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 In the presented study, we identified that SRSF3 controls the alternative splicing 

of CPEB2 and consequently promotes a metastatic phenotype in triple negative breast 

cancer (TNBC). TNBC causes thousands of deaths annually, frequently due to a lack of 

effective treatments and a high rate of metastasis in patients. Alternative splicing has 

been found to be dysregulated in numerous cancers, while splicing factors such as 

SRSF3 are variably expressed. In this study we performed a siRNA panel to screen 

potential splicing factors, then used specific siRNA to study the effect of its knockdown 

on cellular function. These results showed that SRSF3 encourages the production of the 

pro-metastatic isoform of CPEB2, which contributes the aggressive phenotype of the 



x 
 

tumor. We utilized numerous methods to measure the metastatic function of cultured 

TNBC cells to determine if SRSF3 strongly promoted the metastatic function. These data 

showed that siRNA reduction of SRSF3 was able to reduce the metastatic potential of 

cancer cells. These findings suggest that SRSF3 has great potential as a therapeutic 

measure to reduce and minimize the aggressiveness of TNBC tumors.  
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CHAPTER 1 

BACKGROUND 

 

1.1 Cancer 

 Cancer is a terrible disease that affects millions of Americans every year. In 2014, 

1,665,540 Americans were diagnosed with some form of cancer [1]. Second in numbers 

to only heart disease, cancer kills numerous Americans annually. According to the 

National Cancer Institute, 35.2% of patients diagnosed with cancer die annually [1]. In 

2014, cancer accounted for 585,720 deaths in the United States [1]. Cancer’s high 

mortality rate is due to the heterogeneity of tumors and the lack of effective treatment 

methods.  

Breast cancer is the most commonly diagnosed form of cancer, with 235,030 

diagnoses in 2014 [1] (Figure 1-1). Additionally, breast cancer is the third most deadly 

type of cancer, causing 40,430 deaths in the US in 2014 [1] (Figure 1-1). As medical 

treatments have improved, both the mortality rates and the recurrence rates for breast 

cancer have dropped significantly. Yet, until we find a cure, there is still room for further 

progress. As of 2011, the breast cancer mortality rate is 17.2%, representing the 

percentage of diagnosed patients that died during treatment [1]. Similarly, the 5-year 

survival rate is only 91.8%, demonstrating that breast cancer tumors tend to readily 

metastasize or develop resistance to current therapies [1]. The cases in which current 

treatments are most ineffective belong to one of two particular subtypes of breast cancer: 

triple negative breast cancer (TNBC) and HER2 positive breast cancer. Both of these 

cancers tend to be particularly metastatic and lack targeted treatment options [2].   
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Figure 1-1. Cancer diagnoses and deaths in 2014. According to the National Cancer 
Institute, breast cancer is the most commonly diagnosed cancer subtype. 235,030 new 
cases of breast cancer were reported in 2014. Additonally, breast cancer is the third 
leading cause of cancer deaths. 40,430 deaths in 2014 were attributed to breast cancer. 
Source: SEER 2014 [1] 
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Cancer 
Subtype  

New Cases in 
2014 

Deaths in 
2014 

5 Year 
Survival Rate 

(%) 

Breast 235,030 40,430 91.8 

Prostate 233,000 29,480 99.8 

Lung 224,210 159,260 18.2 

Colon 96,830 50,310 66.5 

Pancreas 46,420 39,590 7.2 

  

Table 1-1. Cancer Statistics. Breast cancer is the most commonly diagnosed form of 
cancer in the United States. It is also responsible for the third highest number of cancer-
related deaths per year. Despite that, the 5 year survival rate for breast cancer is high 
(91.8%), but still provides room for improvement. This table compares diagnoses, deaths, 
and survival rates to four other prominent forms of cancer. Source: SEER 2014 [1] 
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1.1.1 Process of Cancer Metastasis 

 One of the most dangerous aspects of cancer is its ability to metastasize to other 

areas in the body. This process makes cancers very challenging to treat, even if surgery 

effectively resects the tumor.  

To better understand metastasis, scientists have broken down the process into five 

general stages (Figure 1-2). The first of these stages is initial tumor proliferation and local 

invasion (growth). During this stage, the tumor grows into local tissues while accumulating 

mutations that promote growth and cell-cycle progression. The next stage is intravasation, 

when individual tumor cells slough off into the circulating blood system. At this point, most 

tumor cells undergo epithelial to mesenchymal transition (EMT) to encourage anchorage 

independent growth [3]. In general, when the cells are no longer attached to the 

extracellular matrix or other epithelial cells, the cells will experience detachment-induced 

cell death (anoikis) signaling. In the case of cancer, if the tumor cells have not acquired 

sufficient mutations to resist this apoptotic signaling, the tumor cells will not survive 

intravasation. After the third stage, migration, the tumor cells will reach the site of 

metastasis and undergo extravasation. During extravasation, the tumor cells invade the 

walls of the capillaries and surrounding tissue in the new location. The cells will now 

undergo mesenchymal to epithelial transition (MET) to encourage accelerated cellular 

growth in an anchorage-dependent manner [3]. This final stage is referred to as 

colonization and is where the new tumor gains size and tumor cells multiply.  
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Figure 1-2. Schematic Representation of the Stages of Cancer Metastasis. There 
are five steps that occur during tumor metastasis. 1) Growth: tumor grows in size in initial 
location until it acquires sufficient mutations to metastasize. 2) Intravasation: cells from 
the initial tumor detach from the surrounding tissue, undergo EMT, and enter the 
circulatory system. 3) Migration: cells travel through the body’s vasculature. 4) 
Extravasation: cells invade site of distant metastasis. 5) Colonization: cells undergo MET 
to promote anchored cell growth. 
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1.1.2 Triple Negative Breast Cancer 

 There is a significant clinical need to improve treatments for the triple negative 

subtype of breast cancer (TNBC) due to the high mortality rates and high rates of 

recurrence associated with this cancer. The term triple negative refers to a subtype of 

breast cancer tumors that do not express the estrogen, progesterone, and HER2 

receptors [2,4].  While only 15-20% of all breast cancers are triple negative, they account 

for almost 70% of the eventual deaths, either due to recurrence or resistance to standard 

therapies [1,2].  

Data analyses have shown that TNBC has a hazard ratio (relative mortality rate 

between TNBC and standard breast cancer) of 4.35 [1]. Due to a lack of a specific or 

unique drug target, less effective broad spectrum treatments must be used [4]. Common 

treatment strategies include the use of antracyclines, taxanes, ixabepilone, platinum 

agents, select biological agents, and anti-EGFR drugs [4-7].   

Initially, patients with TNBC will appear to respond well to treatment, but will 

ultimately suffer a worse long term prognosis [4]. It appears that tumor cells in TNBC 

patients are able to develop metastatic characteristics that allow them to avoid complete 

eradication by standard treatment methods. Despite breast cancer having a 91.8% 5-year 

survival rate, patients with TNBC only exhibit a 30.0% 5-year survival rate, demonstrating 

a dramatic need for clinical improvement [1,2].  

Currently, there are a few commonly used in vitro models of TNBC that utilize 

human tumor cells cultured for study (e.g. MDA-MB-231, MDA-MB-468, BT549, 

SUM1315) [8]. These cell lines were acquired from patient tumors and cultured to ensure 

accurate representation of the initial tumor. Researchers frequently use these models in 
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conjunction with mouse models to observe the effects of various treatments on the 

metastatic functionality of the TNBC cells [4]. Mouse models provide in vivo models of 

TNBC that allow system wide observation of metastasis in a controlled setting. In vivo 

models can be used to test potential drug treatments that could potentially be translated 

to human clinical trials in the future.  

 

1.1.3 HER2/ErbB2 Positive Breast Cancer 

 Like TNBC, HER2 positive breast cancer lacks effective clinical treatments due to 

its aggressive and metastatic nature. HER2 positive breast cancers overexpress the 

membrane protein ErbB2/HER2 and tend to yield poor patient prognoses [2]. The 

National Cancer Institute determined that patients with HER2 positive breast cancer have 

a hazard ratio of 3.60, rating as the second most dangerous subtype of breast cancer [1].  

 Overexpression of ErbB2/HER2 accumulates at the plasma membrane and leads 

to chronic activation of the ErbB2 survival intracellular signaling pathways [2]. These 

pathways include Src, STAT3, PI3K, and MAPK, and all promote metastatic 

characteristics such as proliferation, survival, motility, and tissue invasion [2].  Enhanced 

signaling may occur because activated ErbB2 is recycled to the plasma membrane of the 

cell instead of undergoing lysosomal proteolysis [2]. Lack of precise understanding of this 

phenomenon presents a challenge in designing targeted treatments.  

 To gain greater understanding of HER2 positive breast cancer, researchers have 

developed a number of models to study the disease. Numerous patient samples have 

been acquired and repurposed to function as cellular models of HER2 positive breast 

cancer models (e.g SKBR3, MDA-MB 453) [8]. These cell lines do not express the other 
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two receptors (estrogen and progesterone) and consequently only highly express 

ErbB2/HER2. Similar to TNBC models, HER2 positive cell lines are commonly used in 

conjunction with animal models to study systemic metastasis. This can be performed 

through the use of tumor xenografts or tissue specific injections to act as an in vivo model 

[8].  

 

1.2 Alternative mRNA Splicing  

 Alternative RNA splicing is a mechanism that contributes to the incredible diversity 

of protein messages produced by a single cell. Through this mechanism, RNA sequences 

can be altered through the inclusion or exclusion of certain RNA exons at specific splice 

sites [9,10]. Variants of the same protein that differ by selective inclusion of exons are 

referred to as isoforms of the protein and can have a wide range of cellular functions, 

despite sequence similarities (Figure 1-3). Splice sites are binding sites for the 

spliceosome, a protein complex that produces the newly spliced mRNA sequence. 

The actions and interactions between cellular splicing factors and RNA sequences 

control the selection of the splicing sites. [10,11]. Splicing factors are RNA-binding 

proteins that recognize particular RNA motifs to either guide (enhancers) or block 

(silencers) the spliceosome [9,10]. The action of the splicing factors allows for the vast 

genetic diversity of an organism, while only using a small portion of the genome. 

According to Guttmacher and Collins, the mechanism of alternative splicing gives cells 

the ability to encode over 100,000 proteins using only 30,000 genomic bases [12].  
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Figure 1-3. Mechanism of Alternative Splicing. During alternative splicing, gene exons 
are selectively incorporated to produce mature mRNA for translation into proteins. 
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1.2.1 SR Splicing Factor Family 

The cellular function of the SR family of exonic splicing enhancers is to regulate 

selection of alternative splice sites to promote inclusion of exons into the finalized 

sequence [10,11]. The SR family of splicing factors antagonizes the activity of the hnRNP 

family of exonic splicing silencers, preventing them from promoting the removal of mRNA 

exons [11]. SR proteins are made of one or two N-terminal RNA recognition motifs (RRM) 

followed by a downstream arginine/serine-rich (RS) domain characterized by consecutive 

RS or SR repeats [11]. The RRM provides substrate specificity of the particular SR protein 

with its target short mRNA splicer enhancer sequence [11] (Figure 1-4). As a result, each 

SR protein interacts with a very specific set of proteins, typically to promote a particular 

function. SR proteins are involved in many processes of gene regulation, including RNA 

maturation, transport, and translation [10,13]. Thus, the SR family of proteins plays 

important roles in alternative splicing and subsequent cellular signaling.   
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Figure 1-4. General Structure of SR Protein Family. All SR protein family members 
contain N-terminal RNA-binding domains (RRM’s) and C-terminal arginine/serine-rich 
domains (RS’s). The number and length of these domains vary between SR family 
members.  
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1.2.2 SRSF3 / SRp20  

 SRSF3, also known as SRp20, is a member of the SR family of splicing factors. 

Multiple studies implicate SRSF3 to have a role in protein translation, mRNA 

polyadenylation, as well as numerous other cellular pathways important for cellular 

growth, EMT transition, and RNA processing [10,11,14,15]. Cancers show 

overexpression of SRSF3, suggesting that it might exhibit an important role in growth 

control [15]. Jia et al. also found that increased levels of SRSF3 are a critical step for 

tumor initiation, progression, and maintenance [15].  

Stickeler et al. showed that there was a positive correlation between high levels of 

SRSF3 and a higher severity of mammary tumorigenesis [16]. He et al. showed that cells 

with reduced SRSF3 expression grow slowly, are not resistant to anoikis, and will readily 

undergo apoptosis proportional to the reduction in SRSF3 [17]. Other studies have 

implicated dysregulation of SRSF3 with alternative splicing of p53, a known tumor 

suppressor commonly mutated in all cancer types [18]. While research connects SRSF3 

and cancer, the mechanism has not been conclusively determined.  

 

 

1.3 Cytoplasmic Polyadenylation Element Binding Protein 2 (CPEB2) 

 CPEB2 is a member of the CPE family of cytoplasmic polyadenylation proteins 

responsible for control of protein translation [19-21]. This family of proteins has distinctive 

RNA recognition motifs and C-terminal zinc finger domains to allow specific interaction 

with U-rich mRNA elements [19-21]. Through binding of mRNA, CPEB2 stimulates the 

complete polyadenylation of immature mRNA and promotes the formation of the ribosome 
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by specifically recruiting eIF4F, one of the first components needed to initiate protein 

translation [19-21].  

Research shows that CPEB2 exhibits substrate specificity, interacting with 

TWIST1 directly and HIF1α via eEF2 [19,22,23]. Signaling factors TWIST1 and HIF1α 

are frequently mutated in cancers, suggesting a correlation between these two 

observations. In addition, CPEB mRNAs appear to be downregulated in numerous tumor 

samples, suggesting that cancer cells lose their ability to regulate translation [19]. Hagele 

et al. researched the interconnectedness between CPEB2 and HIF1α and determined 

that CPEB2 has an inverse relationship with the activation of HIF1α [21]. Through its 

control of HIF1α mRNA, CPEB2 may be involved in cancer malignancy, but this has not 

been experimentally confirmed [19]. Studies have shown organ specific patterns of CPE 

activation, suggesting tissue specific functionality of CPEB2 [21].  

In addition to its downstream action, numerous groups have looked into alternative 

roles of methods of CPE activation and consequent effects. Research by Di Nardo et al. 

suggests that CPEB2 may also promote a polyadenylation function after stimulation from 

the mechanistic target of rapamycin (mTOR) pathway [24]. The mTOR pathway is 

naturally activated by cellular stresses such as hypoxia or insulin [21]. Other studies show 

that different phosphorylation pathways, including phosphoinositide 3-kinase GSK3, the 

aurora A kinase, and the CDC2 pathways are associated with activation of CPEB [25].  

Wang et al. shows that CPEB2 has multiple isoforms due to the inclusion of 

particular exons in the mature mRNA [26]. These various isoforms have different 

functions based on their substrate specificity and complete 3-dimensional structure. The 

most common isoforms of CPEB2 are the A and B isoforms. As shown in Figure 1-5, they 
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differ only through the inclusion of exon 4, which is retained in CPEB2B. Preliminary data 

suggest that the B isoform of CPEB2 promotes metastatic activity in cells, which 

commonly produces an extremely aggressive cancerous tumor [27]. Through greater 

understanding of the alternative splicing action between the isoforms of CPEB2, we hope 

to be able to develop more effective patient treatments for the future.   
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Figure 1-5. Alternative Splicing of CPEB2. The two most common isoforms of CPEB2 
differ only by the inclusion of exon 4. The splicing factor that controls this interaction is 
not yet known.  
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CHAPTER 2 

DETERMINATION OF CPEB2 SPLICING FACTOR 

 

2.1 Introduction 

 While much research has gone into understanding the mechanisms that cause 

cancer and cancer metastasis, there are still many gaps in our knowledge. One of the 

stages in cancer metastasis is the development of anoikis resistance, which allows cells 

to travel through the vasculature of the body to colonize in other locations of the body. 

This is one of the events that make many cancers very difficult to treat via traditional 

surgical techniques. As a result, there is great clinical interest for any methods that reduce 

the ability of a tumor to develop anoikis resistance. One of the less explored ways to study 

metastasis is through investigating alternative splicing of signaling molecules. By gaining 

an understanding of how these upstream pathways act in cancer, one could alter splicing 

to prevent the development of cancer.   

 Studies by our laboratory have investigated the role of cytoplasmic polyadenylation 

element binding protein 2 (CPEB2) in promoting a metastatic phenotype in triple negative 

breast cancer. We have shown that the splicing of CPEB2 is altered in triple negative 

breast cancer patients to produce a higher abundance of the larger isoform (B) of CPEB2 

[28]. Further research has shown that CPEB2B seems to promote cell growth when 

endogenously expressed in MDA MB 231 Par cells, while CPEB2A does not promote the 

same growth [28]. With further study, preventing CPEB2B splicing could be used as a 

very promising anti-metastatic cancer therapy. Due to the fact that CPEB2 has low basal 

expression in non-tumorigenic cells, it could be used as a targeted therapy to only affect 
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cancerous cells. This has great therapeutic potential and is therefore a worthwhile 

strategy for research. 

  

 

2.2 Materials and Methods 

2.2.1 Cell Culture 

The lab acquired MDA MB 231 parental TNBC cells (231 Par) from ATCC. They 

were cultured in RPMI 1640 (Invitrogen) supplemented with 10% fetal bovine serum 

(Invitrogen) and 1% penicillin/streptomycin (BioWhittaker) at 5% CO2 and at 37°C. When 

the 231 Par cells reached 70% confluence, they were passaged to a maximum passage 

number of 9. MDA MB 231 anoikis resistant TNBC cells (231 AnR) were acquired by 

plating 231 Par cells on 10cm2 culture dishes coated with 20 mg/mL poly(2-hydroxyethyl 

methacrylate) (polyhema) (Sigma-Aldrich) for at least 3 passages on polyhema-coated 

plates.   

 

2.2.2 Proteomics Study 

In order to identify splicing factors that regulate alternative splicing of CPEB2, we 

chose to investigate exon 4 interactions (the exon included in CPEB2B). First, we 

collected nuclear extracts from 231 AnR cells in standard culture conditions. Next, we 

added either specific or non-specific competitor sequences (Dharmacon) to the samples 

to act as loading controls. After that, we combined the samples with FITC-conjugated 

exon 4 of CPEB2 (Dharmacon). Next, the samples were run on a DNA polyacrylamide 

gel until bands were visible. We performed selective excision of the visible bands and 
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sent these samples to The Ohio State University proteomics core for analysis to 

determine interactions with known splicing factors. After analysis, we received a list of 

interacting proteins to the query region. Using online protein databases, we were able to 

determine which results were potential splicing factors to experimentally test.  

 

2.2.3 siRNA Panel of Candidates 

 Candidate splicing factors as determined above were experimentally tested to 

observe their effect on CPEB2 alternative splicing. The lab purchased commercially 

available Silencer siRNA (Ambion by Life Technologies) for SRFS3, hnRNPA2B1, 

hnRNPF, hnRNPH1 and reconstituted to 20 µM. 231 Par (2 x 105) were plated on 6 well 

tissue culture plates (Costar) in appropriate media as described previously. We added 

siRNA at a concentration of 25 nM in accordance to Dharmafect protocol (GE 

Healthcare). After 6 hours, cell media was replaced. We harvested cells after 48 hours to 

ensure maximal siRNA effect.  

 

2.2.4 Western Blot Analysis 

 Quick-Start Bradford Reagent (Bio-Rad) was used to determine the protein 

concentration of the samples for consistent protein gel loading. We added 10 ug of each 

sample to a 7.5% polyacrylamide gel (Bio-Rad) and run at 60 mV for 3 hours in 1X 

Tris/Glycine/SDS buffer (Bio-Rad). The gel was transferred to a PVDF membrane for 2 

hours in transfer buffer (70 H20 : 20 MeOH : 10 10X Tris/Glycine Buffer (Bio-Rad)). After 

transfer, the membranes were blocked in 5% milk for 30 minutes at room temperature 

and washed 3 times in wash buffer (1X PBS + 0.1% Tween-20) for 5 minutes each. Next, 
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the membranes were incubated in primary antibody diluted in 5% milk (Actin 1:8000, 

SRSF3 1:1000, CPEB2 1:1000) overnight at 4°C. The following morning, we washed the 

membranes 3 times in wash buffer (1X PBS + 0.1% Tween-20) for 5 minutes each and 

then incubated in the appropriate secondary antibody (Actin-Mouse 1:8000, SRSF3-

Rabbit 1:1000, CPEB2-Rabbit 1:1000) for 1 hour at room temperature. Following 

secondary antibody incubation, the membranes were washed 3 times in wash buffer (1X 

PBS + 0.1% Tween-20) for 5 minutes each and then developed the membranes using 

SuperSignal Pico Developing Solution Reagents (Thermo) and imaged using a film 

developer. 

 

 

2.3 Results 

2.3.1 Proteomics Panel 

 After determination that alternative splicing of CPEB2 affects the metastatic 

potential of triple negative breast cancer cells, the next logical step was to determine what 

splicing factor(s) control(s) this action [27]. In order to do this, we ran samples on a DNA 

polyacrylamide gel as described in 2.2.2. We selectively excised distinct gel bands as 

shown in Figure 2-1. Results from The Ohio State University provided a list of proteins 

that bound to exon 4 of CPEB2 (the exon alternatively spliced between the A and B 

isoforms of CPEB2). This list provided numerous candidates that interacted with the 

region of interest. (Figure 2-1). We recognized many of these candidates as artifacts of 

the proteomics screen and discounted them. As a result, the remaining candidate factors 

to examine were SRSF3, hnRNP A2B1, hnRNP A0, hnRNP F, and hnRNP H1. All are 
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known splicing factors that have been shown to be dysregulated in cancer. These results 

directed our studies to investigate the specific roles of those factors in MDA MB 231 cell 

metastasis.  
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Figure 2-1. EMSA Allows Selective Excision of Exon 4 Binding Factors. Nuclear 
extracts from 231 AnR cells were added to FITC-conjugated exon 4 of CPEB2. The 
mixture was run on a DNA polyacrylamide gel until distinct bands were visible. Individual 
bands were excised and sent to The Ohio State University for proteomics analysis.   

  

FI
TC

-C
PB

+N
SC

 

FI
TC

-C
PB

 +
 S

C
 

Bands for excision 



22 
 

2.3.2 siRNA Panel of Candidates 

 To investigate the role of a particular splicing factor in alternative splicing of 

CPEB2, we chose to use siRNA to knockdown each of the potential splicing factors and 

observe the effect on the relative abundance of the splice variants of CPEB2. We used a 

siRNA cocktail specific to each candidate splicing factor as well as combining the siRNAs 

for hnRNP H1 and hnRNP F as they have been shown to react cooperatively in the 

literature. The results show a marked decrease in the B isoform of CPEB2 when treated 

with siRNA specific to SRSF3 while other siRNAs did not show a significant effect on 

CPEB2 splicing (Figure 2-2). Comparing the ratios of the two splice variants allows clear 

visualization of the effect of knocking down SRSF3 on CPEB2 alternative splicing. Use of 

the CPEB2 A:B ratio provides a means of distinguishing the alternative splicing of CPEB2 

and allows quantification of the observation. As the relative abundance of the pro-growth 

isoform (B) decreases, the A:B ratio will increase. Samples with a high A:B ratio are less 

metastatic and easier to treat. These results suggest that SRSF3 mediates CPEB2 

alternative splicing and that it causes an increase in the pro-survival B isoform of CPEB2.  
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Figure 2-2. siRNA Panel of Alternative Splicing of CPEB2. 231 Par cells were treated 
with siRNA (25 nM) for 6 hours, then media was replaced. After 48 hours, the cells were 
collected and analyzed via western blot for isoforms of CPEB2. Densitometry was 
performed on the A and B isoforms of CPEB2 as indicated with arrows. The ratio of the 
densitometry results were calculated for each sample.   
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2.3.3 Western Blot Analysis 

 After completion of the siRNA screen, we chose to verify that reduction of SRSF3 

causes a change in alternative splicing in both 231 Par and 231 AnR cells. As shown in 

Figure 2-3, treatment with siRNA for SRSF3 reduces the amount of the B isoform and 

consequently increases the A:B ratio of those samples. One can also see that the 231 

Par cells basally have a higher A:B ratio than 231 AnR cells. The differences are more 

pronounced in the 231 Par because of their naturally lower levels of the B isoform. This 

reflects the metastatic nature of the 231 AnR cell line.  

 We also chose to examine the levels of SRSF3 expressed in 231 Par and 231 AnR 

cells to see if the more metastatic nature of 231 AnR cells correlated with SRSF3 levels. 

Figure 2-4 shows that 231 AnR cells overexpress SRSF3 compared to 231 Par. 

Additionally, treatment with siSRSF3 causes significant reduction in SRSF3 in both cell 

lines, restoring 231 AnR SRSF3 levels to that of basal 231 Par cells. This suggests that 

alteration of SRSF3 occurred during the acquisition of anoikis resistance in these cell 

lines.  

In order to more effectively study the effects of SRSF3 knockdown, we looked to 

optimize knockdown of SRSF3 to provide the most dramatic effects to the cells. We took 

the components of the purchased siRNA cocktail and tested each of the 3 siRNAs 

individually to determine which provided the greatest effect on reducing SRSF3 

expression. We were able to quantify this knockdown using densitometry to compare the 

relative intensity of SRSF3 to Actin. As shown in Figure 2-5, the second and third siRNA 

components provided the greatest reduction in SRSF3 expression and consequently the 
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lowest SRSF3:Actin ratio. As a result, future experiments used a combination of siRNAs 

2 and 3 to knockdown SRSF3.  
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Figure 2-3. Knockdown of SRSF3 Causes Decrease in CPEB2B. 231 Par and 231 
AnR cells were treated with siRNA (25 nM) for 6 hours, then media was replaced. After 
48 hours, the cells were collected and analyzed via western blot for isoforms of CPEB2. 
Densitometry was performed on the A and B isoforms of CPEB2. A:B ratios were 
performed for each sample and averaged within treatment groups.   
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Figure 2-4. SRSF3 is Upregulated in Anoikis Resistant Cells. 231 Par and 231 AnR 
cells were treated with siRNA (25 nM) for 6 hours, then media was replaced. After 48 
hours, the cells were collected and analyzed via western blot for knockdown of SRSF3.  
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Figure 2-5. Selective Components of siSRSF3 Promote Greatest SRSF3 Reduction. 
231 Par cells were treated with individual siRNA components (25 nM) for 6 hours, then 
media was replaced. After 48 hours, the cells were collected and analyzed via western 
blot for knockdown of SRSF3.  
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2.4 Discussion 

 Analysis of our results provides some important insights into the mechanisms that 

are altered in triple negative breast cancer. From a panel of potential candidate splicing 

factors, we determined that SRSF3 not only affected the alternative splicing of CPEB2, 

but also promoted the expression of CPEB2B, the more metastatic isoform of the protein. 

This was further supported by the observation that anoikis resistant cells express higher 

levels of SRSF3. These findings suggest that SRSF3 plays an important role in metastatic 

behavior of tumors. Our initial findings provide us with potential future directions to 

continue to investigate. If proven as a viable mechanism, therapies altering the action of 

SRSF3, and therefore CPEB2 could provide an effective alternative or complement to 

existing cancer treatments.  

 Initially, the observation that CPEB2 alternative splicing is altered in cancer 

provided a direction for investigation. Now, with the understanding that SRSF3 controls 

this interaction, there are even more possible directions to investigate. The most 

important next step is to determine if reduction in SRSF3 expression translates to a 

measurable difference in a metastatic phenotype. We can measure this in a number of 

ways, by either analyzing cell growth or resistance to apoptosis. We could measure cell 

growth using a proliferation assay or by measuring cell doubling rates in culture. After 

promoting apoptosis, methods to measure cell resistance to apoptosis include: Western 

Blot expression of apoptotic proteins such as caspase 3, caspase 8, cleaved PARP, and 

cytoplasmic cytochrome c; flow cytometry sorting via Annexin-V and 7-AAD; luciferin 

fluorescence assays; or post-apoptosis colonization assays.  
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CHAPTER 3 

MEASURING METASTATIC EFFECT OF SRSF3 

 

3.1 Introduction 

 After observing that SRSF3 plays a role in CPEB2 alternative splicing in TNBC, 

the next step is to see if its reduction causes larger scale changes in cell functionality. As 

described earlier, there are a number of methods to investigate cellular functionality 

without use of an in vivo model. Lack of an in vivo model allows one to acquire results 

quickly and often without the complications that can arise by using an animal model. 

Therefore, we chose to use flow cytometry and western blot assays to measure the 

metastatic function of cells with reduced SRSF3.  

  

3.2 Materials and Methods 

3.2.1 Cell culture 

We acquired MDA MB 231 parental TNBC cells (231 Par) from ATCC. They were 

cultured in RPMI 1640 (Invitrogen) supplemented with 10% fetal bovine serum 

(Invitrogen) and 1% penicillin/streptomycin (BioWhittaker) at 5% CO2 and at 37°C. When 

the 231 Par cells reached 70% confluence, they were passaged to a maximum passage 

number of 9. We acquired MDA MB 231 anoikis resistant TNBC cells (231 AnR) by plating 

231 Par cells on 10cm2 culture dishes coated with 20 mg/mL poly(2-hydroxyethyl 

methacrylate) (polyhema) (Sigma-Aldrich) for at least 3 passages on polyhema-coated 

plates.   
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3.2.2 Flow cytometry anoikis resistance assay 

 To measure the effect of SRSF3 reduction on TNBC cell resistance to anoikis, we 

plated 1.5 X 105 231 Par, 231 AnR, 231 pcDNA, or 231 CPB on 6-well tissue culture 

plates (Costar). After 24 hours, cells were treated with siRNA targeting nonsense 

sequences (siCon) or SRSF3 (siSRSF3) for 6 hours, after which we replaced the media. 

After an additional 24 hours, we replated these cells on 24-well tissue culture plates 

(Costar) that were either nontreated (NT) or coated with polyhema (PH).  The cells grew 

overnight (12 hours) and then both the cells and media were collected for analysis.  

 In order to analyze cell death via flow cytometry, we resuspended and washed the 

cells in a 1X Binding Buffer (eBioscience). Next, the pellet was resuspended in staining 

buffer (1X Binding Buffer, 7-AAD, and Annexin-V). We let the cells sit covered on ice for 

15 minutes. Following staining, the staining reaction was neutralized by adding additional 

1X Binding Buffer. While on ice, we brought the samples to the VCU Flow Cytometry 

Core. Samples were gated by Forward and Side Scatter detectors, then grouped them 

into regions based on the 7-AAD and Annexin-V signals. Samples were run in triplicate 

and statistically analyzed using ANOVA.  
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3.3 Results 

3.3.1 Flow Cytometry Anoikis Resistance Assay 

 The first method that we used to analyze the effects of SRSF3 knockdown in TNBC 

cells was to determine the portions of the cell population that were undergoing apoptosis 

after treatment on polyhema-coated plates (Figure 3-1). This technique causes normal 

cells to die due to anoikis (detachment-induced cell death). Cells that have undergone 

mutation promoting metastasis will not appear positive for 7-AAD or Annexin-V due to 

their developed resistance to anoikis.  

7-AAD is a fluorescent dye that binds to double-stranded DNA [28]. When cells 

undergo late apoptosis the plasma membrane starts to fall apart, resulting in the release 

of usually contained double-stranded DNA. Annexin-V is a fluorescent dye that binds to 

phosphatidylserine, which are usually located on the cytosolic side of the plasma 

membrane due to enzymatic flippase activity [28]. However, when cells undergo 

apoptosis, they cease flippase activity, resulting in the extracellular presentation of 

phosphatidylserine. Both signals are indicative of apoptotic cells and can act as a 

measure of cell viability. Thus, by gating for 7-AAD and Annexin-V signal, we can count 

the percentage of the cell population that is undergoing apoptosis (Figure 3-2). 
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Figure 3-1. Metastatic Effect Experimental Workflow. In order to properly study cell 
resistance to apoptosis, we developed a method to accurately measure the influence of 
SRSF3 on anoikis. As shown in the schematic above, 231 Par or 231 AnR cells are plated 
on a 6 well plate (2 x 105 cells/well). After 24 hours, the cells are transfected with siRNA 
(25 nM) for 6 hours, and then media was replaced. After another 24 hours, the cells are 
transferred to polyhema-coated plates to stimulate apoptosis. Depending on the state of 
apoptosis to study, cells can be collected after 3-6 hours (early apoptosis) or after 18-24 
hours (late apoptosis).  
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Figure 3-2. Sample Flow Cytometry Plot. After collection of a cell population, flow 
cytometry analysis is performed to quantify the proportion of the population that 
expresses particular fluorescent markers. The x-axis represents Annexin-V, an indicator 
of early apoptosis. The y-axis represents 7-AAD, an indicator of late apoptosis/necrosis. 
The gates were set to distinguish between apoptotic cells (Q2 and Q3) and living cells 
(Q3). Comparison of population proportions indicate resistance to apoptosis.  

  



35 
 

Following the protocol as described in section 3.2.3, we first looked at 231 Par and 

231 AnR cells treated with control siRNA (siCon) or targeted siRNA (siSRSF3). 

Comparing the apoptotic cell populations between the treatment conditions showed a few 

notable things (Figure 3-3). First, 231 Par cells showed significantly higher basal levels 

of apoptosis when plated on polyhema-coated plates. This was expected, as part of the 

transformation process to create 231 AnR cells involves growth on polyhema-coated 

plates. Additionally, we observed that knockdown of SRSF3 increased the amount of cell 

death in both cell lines. This suggests that SRSF3 does account for some of the 

resistance to anoikis in TNBC cells. Furthermore, the 231 AnR cells anoikis sensitivity 

was restored to that of the pre-transformed 231 Par cell line with siSRSF3 treatment. This 

suggests that alteration of SRSF3 may have been one of the mutations acquire to produce 

the 231 AnR cell line initially.  
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Figure 3-3. Reduction of SRSF3 Causes Increased Sensitivity to Anoikis. We 
graphed the cells counted via flow cytometry and compared experimental groups. As 
shown in Figure 3-2, we used the 7-AAD and Annexin-V markers for apoptosis to we gate 
populations with sufficient signal. Populations above the gated threshold for Annexin-V 
and 7-AAD were considered apoptotic and counted for the purpose of these data. Data 
shown are representative of n = 3. Error bars indicate 1/2 standard deviation.  
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3.4 Discussion 

 Looking into the effects of knocking down SRSF3 in metastatic TNBC cells 

provided us with some very interesting insights into signaling pathways altered in cancer. 

As determined previously, SRSF3 does influence the alternative splicing of CPEB2. 

However, this observation is not clinically useful unless it can be utilized as a drug target 

for potential patient treatment. To determine that, we used siRNA to knock down SRSF3 

in cellular models of TNBC. Through use of numerous methods, we measured the 

metastatic function of the cells when modulating levels of SRSF3. Our results showed 

that reduction of SRSF3 causes an increase in cellular sensitivity to apoptosis. 

Additionally, cells with greater resistance to apoptosis tend to overexpress SRSF3. These 

observations suggest that SRSF3 is critical in cellular resistance to anoikis.  

 Our data suggest that this anoikis resistance was developed through alternative 

splicing of CPEB2 into the more metastatic isoform, CPEB2B. Since endogenous 

expression of CPEB2B did not influence anoikis resistance in our experiments, we 

hypothesize that SRSF3 controls this action by promoting inclusion of exon 4 of CPEB2. 

This allows CPEB2B to activate cellular signaling that promotes enhanced cellular growth 

and inhibit apoptotic signaling. The mechanism through which this occurs is not yet 

known, but is a future area of investigation. 
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