Transform Infrared (FT-IR) Absorption Spectroscopy 

Infrared (IR) spectroscopy generally involves low-energy transitions between 

vibrational or rotational energy levels. In order to absorb IR radiation, the compound 

must undergo a net change in dipole moment under induced vibrations. With the use of 

the interferometer and Fourier transform data processing, FT-IR has been proven a 

convenient, fast and non-destructive technique for material characterization. Figure 2.7 

represents a simple illustration of a typical FT-IR set-up, which includes a) the Nernst 
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glower source, b) the Michelson interferometer, and c) the triglycine sulfate pyroelectric 

detector. The interferometer contains a KBr beam splitter, a fixed and a moving mirror, 

which is essential for the generation of an interferogram. Due to the high surface-to-

volume ratio of nanomaterials, FT-IR is one of earliest and most popular techniques 

used for monitoring the surface chemical activities. Since most molecular vibrations are 

dependent on the surrounding chemical bonds involved, each molecule exhibits a 

specifically unique vibrational absorption frequency that serves as a ‘”fingerprint” 

spectral feature associated with it.90 Nowadays, a common use of FT-IR in nanoparticle 

characterization is the identification of specific functional groups associated with the 

surface-bound solvents or surfactants. This investigation leads to better understanding 

about the effect of passivating ligands on the resulting nanoparticles. All IR spectra are 

collected using a Nicolet 670 FT–IR instrument equipped with a single-reflection 

diamond ATR attachment. For this set-up, IR radiation undergoes total internal 

reflection as it passes through an internal reflection element (diamond). The reflected 

beam interacts with the sample/diamond interface and is capable of penetrating a short 

distance into the sample surface, resulting in absorption.       
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Figure 2.7. A typical FT-IR set-up utilizing a Nernst Glower source, a Michelson 

interferometer and a pyroelectric detector. 
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CHAPTER 3 

Size–Dependent Optical Properties of Luminescent Zn3P2 

Quantum Dots 

 

3.1. Introduction 

To date, a number of synthetic methods for the production of Zn3P2 nanostructures 

have been reported, of which the majority rely on chemical vapor deposition or 

electrodeposition methods91-99 but fewer are based on wet chemistry59,60,78,100-102 The 

initial dominance of deposition methods can be attributed to applicability of Zn3P2 as a 

promising material in solar cells, which require fabrication of thin films. Nonetheless, wet 

chemical syntheses have an edge over other synthetic routes owing to low production 

and post–synthetic processing costs, greater size and size dispersity control, and 

potential control over crystal structure and composition. However, numerous efforts on 

the wet chemical synthesis of Zn3P2 resulted in conflicting reports on the structure and 

optical properties.59,60,100,101 For instance, Weller and coworkers claimed the synthesis 

of luminescent Zn3P2 nanoparticles (NPs) with quantum yields (QYs) up to 15%.100 

However, the structural characterization of the product was not supported by powder X–

ray diffraction or electron microscopic studies.100 Later, Green and O’Brien described 

the synthesis of luminescent Zn3P2 with no proof of crystal structure.59 Recently, Miao et 

al. reported the synthesis of nonluminescent Zn3P2 NPs using zinc stearate and 

P[Si(CH3)3]3.
60 Although emission was observed for nanostructures prepared with other 
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precursors (diethyl zinc and PH3), the authors attributed it to Zn3P2/ZnO core/shell 

NPs.60 More recently, Glassy et al. described the synthesis of Zn3P2 using multiple 

precursors with insight on the growth mechanism supported by NMR spectroscopy.101 

While the NPs are reported to exhibit distinct excitonic transitions, the emission 

properties were not thoroughly examined.101 In contrast, recent wet-colloidal syntheses 

have resulted in high quality tetragonal Zn3P2 crystallites with no indication of the size-

dependent optical properties.78,102 These varying reports on nonluminescent crystalline 

and structurally uncertain luminescent Zn3P2 emphasize the need to develop robust and 

reproducible syntheses for phase-pure crystalline and luminescent Zn3P2 NPs. 

 

3.2. Experimental 

3.2.1. Synthesis of Zn3P2 NCs in HDA/ODE 

In a typical experiment, 1-hexadecylamine (HDA) was placed in a three–neck flask 

with a condenser, septum, and thermocouple attached and dried under vacuum at 110 

°C for 1 h. Then, the flask was flushed with argon, and the temperature was raised to 

300 °C. In a nitrogen-filled glovebox, two mixtures of 0.05 mmol tris-

(trimethylsilyl)phosphine ((TMSi)3P) in 1.00 mL of 1-octadecene (ODE) and 0.105 mmol 

of Et2Zn in 1.00 mL of ODE were prepared separately prior to the synthesis. When the 

temperature of HDA reached 300 °C, colorless solutions of (TMSi)3P/ODE and 

Et2Zn/ODE were quickly and simultaneously injected under vigorous stirring and 

continuous argon flow. Upon injection, the temperature of the reaction mixture dropped 

to 265–272 °C and was allowed to ramp up to 300 °C within 3–4 min. To prevent the 

loss of phosphorus due to evaporation of (TMSi)3P, the argon flow was stopped right 
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after the injection, and the reaction flask was kept under reflux at 300 °C. Zn3P2 NCs 

with sizes in the range of 4.8 ± 0.7 – 8.8 ± 1.3 nm were grown at 300 ºC for 15–90 min. 

After the desired growth time, the reaction was quenched by blowing compressed air 

until the temperature reaches below 100 °C and 5 mL of toluene was added. As–

prepared NCs were isolated by solvent precipitation with methanol followed by 

centrifugation to achieve a yellow–orange to reddish–brown precipitate and purified by 

multi–step redispersion and reprecipitation in chloroform and methanol, respectively. 

Finally, the purified Zn3P2 NCs were dispersed in anhydrous chloroform to produce 

stable colloidal solutions. 

In addition to the synthesis of Zn3P2 at different time intervals (15–90 min.) at 300 

°C, NCs were also grown at different reaction temperatures (230–300 °C) for a fixed 

growth time (60 min.) to systematically investigate the evolution of optical properties. In 

this study, (TMSi)3P/ODE and Et2Zn/ODE precursor solutions were quickly injected to 

dried HDA at the desired nucleation temperature and the resultant nuclei were grown for 

1 h at the same temperature. The isolation and purification of NCs were performed as 

described above. 

3.2.2. Synthesis of Larger Zn3P2 Crystallites 

The synthesis of larger Zn3P2 crystallites was carried out in 100% ODE without the 

use of HDA surfactant. In a typical synthesis, 5 mL of ODE was dried under vacuum at 

110 °C for 1 h, and the temperature was raised to 300 °C. At 300 °C, two mixtures of 

Et2Zn/ODE and (TMSi)3P/ODE were rapidly and simultaneously injected under 

continuous argon flow. The reaction mixture was maintained at 300 °C for 30 min before 

cooling down with compressed air, and the resulting dark brown precipitate was washed 
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with toluene and methanol, followed by drying under vacuum prior to further 

characterization studies. 

 

3.3. Results and Discussion 

The synthesis of Zn3P2 NCs was carried out by employing the hot injection method 

using Et2Zn and (TMSi)3P as zinc and phosphorus sources, respectively. The larger 

Zn3P2 crystallites were prepared in high boiling, non-coordinating alkene solvent (i.e. 

ODE) whereas the smaller NCs were produced in HDA/ODE surfactant/solvent 

mixtures. Initially, the larger particles were synthesized to prove that the material, which 

is being produced by the reported method, is phase-pure tetragonal Zn3P2. The second 

motive is due to controversial results reported from recent studies on luminescent Zn3P2 

NCs,60,101 which exhibit conflicting powder diffraction patterns. Accordingly, larger Zn3P2 

particles were produced in ODE via hot injection of (TMSi)3P/ODE and Et2Zn/ODE at 

300 °C, followed by the growth of the resultant nuclei for 30 min. Since the precipitation 

of particles has already occurred, the reaction product was colloidally unstable and no 

further solution-based characterizations could be employed. However, the powder 

diffraction patterns of the precipitate indicate the formation of phase–pure tetragonal 

Zn3P2 (JCPDS 01–073–4212) whereas the narrow and intense Bragg reflections 

suggest the growth of larger particles (crystallite size = 50–60 nm, Figure 3.1). 

Consistent with the diffraction data, the elemental analysis of the reaction product using 

SEM/EDS confirmed the presence of Zn and P with atomic ratios of 55.3:44.7. The 

bandgap onsets determined by solid-state absorption spectra (Figure 3.2) are in the 
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range of 1.45–1.53 eV, which are consistent with the literature reports on bulk 

tetragonal Zn3P2 (1.4–1.5).59,62 
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Figure 3.1. Powder X-ray diffraction pattern of the larger (~50–60 nm) Zn3P2 crystallites 

produce in ODE at 300 °C for 30 min. ICCD–PDF overlay of tetragonal Zn3P2 (JCPDS 

01–073–4212) is shown as vertical black lines. 
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Figure 3.2. A representative solid state absorption spectrum of the larger (~50–60 nm) 

Zn3P2 crystallites produced in ODE at 300 °C for 30 min. Data acquired in the 

reflectance mode were converted to absorption using the Kubelka-Munk remission 

function.   

Following the synthesis of the larger particles, the efforts were focused on achieving 

the size and size dispersity control by employing a high boiling amine surfactant (HDA) 

in combination with a noncoordinating alkene solvent (ODE). The use of HDA as the 

surface passivating agent was motivated by the high affinity of alkyl–amines for zinc 

chalcogenides.103,104 Accordingly, ODE was used as the solvent of Zn and P injection 

mixtures, while HDA was used as the reaction medium. Upon simultaneous injection of 

two individually prepared (TMSi)3P/ODE and Et2Zn/ODE precursors to HDA/ODE at 300 

°C, the reaction color changed from colorless to yellow, which gradually turned into 

orange and orange–red. The injection of individually prepared (TMSi)3P/ODE and 

Et2Zn/ODE mixtures was found to be critical for the formation of phase-pure tetragonal 
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Zn3P2. When a pre–mixed solution of (TMSi)3P/Et2Zn/ODE was employed in the 

synthesis, conflicting powder diffraction data were obtained, similar to recent reports on 

structurally uncertain, luminescent Zn3P2 NCs (Figure 3.3).101 After the desired growth 

time at 300 °C, the reaction was quenched using compressed air, followed by the 

addition of toluene and isolation of NCs using methanol. The NCs synthesized in 

HDA/ODE were highly crystalline and exhibit excellent colloidal stability in nonpolar 

organic solvents due to the strong coordination of HDA to the NC surface. Accordingly, 

Zn3P2 NCs with average sizes in the range of 3.2 ± 0.6 – 8.8 ± 1.3 nm were produced 

by altering the injection/growth temperatures (230–300 °C) with a constant growth time 

(1 h) and also by varying the growth time between 15 and 90 min at 300 °C. 
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Figure 3.3. PXRD pattern of the product when a pre-mixed solution of 

(TMSi)3P/Et2Zn/ODE was injected in HDA at 300 °C and grown for 60 min. ICCD–PDF 

overlay of tetragonal Zn3P2 (JCPDS 01–073–4212) is shown as vertical black lines. 
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The phase purity of larger Zn3P2 crystallites and smaller NCs were investigated by 

employing the PXRD technique. As mentioned earlier, the dark brown precipitate 

obtained in 100% ODE corresponds to tetragonal Zn3P2, and the sharpness and high 

intensity of Bragg reflections suggest the formation of larger crystallites (Figure 3.1). In 

contrast, the PXRD patterns of NCs synthesized in HDA/ODE exhibit broad humps at 

25.8°, 27.0°, 29.2°, 31.3°, 32.3°, 34.2° and 36.9° suggesting the nanoparticulate nature 

of the reaction product (Figure 3.4). These peaks can be assigned to reflections 

originating from (211), (202), (212), (220), (203), (301), and (302) crystal planes of 

tetragonal Zn3P2 (JCPDS 01–073–4212). In addition, a high intensity broad reflection 

corresponding to (400) plane of tetragonal Zn3P2 is clearly evident at 44.9°. The 

broadness of the diffraction patterns is consistent with the Scherrer scattering of small 

crystallites suggesting that the primary particle size has been significantly reduced in 

the presence of HDA. The majority of Bragg reflections were not resolved due to 

combined scattering from crystal planes specifically for NCs prepared at 300 °C for 15–

60 min. Nonetheless, the peaks at 27.0°, 31.3°, 34.2°, and 36.9° were resolved with 

increasing growth time beyond 60 min, consistent with the formation of tetragonal 

Zn3P2. Due to the significant overlap of Bragg reflections in the range of 23°–41°, the 

average crystallite sizes were calculated by employing the single reflection at 44.9°, 

which are estimated to be 2.9–5.3 nm for NCs grown at 300 °C for 15–90 min (Table 

3.1). The elemental compositions of the Zn3P2 crystallites were determined by 

SEM/EDS and indicate two prominent peaks corresponding to Zn and P with atomic 

ratios in the range of 56–59% : 44–41% (Figure 3.5), which are consistent with the 

formation of tetragonal Zn3P2.
78 
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Figure 3.4. Representative powder diffraction patterns of tetragonal Zn3P2 NCs 

synthesized in HDA/ODE  at 300 °C for  (a) 15, (b) 30, (c) 45, (d) 60, (e) 90, and (f) 180 

min. The ICCD–PDF overlay of tetragonal Zn3P2 (JCPDS 01–073–4212) is shown as 

vertical black lines. 

 

Figure 3.5. A representative SEM/EDS spectrum of the Zn3P2 NCs prepared in 

HDA/ODE at 300 °C for 60 min. 
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Table 3.1. The absorption band onsets obtained from Kubelka-Munk (KM) and Tauc 

((F(KM)ℎν)2) analyses, PL, PLE data, stoke shifts, full width at half maxima (FWHM), 

crystallite and average particle size of Zn3P2 NCs produced in HDA/ODE at different 

temperatures and time intervals. 

 Crystal 

size 

(nm)
a
 

Particle 

size 

(nm)
b
 

Bandgap 

(KM) 

(eV)
c
 

Bandgap 

(F(KM)ℎν)2 

(eV)
c
 

PL 

(nm) 

PLE 

(nm) 

Stokes 

Shift 

(nm) 

FWHM 

(nm) 

Zn3P2 NCs Grown at 300 °C for different time intervals (min) 

15 min 2.9 4.8 ± 0.7 2.27 2.55 481 345 136 133 

30 min 3.8 5.9 ± 0.8 2.15 2.34 504 363 141 161 

45 min 4.2 6.6 ± 0.9 1.89 2.09 520 386 134 159 

60 min 4.7 8.0 ± 0.7 1.82 2.18 535 396 139 165 

90 min 5.3 8.8 ± 1.3 1.68 2.11 545 419 126 176 

Zn3P2 NCs grown at different nucleation and growth temperatures (°C) for 1 h. 

230 °C 2.0 3.2 ± 0.6 2.51 2.73 469 296 173 143 

250 °C 2.3 3.9 ± 0.5 2.37 2.57 491 324 167 112 

275 °C 3.7 5.6 ± 0.9 2.28 2.44 511 340 171 152 

300 °C 4.7 8.0 ± 0.7 1.82 2.18 535 396 139 165 

 

a  Average crystallite sizes were calculated by employing the single reflection at 44.9° 

after applying appropriate correction for instrumental broadening using a Si standard. 

b  Average particle size was calculated from counting 125–150 individual NCs from TEM 

images. 

c Optical bandgaps were estimated from extrapolating the linear portion of the 

absorption profile to the intersection point of the baseline.87,88,105  
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The surface properties of Zn3P2 NCs were studied by employing FT–IR, 

thermogravimetric, and XPS analyses. The characteristic (CHx) (2955, 2916, 2849 cm–1) 

and N–H (3100–3300 cm–1) stretching modes and δ(CH2) (1465 cm–1) and δ(N–H) (1590 

cm–1) bending modes along with the δ(CH2) wagging mode (1370 cm–1) observed in NCs 

synthesized in HDA/ODE suggest the presence of alkyl–amines (Figure 3.6).106 The 

presence of bound nitrogen on the NC surface is further evidenced by N–H (3145–3286 

cm–1) stretches, which were shifted to lower wavenumbers compared to those of free 

amine (N–H = 3165–3336 cm–1 for free HDA, Figure 3.6). The observed N–H stretches 

in the NCs were broad and not well resolved which is typical for particles in the 

nanometer size regime. Additionally, the peaks at 1254 and 2370 cm–1 are likely to arise 

from ρ(Si(CH3)3) and (P–H) vibrational modes of residual (TMSi)3P surface species.107 

However, the existence of ODE on the surface of the NCs cannot be ruled out, as the 

(CH2) stretches, which are prominent in the FT–IR spectra, may also be originating from 

ODE ligands. Moreover, the possible presence of both alkyl–amines and alkenes on the 

NC surface is suggested by thermogravimetric analyses of the respective NC samples 

(Figure 3.7).  
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Figure 3.6. FT–IR spectra of Zn3P2 NCs synthesized HDA/ODE at 300 °C for (a) 15, (b) 

45, (c) 90, and (d) 180 min. along with (e) the FT–IR spectrum of pure HDA. 
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Figure 3.7. A representative TGA plot of the Zn3P2 NCs synthesized HDA/ODE at 300 

°C for 60 min. Black solid curve illustrates the change in weight % as a function of time, 

while red dotted line displays the derivative of the previous curve. 
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A typical TGA curve of the Zn3P2 NCs synthesized in HDA/ODE exhibits multistep 

decomposition leading to the formation of a black residue with a total weight loss of 

∼32% (Figure 3.7). The derivative curve of the TGA reflects three major desorption 

events at ~230 °C, ~335 °C and ~430 °C. The first and second weight losses can be 

attributed to the loss of adsorbed moisture and organic moiety originating from possible 

–Si(CH3)3 and ODE surface species (boiling points of (TMSi)3P and ODE are ∼240 and 

∼315 °C, respectively). The final step can be correlated to the loss of alkyl-amine 

(HDA), which exhibits a boiling point of ∼330 °C. The significantly high temperature 

(∼430 °C) required for alkyl-amine desorption is likely due to strong coordination of HDA 

to the NC surface, as suggested by XPS (Figure 3.8).108 The PXRD patterns of the 

post–annealed TGA residue indicate the presence of tetragonal Zn3P2 in all samples 

(JCPDS 01–073–4212, Figure 3.9). Occasionally, impurity peaks corresponding to 

hexagonal Zn are observed at 2θ = 36.1°, 38.9° and 43.1° in the TGA residue that can 

be attributed to loss of phosphorus at high temperatures. Consistent with the diffraction 

data, SEM/EDS analysis of the TGA residue indicates atomic percentages of Zn:P to be 

82.3% : 17.7%, further supporting the loss of phosphorus upon thermal decomposition. 

The XPS was employed to study the chemical states and surface ligand binding of 

Zn3P2 NCs. The presence of Zn–P bonds are evident in the examination of both P(2p) 

and Zn(2p3/2) binding energies as indicated by a P(2p3/2) peak at 128.0 eV78 in Figure 

3.8A and  the Zn(2p3/2) peak at 1021.4 eV78 in Figure 3.8B. In addition, further analysis 

of the P(2p) and Zn(2P3/2) regions reveals important information about the state of 

ligand binding to the NC surface. The presence of HDA has already been confirmed in 

the FT–IR spectra (Figure 3.6); however FT–IR gives little information on how HDA is 
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bound to the NC surface. The N(1s) region has a broad peak at 399.8 eV with a full 

width half maximum of 2.45 eV consistent with multiple states of amine type bonds 

(Figure 3.8C).108,109 The less intense peak at 398.1 eV corresponds to N–Zn bonds,110 

and the combination of these peaks is suggestive of a multimodal bonding of N 

including metal–N complex bonds, in addition to dative bonding and electrostatic 

interactions.108 Furthermore, both Zn(2p3/2) and P(2p) regions exhibit secondary higher 

energy peaks at 1023.5 and 132.7 eV, respectively, which can arise from Zn–N and P–

N bonds.111 It has been previously shown that the incorporation of N into ZnO leads to a 

decrease in Zn(2p3/2) binding energy.109,110 Conversely, in the case presented here, N is 

more electronegative than P meaning it will pull electrons away from Zn more strongly 

than P resulting in a higher binding energy for Zn–N bonds than previously reported. To 

ensure that the Zn(2p) peak at 1023.5 eV is indeed from Zn–N bonds and not from Zn–

O bonds, analysis of the O(1s) region is compulsory. Investigation of the O(1s) 

spectrum in Figure 3.8D reveals only one peak at 532.1 eV, which is consistent with the 

adsorbed surface O species.108 There is a clear absence of an Zn–O peak, which would 

arise between 530.5108 and 529.0111 suggesting that the Zn(2p) 1023.5 eV peak arises 

from Zn–N bonds and not Zn–O bonds. In conjunction with PXRD data, the XPS results 

support not only the absence of crystalline ZnO but also the amorphous and surface 

oxidized Zn impurities. 
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Figure 3.8.  Representative XPS spectra of Zn3P2 NCs produced in HDA/ODE at 300 

°C for 60 min. (A) P(2p) region,  (B) Zn(2p3/2) region,  (C) N(1s) region, and  (D) O (1s) 

region. Dotted lines represent experimental data and solid colored lines correspond to 

fitted deconvolutions.  
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Figure 3.9. PXRD patterns of the (a) Zn3P2 NCs prepared at 300 °C for 60 min. along 

with the (b) post–TGA annealed residue of the sample. The ICCD-PDF overlay of Zn3P2 

tetragonal (PDF# 01–073–4212) and hexagonal Zn (PDF# 00–004–0831) are shown as 

vertical black and red lines, respectively.  

TEM was employed to investigate the effects of growth time and temperature on 

morphology and size dispersity of Zn3P2 NCs. The alkyl-amine passivated NCs exhibit 

nearly spherical shape and size dispersity in the range of 11–15 % irrespective of the 

different growth temperature and reaction times employed in the synthesis (Figure 

3.10). TEM images suggest that the NCs produced at shorter growth times (15–30 min.) 

exhibit narrower size distribution in comparison to those prepared at longer time 

intervals (45–90 min.). With increasing growth time, the size dispersity of Zn3P2 

crystallites has slightly increased. This can be attributed to partial Oswald ripening in 

which the smaller crystallites sacrificially break apart to produce larger and more 

polydispersed particles.45 Nonetheless, we have successfully tuned the average particle 
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size from 4.8 ± 0.7 – 8.8 ± 1.3 nm in HDA/ODE at 300 °C while maintaining the 

spherical morphology and size dispersity in the range of 11–15 % for as-prepared 

samples (Figure 3.10A–E). The size dispersity of NCs produced in this study are 

comparable to recent investigations on highly-quality nonluminescent Zn3P2 crystallites 

reported elsewhere.101,102 A high-resolution TEM image of an as–prepared NC, which 

exhibits lattice fringes of 2.01 Å, consistent with the (400) lattice spacing of tetragonal 

Zn3P2,
107 is shown in Figure 3.10C. 
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Figure 3.10. TEM images of the Zn3P2 NCs prepared in HDA/ODE at 300 °C for (A) 15, 

(B) 30, (C) 45, (D) 60, and (E) 90 min. The size histograms of Zn3P2 NCs without any 

post synthetic size selection are also shown. The second image in C shows the HRTEM 

image of a single Zn3P2 NC prepared at 300 °C for 45 min. 
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The optical properties of Zn3P2 NCs were investigated using UV-vis-near IR 

absorption and photoluminescence (PL) studies. The solution absorption spectra 

(Figure 3.11) exhibit no sharp excitonic features, consistent with the previous reports on 

Zn3P2 NPs.59 Recently, Glassy et al. reported slightly pronounced excitonic humps for 

Zn3P2 NPs in the size range of 2.6–2.9 nm.101 The particles reported in that study were 

significantly smaller and structurally ambiguous in comparison to tetragonal Zn3P2 

crystallites produced in this study. Hence, the lack of excitonic features can be 

attributed to either the difference in size or relatively larger dispersity of as-prepared 

NPs. Further, diffuse reflectance spectroscopy was employed to investigate the 

absorption band onsets of solid NC samples. Reflectance data were converted to 

pseudoabsorption using the Kubelka-Munk (KM)82,88,105 function and the bandgap 

values were obtained from linear extrapolation of the absorption onsets to the 

intersection point of the baseline (Figure 3.12, Table 3.1). The bandgap onsets obtained 

from KM conversion were lower than corresponding emission energies, which is typical 

for the KM analysis.82,112 To ascertain more accurate measurements, Tauc plots were 

employed to account for the nature of energy gaps (direct vs. indirect).88,113,114 The 

direct gap Tauc plots of Zn3P2 NCs exhibit well-defined absorption onsets that are 

consistent with the PL energy and systematic red shifts with increasing NC size 

suggesting size confinement effects (Figure 3.13A–B, Table 3.1). The bandgap onsets 

of smaller Zn3P2 NCs (2.11–2.73 eV, Table 3.1) were significantly blue shifted from 

those of larger (50–60 nm) crystallites produced in this study (1.45–1.53 eV, Figure 3.2) 

and the literature reports on bulk tetragonal Zn3P2 (1.4–1.5 eV).59,62 To further 

investigate the effects of reaction temperature on absorptive properties, temperature-
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dependent bandgap measurements were performed at different nucleation and growth 

temperatures (230–300 °C) while the growth time was fixed at 1 h. It was revealed that 

the absorption onset systematically decreases with increasing growth temperature 

consistent with the formation of larger crystallites (Figure 3.13B, Table 3.1). 
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Figure 3.11. Solution absorption spectra of Zn3P2 NCs prepared in HDA/ODE at 300 °C 

for (a) 15, (b) 30, (c) 45, (d) 60, and (e) 90 min. 
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Figure 3.12. Solid–state diffuse reflectance spectra (converted to absorption using 

Kubelka–Munk function) of [A] Zn3P2 NCs synthesized in HDA/ODE at 300 °C for (a) 15, 

(b) 30, (c) 45, (d) 60, and (e) 90 min. and [B] Zn3P2 NCs produced in HDA/ODE at (a) 

230 °C, (b) 250 °C, (c) 275 °C, and (d) 300 °C for 1 h. 
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Figure 3.13. Tauc plots of [A] Zn3P2 NCs synthesized in HDA/ODE at 300 °C for (a) 15, 

(b) 30, (c) 45, (d) 60, and (e) 90 min. and [B] Zn3P2 NCs produced in HDA/ODE at (a) 

230 °C, (b) 250 °C, (c) 275 °C, and (d) 300 °C for 1 h.  
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The NCs produced at 300 °C for different time intervals exhibit size–tunable 

emission maxima in the visible spectrum (Figure 3.14A, Table 3.1). PL energy tunability 

in the range of 481–545 nm was achieved for NCs passivated with HDA ligands. 

Relatively narrow tunability of emission energies is attributed to the short range of NC 

sizes (4.8 ± 0.7 – 8.8 ± 1.3 nm) produced in the synthesis. Moreover, a systematic red 

shift in emission energy and PLE maxima is observed with increasing particle size, 

consistent with the bandgap data obtained from corresponding NCs (Figure 3.13A, 

Table 3.1). To confirm the absence of emissive amine impurities, PL spectra of 

HDA/ODE heated to 300 ºC for 2-3 h were examined (Figure 3.15). HDA exhibits weak 

emission maxima at ~460 nm with PL QYs of ~0.02 %. In contrast, purified NCs display 

PL maxima at 481-545 nm with QYs of 0.35–1.6 %, which are typical of related metal 

phosphide systems.60,101,115 Further, the emission energy of HDA is not tunable and 

indicates a broad maxima at ~460 nm, suggesting that the size-tunable luminescence 

properties are arising from quantum-confined Zn3P2 crystallites. Moreover, the time-

resolved PL (TRPL) analysis of Zn3P2 crystallites yields luminescence lifetimes of 0.6–

20.8 ns (Figure 3.16), which are likely to arise from band–edge emission. On the basis 

of literature reports on II-VI quantum dots, band-edge emission exhibits PL lifetimes of 

0.1–5 ns,116 while emission from surface states is in the range of hundreds of 

nanosecond to milliseconds.36,117,118 Therefore, the nanosecond lifetimes obtained for 

Zn3P2 crystallites suggest that the corresponding PL is originating from band-edge 

luminescence. The mechanism involved with band-edge emission from quantum dots 

are thoroughly discussed in the literature,24,36 which accounts for radiative 

recombination of photogenerated excitons (electron-hole pairs). In cases where 
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excitation energy exceeds that of the band gap, electrons travel up to higher vibrational 

levels of the conduction band, resulting in non-radiative relaxation to conduction band 

edge prior to radiative recombination resulting in Stokes shift in the absorption and 

emission.24 Stokes shifts in the range of 126–141 nm (7.4 x 105–7.9 x 105 cm–1) and full 

width at half-maximum (fwhm) of 133–176 nm were observed for Zn3P2 crystallites 

grown at 300 °C for different time intervals (15–90 min.). In general, a slight increase in 

fwhm with increasing growth time is observed, which can be attributed to increasing size 

dispersity of NCs as suggested by TEM analysis (Figure 3.10). Furthermore, the 

absence of trap state emission at longer wavelengths24 is likely due to effective 

passivation of NCs by alkyl–amines as suggested by FT–IR and XPS analyses. 

The temperature-dependent emission spectra of the Zn3P2 NCs were also recorded 

to study the evolution of PL at different nucleation and growth temperatures (Figure 

3.14B). This has been performed by producing a series of Zn3P2 NCs at 230, 250, 275, 

and 300 °C for a fixed growth time of 1 h. The corresponding PL spectra exhibit 

systematic red shifts in emission maxima from 469, 491, 511, and 535 nm, respectively 

(Figure 3.14B, Table 3.1), which are consistent with the growth of larger crystallites at 

higher reaction temperatures. In general, a gradual increase in fwhm is observed with 

increasing growth temperature likely due to increase in size dispersity of particles. 
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Figure 3.14. PL and PLE spectra of [A] Zn3P2 NCs produced in HDA/ODE at 300 °C for 

15–90 min. along with the [B] Zn3P2 NCs synthesized at different nucleation and growth 

temperatures (230–300 °C) for a fixed growth time of 1 h.  
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Figure 3.15. Emission spectrum of Zn3P2 NCs produced in HDA/ODE at 300 °C for 90 

min along with the emission spectra of pure HDA/ODE mixture excited at different 

wavelengths (300–420 nm). The HDA/ODE mixture was heated at 300 °C for 3 h prior 

to analysis. Inset shows the magnified plots. 
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Figure 3.16. Emission spectra of Zn3P2 NCs produced in HDA/ODE at 300 °C for [A] 15 

min. and [B] 60 min. along with time-resolved photoluminescence plots of corresponding 

emission: [C] 481 nm and [D] 535 nm.  

 

3.4. Conclusion 

We have successfully developed a wet colloidal route for the synthesis of crystalline 

luminescent Zn3P2 NCs by employing (TMSi)3P and Et2Zn in high boiling alkene/amine 

reaction medium. The average particle size has been tuned from 3.2 ± 0.6 to 8.8 ± 1.3 
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considerably larger than that of bulk Zn3P2 (1.4–1.5 eV) suggesting strong quantum 

confinement effects. As the reaction time or temperature is increased, bandgap 

decreases, designating the progressive growth of NCs at elevated temperatures. 

Consistent with the bandgap onsets, PL/PLE maxima indicate a systematic red shift and 

broadening with increasing growth temperature and time indicating the formation of 

larger and more polydispersed particles. PL energy tunability from 469 to 545 nm, PLE 

maxima of 296–419 nm along with 0.35-1.6% luminescent QYs were achieved for 

tetragonal Zn3P2 crystallites passivated with alkyl-amine bonds, N–P and N–Zn, as 

suggested by FT–IR and XPS analyses. Further studies to expand the PL tunability, 

narrow the size dispersity, and enhance the emission QYs of Zn3P2 NCs will be the 

future scope of this work. Different capping ligands, surfactant/solvent combinations, 

and inorganic surface passivation will be investigated for improved synthetic control and 

to help glean a better understanding of the mechanism involved with the synthesis of 

Zn3P2 NCs. 
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CHAPTER 4 

Colloidal Synthesis and Characterization of Environmental-

Friendly Si1-xGex Semiconductor Alloy Nanocrystals 

 

4.1. Introduction 

Alloyed Si1-xGex nanostructures, which represent a class in Group IV semiconductor 

materials, have received intensive attention due to their potential applications in lithium-

ion batteries,119 bandgap engineering120, optoelectronic121 and thermoelectric 

materials.122 Since both Ge and Si exhibit indirect bandgap behavior, their use in optics 

and optoelectronics are not practical. Due to the observed strong luminescence in 

porous Si produced by chemical etching of bulk silicon,123 extensive studies have been 

dedicated to its preparation and optical properties.124,125 However, unanswered 

questions remain regarding their emission properties, which were reported to span the 

visible spectrum. One of the most important issues is the inconsistent reports on the 

correlation between size and emission color of Si NCs. On the other hand, synthetic 

efforts on Ge have results in size-dependent luminescence that spans the visible range 

(350–700 nm)126 for the inverse micelle technique or the near-IR spectral region (770–

1770 nm)82 for the colloidal technique utilizing strong reducing agents on germanium 

salts in coordinating solvents. These varying results led to the method of alloying Ge 

and Si, which is commonly known as bandgap engineering,127 in order to fine tune the 

optical energy gap across a wide range of the electromagnetic spectrum by changing 
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the elemental composition. Production of 5 nm Ge and Si nanoparticles with bandgap 

values of 1.1 eV82 and 2.8 eV,83 respectively from earlier literature reports indicates the 

need for a robust colloidal synthesis of Si1-xGex alloy nanocrystals with control in size 

and composition dependent optical properties. The success of this strategy should offer 

alloyed products for a wide range of application in photovoltaics and photodetection.   

 

4.2. Experimental 

4.2.1. Synthesis of Ge NCs 

In a typical experiment, 0.2 g of GeI2 (0.6 mmol) in 15 mL of dried OLA was placed 

in a 50 mL three-neck flask attached with a condenser, septum and thermocouple, and 

0.9 mL of n-butyllithium (BuLi) in 2 mL of ODE.  All these reaction set-ups were done 

inside a N2 filled glovebox due to the pyrophoric nature of BuLi and to prevent oxidation 

of precursors. The GeI2 in the OLA mixture was allowed to dissolve under vacuum at 

120°C for 10–15 min, followed by heating to 230°C under Ar.  Upon reaching that 

temperature, the colorless solution of BuLi/ODE was rapidly injected under fast stirring 

and continuous Ar flow. The reaction temperature dropped to 178–182°C after the 

injection, followed by being heated up to 300°C within 3-5 min and kept for 1 hr. The 

strong reduction power of the BuLi changed the reaction solution from reddish to dark 

brown. Following the 1 h growth time, reaction flask was cooled down by compressed 

air, and 10 mL of toluene was added. The resulting NCs were isolated and purified by 

multi-step redispersion and reprecipitation in toluene and methanol prior to being dried 

under vacuum for further characterizations.   
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4.2.2. Synthesis of Si NCs 

The colloidal synthesis of Si NCs is carried out similarly to that of Ge NCs, with SiI4 

is used as the precursor rather than GeI2. A comparable amount of SiI4 (~0.6 mmol) 

was added to 15 mL of OLA in a three-neck flask. The Si precursor was mixed well in 

OLA for 10-15 min, heated to 230°C, reduced by using BuLi and allowed to grow for 1 h 

at 300°C in a similar fashion to Ge synthesis. After the growth time, the reaction flask 

was cooled to ~100°C, prior to adding 1 mL of 1-octadecanol for surface coating. As-

prepared Si samples were purified by redispersion and reprecipitation in toluene and 

MeOH inside the glovebox. The resulting Si NCs were kept in an inert atmosphere prior 

to further characterizations to prevent oxidation.      

4.2.3. Synthesis of Si1-xGex NCs 

The synthesis of Si1-xGex alloy NCs were carried out in accordance with typical Si 

synthetic methods. In general, different amounts of GeI2 and SiI4 were used according 

to the desired Ge/Si mole ratio. Figure 4.1 illustrates a typical synthetic route of Si1-xGex 

alloy NCs.  

 

Figure 4.1. A schematic illustration of the colloidal synthesis of Si1-xGex alloy NCs in 

OLA/ODE. 
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4.3. Results and Discussion 

4.3.1. Ge NCs 

  In order to establish the colloidal synthesis of Si1-xGex, a single-element Ge 

synthesis, which was adapted from Ruddy et. al.,82,128 was carried out confirm the 

structure and phase purity of the as-prepared products. Accordingly, Ge NCs were 

produced by the reduction of GeI2 by BuLi at 300°C in OLA/ODE (surfactant/solvent) 

solution. PXRD patterns of the as-prepared NCs (Figure 4.2) exhibit diamond-like cubic 

structure of Ge (JCPDS 01-089-5011). The overall broadness of the Bragg reflections 

and the overlap of two peaks at 45.3° and 53.6° are evident of the nanoparticulate 

nature of as-prepared samples. Using the high-intensity reflection at 27.3°, the average 

crystallite size estimated using Scherrer equation was determined to be 2.6 nm.  
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Figure 4.2. PXRD pattern of Ge NCs produced in OLA/ODE at 300°C for 1 h. The 

diamond-like cubic reference patterns (JCPDS 01-089-5011) are shown as vertical 

black lines. 
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In order to confirm the NC formation and gain better understanding of their 

morphology, TEM was employed to image as-prepared samples dispersed in 

chloroform. These images confirm the nearly spherical shape of Ge NCs with average 

size of 3.5 ± 0.6 nm (Figure 4.3A–D). Estimated TEM sizes are slightly higher than that 

of the crystal sizes determined by Scherrer equation. This difference can be attributed 

to the surface passivation of the alkyl-amine surfactants present in the reaction mixture.  

 

Figure 4.3 Representative TEM images of Ge NCs synthesized in OLA/ODE at 300°C 

for 1 h. 

 

To investigate the optical properties of Ge NCs, absorption and photoluminescent 

studies were performed for as-prepared products. There is an absence of an excitonic 

peak in the solution absorption spectrum (Figure 4.5), which is consistent with the 

indirect gap nature of Ge. Thus, diffuse reflectance spectroscopy was used to probe the 
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absorption onsets of solid NC samples.  As discussed above for Zn3P2 quantum dots, 

Tauc analysis is usually employed to more precisely determine the bandgap energy of 

direct or indirect gap materials. The bandgap onset obtained from Tauc plot for indirect-

gap (1.28 eV) (Figure 4.4) for nanocrystalline Ge particles were substantially blue 

shifted from literature reported value for their bulk counterparts (0.67 eV) owing to the 

size quantum confinement effects.24,82 
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Figure 4.4. A Tauc plot that displays the absorption onset of Ge NCs synthesized in 

OLA/ODE at 300°C for 1 h. 
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Figure 4.5. Solution absorption and photoluminescence spectra of Ge NCs synthesized 

in OLA/ODE at 300°C for 1 h. 

 

Despite the absence of an excitonic feature, the emission spectrum exhibits a 

wavelength maximum at 804 nm (Figure 4.5), which is consistent with earlier report on 

cubic Ge NCs.82 Structural, microscopic and optical spectroscopic studies confirmed the 

quantum confined Ge NCs, with absorption and emission energies blue shifted with 

respect to the bulk counterpart.  

 

4.3.2. Si NCs 

In order to confirm the feasibility of the colloidal synthesis of Si1-xGex alloy NCs, it is 

important to assure the production of single-element NCs under similar reaction 

conditions. The synthetic route carried out for Si NPs are the same as that of Ge with 

the exception of using SiI4 as the precursor and an additional capping agent (1-
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octadecanediol). The structural properties of as-prepared samples performed by PXRD 

analysis exhibit a featureless pattern, suggesting the amorphous nature of resulting Si 

NPs (Figure 4.6), consistent with the literature reports for colloidal NPs.83 The 

amorphous structure of the NP product is also evidenced by the oiliness of the sample, 

which cannot be purified completely.  
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Figure 4.6. PXRD patterns showing the amorphous nature of Si NPs synthesized in 

OLA/ODE at 300°C for 1 h. 

 

TEM studies carried out for Si samples dispersed in chloroform reveal quasi-

spherical morphology of as-prepared NPs (Figure 4.7A–C). An average size of 4.9 nm 

with standard deviation of distribution comes in the range of 13–17% were obtained for 

colloidal Si NPs. The analyzed TEM images display a degree of residual surfactants 

retained around the particles, indicating an incomplete purification of the alkyl amines 

that cause the oily behavior of the samples.    
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Figure 4.7. Representative TEM images of Si NPs synthesized in OLA/ODE at 300°C 

for 1 h. 

 

Similar to Ge, Si is an indirect-gap material, thus the solution absorption spectrum 

shows no sign of an excitonic feature. According to previous studies, wet chemical 

synthesis, usually yield blue emission for luminescent Si NCs. Photoluminescence 

spectra of as-prepared Si NPs exhibited wavelength maxima in the near UV region of 

380 nm (Figure 4.8), similar to earlier investigations, and greatly blue-shifted with 

respect to emission of Ge NCs obtained above. This gives rise to the composition-

dependent emission tunability of Si1-xGex alloy NCs from the UV to visible spectrum. In 

addition, solid-state absorption performed by employing diffuse reflectance 

spectroscopy exhibit a bandgap onset of ~3.11 eV (Figure 4.9), consistent with the 

emission energy. This significant blue shift in band energy with respect to the 

macrocrystalline bulk form of Si (1.12 eV) emphasizes quantum confinement effects in 

Si NPs. 
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Figure 4.8. PL and PLE spectra of Si NPs synthesized in OLA/ODE at 300°C for 1 h. 
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Figure 4.9. A Tauc plot illustrating the absorption onset of Si NPs synthesized in 

OLA/ODE at 300 °C for 1 h. 
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4.3.3. Si1-xGex NCs 

The success in wet-colloidal production of elemental Ge and Si NCs employing 

similar synthetic conditions inspires the creation of their alloyed NCs, providing more 

options for new material design of nanoparticles while retaining the novel properties of 

individual compound material. One of the key factors influencing the fabrication of 

homogeneous alloys is the comparability in reaction conditions, and the growth process 

of one component material must not impede that of the other. In addition, their structural 

comparability should be able to smoothly facilitate the mixing to prevent the formation of 

unwanted structural impurities. The high miscibility, similar electronic valency and low 

lattice mismatch between Ge and Si highly favors their homogeneous alloying. Besides, 

the use of highly coordinating solvent mixtures (OLA/ODE) at moderately high 

temperatures (~230°C) can sufficiently solvate Ge and Si precursors, thus easing the 

co-nucleation and growth of nanoalloys. Due to the successful fabrication of 

nanocrystalline Ge particles and the amorphous nature of resulting Si NPs, alloying 

effects with a low amount of Si should create substitutions of Si atoms into Ge lattice 

structure, which can potentially maintain the crystallinity of Ge in the alloyed products.  

Experimentally, Si1-xGex NCs with compositions in the range of x = 82.1–92.5 were 

produced by co-reduction of GeI2 and SiI4 at 230 °C, followed by the growth of small 

nuclei at 300 °C for 1 h. In order to confirm the homogeneous alloying of Ge and Si, 

PXRD was used to probe the change in crystal structure and the presence of any 

impurities of the solid product. Silicon has smaller atomic radius than Ge does, thus 

incorporation of Si atom into Ge crystal structure will cause shrinkage in its lattice, 
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shifting the Bragg reflections to higher 2θ. Figure 4.10 displays the PXRD patterns of 

Si1-xGex alloy NCs with different elemental compositions.  
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Figure 4.10. Powder diffraction patterns of cubic Si1-xGex NCs, where (a) x = 82.1, (b) x 

= 87.5, (c) x = 88.2, and (d) = 92.5, prepared in OLA/ODE at 300 °C for 1 h. The cubic 

reference patterns for Ge (JCPDS 01-089-5011) and Si (JCPDS 01-072-1088) are 

shown as vertical black and red lines, respectively. 

 

From the PXRD patterns of as-prepared samples, it shows that the efficient 

reduction of Ge salts and the crystallization of Ge NCs were achieved. It also illustrates 

that the diamond-like cubic structure of Ge is maintained regardless of the amount of Si 

precursor added into the reaction. Although SEM/EDS analysis confirmed the presence 

of both Ge and Si in Si1-xGex NC samples, PXRD patterns exhibit no significant shift in 

Bragg reflections, suggesting there is insufficient evidence for the incorporation of Si 

into Ge lattice structure, which is a requirement for homogeneous alloying. 
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In order to investigate the optical tunability of Si1-xGex alloy NCs as a result of 

alloying and quantum confinement effect, absorption and photoluminescence 

spectroscopy was employed to probe these properties. Similar to pure Ge and Si, there 

is still an absence of an excitonic feature for Si1-xGex alloy NCs, which clearly confirms 

their indirect gap nature. With bandgap absorption onset of 1.28 eV and 3.1 eV obtained 

for Ge and Si NCs, respectively, tunable onset values intermediate to 1.28 and 3.1 are 

expected for resulting Si1-xGex NCs. However, Figure 4.11 indicates that there is 

insignificant change in absorption onsets with changing Ge compositions from 82.1% to 

92.5% in Si1-xGex products. These slight fluctuations in the range of 0.98–1.04 eV for 

the bandgap onsets could be due to the poor spectral resolution or the difference in 

concentration of solid samples used for the analysis.  

1 2 3 4

0.99 eV

1.01 eV

0.98 eV

a

d

c

b

 

(F
(K

M
)h

)1

/2

Energy (eV)

1.04 eV

 

Figure 4.11. Tauc plots showing the absorption onsets of Si1-xGex NCs with different 

elemental compositions. (a) x = 82.1, (b) x = 87.5, (c) x = 88.2, and (d) = 92.5. 
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Nonetheless, these energy gap values are blue shifted with respect to the bulk Ge, 

thus strongly indicate the formation of Ge NCs, which are also confirmed by their PXRD 

patterns. With the observed structural and optical characterizations, there is no 

evidence showing the incorporation of Si into Ge crystal structure, hence homogeneous 

alloys of Ge and Si are not achieved. This phenomenon could be attributed to the much 

higher surface energy of Ge nuclei, which only favors the crystallization of Ge NCs in 

solution, prohibiting the contribution of Si. In order to overcome this challenge, 

additional use of a crystallization agent is need to facilitate the nucleation and growth of 

Si NCs. Schaak and coworkers were able to use HMDS as a crystallization agent in 

production of highly crystalline and monodispersed Ge NPs without using strong 

reducing agent like n-BuLi or LiAlH4.
129 Moreover, the use of different surfactants and 

solvents can also improve the nucleation and growth kinetics of Si, thus promoting the 

simultaneous crystallization of Ge and Si. 

   

4.4. Conclusion 

We have attempted to develop a colloidal synthesis of Si1-xGex alloys NCs via co-

reduction of GeI2 and SiI4 in OLA/ODE surfactant/solvent mixtures at moderately high 

temperature (230–300 °C). Single-element Ge NCs were successfully produced via a 

wet chemical method adapted from literature. The resulting Ge nanocrystalline particles 

exhibit diamond-like cubic structure with nearly spherical morphology with an average 

size of 3.5 ± 0.6 nm. Optical absorption and emission spectroscopic studies indicate 

blue shifts in the bandgap onset and photoluminescence with respect to bulk Ge. In 

contrast with the crystallinity of Ge NCs, Si NPs prepared under similar synthetic 
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conditions result in amorphous particles, but their optical properties still show size 

confinement effects. Due to structural comparability of Ge and Si, this colloidal route 

was used to fabricate Si1-xGex alloy NCs with composition-dependent optical properties. 

Powder X-ray diffraction and solid-state absorption spectroscopic studies reveal the 

inability of Si to be incorporated into Ge structure, owing to the large difference in 

crystallization temperatures of the two materials. The successful outcome of this 

synthesis for Si1-xGex nanoalloys will demand the use of crystallization agent or different 

surfactant/solvent medium to facilitate the simultaneous nucleation and growth of Ge 

and Si.  
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SUMMARY 

 

Successful colloidal synthesis of luminescent Zn3P2 quantum dots were done via hot 

injection of highly reactive (TMSi)3P and Et2Zn in a high boiling surfactant/solvent 

(hexadecylamine/octadecene) mixture. The development of this synthetic strategy 

stems from the natural abundance and low toxicity of Zn3P2 material along with its direct 

gap energy that is ideal for solar energy absorption. Wet-colloidal syntheses have 

proven be the most favorable approach for fabrication of high quality quantum dots in 

various sizes and shapes owing to their ability to have high control over nucleation and 

growth kinetics of the nanocrystals. The resulting Zn3P2 NCs with average sizes of 3.2–

8.8 nm were observed to exhibit exceptional size-dependent absorption and emission 

properties. The small size particles exhibit high quantum confinement effects, with 

absorption onsets blue shifted to much larger values (2.11–2.73 eV) compared to the 

ones observed for the bulk Zn3P2 (1.4–1.5 eV). Size tunability was done by varying the 

time or temperature associated with the nucleation and growth processes. The 

synthesis indicated a direct relationship between particle size and reaction time or 

temperature. Bandgap onsets and emission maxima also show systemic blue shifts with 

reduction of particle sizes, indicating optical tunability as a function of size, consistent 

with size confinement effects. Relatively low quantum yields (0.35–1.6%) were 

estimated for these alkyl-amine capped Zn3P2 quantum dots, thus its improvement will 

be the scope of future work for this system.  
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Efforts to produce a new class of colloidal Si1-xGex alloy NCs were done via 

simultaneous reduction of Ge and Si salts in a coordinating solvent at elevated 

temperatures. Although the synthetic route was adopted from literature, different 

reaction parameters were fine-tuned to achieve successful alloying of the two materials 

on the nanoscale. Ge and Si were first prepared individually and showed successful 

production of cubic crystalline Ge NPs, while the resulting Si NPs remain amorphous. 

Due to the high structural comparability and large bandgap difference of Ge and Si NPs, 

their alloyed form was designed to take advantage of the composition-dependent optical 

tunability. As prepared Ge NCs exhibit quasi-spherical morphology with average size of 

~3.5 nm and bandgap onset of 1.28 eV, which is highly blue shifted from the bulk value 

(0.67 eV), consistent with the size confinement effect. With the absorption onset 

estimated at 3.11 eV for synthesized Si NPs, bandgap engineering through alloying in 

the nanoscale will enable the optical tunability across the visible to near IR region for 

Si1-xGex nanoalloys by changing their elemental compositions. However, as-prepared 

Si1-xGex nanoalloys display no tunable absorption and no Si incorporation into the cubic 

Ge crystal structure according to diffuse reflectance spectroscopic and PXRD 

characterizations. This phenomenon is attributed to the early nucleation and 

crystallization of Ge in comparison to Si. Therefore, the scope of future work for this 

system is to investigate different ligands that can be used as crystallization agents to 

help in facilitating the nucleation of and growth of Si NPs to be comparable with Ge. 
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