
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2015 

Rogue Signal Threat on Trust-based Cooperative Spectrum Rogue Signal Threat on Trust-based Cooperative Spectrum 

Sensing in Cognitive Radio Networks Sensing in Cognitive Radio Networks 

David S. Jackson 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Computer Engineering Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/3925 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3925&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarscompass.vcu.edu%2Fetd%2F3925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/3925?utm_source=scholarscompass.vcu.edu%2Fetd%2F3925&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


c©David Scott Jackson, 2015
All Rights Reserved



ROGUE SIGNAL THREAT ON TRUST-BASED
COOPERATIVE SPECTRUM SENSING IN COGNITIVE

RADIO NETWORKS

A dissertation proposal submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy at Virginia Commonwealth University.

by

David Scott Jackson,
Ph.D. in Computer Science, VCU 2015
M.S. in Computer Science, VCU 2013
B.S. in Computer Science, VCU 2011

Meng Yu, Ph.D., Associate Professor, Department of Computer Science
Wanyu Zhang, Ph.D., Assistant Professor, Department of Computer Science

Virginia Commonwealth University
Richmond, Virginia

June 2015



ACKNOWLEDGEMENT

I would like to thank Dr. Yu, Dr. Zang, and my fellow colleagues from the security

lab for their support and guidance throughout my work. I would also like to thank the

VCU School of Engineering for having me as a student since 2006, a whole 9 years of

my life well-spent. Last but not least, I want to thank my parents for taking care of

me through college and for also believing in me. A few years back, I remember telling

my dentist that I was nearing graduation of my Ph.D. studies in Computer Science,

and his response was “That’s good! Because soon you will be a contributing member

of society.” That meant a lot to me, since I’ve been a full-time student for almost a

decade in the hopes of one day putting my skills to good use. Although it may not

seem like much, all the encouragement I received from friends and family really added

up (dentist included). I believe it was their support that kept me going strong during

graduate school. I can’t thank you guys enough!

ii



Contents

1 Introduction 1

1.1 Spectrum Bandwidth Bottleneck . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Cognitive Radios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Cooperative Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 The Push for Cognitive Radio Networks . . . . . . . . . . . . . . . . . 11

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Related Works 17

2.1 PUE and SSDF Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Trust-based CSS Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Received-Signal-Strength Anomaly Detection . . . . . . . . . . . . . . . 19

2.4 Motivation for Distinguishing Between RSF and SSDF . . . . . . . . . 20

3 Attack Model 24

3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Propagation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Directional Antenna Model . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Rogue Signal Framing Intrusion 29

4.1 Motivation for Directional Antennas . . . . . . . . . . . . . . . . . . . . 30

4.2 Trust Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Attack Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Byzantine Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Two Types of Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Clustering-based RSF Defense 45

iii



5.1 Network Classification and Clustering . . . . . . . . . . . . . . . . . . . 45

5.2 Protocol and System Flow . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Overhead of Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Defense Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Cluster Parameters and Impact . . . . . . . . . . . . . . . . . . . . . . 57

6 Dynamic Clustering Methods 60

6.1 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Clustering Threshold Determined by Locality . . . . . . . . . . . . . . 62

6.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Comparison of Clustering Methods . . . . . . . . . . . . . . . . . . . . 64

6.5 RSF Defense on Trust-based CSS Protocols . . . . . . . . . . . . . . . 66

6.6 Clustering Figures - False Alarms (SSDF) . . . . . . . . . . . . . . . . 67

6.7 Clustering Figures - Dense Network . . . . . . . . . . . . . . . . . . . . 69

6.8 Clustering Figures - Sparse Network . . . . . . . . . . . . . . . . . . . . 70

7 Conclusion 71

iv



List of Figures

1 Spectrum Demand vs Capacity . . . . . . . . . . . . . . . . . . . . . . 2

2 White space across spectrum . . . . . . . . . . . . . . . . . . . . . . . . 3

3 White space across US geography . . . . . . . . . . . . . . . . . . . . . 3

4 Diagram of Cooperative Spectrum Sensing (CSS) . . . . . . . . . . . . 4

5 Diagram of a Cognitive Radio . . . . . . . . . . . . . . . . . . . . . . . 9

6 Causes of the hidden node problem from shadow fading . . . . . . . . . 11

7 Causes of the hidden node problem from multipath fading . . . . . . . 11

8 Spectrum Sensing Data Falsification . . . . . . . . . . . . . . . . . . . . 17

9 Trust-based CSS protocol protects CRN against SSDF attack . . . . . 18

10 Trust-based CSS protocol exploited by RSF attack . . . . . . . . . . . 21

11 Trust-based CSS Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 24

12 RSF Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

13 Propagation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

14 3d Power Flux Density . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

15 Auto-correlated Shadow Fading Map . . . . . . . . . . . . . . . . . . . 28

16 Capturing sensors in the radiation pattern of rogue signals. . . . . . . . 29

17 Displays the network’s total trust (from Eq. 6) over 100 quiet periods

for protocols FA, FB, and FC . Like Figure 12, there are four rogue

directional antennas facing the cardinal directions and positioned on

the map’s center. The beamwidth of each rogue antenna is 15◦, 30◦, and

45◦ for scenarios RSF-15, RSF-30, and RSF-45, respectively. . . . . . . 34

18 Byzantine Fault Tolerance applied to CSS context . . . . . . . . . . . . 36

19 The Byzantine Fault Tolerance threshold of protocols FA, FB, and FC . 37

v



20 The two outcomes of rogue signals in trust-based CSS protocols. The

plus sign indicates an increase of reputation for some sensor, while the

minus sign indicates a decrease. . . . . . . . . . . . . . . . . . . . . . . 40

21 Type-2 framing diagram and corresponding simulation . . . . . . . . . 41

22 Type-1 framing diagram and corresponding simulation . . . . . . . . . 42

23 Trust damage over 100 quiet periods with respect to beamwidth and the

corresponding PUE success rate for protocols FA, FB and FC . . . . . . 43

24 Modeling the Trust Damage from Figure 23 . . . . . . . . . . . . . . . 43

25 Example of assortative mixing. . . . . . . . . . . . . . . . . . . . . . . 47

26 Clustering illustration of my RSF Clustering Defense (RCD) algorithm.

(a) RSF-45. (b) SSDF-40. The RCD forms two graphs, a red and

blue graph, for cluster analysis. The red graph contains edges between

sensors reporting H1. The blue graph contains edges between sensors

with opposing local spectrum decisions. . . . . . . . . . . . . . . . . . . 49

27 Diagram of the trust-based CSS Protocol. Subfigure (b) adds the RCD

module after the FC step, but only when the global decision GD = H0. 50

28 The sensor network is partitioned into a red and blue graph before be-

ing analyzed by the RCD module. The red filled nodes are cognitive

radios reporting H1 and are connected to nearby neighbors with similar

observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

29 Displays the network’s total mitigated trust damage (defined in Eq. 13)

from the RCD module. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

30 The number of false alarms before and after applying the RCD module. 56

31 Comparison of the RCD results between RSF and SSDF intrusions. SA

- number of attacked sensors; SP - number of sensors protected by the

RCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vi



32 RCD solution applied to a dense network of 400 sensors. . . . . . . . . 58

33 RCD solution applied to a sparse network of 100 sensors. . . . . . . . . 59

34 The accuracy of the RCD for dense and sparse networks with dθ =

150, 300, 450m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

35 To improve efficiency, edges between sensors si, sj are considered only if

sensor sj is in the immediate or adjacent cell . . . . . . . . . . . . . . . 62

36 Comparison of clustering techniques with protocols FA, FB, and FC on

a dense network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

37 Comparison of clustering techniques with protocols FA, FB, and FC on

a sparse network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

38 Demonstrates the clustering behavior of SDT, KNN, and MDT methods

on the SSDF-30 scenario applied to a dense network, or simply put, when

120 out of 400 sensors suffer an SSDF attack . . . . . . . . . . . . . . . 68

vii



List of Tables

1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Comparison of Selected Fusion Algorithms (CSS Protocols) . . . . . . . 33

3 Hypothesis Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Shows the number of attacked sensors SA and safe sensors S − SA . . . 37

5 Attack Outcomes on Trust Models . . . . . . . . . . . . . . . . . . . . 40

6 Number of False Alarms for each corresponding beamwidth (degrees)

from Fig. 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Trust Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Scenario Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9 Performance of the three clustering methods in a dense network of size

400, in the form of Sp/Sa (number of sensors protected over sensors

attacked) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

10 Performance of the three clustering methods in a sparse network of size

100, in the form of Sp/Sa (number of sensors protected over sensors

attacked) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



Nomenclature

H0 Null Hypothesis - Primary Signal Absent

H1 Alternative Hypothesis - Primary Signal Present

CR Cognitive Radio

CRN Cognitive Radio Networks

CSS Cooperative Spectrum Sensing

DARPA Defense Advanced Projects Research Agency

DSA Dynamic Spectrum Access

FC Fusion Center

FCC Federal Communications Commission

IDS Intrusion Detection System

IoT Internet-of-Things

M2M Machine-to-Machine

NTIA National Telecommunications and Information Agency

PKI Public Key Infrastructure

PU Primary User

PUE Primary User Emulation

QoS Quality-of-Service

RSF Rogue Signal Framing



RSS Received Signal Strength

SSDF Spectrum Sensing Data Falsification

SU Secondary User

TVBD TV Bands Device

WNAN Wireless Network After Next

WRAN Wireless Regional Area Network

x



Abstract

ROGUE SIGNAL THREAT ON TRUST-BASED COOPERATIVE SPECTRUM

SENSING IN COGNITIVE RADIO NETWORKS

By David Scott Jackson, Ph.D.

A dissertation proposal submitted in partial fulfillment of the requirements for the

degree of Ph.D. at Virginia Commonwealth University.

Virginia Commonwealth University, 2015.

Major Director: Meng Yu, Ph.D.

Associate Professor, Department of Computer Science

Cognitive Radio Networks (CRNs) are a next generation network that is expected

to solve the wireless spectrum shortage problem, which is the shrinking of available

wireless spectrum resources needed to facilitate future wireless applications. The

first CRN standard, the IEEE 802.22, addresses this particular problem by allowing

CRNs to share geographically unused TV spectrum to mitigate the spectrum shortage.

Equipped with reasoning and learning engines, cognitive radios operate autonomously

to locate unused channels to maximize its own bandwidth and Quality-of-Service (QoS).

However, their increased capabilities over traditional radios introduce a new dimension

of security threats.

In an NSF 2009 workshop, the FCC raised the question, What authentication mech-

anisms are needed to support cooperative cognitive radio networks? Are reputation-

based schemes useful supplements to conventional Public Key Infrastructure (PKI)

authentication protocols? Reputation-based schemes in cognitive radio networks are a

popular technique for performing robust and accurate spectrum sensing without any

inter-communication with licensed networks, but the question remains on how effective

they are at satisfying the FCC security requirements.

xi



Our work demonstrates that trust-based Cooperative Spectrum Sensing (CSS) pro-

tocols are vulnerable to rogue signals, which creates the illusion of inside attackers and

raises the concern that such schemes are overly sensitive Intrusion Detection Systems

(IDS). The erosion of the sensor reputations in trust-based CSS protocols makes CRNs

vulnerable to future attacks. To counter this new threat, we introduce community

detection and cluster analytics to detect and negate the impact of rogue signals on

sensor reputations.
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1 Introduction

Along with advent of the Internet-of-Things (IoT), it is envisioned that billions of

machines will be connected to the Internet, pushing the current communication tech-

nologies to their limits in terms of connectivity and performance. Not too long ago,

wireless technologies were generally thought of only encompassing Wi-Fi-enabled lap-

tops, smartphones, and the emerging tablets. Now, the Internet-of-Things, also re-

ferred to as Machine-to-Machine (M2M), encompasses much more than that. This

includes everything from cell phones, coffee makers, washing machines, headphones,

lamps, wearable devices, and almost anything else you can think of [19]. Keeping all

this in mind, two problems need to be addressed: 1) “how are we going to overcome

the spectrum shortage problem to enable such interconnectivity at a large scale?” and

2) “how can we manage so many wireless devices effectively?” The Cognitive Radio

technology can help mitigate interference and improve Quality-of-Service (QoS) in such

environments by employing smart techniques for accessing the wireless spectrum in an

opportunistic manner [48].

Cognitive Radio Networks (CRNs) can sense, detect, and monitor their surround-

ing radio frequency conditions including the interference and availability of a broad

range of wireless channels, followed by selecting the best one for a given task. This

is called Dynamic Spectrum Access (DSA) and it is a key characteristic of cognitive

radios that enable Secondary Users (SUs) to operate on geographically unused chan-

nels, even when that channel frequency is licensed to Primary Users (PUs), e.g., an

AM/FM radio broadcast station. They have the potential to increase spectrum effi-

ciency that leads to higher bandwidth services and reduce the burdens of centralized

spectrum management by public safety communications officials [18]. The Defense Ad-

vanced Projects Research Agency (DARPA) XG and WNAN (Wireless Network After

1



Next) programs are investigating the potential of DSA-capable radios based on inex-

pensive and adaptable radio architectures that can respond dynamically to the radio’s

surrounding environment [18].

1.1 Spectrum Bandwidth Bottleneck

The growing demand for wireless services shows an inevitable overcrowding of the

spectrum bands, in large part due to the rapid increase of wireless mobile services in

recent years, as depicted in Figure 1 [24]. This example shows the spectrum demand for

mobile broadband services surpassing the available spectrum as early as mid-2013, but

obviously the demand can only go as high as the capacity. This example illustrates the

need for innovative solutions to alter the trajectory of overcrowded spectrum bands.

DSA is the proposed solution to alleviate the overcrowding of bands by allowing licensed

PUs to share unused spectrum with non-licensed SUs in an opportunistic fashion [4, 13].

Figure 1: Spectrum Demand vs Capacity

Conventionally, the Federal Communications Commission (FCC) had statically as-

signed spectrum bands to PUs for exclusive use on a long term basis, precluding anyone

else from access [4]. Yet, analysis of the spectrum bands clearly indicate that current

FCC policies have created severely under-utilized spectrum bands, causing a bottle-
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neck for new wireless applications. Figure 2 depicts these under-utilized spectrum

bands across the usable radio-frequency spectrum. White space is what the FCC calls

a spectrum band, i.e., a radio frequency wireless channel, that is not used by the PU.

Figure 3, from Google’s spectrum database [27], illustrates that spectrum band-

width shortage only occurs in densely populated areas, i.e. the major cities, in the

United States, but there remains an abundance of white space all over the country.

White space is indicated by the color green in Figure 3. The FCC is promoting a

spectrum sharing paradigm, where licensed spectrum bands intended for PUs are ac-

cessible to SUs on a non-interference basis, as a way to mitigate the spectrum shortage

problem [12].

Figure 2: White space across spectrum Figure 3: White space across US geography

Cooperative spectrum sensing (CSS) has been proposed as an effective approach for

boosting the detection of primary signals in CR networks, so that SUs know when to

yield to PUs quickly enough to avoid any interference [13, 50, 29]. In centralized CSS,

the SUs submit their sensor reports to the Fusion Center (FC), which is a server for

aggregating and cross-examining the network’s sensor reports to make a robust analysis

of the spectrum availability. The purpose of the FC is to output a global spectrum

decision, based on the sensor reports, to notify SUs if a licensed spectrum band is

available. CSS solves the hidden node problem where a lone SU fails to perceive the

3



primary signal due to shadow fading, and causes interference with nearby PUs. By

working together in CSS, the lone SU can be notified of the existence of the primary

signal from its neighbors [38]. Figure 4 illustrates the CSS model of wireless sensors

gathering information on spectrum availability and reporting it to a fusion center for

a spectrum decision. A global decision (GD) is made after each iteration of the CSS

model, which is either the H0 or H1. The null hypothesis H0 presumes the primary

signal is absent, and the alternative hypothesis H1 presumes the primary signal is

present.

...s0

R0

s1

R1

s2

R2

sN

RN

H1

Gather reports from all 

sensors S

FC computes Global 

Spectrum Decision (GD)

H0

spectrum f0

GD

Fusion Center (FC)

H0 - primary signal absent

H1 - primary signal present

Figure 4: Diagram of Cooperative Spectrum Sensing (CSS)

However, CSS is vulnerable to attacks like the Spectrum Sensing Data Falsification

(SSDF) where malicious SUs make false reports on the spectrum availability to mislead

the FC. To counter SSDF, various trust models have been proposed to protect CSS from

malicious SUs. These trust-based CSS protocols build reputation profiles for sensors

and filter out the sensing reports from those with low reputations [12, 30, 5, 7, 25].

Thus, they can single out attackers and mitigate their influence in the shared spectrum

sensing.

Depending on how rogue signals are used, they can achieve Primary User Emulation

(PUE) [12], Sensory Manipulation [15], or Rogue Signal Framing (RSF) attacks [28].

Primary Use Emulation is when a secondary user masquerades as the primary user,

4



forcing all other secondary users to evacuate some channel, and thus invoking a Denial-

of-Service attack for the secondary network [12]. The Sensory Manipulation attack

occurs when spoofed (rogue) signals distort the environmental perception of a cognitive

radios over time, eventually causing faulty statistics to be stored in its Knowledge

Base (KB) [15]. The KB is the database of information used as input for the cognitive

radio’s learning and reasoning engines. In my work, I introduce the RSF attack as an

exploit on trust-based CSS protocols where rogue signals gave the impression that SUs

were malicious, when in fact the cognitive radio sensors were well-behaved but under

the influence of unauthorized rogue signals. From this point on, I will only refer to

“cognitive radio sensors” as simply “sensors” for convenience.

1.2 Cognitive Radios

Cognitive Radios (CR) are adaptive radios that are designed for improved performance

and flexibility in wireless communications over the traditional radios that are built

upon the more rigid Application-Specific Integrated-Circuit (ASIC) devices. Unlike

their predecessors, cognitive radios can be programmed to have any of the following

qualities: awareness of their operating environment and their own capabilities, au-

tonomous operations to achieve the radio’s goal, and the ability to learn and adapt

from past experiences [55]. In particular, cognitive radios are well known for having

autonomous frequency agility, the ability to switch channels dynamically over a broad

range of radio-frequency spectrum for a more suitable connection, without the need

of user interaction. In contrast, traditional radios broadcast on a single, fixed fre-

quency channel such as the AM/FM radio stations, television networks, cell phones,

and so on. In these examples, both the broadcaster and listener have to be tuned to

the same frequency to receive a particular service such as music from an FM radio

station. An example of a primary network consists of a TV broadcasting station (i.e.

5



the primary transmitter) and the corresponding subscribed viewers (i.e. the primary

receivers) [46, 13].

Cognitive Radios are the devices that enable DSA due to their ability to scan spec-

trum bands and locate the best available channels on a non-interference basis [15]. The

exact definition of cognitive radios has evolved and branched off into different mean-

ings. The FCC defines cognitive radios as “a radio system whose parameters are based

on information in the environment external to the radio system.” [9] The National

Telecommunications and Information Agency (NTIA) has proposed cognitive radios to

be defined as “a radio or system that senses its operational electromagnetic environ-

ment and can dynamically and autonomously adjust its radio operating parameters to

modify system operations, such as maximize throughput, mitigate interference, facili-

tate interoperability, and access secondary markets.” [9] However, Joseph Mitola was

the first to coin the term “Cognitive Radios” in 1999 and explained it as an intelligent

agent that could search out ways to deliver services and adapt the network protocol

stack to better satisfy the user’s needs [37]. The key aspects associated with Mitola’s

vision of cognitive radios is that they are [9]:

• Aware of surrounding environmental conditions (e.g. the interference for some

channel) and the radio’s internal state such as the operational parameters for

some wireless service;

• Adapting to its environment in real time (e.g. switching to a less noisy channel)

to satisfy the requirements of some wireless service (e.g. message integrity or

Quality-of-Service);

• Reasoning on observations to make the best known decisions, which include

how to adapt to a particular scenario;

• Learning from previous experience to improve its reasoning capabilities; and

6



• Collaborating with other devices to make decisions based on collective obser-

vations and knowledge.

These key features require the implementation of artificial intelligence algorithms

as an integral part of the CR. However, the research community remains divided on

how many, and the scope of, these features a radio must possess before it is considered

a CR. The first large scale standard for cognitive radios, the IEEE 802.22, is primarily

focused on frequency agility that addresses the mitigation of interference to PUs [9].

Although cognitive radios are associated with frequency agility and DSA, neither of

these features alone account for the main intelligent attribute that cognitive radios

were initially known for.

Regardless of how cognitive radios are being interpreted, they are being pushed as

the means to solve the spectrum shortage problem by utilizing much of the untapped

spectrum bands as illustrated in Figure 2. The secondary network, consisting of cogni-

tive radios, is given permission to coexist in licensed channels under two preconditions

mandated by the FCC: (1) giving spectrum priority to licensed users and (2) minimiz-

ing interference to licensed users. The faster the SUs can detect the primary signal

and vacate the licensed channels, the smaller the interference to the PUs, thus allowing

then the secondary signals to collide less frequently with the primary signal. For this

reason, the secondary network must achieve accurate spectrum sensing to know exactly

when PUs occupy the channel.

Cognitive Radios are composed of several parts: the Software Defined Radio (SDR),

a knowledge base, and the learning and reasoning engine. Traditional radio chips (or

hardware-based) are hard-wired to communicate using one specific protocol. For ex-

ample, a typical cell phone has several different chips to handle a variety of radio com-

munications: one to contact cell phone towers, another to contact WiFi base stations, a

third to receive GPS signals, and a fourth to communicate with Bluetooth devices. In

7



comparison, software-defined radio hardware works with raw electromagnetic signals,

relying on software to implement specific applications. This makes software-defined

radio devices incredibly versatile, because it has the potential, with the appropriate

software, to perform the same features of all the hardware-based chips currently in our

mobile devices.

Software-defined radio (SDR) is a radio communication technology that is based

on software defined wireless communication protocols instead of hard-wired implemen-

tations. In other words, frequency band, air interface protocol and functionality can

be upgraded with software download and update instead of a complete hardware re-

placement. SDR provides an efficient and secure solution to the problem of building

multi-mode, multi-band and multifunctional wireless communication devices.

An SDR is capable of being re-programmed or reconfigured to operate with different

waveforms and protocols through dynamic loading of new waveforms and protocols.

These waveforms and protocols can contain a number of different parts, including

modulation techniques, security and performance characteristics defined in software as

part of the waveform itself.

Figure 5 shows a diagram of the four main components of a cognitive radio. The

knowledge base is the cognitive radio’s database of environmental statistics (chan-

nel noise), communication policies, and any other information that influence its ac-

tions [15]. Within the cognitive engine, there are two mechanisms for interacting with

the knowledge base: the reasoning engine and the learning engine. A policy radio only

has a reasoning engine, while a learning radio has both a reasoning and a learning

engine. The reasoning engine is a set of logical inferencing rules, sometimes called a

case-based reasoner. Learning radios typically utilize a variety of classic AI learning

algorithms, including search algorithms, neural networks, and evolutionary algorithms.

For example, a radio can try out different modulation types to see which works op-

8
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Takes Action

Makes Decision

Figure 5: Diagram of a Cognitive Radio

timally in a particular RF environment [15]. Equipped with reasoning and learning

engines, cognitive radios operate autonomously to locate the best unused channels to

maximize its own bandwidth. However, their increased capabilities over traditional

radios introduce a new dimension of security threats [21, 10].

1.3 Cooperative Spectrum Sensing

Cognitive radios utilize the DSA technology that enables autonomous optimization of

radio configurations and the scanning of spectrum bands to locate the best available

channels on a non-interference basis [15, 52, 53]. The cognitive radio network, consisting

of SUs, is given permission to coexist in licensed channels under two preconditions

mandated by the FCC: (1) giving spectrum priority to licensed users and (2) minimizing

interference to licensed users. The faster the SUs can detect the primary signal and

vacate the licensed channels, the smaller the interference. For this reason, the secondary

network must achieve accurate spectrum sensing to know exactly when primary users

occupy the channel [17].
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The cornerstone of the IEEE 802.22, the first standard for cognitive radio networks,

requires the SUs to yield to the PUs immediately after detecting the primary signal

within a designated region [46]. The 802.22 WRAN standard is aimed at using DSA

technology to allow sharing of geographically unused spectrum allocated for television

broadcast services. So in the 802.22 WRAN implementation, the primary network

would consist of a TV broadcasting station (primary transmitter) and the correspond-

ing subscribed viewers (primary receivers) [46, 13]. Ideally, SUs would occupy unused

TV spectrum in geographical locations where the primary network is absent, but may

coexist as long as the SUs do not interfere with the subscribed viewers’ reception of the

primary signal. However, guaranteeing a minimal level of interference to the primary

network is perhaps the biggest obstacle to the commercialization of DSA technology

and a very difficult problem to solve [13]. In order to have minimal interference, cog-

nitive radios must be able to reliably detect, in real time, the presence or absence of

a primary signal from a given spectrum band. Otherwise, these cognitive radios can

unknowingly transmit signals simultaneously with the primary transmitter, causing

unacceptable levels of interference to nearby PUs [33].

Such unintended interference can arise from the hidden node problem. Figure 6

depicts an SU obscured from the primary transmitter due to obstacles in the environ-

ment, in what is called shadow fading. Hence, the SU continues to occupy licensed

spectrum bands simultaneously with nearby PUs. Additionally, an SU may not detect

the primary signal because of multipath fading. This is caused by multipath propaga-

tion, the phenomenon that results in a radio signal reaching the receiving antenna in

more than one path. In other words, wireless radio signals bounce off physical obstruc-

tions, propagating into new signal copies each time, and culminate into a less audible

and weaker signal at the receiver. Figure 7 depicts an SU unable to detect the primary

signal due to multipath propagation.
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Primary Transmitter

Figure 6: Causes of the hidden node prob-
lem from shadow fading

Figure 7: Causes of the hidden node prob-
lem from multipath fading

Research results from [4] indicate that shadow fading and multipath fading can be

alleviated by requiring multiple SUs to cooperate with each other to conclude the spec-

trum availability. This collaboration of sensors, called Cooperative Spectrum Sensing

(CSS) has been proposed as an effective approach for boosting the detection of primary

signals in CR networks [36, 13, 50]. In centralized CSS, the SUs submit their sensor re-

ports to the Fusion Center (FC), which is a server for aggregating and cross-examining

the network’s sensor reports for a more robust analysis of the spectrum availability.

Here, the FC collects the network’s sensor reports and outputs a global decision to

notify SUs if they can access a licensed spectrum band [13]. In decentralized CSS, each

CR operates as a local FC such that each node makes a local decision on spectrum

availability based on its neighbors’ data [13].

1.4 The Push for Cognitive Radio Networks

The FCC promoted the CR technology as the solution to the spectrum shortage prob-

lem under the IEEE P802.22 project that started in 2004 [26]. This project hinged

on the dynamic spectrum access of CRNs to tap into geographically unused spectrum.
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The key criteria to this project was the idea of a primary network, the typical licensed

networks like the well-known AM/FM radio stations, and secondary networks that

could harness empty spectrum in the absence of the primary networks. More specifi-

cally, they did not want to add any extra burden to the primary network, nor did the

FCC want a 3rd party facilitator, but instead a self-policing secondary network [9].

The start of this project mobilized research institutions to investigate the potential for

many years to come.

The FCC relies almost entirely on certification to produce trust, their process to

guarantee that new devices will follow access rules through product inspection [51].

When regulators require trust, the technical response has been policy engines that are

essentially easily-certifiable decision trees that guarantee a device will make certain

decisions based on cognitive radio’s sensory input. There are many problems with this

approach, because the policy engine cannot guarantee that all contexts will produce

appropriate answers. Consider all the challenges of signal detection in all environments

due to shadow fading, Rayleigh fading, and interference in general. No policy engine

can guarantee these nodes will be able to realize their predicament and not transmit.

Hence, as of January 2011, the FCC finalized the rules for the cognitive use of TV white

space in the US. Ultimately, the rules from FCC’s “Second Memorandum Opinion and

Order” [16] state that cognitive radios, operated by SUs, must download the spectrum

occupancy table via the internet to discover unused channels.

“While we are eliminating the sensing requirement for TVBDs (TV Bands Devices),

we are encouraging continued development of this capability because we believe it holds

promise to further improvements in spectrum efficiency in the TV spectrum in the fu-

ture and will be a vital tool for providing opportunistic access to other spectrum bands.”

- FCC [16]
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That means there are no longer any spectrum sensing requirements, including Co-

operative Spectrum Sensing (CSS), when detecting available channels within the TV

broadcast bands. However, FCC encourages continued development of spectrum sens-

ing as stated below. Again, FCC stresses continued research in spectrum sensing

applications in the following post:

“Second, I hope that equipment developers and device manufacturers will continue

their work on sensing technologies and take advantage of the flexible approach outlined

in the item. I appreciate the well-articulated concern that requiring both sensing and

database consultation could have a chilling effect on the initial deployment of white

space devices. However, I am hopeful that the widespread commercial deployment of

sensing technologies will play a critical role in increasing access to spectrum not only in

the TV white spaces but in other spectrum that from time-to-time or in certain locations

lies fallow. Sensing technologies have shown great promise in other contexts, including

Department of Defense research, and I look forward to finding ways to encourage and

advance their deployment for commercial purposes.” - FCC [16]

Note that the final rules encourage further research in cognitive radio sensing tech-

niques, since this may be useful for other spectrum bands and different applications.

Interestingly, the final rules discard the idea of cognitive radios: is it cognitive to

download from a database a list of free channels? Although the IEEE 802.22 protocol

no longer uses spectrum sensing, there are other applications that could leverage the

technology. In the FCC article [18], the FCC talks about current government-funded

projects aimed at new cognitive radio applications:
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“As noted in our last topic, the DARPA XG and WNAN Programs are investigating

much more dynamic frequency selective radios based on agile radio architectures that

can respond dynamically to the radio’s surrounding environment... Perhaps the key to

the success and the future development of cognitive radio lies in the ability of developers

and practitioners, that is, the first responder community, to establish the policy rule

set by which the radios will operate...” - FCC [18]

The silver lining to the disregard of the dynamic spectrum sensing requirement, is

that the FCC and DARPA still continue to promote this technology because the tech-

nology holds promise. The DARPA XG and WNAN (Wireless Network After Next)

programs are investigating the potential of DSA-capable radios based on inexpensive

and adaptable radio architectures that can respond dynamically to the radio’s sur-

rounding environment [18]. For example, the CR technology is believed to be able to

reduce the burdens of centralized spectrum management by public safety communica-

tions officials, once the technology becomes viable [18].

The potential of the cognitive radios is being studied in many different paradigms

and applications of networks, and how it can overcome many resource intensive prob-

lems. This includes cognitive mesh networks where the opportunistic spectrum access

(or DSA) can alleviate the scarcity of wireless bandwidth needed to maintain the

Quality-of-Service requirements [47]. Another scenario where the CR technology is

being contemplated is in natural disaster areas like earthquakes and hurricanes that

obliterate the devastated area’s network infrastructure. The DSA from cognitive radios

can temporarily provide an abundance of wireless bandwidth needed to facilitate the

high traffic from emergency responders [44]. Other areas where cognitive radio applica-

tions are being researched include public safety networks [22], battlefield networks [43],

and leased networks [23].
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1.5 Contributions

To counteract this new threat, we propose a new defense scheme, named the RSF

Clustering Defense (RCD) module, that looks for dense clusters of sensors and examines

the proximity and similarity of their reports. Based on the RCD findings, it makes

a heuristic decision on whether or not the network was affected by an RSF attack

via rogue signals. Thus, the RCD module can distinguish sensors under the RSF

intrusion and mitigate the trust damage. In effect, our defense prevents trust models

from becoming an overly sensitive IDS by minimizing the false alarms caused by rogue

signals, but still relies on a trust model to stop SSDF attacks. We focus on mitigating

the impact of the RSF attack on trust-based CSS protocols by introducing a dynamic

and flexible rogue signal detection solution. The following is a list of contributions:

• Introduced the Rogue Signal Framing Intrusion, an attack on the trust model of

CSS protocols

• Developed a solution, the RSF Clustering Defense (RCD), that protects sensor

reputations from manipulation in trust models

• Ran simulations that demonstrated the impact of the RSF intrusion and the

RCD solution

• Devised a community-detection clustering algorithm to distinguish between ma-

licious/malfunctioning sensors and well-behaved sensors that are misguided by

rogue signals

• Ran extensive simulations that demonstrated an upward of 6% to 40% improve-

ment, depending on the scenario parameters, in detecting rogue signals

The rest of the paper is outlined as follows. Chapter 2 reviews common CRN

attacks and trust-based CSS protocols. Then, we present the attack model and system
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in Chapter 3, and show the details and analysis of the RSF intrusion in Chapter 4. We

propose the RCD defense and evaluate it in Chapter 5. Chapter 6 investigates different

clustering techniques and demonstrates the effectiveness of our parameter-free solution

against different scenarios. Finally, the paper is concluded in Chapter 7.
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2 Related Works

My work is mostly related to the following attacks and defenses in CRNs.

2.1 PUE and SSDF Attacks

Although CRNs are vulnerable to a variety of attacks [15], two attacks received much

attention. One is the Primary User Emulation (PUE) attack [11, 8, 39], where an

attacker masquerades as the primary transmitter from the vantage point of its neigh-

bors. The other attack is the Spectrum Sensing Data Falsification (SSDF) [13, 12, 45],

in which compromised users falsify the local spectrum sensor reports to obscure the

existence or create the illusion of a primary signal at the FC [35]. Both of these attacks

attempt to deceive the FC on the availability of spectrum resources, causing networks

to behave in unintended ways. In contrast, the RSF intrusion disrupts the trust be-

tween the FC and sensors, which makes the spectrum sensing less stable. Figure 8

illustrates the SSDF attack, where the grinning devil represents a malicious SU, the

envelopes represent the sensor reports, and because of the falsified sensor report, the

FC makes an incorrect judgement on the spectrum availability.

Figure 8: Spectrum Sensing Data Falsification

17



2.2 Trust-based CSS Protocols

To defeat SSDF attacks, various trust models have been proposed to protect CSS

from malicious SUs. These trust-based CSS protocols build reputation profiles for

sensors and filter out the sensing reports from those with low reputations [12, 30, 5,

7, 25]. Thus, they can single out attackers and mitigate their influence in the shared

spectrum sensing. Figure 9 exemplifies the structure of the typical trust-based CSS

protocol, including the trust model that filters out falsified sensor reports through cross

examining the observations.

Figure 9: Trust-based CSS protocol protects CRN against SSDF attack

Chen et al. [12] presented a sequential probability ratio test (SPRT) that scales the

contribution of sensors by their reputation in order to mitigate the impact of SSDF

attacks. Their model incorporates sampling votes on the detection or absence of the

primary signal, and weighing each vote according to the sensor’s reputation. For every

vote identical to the global decision, the sensor’s reputation is incremented, such that

their vote carries more weight in future decisions made at the fusion center. Kaligineedi

et al. [30] presented a pre-filtering average combination scheme. The scheme’s filters are
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responsible for (1) filtering extreme outlier sensor reports and (2) ignoring sensors that

have continuously deviated from the majority over a length of time. Arshad et al. [5]

presented a beta reputation system model for hard-decision CSS protocols. Similar

to [12], the sensors are rewarded for agreeing with the global spectrum decision, but

otherwise penalized. In [7, 3, 54], the authors developed a trust-based CSS protocol

that penalized sensors if their reports deviated too far from the expected Received

Signal Strength (RSS) values determined by common RSS models. The similarity

of these approaches are to build reputation profiles for spectrum sensors in order to

filter out sensing reports from untrustworthy sensors. However, my work shows that

the reputations can be manipulated and, as a consequence, well-behaved sensors are

framed and removed from the shared spectrum sensing.

2.3 Received-Signal-Strength Anomaly Detection

Apart from reputation profiles, there are solutions that rely on RSS models and statis-

tical methods to validate the authenticity of sensor reports. Min et al. [34] presented an

algorithm that analyzes sensor clusters and their RSS correlation, based on distance

and approximated shadow fading, to pinpoint malicious sensors and reduce/remove

their input from the fusion center. A big difference in my work and theirs is that

they rely (and assume) apriori knowledge of the environment’s shadow fading to ac-

curately predict the expected RSS value for a cluster of sensors. Secondly, they have

no reputation model to go along with anomaly detection, so their solution discards

the sensor reports in single intervals instead of penalizing the sensors for an extended

duration. In [35, 32], the authors developed solutions using RSS estimation models and

Support Vector Machines (SVMs), a machine learning technique, to classify sensors as

either anomaly or normal. Unlike the various aforementioned solutions, I developed

my own defense based on cluster analysis and community detection to safeguard sensor

19



reputations from manipulation, instead of only focusing on the integrity of the CCS.

What makes my solution unique is that the proposed defense protects the integrity

of trust models, i.e. sensor reputations, from rogue signal manipulation. Previous

literature used trust models to stop malicious SUs (and their sensors) from deceiving

the CSS, but did not consider the trust models themselves to be the target of attacks.

Trust models were considered reliable solutions against SSDF attacks and malfunction-

ing sensors, but to my knowledge, none of the papers discussed how to manipulate and

disrupt trust models. I realized the vulnerability of trust models due to their coarse

threshold of penalizing inaccurate sensor reports, i.e. a sensor is deemed untrustworthy

if it does not behave in a predetermined way. However, if an attacker knows how the

sensors should behave, then they can leverage rogue signals to disrupt typical sensor

behavior and thus destroy their reputations. To protect sensor reputations, I explored

techniques from social network analytics, such as cluster analysis and community de-

tection, as opposed to relying on RSS models or shadow fading estimations to predict

the correct sensor report.

Figure 10 illustrates how rogue signals can masquerade as an SSDF attack, i.e.,

mimicking a malicious sensor when in fact the sensors are well-behaved and functioning

properly. The root of the problem lies in the trust-based CSS protocol’s inability to

distinguish the source of a bad sensor report, which could be due to a malicious SU, a

malfunctioning sensor, interference due to shadow fading, or a purposely injected rogue

signal. Protocols that punish with a broad stroke any sensor who reports differently

gives attackers an exploit to turn the reputation schemes against their own users.

2.4 Motivation for Distinguishing Between RSF and SSDF

In an NSF 2009 workshop, the FCC had raised the question, “What authentica-

tion mechanisms are needed to support cooperative cognitive radio networks? Are
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Figure 10: Trust-based CSS protocol exploited by RSF attack

reputation-based schemes useful supplements to conventional Public Key Infrastruc-

ture (PKI) authentication protocols?” [47] Reputation-based schemes in CSS (a.k.a.

trust-based CSS protocols) are a popular technique for performing robust and accurate

spectrum sensing without any inter-communication with the primary network, but the

question remains on how effective they are at satisfying the FCC security requirements.

My work takes a closer look at the robustness of trust-based CSS protocols.

In secondary networks, it is very hard to conclude the root cause of bad sensor

reports, which can vary from (1) malfunctioning sensors, (2) the hidden node problem,

(3) SSDF attacks (i.e. malicious secondary users), and (4) rogue signals. Yet, the trust-

based CSS protocols treat all inaccurate sensors the same way, in that they penalize

secondary users and diminish sensor reputation all the same. An important question

I wanted to investigate was, “Should the trust-based CSS protocols treat all inaccurate

sensor reports the same way, regardless of the root cause? Or does it cause more harm
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than good to the system in certain scenarios.”

To test my hypothesis, I simulated multiple directional rogue signals against tar-

geted clusters in a cognitive radio network. The simulation illustrated the impact

of rogue signals negatively affecting sensor reputations which, in severe cases, shows

roughly 40% of sensors penalized and eventually ignored in the shared spectrum sensing

process. In other words, nearly half of the sensors were removed without any fault of

their own, e.g. the sensors were not malfunctioning nor behaving maliciously but were

still penalized. That means an outsider has the potential to trick the reputation scheme

in order to filter out nearly half of the sensors, thus diminishing the performance of the

network’s shared spectrum sensing. Trust-based CSS protocols have proven effective

against malicious secondary users who report falsified sensing reports, but they did

not consider the impact of rogue signals. Hence, based on the outcome of my simu-

lations, I consider trust models as overly sensitive Intrusion Detection Systems (IDS)

for penalizing sensors without taking into account the root cause of abnormal sensor

reports.

Not being able to determine the origin of inaccurate sensor reports opens the pos-

sibility for attackers to use RSF as a stepping stone attack against trust-based CSS

protocols. Chen et. al [12] models attacks against CSS protocols as a Byzantine Fault

Tolerance system, in that the CSS protocol can continue functioning as intended as

long as there are not too many Byzantine failures, which in this case are generally

hidden, malicious, or malfunctioning sensors. In contrast, my work demonstrates that

the RSF attack lowers the Byzantine Fault Tolerance of trust-based CSS protocols, due

to having less secondary users participate in the shared spectrum sensing, thus making

the system less robust against Byzantine Failures.

Clancy et al. [15] warns of a similar threat of rogue signals, but in a different context.

They claim that rogue signals can cause faulty statistics, collected from the physical
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layer (e.g. RSS, channel availability, etc.), and stored in the knowledge base. The

cognitive radio’s behavior is determined by the learning and reasoning engines which,

in turn, depends on the knowledge base of spectrum observations across many channels

overtime. Hence, the cognitive radio may not behave as intended, or in fact cause harm,

when the knowledge base contains faulty statistics that inhibits good decision making.

Both my work and theirs [15] express the importance of being able to defend against

rogue signals. The difference, however, is my work protects the sensor reputations in

trust-based CSS protocols whereas their idea is related towards protecting the integrity

of the knowledge base.
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3 Attack Model

In this chapter, I define the RSS model and the method of attack for the RSF which

employs directional antennas. The attacker manipulates sensor reputations by trans-

mitting rogue signals to targeted sensors, thus causing conflicting sensor reports in the

network. To ensure that reports do conflict, directional antennas are used to avoid

targeting the entire network.

3.1 System Model

Figure 11 illustrates the system model of trust-based CSS protocols and the different

targets of PUE and RSF intrusions. In it, f0 represents some wireless spectrum fre-

quency, Si a set of sensors, and Ri the corresponding set of sensor reports. The system

model is a stack of dependent layers, starting with the spectrum channel, the network

of sensors, the trust model, and finally the FC. The accuracy of the CSS is dependent

on the FC receiving reliable input from the above layers. For example, the spectrum
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Figure 11: Trust-based CSS Protocol
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channel must be clear enough for communication, the majority of sensors must not be

malicious or malfunctioning, and the trust model must filter the malicious sensors to

protect the FC from bad input.

Without loss of generality, I use a system as shown in Figure 12 to discuss the

proposed security issues. Within the network area, the spectrum sensors are randomly

distributed and the attacking antennas are positioned in the middle. The FC collects

the sensor reports and cross-examines the local spectrum observations to make a global

decision on channel vacancy. Spectrum sensing occurs in scheduled time intervals when

all communications from the secondary network stops, called quiet periods, in order to

listen for the primary signal [13].

Sensor

Primary Transmitter

0,0

n

n

Attacker

D

Fusion Center

Figure 12: RSF Attack Model

Computer generated simulations were used to demonstrate my hypothesis, i.e., the

vulnerabilities inherent in trust-based CSS protocols. The reason for using simulations

was to create the same environment assumed in the first ever cognitive radio standard,

the IEEE 802.22 WRAN standard [46], which has a very large contour region and

network size in terms of CR users. Currently, there does not exist a test bed of cognitive

radios that compares in size and scope of the IEEE 802.22 environment, nor was there

any datasets that suited the needs of this paper from well-known data repositories like
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CRAWDAD [1].

3.2 Propagation Model

Energy detection. I decided to use energy detection because it is the most widely used

spectrum sensing technique for cognitive radio networks [34, 50, 42]. Secondly, energy

detection is used on three trust-based CSS protocols that I borrow for my simulations,

from papers [12, 30, 5].

When an attacking antenna emits signals, the RSS in decibels per milliwatt (dBm)

for any given sensor si can be modelled according to [41]:

Ri =


N (µω, σω), H0

10 log10(Pray(dij)) + Ls[xi, yi], H1

(1)

This model gives two possible RSS values. When the antenna is not transmitting

(i.e., case H0), the RSS is simply the environmental noise, for which µω is the noise

power mean and σω is the noise variance. On the other hand, when the antenna is

emitting signals (i.e., case H1), the RSS is determined by the attenuation of signal

propagation from the attacker to the sensor plus shadow fading on position [xi, yi].

The function 10 log10(·) is used to convert milliwatts to dBm.

In the H1 case, I use the Rayleigh fading model in milliwatts (mW), expressed

as: [31, 49]

Pray(dij) = PFS(dij)
√
r2

1 + r2
2 (2)

coupled with the Free Space propagation model [31]:

PFS(dij) =
PtGtGrλ

2

(4πdij)2
(3)
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where dij is the distance between si and the jth attacking antenna, λ denotes the

wavelength (meters), Pt is the emission power, Gt and Gr are the antenna gains of the

transmitter and receiver (respectively), and r1, r2 ∼ N (0, 1) are used to simulate the

stochastic nature of wireless channels [31]. Equation 3 is illustrated in Figure 14, with

operational parameters of 10 dBm (Pt = 10) and 45◦ beamwidth (Gt = 32).
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Figure 13: Propagation Model
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Figure 14: 3d Power Flux Density

The RSS value Ri is measured in decibels per milliwatt (dBm). However, the

Rayleigh fading model (from Equation 2) is in milliwatts (mW), so I apply the unit

conversion dBm = 10 log10(mW ) in Equation 2 under hypothesis H1. To incorporate

shadow fading into Equation 1, I used Ls[xi, yi] ∼ N (0, σL) where σL is the shadow

fading variance [20], as illustrated in Figure 15. In the propagation model, I assume

that the channel bandwidth is much larger than the coherent bandwidth, so the effect

of a multi-path fading is negligible, and thus removed from Equation 1 [46].

3.3 Directional Antenna Model

Rogue signals are generated by directional antennas to manipulate the sensor reputa-

tions. The antenna radiates in a smaller area surface, compressing the radiated energy,

and thus raising the signal’s strength. Hence, Gt in Equation 2 is substituted by the
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Figure 15: Auto-correlated Shadow Fading Map

directional gain according to [2]:

G(θ, φ) = (4πr2)

(
4

πr2sin(θ)sin(φ)

)
(4)

In Equation 4, θ and φ are the vertical and horizontal angles of the beam width,

respectively. For simplification, I assume θ = φ. Furthermore, I assume that the

rogue signals only affect the sensors inside the beams of the directional antennas. To

determine which sensors are attacked, I need to calculate the angle between the attacked

sensor and the directional antenna, as illustrated in Fig. 16. The angle between position

~pi of the ith sensor and position ~pj of the jth antenna is:

θij = arccos

(
~pi · ~pj
‖~pi‖‖~pj‖

)
(5)

where ~pi, ~pj ∈ R2. The ith sensor is affected by the rogue signal if θij falls between

the lower and upper beam angles θl, θu of the jth transmitter such that θl ≤ θij ≤ θu.
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Figure 16: Capturing sensors in the radiation pattern of rogue signals.

4 Rogue Signal Framing Intrusion

In this chapter, I introduce the Rogue Signal Framing (RSF) intrusion and demonstrate

its impact on the network’s total trust through simulations.

In the CSS paradigm, the physical layer (i.e. the sensor) provides local signal detec-

tion. The FC collects the sensor reports and validates the signal authenticity through

cross-examination of the RSS spatial diversity from the network. However, verifying

the source of RF waves at the physical layer is incredibly challenging, especially for en-

ergy detectors that can only observe the RSS. Since the energy detectors only measure

raw RF energy, there is no cryptographic means to identify the source [15, 38].

According to the first CRN standard, the IEEE 802.22, the secondary network

must be self-reliant in minimizing interference to the primary network which requires

accurate spectrum analysis [11]. In the case of SSDF attacks, trust models have been

effective at removing malicious sensors from the shared spectrum sensing [12, 30, 5, 7].

However, these trust models cannot distinguish between malicious sensors and accurate

sensors misled by rogue signals (as opposed to the legitimate primary signal). In

other words, sensors are labeled untrustworthy when they have a consistent history of

abnormal sensor reports, regardless of the cause.

Rogue signals can raise a sensor’s RSS well above what is expected, especially in

the absence of the primary signal. So a prolonged rogue signal on a group of sensors
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can cause a sharp contrast in local spectrum observation from the others, thus appear-

ing malicious and no different than SSDF. Consequently, the security protocol brands

these sensors as untrustworthy and removes them from the shared spectrum analysis

for as long as the stigma remains. As such, launching rogue signals on specific regions

of the network over many quiet periods leads to the exploitation of the trust model via

the RSF attack. In the context of CSS, I define the term Rogue Signal Framing attack

as follows,

Definition: Rogue Signal Framing attack breaks the trust between the fusion cen-

ter and a group of sensors via rogue signals to create the illusion of malicious sensors

To launch this attack, I exploit directional antennas to launch rogue signals on a

regional group of sensors, and thereby causing them to report abnormally high RSS

compared to the rest of the unaffected network. When sensors start reporting differ-

ently, the FC interprets the situation as an SSDF attack, when in fact the sensors

reported honestly. In essence, I can use rogue signals to emulate false SSDF attacks to

harm innocent sensors, and mitigate their cooperation in shared spectrum sensing.

4.1 Motivation for Directional Antennas

In a CRN with energy detectors, the RSF attacker must limit the rogue antenna’s

coverage in order to avoid a successful PUE. Directional antennas make it possible

to isolate its radiation pattern to a targeted group of sensors (with the rest of the

network unaffected), thus convincing the FC that the defecting sensors are malicious.

On the other hand, isotropic antennas emit RF waves in all directions and maximize

the antenna’s coverage. This leaves a massive RF finger print in a network of energy

detectors. Chen et. al. [11] proposed an RSS-based location verification scheme to
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detect and pinpoint PUE attacks enforced by a dense network of sensors. However,

this scheme was not tested or tailored for pinpointing directional antennas.

Directional antennas are difficult to detect, and even harder to pinpoint, because

of their ability to emit rogue signals with narrow and asymmetrical radiation patterns.

Any changes made to the beam-direction and beamwidth of a directional antenna

can drastically change the network’s RSS spatial diversity. These observations are

supported by work from Bauer et. al. [6]. In their experiments, they demonstrated

that directional antennas can disrupt localization algorithms on IEEE 802.11 WLANs

that resulted in very high errors.

4.2 Trust Damage

The main goal of the RSF attack is to compromise the trust between the FC and

network sensors. To quantify the trust damage (as a percentage), I use the following

equation to measure the network’s trust score TΣ[q] on quiet period q with:

TΣ[q] =

 1∑
si∈S

ti[0]

∑
si∈S

ti[q] (6)

where ti[q] is the trust score of sensor si ∈ S. In each trust-based CSS protocol, the

trust score is represented differently. In order to compare the trust damage between

each protocol, I normalized the trust score ti such that ti[q] ∈ [0, 1] in the equation.

In each quite period, a group of sensors may lose their trust due to the RSF in-

trusion, so TΣ[q] changes from one quiet period to the next. As the time passes on,

sensors exposed to RSF suffer an increasing amount of trust damage, so I expect TΣ[q]

will decrease as the number of quiet periods q increases.
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Table 1: Simulation Parameters

Parameter Value Description
Ns 400 Number of sensors
Nr 4 Number of rogue antennas
γθ -92 dBm Sensor sensitivity
f 615 MHz Channel frequency
µω 95.2 dBm Noise power mean
σω 0.3 dB Noise power std
dθ 150 m distance threshold
σL 4.5 dB Shadow fading variance
Nx ×Ny 2, 000 m ×2, 000 m Grid dimensions
Cmin 5 Minimum cluster size
Zθ 0.3 Cluster threshold

4.3 Attack Evaluation

To test my proposed framing intrusion, I borrow three different trust-based CSS proto-

cols. The first protocol FA, by Chen et al. [12], utilizes the sequential probability ratio

test (SPRT) and weights the probability by the sensor’s reputation to mitigate the

impact of SSDF attacks. The second protocol FB, by Kaligineedi et al. [30], utilizes a

pre-filtering average combination scheme. These filters are responsible for (1) filtering

extreme outlier sensor reports and (2) ignoring sensors with high trust penalties. The

third protocol FC , by Arshad et al. [5], utilizes a beta reputation system model for

hard-decision CSS protocols. Like FA, the sensors are rewarded for agreeing with the

global spectrum decision, but otherwise penalized. These protocols were denoted with

the letter F to represent the fusion algorithm with these protocols, which is the the

systematic process of collecting sensor reports and “fusing” them into a pot to make

statistical observations that leads to a conclusion.

These CSS protocols were chosen because they each had different methods of evalu-

ating trust (fusion algorithm), yet shared similar properties in which to compare them

by, such as they are all centralized CSS protocols and each sensor is assigned a trust
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Table 2: Comparison of Selected Fusion Algorithms (CSS Protocols)

Protocol Fusion Algorithm Sampling RSS Threshold

FA
Sequential Probability

Ratio Test (SPRT)
true static

FB
Average Combining,

Outlier Filter
false dynamic

FC Beta distribution false static

(or reputation) score. Table 2 shows some of the main differences between the three

chosen protocols. Because protocols FA, FB, and FC are centralized, I can look at

the big picture that allows me to compute the network’s overall statistics and apply

community detection via clustering techniques. Some of the differences include: a)

looking at samples vs. population of sensor reports and b) assigning an RSS threshold

statically vs. dynamically for determining the FC’s decision of H0 and H1.

I make the following assumptions on the simulation’s environment according to an

IEEE 802.22 WRAN environment that encompasses UHF/VHF TV bands between 54

MHz and 862 MHz [46]. In my simulation, 400 sensors are located inside a 2000×2000

grid. I assume the incumbent broadcasting station operates at the UHF frequency of

615 MHz. Like Figure 12, there are four rogue directional antennas facing the cardinal

directions and positioned on the map’s center. Protocols FA, FB, and FC are tested

on RSF attack scenarios, labeled as RSF-15, RSF-30, and RSF-45 which corresponds

to the scenario’s antenna beamwidths of 15◦, 30◦, and 45◦, respectively.

Figure 17 shows the network’s total trust TΣ[q] over 100 quiet periods for each

scenario. Depending on the protocol and different evaluation environment, the RSF

intrusion removed nearly 15% to 45% of the network’s total trust which correlates to

the percentage of sensors removed from the shared spectrum sensing. As expected,

TΣ[q] initially decreases and plateaus over time. It plateaus when the misled sensors

eventually have no more trust to lose.
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(b) RSF-30
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(c) RSF-45

Figure 17: Displays the network’s total trust (from Eq. 6) over 100 quiet periods for
protocols FA, FB, and FC . Like Figure 12, there are four rogue directional antennas
facing the cardinal directions and positioned on the map’s center. The beamwidth of
each rogue antenna is 15◦, 30◦, and 45◦ for scenarios RSF-15, RSF-30, and RSF-45,
respectively.

In Figure 17, the change in the network’s total trust ∆TΣ[q] per quiet period is

different for protocols FA, FB, and FC , because a sensor’s trust score is adjusted differ-

ently for each protocol. Hence, these protocols behave differently against rogue signals,

but the overall trend is a net loss of total trust TΣ[q] as the quiet period q increases

over time. The protocol differences can be summarized briefly as follows:

• Protocol FA: sensor trust is increased when the local spectrum decision agrees

with the FC’s global spectrum decision and penalized otherwise; only applies to

a random sample of sensors with varying sizes

• Protocol FB: the rate and scope of trust damage depends on the environment’s

RSS variance; the protocol’s penalty threshold scales with the environment’s

noise variance

• Protocol FC : sensor trust is increased when the local spectrum decision agrees

with the FC’s global spectrum decision and penalized otherwise; applies to all

sensors
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From Figure 17, I observe that both protocols FA and FC start to plateau, because

the ti of misled sensors eventually falls to 0, causing the ∆TΣ[q] to become stagnant over

time. However, protocol FB differs in that it does not have local spectrum decisions

to compare to FC’s global spectrum decisions. Instead, it determines if a sensor is

malicious when the reported RSS value exceeds a dynamic threshold that correlates

with network’s RSS variance. As the attack coverage increases from RSF-15 to RSF-45,

so does the RSS variance and the FB’s behavior towards the RSF attack.

4.4 Byzantine Fault Tolerance

The CSS paradigm can be modeled in the context of the Byzantine Fault Tolerance

problem. The authors in [12] describe a Byzantine failure as either a malfunctioning

sensor or an SSDF attack. In both cases, the sensors perform unreliable local spectrum

sensing that could ultimately mislead the FC to a wrong spectrum decision in the form

of a misdetection or false alarm. These decisions are based on the null hypothesis H0,

where the primary signal is presumed absent, and the alternative hypothesis H1, where

the primary signal is presumed present, from equation 1.

A misdetection is when the FC decides H0 when in fact the primary signal is present,

and may result in unacceptable interference to the primary users. Conversely, a false

alarm is when the FC decides H1 when the primary signal is absent, and causes a

Denial-of-Service of spectrum resources for secondary users. The hypothesis tests are

represented in Table 3.

Table 3: Hypothesis Test

Primary Signal Absent (H0) Primary Signal Present (H1)
H0 is accepted Correct Decision Misdetection
H0 is rejected False Alarm Correct Decision

The RSF’s ability to damage sensor reputations does not directly influence the FC’s

35



spectrum decision like in SSDF or PUE attacks. Instead, the RSF lowers the system’s

fault tolerance, because the FC has to rely on less sensors to infer the presence of the

primary signal. Hence, the RSF weakens the reliability of shared spectrum sensing for

trust-based CSS protocols in the aftermath of the intrusion.

The global spectrum decision is typically determined by a consensus on spectrum

observations. However, the more sensors that report inaccurate or are ignored will

diminish the chance of the fusion center outputting the correct decision. Figure 18

illustrates this notion of the Byzantine Fault Tolerance in the CSS context, where

the number of accurate sensors in service increases its robustness, and vice versa.

Theoretically, a CSS system with hard-decision requires 51% or more sensors to swing

the fusion center’s decision in favor of the majority, but the percentage shrinks when

sensors are filtered for bad reputation. For example, when 60 sensors out of 100 are

considered trustworthy, only 31 is needed to determine the fusion center’s decision.

Figure 18: Byzantine Fault Tolerance applied to CSS context

I demonstrated the RSF attack via rogue signals could destroy sensor reputations

earlier in this section. The next step is to measure the Byzantine Fault Tolerance of the

trust-based CSS protocols after the deterioration of the sensor reputations. To evaluate

the weakening of the Byzantine Fault Tolerance, I compare how many sensors need to

be attacked, denoted as SA, before the fusion center (FC) outputs an incorrect decision

after four scenarios; NONE, RSF-15, RSF-30, and RSF-45. The scenario NONE is the
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’no prior attack’ scenario, and is used as the Byzantine Fault Tolerance in which to

compare the RSF attack damages to the CSS. The RSF scenarios were conducted over

100 quiet periods. The number of attacked sensors, SA, was incremented until the FC

outputted a wrong decision. This adequately portrays either a PUE or SSDF attack,

since both attacks require misleading a certain amount of sensors before becoming

successful.

Table 4: Shows the number of attacked sensors SA and safe sensors S − SA

SA S − SA
NONE 0 400
RSF-15 40 360
RSF-30 99 301
RSF-45 169 231

Table 4 shows the number of attacked sensors SA and, essentially, the remaining

sensors left to participate in the shared spectrum sensing, S − SA. Conceptually, SA

represents the number of sensors removed from contributing to the shared spectrum

sensing, so the trust-based CSS protocols must rely on a smaller set of sensors (S−SA).
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Figure 19: The Byzantine Fault Tolerance threshold of protocols FA, FB, and FC
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Figure 19 displays the number of attacked sensors needed (for a given protocol) to

mislead the FC’s spectrum occupancy decision, denoted on the y-axis title as ”Byzan-

tine Threshold”. It shows that as SA increases, the Byzantine Fault Tolerance threshold

decreases, giving way to a more vulnerable CRN. Notably, the sensor reputations are

exploited to weaken the system’s overall robustness when rogue signals are injected.

The problem is these trust-based CSS protocols cannot differentiate between SSDF

attacks, which it was intended for, and RSF attacks. As pointed out in my Type-1 vs.

Type-2 framing subsection, roughly 51% or more trusted sensors are needed to sway

the FC’s decision. Hence, for RSF-15 attack scenarios which destroys the reputations

of 10% (i.e., 40) sensors, I can expect at least half of the remaining trustworthy sensors

(360) to cause the FC to make an incorrect decision. This half of about 180 that sways

the FC’s decision represents the Byzantine Fault Tolerance threshold. The RSF-45

attack scenarios account for roughly 42.5% (169) sensors reputations destroyed, which

requires roughly 116 attacked sensors to mislead the FC into making a wrong decision.

In the experiments, however, the Byzantine Fault Tolerance is not perfectly aligned

with each protocol since they have their differences in how they compute trust score,

and whether they filter OR scale a sensor’s influence on the FC by its sensor reputa-

tion. Protocol FB has an unusual outcome in scenario RSF-30 that does not follow the

same pattern as the other scenarios and protocols. This is because the RSS threshold

of protocol FB (that determines if a sensor made a good or bad choice) is dynamic, in

that it fluctuates based on the average RSS readings.

4.5 Two Types of Framing

To create an illusion of malicious sensors, there needs to be a separate group of well-

behaved sensors to delineate good-from-bad sensor reports. Unfortunately, classifying

sensors as either honest or malicious is speculative, as the FCC regulations remove any
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obligations of the primary network to communicate with the secondary network [15].

Hence, the secondary network is left to assume channel occupancy (i.e. the global

spectrum decision) with hypotheses like H0 and H1. Therefore, if all sensor reputations

are in good standing, such that all sensors equally participate in the shared spectrum

sensing, then the global spectrum decision is typically determined by the majority of

sensors.

This is especially true for hard-decision combining, which is when the FC makes a

global spectrum decision based on a collection of local spectrum decisions, reported by

sensors individually, in the form H0 and H1. Protocols FA and FC use hard-decision

combining, with each decision weighted by sensor reputations. Alternatively, the FC

can perform soft-decision combining to determine the global spectrum decision based

on a collection of non-discrete sensor observations, e.g. energy detectors that report

the RSS values instead of a local spectrum decision.

Soft-decision combining benefits from using more descriptive data, but also becomes

more vulnerable to outliers in sensor reports, e.g. extremely high or low RSS values.

Generally, CSS protocols are designed to reduce the impact of outliers or remove them

entirely, but this still leaves the majority of sensor reports as a strong determinant of

the global spectrum decision, just like in hard-decision combining. That is, a majority

of sensors will typically decide the global decision, even if that majority is comprised

of malicious sensors or affected by a wide-reaching rogue signal, as seen in the case of a

PUE attack. In such a case, the FC concludes that the disagreeing minority of sensors,

even if well-behaved, are presumed inaccurate.

Hence, I define two outcomes of rogue signals with regard to damaging sensor

reputations, called Type-1 Framing and Type-2 Framing:

• Type-1 Framing: the sensors misled by the rogue signal are in the minority

and lose trust, while the rest of the network gains trust

39



Rogue Signal Framing

(RSF) Attack

Rogue 

Transmitter

(a) Type-1 Framing

SUs 
obsc

ure
d

Rogue Transmitter

Primary User Emulation

(PUE) Attack

(b) Type-2 Framing

Figure 20: The two outcomes of rogue signals in trust-based CSS protocols. The plus
sign indicates an increase of reputation for some sensor, while the minus sign indicates
a decrease.

• Type-2 Framing: the sensors misled by the rogue signal are in the majority

and gain trust, while the rest of the network loses trust

For consistency, I will describe sensors affected by a rogue signal as misled sensors,

and sensors that are not as unaffected sensors, like in Table 5.

Table 5: Attack Outcomes on Trust Models

RSF PUE
Misled Sensors Lose Trust Gain Trust

Unaffected Sensors Gain Trust Lose Trust

Prior to this section, Type-1 Framing has been the designated type of trust manip-

ulation to describe the RSF attack. Type-2 Framing, which is also a result of rogue

signals, is worthy of discussion for simultaneously accomplishing a PUE attack and

harming sensor reputations. Both attacks are manifested through rogue signals but

can only be distinguished by the attack’s outcome, such as misleading the trust model

(via RSF attack) or the FC (via PUE attack). To my knowledge, the fact that a

PUE attack may inadvertently affect sensor reputations has not yet been considered
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in previous literature. I believe Type-2 Framing is important in that it highlights the

more subtle deficiencies in trust models, like how PUE attacks can also harm sensor

reputations as a side effect.

Fig 20 illustrates two cases of trust damage when the secondary network is bom-

barded by rogue signals: Type-1 Framing when the minority of sensors are within the

attack coverage, and Type-2 Framing when the minority of sensors are outside the

attack coverage. Assuming the network’s trust is in a healthy state, the sensors that

disagree with the global spectrum decision will be presumed malicious. In Type-2

Framing, the sensors outside the attack coverage will experience trust penalties.

To show the two types of framing, I tested for the number of misled (attacked)

sensors and PUE success rate with respect to antenna beamwidth to identify whether

trust damage occurs during a PUE attack, or at least from a rogue signal with a wide

attack coverage. I followed the same system parameters from Table 1. The rogue

signals are launched for a duration of 100 quiet periods with a transmission power of
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Figure 21: Type-2 framing diagram and corresponding simulation
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Figure 22: Type-1 framing diagram and corresponding simulation

10 mW for each integral beamwidth, from 20◦ to 70◦. The recorded trust damage is

based on Eq. 6 with a fixed quiet period q = 100.

Figures 21 and 22 depicts the simulation results of Type-1 and Type-2 Framing,

respectively, on protocols FA, FB and FC which shows the trust damage TΣ[100] (on the

100th quite period) and the PUE success rate (%) with respect to antenna beamwidth

θ◦. Trust damage is evident in all three protocols during successful PUE attacks, i.e.

when the PUE success rate is above 0. In cross examining these results, a negative

correlation can be observed between the trust damage and the PUE success rate,

especially upward of the 60◦ beamwidth mark. Hence, I use these results to reinforce

the notion of Type-2 Framing as a result of rogue signals from Figure 20.

Table 6 shows the corresponding false alarms (sensors misled by rogue signals) for

the beamwidth used on the four attacking directional antennas from Figure 23. The

number of false alarms increases sporadically as the beamwidth increases because of

the random placement of sensors.
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Figure 23: Trust damage over 100 quiet periods with respect to beamwidth and the
corresponding PUE success rate for protocols FA, FB and FC .

Table 6: Number of False Alarms for each corresponding beamwidth (degrees) from
Fig. 23

Beamwidth 20◦ 25◦ 30◦ 35◦ 40◦ 45◦ 50◦ 55◦ 60◦ 65◦ 70◦

False Alarms 56 74 100 123 143 170 190 209 229 249 283

From observing the results in Figure 23 and Table 6 as well as knowing the me-

chanics of the trust model algorithms, a pattern can be seen between the relationship

of trust damage and false alarms. In the polar cases of 0 or Ns false alarms (where

Ns is the number of sensors), the trust damage is virtually 0, since the FC cannot find

any disagreements among the sensor reports.

0 0TDΩ

0 Ns

False Alarms

Trust Damage

RSF PUE

FAΩ

Figure 24: Modeling the Trust Damage from Figure 23

If the trust damage decreases to 0 as the number of false alarms approaches the polar

ends (0 or Ns), then it can be surmised that somewhere near the middle should hold

the maximum trust damage TDΩ for a given trust model. In other words, having false

alarms equal to roughly N/2 produces the maximum trust damage TDΩ, because that

is when the sensor network is most divided in local spectrum decisions. I will denote
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FAΩ as the number of false alarms that produces TDΩ, as depicted in Figure 24.

The RSF and PUE labels over Figure 24 reflect the likely outcome of an attack

from rogue signals. As the false alarms approach Ns due to rogue signals, a successful

PUE attack is more likely to occur than the RSF attack. This can be observed in the

PUE Success Rate in Figure 23 as the directional antennas’ beamwidth broadens and

the number of false alarms increases. It is important to note that regardless of the

attack (RSF or PUE), trust damage occurs unless the number of false alarms is either

0 or Ns.

As seen in Table 7, the trust-based CSS protocol FA can lose over 50% of its sensor

trust (essentially removing over half its sensors) because it randomly samples sensors

to make decisions, and only the sensors in the current sample are penalized if deemed

inaccurate by the FC. Otherwise, protocols FB and FC have the same FAΩ as a result

of examining the reports of all sensors instead of sampling. The TDΩ differs between

all three protocols considering that they each use different trust-update calculations.

Table 7: Trust Model Comparison

Trust Model FAΩ TDΩ

FA 235 63%
FB 201 48%
FC 201 34%
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5 Clustering-based RSF Defense

This chapter introduces the RSF clustering defense (RCD) module that operates in

three steps: 1) analyze the RSS diversity for any clustering behavior, 2) compute

the clustering strength in order to conlude the presence of a rogue signal, and if so

3) ignore trust penalties of sensors in the attacked clusters. The defense relies on

the fact that directional antennas leave isolated radiation patterns that form dense

communities of sensors reporting H1. Malicious sensors can perform SSDF attacks

from the software layer without the need of rogue signals and thus operates outside

the physical limitations of signal properties. In contrast, the RSF attack coverage

is bound by the rogue signal’s radiation pattern. Hence, I look towards a solution

involving cluster analysis to exploit the rogue signal’s physical characteristics, i.e., the

RF ”finger print” it leaves behind in a given region.

5.1 Network Classification and Clustering

The beginning of this section briefly examines the necessary network terms and con-

cepts for better understanding the RCD algorithm and its motivation. I use graph

partitioning and community detection as the basis for discovering clusters of RSF-

attacked sensors. To partition the graph in a meaningful way, I assume that the nodes

(e.g., sensors) have discrete characteristics such as a type or class. In my system model,

the sensors are classified based on their local spectrum decision such that a given sen-

sor si has a corresponding class ci where (ci = −1) if si reports H0 and (ci = 1) if

si reports H1. This allows for the measuring of the network’s assortative mixing, a

term defined as the pairing of nodes with the same class [40]. However, the network of

sensors also needs meaningful edges for community detection. The RCD module pairs

any two sensors si, sj based on their class ci, cj and their mutual distance dij from each
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other in order to observe spatial clustering.

The goal of the RCD module is to find an isolated and strongly concentrated group

of sensors that report H1. The Kronecker’s delta function δ(·) is a commonly used

piecewise constant function in assortative mixing to specify whether or not the two

nodes are of the same class [40]:

δ(ci, cj) =


0 if ci 6= cj

1 if ci = cj

(7)

A basic mathematical formula for discretely measuring the assortative mixing in a

network can be expressed by [40]:

∑
edge(ij)

δ(ci, cj) =
1

2

∑
ij

Aijδ(ci, cj) (8)

where ci, cj are the node classes and δ(ci, cj) is the Kronecker’s delta function from

Equation 7. The left side of the Equation 8 is a summation series that iterates through

an edge list and increments for each pair of the same class. The right side of Equation 8

is the matrix formula which iterates through an adjacency matrix and increments the

same way. The one-half fraction from the matrix formula is there to remove the double

counting of pairs.

Consider Figure 25, a network with two classes of nodes such that one class is

designated by black circles and the other by red squares. In such a network, a node

can have a degree for each class. Each node ni keeps track of the number of edges

connected to nodes of the same class, denoted as degree ksame
i , as well as the number

of edges connected to nodes of a different class, denoted as degree kdiffi . The degree

ksame
i can be computed by Equation 8. Similarly, the degree kdiffi can be computed by
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the same equation, i.e., Equation 8, with the exception of inverting the sign for the

Kronecker’s delta function. Figure 25 displays these two types of degrees above each

node in the form of (ksame, kdiff ) which can be used to measure the strength of the

assortative mixing.
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Figure 25: Example of assortative mixing.

My solution, which involves graph partitioning and community detection, is based

on the principle of assortative mixing, but tailored in the context of cognitive radio

networks. The RCD has three requirements for operation. First, it needs the local

spectrum decision ci ∈ {H0, H1} for all sensors si ∈ S. Second, it needs two sets

of sensors where SH0 = {si|ci = H0} and SH1 = {si|ci = H1}. Lastly, it needs an

adjacency matrix A of size |S| × |S| such that

Aij =


1 if dij ≤ dθ

0 if dij > dθ

(9)

where dij is the distance between sensors si and sj and dθ is the distance threshold.

The RCD module locates k disconnected clusters of sensors Ck such that sj ∈ Ck,

Aij = 1, and ci = cj for sensors si, sj ∈ Ck. The RCD module’s goal is to locate isolated

communities Ck that are surrounded by sensors in SH0 . To start, I measure the cluster

density of sensors with the same class by counting all connected pairs (si, sj) such that
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si ∈ Ck, sj ∈ SH1 , and Aij = 1. This is computed on all sensors in Ck with:

{dH1
i }k = {

∑
sj∈Ck

(Aijδ(ci, cj))− 1 | si ∈ Ck} (10)

where δ(ci, cj) is a simple Kronecker’s delta function from Equation 7 that indicates

a difference in a node’s class c, i.e., the local spectrum decision. Next, I measure the

isolation of sensor si ∈ Ck from sj ∈ SH0 by counting all connected pairs (si, sj) such

that Aij = 1. This is computed on all sensors in Ck by:

{d∆
i }k = D(Ck) = {

∑
sj∈SH0

Aijδ
′(ci, cj) | si ∈ Ck} (11)

δ′(ci, cj) = D′(Ck) =


0, if ci = cj

1, ifci 6= cj

Finally, to measure the isolated clustering strength zk, I use the function:

zk = Z({dH1
i }k, {d∆

i }k) =

∑
i d

H1
i∑

i(d
H1
i + d∆

i )
(12)

In the off chance that a number of malicious sensors from SSDF are positioned near

each other, I want to have a level of tolerance zθ and a required minimum number of

sensors per cluster Cmin. The restraint Cmin prevents a high clustering score zk from

an insignificant-sized cluster.

Figure 26 shows two scenarios: (1) the RSF-45 where each rogue antenna has a

beamwidth of 45◦ and (2) the SSDF-40 where 40% of the sensors, randomly selected,

perform SSDF. The red nodes are sensors reporting H1, and the blue nodes are sensors

reporting H0. The red edges are formed when ci = cj and dij < dθ for sensors si and

sj. The blue edges are formed by the same rules except that ci 6= cj.
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Figure 26: Clustering illustration of my RSF Clustering Defense (RCD) algorithm. (a)
RSF-45. (b) SSDF-40. The RCD forms two graphs, a red and blue graph, for cluster
analysis. The red graph contains edges between sensors reporting H1. The blue graph
contains edges between sensors with opposing local spectrum decisions.

The red and blue graph both give valuable information in detecting directional

rogue signals by the cluster formations they create. The goal of the red graph is to

identify a strong concentration of sensors perceiving a radio signal within a small area.

In contrast, the blue graph demonstrates disagreements in spectrum decisions (i.e., H0

and H1) between neighboring sensors. As can be seen in the RSF scenario in Figure 26a,

the red graphs (created by the rogue signals) is surrounded by the blue graph without

any significant overlap. The delineation between a red and blue graph roughly outlines

a radio’s antenna coverage and becomes a clear indication of a rogue signal. However,

the SSDF scenario in Figure 26b shows that an overlapping of red and blue graphs

reveal a strong likelihood of malicious or malfunctioning sensors, instead of a rogue

signal’s presence, since there is no apparent pattern of spectrum decisions (H0, H1).
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5.2 Protocol and System Flow

My work revolves around a centralized trust-based CSS protocol, which means there

is a dedicated base station that processes the cooperative spectrum sensing. This is

contrasted with local trust-based CSS protocol which requires each cognitive radio to

handle cooperative spectrum sensing on its own hardware. The benefit of having a

centralized trust-based CSS protocol is: more feasible computing power to shoulder

the burden of hosting Intrusion Detection Systems (IDS), such as the one I proposed.
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(a) Conventional trust-based CSS protocol
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Figure 27: Diagram of the trust-based CSS Protocol. Subfigure (b) adds the RCD
module after the FC step, but only when the global decision GD = H0.

Figure 31a illustrates the general framework of a trust-based CSS protocols [12,

30, 5]. In it, f0 represents some wireless spectrum frequency, Si a set of sensors, and

Ri the corresponding set of sensor reports. The system model is a stack of dependent

layers, starting with the spectrum channel, the network of sensors, the trust model,

and finally the Fusion Center (FC). The accuracy of the CSS is dependent on the FC

receiving reliable input from the above layers. For example, the spectrum channel must

be clear enough for communication, the majority of sensors must not be malicious or

malfunctioning, and the trust model must filter the malicious sensors to protect the
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FC from bad input. The following list describes the variables in Fig 27:

• S - set of spectrum sensors (attached to cognitive radios)

• Sr - set of untrustworthy sensors flagged for removal by the trust model

• Sp - set of sensors protected by the RCD module

• H0 - the null hypothesis that presumes the primary signal is present

• H1 - the alternative hypothesis that presumes the primary signal is absent

• RCD - RSF (Rogue Signal Framing) Clustering Defense module

The RCD solution was designed to be modular, so that it could be inserted into

existing trust-based CSS protocols as a panacea against RSF attacks. Figure 31b

illustrates the order (after the fusion step) and the condition (FC reports global decision

of H0) for activating the RCD module. The intended goal was to prevent SUs from

being penalized by rogue signals intended to make them look malicious. However, if an

attack causes the FC to output a global decision of H1, then that constitutes a PUE

attack and requires a different solution altogether, such as the one presented in [14].

The following steps correspond to the trust-based CSS protocol with the RCD module

from Figure 31b:

1. Collect all sensor reports from the network of sensors S

2. Apply the trust model’s filter by removing untrustworthy sensors Sr from S

3. Make a global spectrum decision, denoted as GD, from sensors in (S − Sr) as it

normally would in trust-based CSS protocols

4. Discover signs of an RSF intrusion and identify the group of attacked sensors,

denoted as SP (for sensors protected)
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5. Update the sensor reputations except for the set of sensors SP that are presumed

affected by rogue signals

5.3 Overhead of Defense

To address the time complexity overhead of my defense, I have to examine the al-

gorithm it uses before I can identify the order-of-growth category it belongs to. The

proposed RSF Clustering Defense (RCD) algorithm can be separated into three distinct

parts; (1) the graph setup, (2) the Breadth-First-Search to identify all the clusters (i.e.

subgraphs), and (3) calculating the clustering strength of an identified cluster. Each

part can be summarized by the following:

1. Connect all the vertices in the adjacency matrix Aij to its neighbors within a

distance threshold dθ; this step has a time complexity of O(|V |2) where |V | is the

number of sensors

2. Find all non-overlapping subgraphs (i.e. clusters Ck) using a Breadth-First-

Search; this step has a time complexity of O(|V |2) since it traverses the adjacency

matrix Aij and creates adjacency lists that represent each Ck cluster

3. Calculate the clustering strength of cluster Ck based on the assortative mixing

equations (eq 9 and eq 10); this step iterates through each Ck adjacency list, thus

it has a time complexity of O(|E|+ |V |)

So the time complexity of the RCD defense is the summation of all three parts:

O(|V |2) +O(|V |2) +O(|E|+ |V |). Yet, in a static network, where the cognitive radios

do not move, I can ignore the complexity of part 1 since it is only computed once

during the program initialization. Hence, the time complexity for each reoccurring

quiet period is O(|V |2) + O(|E| + |V |). The quiet period is when the cognitive radio

network stops transmitting to listen for the primary signal.
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Figure 28: The sensor network is partitioned into a red and blue graph before being
analyzed by the RCD module. The red filled nodes are cognitive radios reporting H1

and are connected to nearby neighbors with similar observations.

The bottleneck of my defense is either in part 2 or part 3, whichever has a worse

order of growth between O(|V |2) and O(|E| + |V |), depending on the sizes of V and

E. The RCD algorihm travereses through K adjacency lists representing each cluster

Ck, where 0 ≤ k < K. Fig. 28 shows K = 3 clusters present (C0, C1, and C2) in the

network where each cluster is roughly 1/4 to 1/8 the size of V .

Time complexity can be an issue if an attack is able to impact the network before

the defense can adequately prevent or mitigate the damage. However, my algorithm

has a descent order of growth, i.e. O(|V |2) +O(|E|+ |V |) ≈ O(|V |2), which is smaller

than many clustering algorithms such as the Kernighan-Lin algorithm that have an

order of growth of O(|V |3). Secondly, I assume that all intensive processing happens at

the base station, with a dedicated server and adequate computing resources performing

the analysis, and not on the cognitive radios itself. As such, the time complexity is
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very feasible for most anticipated network sizes, e.g. no more than several thousand

sensors. Furthermore, the calculation of the clustering strength is only applied to small

sections of the network, which is usually much smaller than the total number of sensors

|V |. This occurs in part 2 of my defense where Ck clusters with identical sensor reports

are identified using BFS, in similar fashion to the Flood Fill algorithm.

The need for more intensive processing, like graph algorithms, in radio networks

usually raises concerns about the impact it has on a radio’s battery life. This is not a

concern in my system, because the cognitive radios only submit sensor reports every 30

seconds to a stationary base station that does all the processing on a dedicated server.

Hence, the cognitive radios are spared the processing that would otherwise quickly

deplete itself of battery life. In a decentralized CSS protocol, each cognitive radio

is responsible for computing the shared spectrum algorithms locally, but my system

employs a centralized CSS protocol which removes the intensive processing burden on

the radio itself.

5.4 Defense Evaluation

In this section, I evaluate the RCD module’s performance on its ability to mitigate

trust loss from RSF intrusions. Additionally, I compare the RCD module’s outcome

on RSF and SSDF attacks.

In my simulations, I have two groups of scenarios, the RSF and SSDF. The simula-

tion environment is the same as the one used by the RSF intrusion in Section 4. The

beamwidth of each rogue antenna is 15◦, 30◦, and 45◦ for scenarios RSF-15, RSF-30,

and RSF-45, respectively. The SSDF scenarios simulate malicious sensors by randomly

selecting a percentage of the sensors and raising their RSS by 20 dBm from the noise

floor. I randomly selected 20%, 30%, and 40% of sensors from the scenarios SSDF-20,

SSDF-30, and SSDF-40, respectively.
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Fig. 29 shows the amount of mitigated trust damage (%) with the RCD module un-

der the same scenarios. The mitigated trust damage is denoted as TM [q] and calculated

by:

TM [q] =
TRΣ [q]− TΣ[q]

TΣ[0]− TΣ[q]
(13)
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(c) RSF-45

Figure 29: Displays the network’s total mitigated trust damage (defined in Eq. 13)
from the RCD module.

where TRΣ [q] is the network’s total trust on quiet period q when using the RCD

module, TΣ[q] is the network’s total trust without the RCD module (from Fig. 17),

and TΣ[0] is the initial state of trust scores. I use a minimum cluster size Cmin = 5, a

clustering threshold Zθ = 0.3, and a distance threshold dθ = 150 m.

As shown in Fig. 29, each protocol benefited from my proposed defense against

the RSF intrusion. However, the RCD module offered less protection to protocol FA

due its sequential random sampling of sensors, instead of cross-examining all sensor

reports for a more robust analysis. The spikes from FB in Fig. 29c) are due to its

protocol design of having a dynamic threshold for deciding malicious sensors. During

the spikes, FB’s dynamic threshold is stabilizing as it replaces the old RSS statistics

with new data.

Fig. 30 shows the rate of false alarms, i.e. the number sensors reporting H1 when
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the FC reports H0, before and after applying the RCD module. In all three RSF

scenarios, the RCD module managed to limit the false alarms to a maximum of 3% of

total sensors Ns.

Fig. 31 compares how the RCD responds to the RSF and SSDF intrusions in terms

of the number of sensors attacked SA and the number of sensors protected SP by the

RCD module. The goal is to maximize SP for the RSF scenarios and minimize it for

the SSDF scenarios so that the reputations of malicious sensors are not protected. In

scenario RSF-45, the strongest RSF attack, the RCD module protects 95% of sensors

from losing trust due to rogue signals. In contrast, the RCD module erroneously

protects 15% of the sensors in scenario SSDF-40. This margin of error is acceptable

as 40% of malicious sensors is an unrealistic and profuse amount of attacks in any CR

network. The outcomes of Fig. 31 show a high resiliency against the exploitation of

SSDF attacks.
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Figure 30: The number of false alarms before and after applying the RCD module.
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Figure 31: Comparison of the RCD results between RSF and SSDF intrusions. SA -
number of attacked sensors; SP - number of sensors protected by the RCD

5.5 Cluster Parameters and Impact

Naturally, the size and topology of the cognitive radio network has an affect on the

RCD solution. A dense network can easily show patterns of rogue signals where as

a sparse network gives less information to analyze. To show the difference, I tested

my solution on a second network, denoted as the sparse network, consisting of 100

randomly placed sensors. In contrast, the dense network has 400 randomly placed

sensors, which is the same network tested and discussed in previous sections. For both

dense and sparse networks, I only display the RSF-45 scenario to limit the number of

graphs. The RSF-45 scenario emits four rogue signals in the cardinal directions with

45◦ beamwidth.

The distance threshold dθ is the condition required to form edges between two

sensors. A red graph indicates a strong concentration of sensors perceiving a signal,

such that it potentially reveals a rogue signal’s antenna coverage. The red graph is

formed by sensors that share H1 reports within the distance threshold, dθ. Likewise,
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the blue graph is formed by sensors that simply disagree with their neighbors’ spectrum

decisions (i.e. H0 and H1) within dθ. The blue graph helps reveal an SSDF attack,

especially when the red and blue graph are overlapping, and not clearly segregated.

When a rogue signal is present, the red graph should be surrounded by the blue graph,

outlining the reach of the rogue signal’s antenna coverage.

Fig. 32 and Fig. 33 show the changing composition in the red and blue graph

(created by the RCD) in both dense and sparse networks with different dθ, where

dθ = 150, 300, 450 m. For the dense network, the attack coverage of the rogue signals

is clearly visible with all three values for dθ. For the sparse network, the visibility of

rogue signals becomes much more difficult to perceive, especially when dθ = 150 m.

Naturally, this occurs from having fewer sensors, randomly placed, over the same area

as the dense network. In other words, the sensors are farther away from their neighbors

in the sparse network.
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Figure 32: RCD solution applied to a dense network of 400 sensors.

At first glance, it might be tempting to just assign an excessive number for dθ to

avoid the sparsity problem, i.e. when clusters are not clearly visible because dθ is too

low. Actually, a very large dθ can decrease the accuracy of the RCD solution as shown

in Fig. 34. An infinitely large dθ will always form complete blue and red graphs across
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Figure 33: RCD solution applied to a sparse network of 100 sensors.

the sensor region, which is not always more informative.

Fig. 34 shows the accuracy of the RCD solution for both dense and sparse networks

with dθ = 150, 300, 450 m. The accuracy is represented by the number of sensors

protected by the RCD solution divided by the number of sensors inside the rogue signal’s

attack coverage, i.e. SP/SA. Notably, the dθ = 300 m in the sparse network reaches

100% accuracy, but dθ = 450m does not, even with more edges to analyze. The reason

for this phenomena is due to the blue edges lowering the clustering score Zk for cluster

Ck. This can seen in eq. 12, where the clustering score Zk decreases because the

denominator increases as more blue edges form (from variable d∆
i ).

There are many variables in the simulations that are worth analyzing at a more

comprehensive level. The number of sensors, the number of attackers, the shape and

size of the rogue signal, the network’s topology, and even the environment’s landscape.
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Figure 34: The accuracy of the RCD for dense and sparse networks with dθ =
150, 300, 450m.

6 Dynamic Clustering Methods

In this chapter, I evaluate the RCD modules performance on its ability to detect

rogue signals in several scenarios with different parameters, which include RSF attack

coverage and network size. Additionally, I compare the RCD modules outcome on RSF

and SSDF attacks to evaluate its robustness.

6.1 Clustering Methods

There are many variables to consider in the context of detecting rogue signals through

CSS. The number of sensors, the number of attackers, the beamwidth and transmis-

sion power of the rogue signal, the networks topology, and even the environments

landscape (that accounts for shadow fading). Thus, I look toward a solution that dy-

namically adjusts according to the network size and density. In short, I aimed to devise

a parameter-free algorithm that 1) was effective in all cases and 2) the solution did not

require endless tweaks for optimal results.

I discuss three clustering methods to detect rogue signals, built on top of the RCD

foundation of the previous subsection. The first method, Static Distance Threshold
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(SDT), was named as such since the distance threshold dθ (threshold that determines

if an edge exists between sensors si, sj) is statically and arbitrarily chosen. The other

two methods, K Nearest Neighbors (KNN) and Median Distance Threshold (MDT),

have thresholds that dynamically change according to the network’s size and density

at a given location, and pertains to this paper’s contribution. The three methods are

explained as follows:

1. Static Distance Threshold (SDT)

Edges are formed between any two sensors, si and sj, if the distance between

the two is below the distance threshold dθ, which eventually culminates into a

cluster. The defining characteristic of the SDT method is the arbitrary and static

assignment of dθ. The downside was having to arbitrarily determine dθ which may

or may not be effective in a given scenario.

2. K Nearest Neighbors (KNN)

For the KNN-inspired method, the distance threshold is dynamically chosen as

dθ = dik, the distance between si and the kth closest sensor sk. In short, this

method forms up to k edges for sensor si, but only when si reports H1, i.e, it

perceives the primary signal. The downside is that k must be arbitrarily chosen,

and it is not apparent which is the best k for a given scenario.

3. Median Distance Threshold (MDT)

As the name implies, the distance threshold dθ = mediani where mediani is the

median distance of all the distances dij between si and sj in the immediate or

adjacent grid units. Like SDT, edges are formed between any two sensors, si and

sj, if dij ≤ dθ and si reports H1. The proposed scheme does not need to set a

subjective threshold dθ or rely on the estimation of the network’s density, which

means that the method is robust to sensor locality.
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However, in all three methods, the clustering strength threshold zθ for cluster Ck ∈

S has to be manually set. The clustering strength zθ corresponds to the solution’s

sensitivity in locating a rogue signal; smaller zθ leads to more misdetections and a

larger zθ leads to more false alarms.

6.2 Clustering Threshold Determined by Locality

The RSF defense needs to cross examine a sensor si with all other sensors in S to see

if it met the conditions for creating an edge, e.g., if the distance dij between si and sj

was dij ≤ dθ. To improve both performance and efficiency, edges between sensors si, sj

are considered only if sensor sj is in the immediate or adjacent cell.
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Figure 35: To improve efficiency, edges between sensors si, sj are considered only if
sensor sj is in the immediate or adjacent cell

The RCD algorithm was modified to only form edges with sensors in the immediate

or adjacent grid units, with the use of hashmaps, in order to mitigate the overhead of
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forming edges between all sensors. In Figure 35, a sensor reporting H1 (primary signal

present) forms 11 edges with neighboring sensors reporting H0 (primary signal absent)

in the immediate or adjacent grid cells. In my example, the red sensor reporting H1 is

connected to 11 blue edges, which means all of its neighbors are reporting differently,

i.e., H0. The optimization relies on a hashmap (key,value) structure where the key is

the grid cell id (e.g. row and column id) and the value is the set of sensors in that grid

cell. There is no need to check for edges after a certain distance, since the further two

sensors are apart, the weaker the RSS correlation [35]. This optimization alleviates the

computation burden of the clustering algorithm. In my example, the size of a single

grid cell is 200× 200 in a grid of size 2000× 2000.

Secondly, and more importantly, the clustering threshold dθ differs from one area

to another within the grid space, that allows the solution to conform to different com-

munity densities in a large space. Take, for example, a grid cell and its neighboring

cells, together denoted as G1, that has a dθ = 200 determined by the median distance

of sensors S1 in G1. Another grid cell and its neighbor cells, denoted as G2, might have

a dθ = 300 instead. Thus we have n different diθ for each Gi where n is the number of

grid cells and 0 < i ≤ n. Having n different clustering thresholds is exactly gives the

solution the parameter-free property. The clustering methods MDT and KNN simply

determine the local distance thresholds diθ for each Gi.

6.3 Simulation Setup

I have two types of networks for my simulations, a dense network of size 400 sensors

and sparse network of size 100, which are located inside a 2, 000×2, 000 grid. I assume

the incumbent broadcasting station operates at the UHF frequency of 615 MHz. Like

Figure 12, there are four rogue directional antennas facing the cardinal directions and

positioned on the map’s center. I created three RSF attack scenarios, labeled as RSF-
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15, RSF-30, and RSF-45 which corresponds to the scenario’s antenna beamwidths of

15◦, 30◦, and 45◦, respectively. The SSDF scenarios simulate malicious sensors by

randomly selecting a percentage of the sensors and raising their RSS by 20 dBm from

the noise floor. I randomly selected 20%, 30%, and 40% of sensors from the scenarios

SSDF-20, SSDF-30, and SSDF-40, respectively.

Table 8: Scenario Types

LABEL ATTACK DESCRIPTION
RSF-15 Rogue Signal Framing 4 antennas, beamwidths=15◦

RSF-30 Rogue Signal Framing 4 antennas, beamwidths=30◦

RSF-45 Rogue Signal Framing 4 antennas, beamwidths=45◦

SSDF-10 Spectrum Sensing Data Falsification 10% of sensor reports falsified
SSDF-20 Spectrum Sensing Data Falsification 20% of sensor reports falsified
SSDF-30 Spectrum Sensing Data Falsification 30% of sensor reports falsified

Table 8 displays all the attack scenarios I simulated to test my proposed RSF

defense.

6.4 Comparison of Clustering Methods

This subsection displays the test results of the three clustering-based rogue signal

detection methods (SDT, KNN, MDT) against the attack scenarios listed in Table 8.

There are two types of edges in my cluster network; red edges which are pairs

of sensors reporting H1 and blue edges which are pairs reporting differently. The

clustering strength zθ is the purity of a cluster community, so 0.33 means at least a

third are red edges. I picked a clustering strength of 0.33 because it proved to be

very robust to different network sizes, along with other values between 0.3 and 0.5.

Thresholds higher than 0.5 led to many rogue signals going unnoticed (misdetection),

and anything lower than 0.3 resulted in SSDF attacks being confused for RSF attacks

(false alarms).
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For the KNN tests, I set K=10. Table 9 lists the results of the three clustering-

based rogue signal detection methods on a dense network of size 400, while Table 10

lists the corresponding results on a sparse network of size 100. The table values are

fractions where the numerator is number of sensors protected by the RCD (denoted as

Sp) and the denominator is the number of sensors affected by the rogue signal (denoted

as Sa). For the RSF columns, a higher percentage means a better detection rate. For

the SSDF columns, a smaller percentage (which is better) means less false alarms from

an SSDF attack.

Table 9: Performance of the three clustering methods in a dense network of size 400,
in the form of Sp/Sa (number of sensors protected over sensors attacked)

RSF-15 RSF-30 RSF-45 SSDF-10 SSDF-20 SSDF-30
SDT 35/40 95/99 159/169 3/40 16/80 52/120
KNN 35/40 99/99 169/169 0/40 0/80 46/120
MDT 20/40 99/99 169/169 0/40 0/80 15/120

Table 10: Performance of the three clustering methods in a sparse network of size 100,
in the form of Sp/Sa (number of sensors protected over sensors attacked)

RSF-15 RSF-30 RSF-45 SSDF-10 SSDF-20 SSDF-30
SDT 2/11 9/25 24/41 0/10 5/20 7/30
KNN 5/11 20/25 41/41 0/10 0/20 5/30
MDT 7/11 22/25 40/41 0/10 0/20 0/30

The MDT and KNN methods easily outperform the SDT method in both types

of attacks (RSF and SSDF). Interestingly, the MDT and KNN are virtually tied in

performance, with KNN outperforming in some cases but not always. However, MDT

appears to have more resilience against SSDF attacks, meaning that it can better

distinguish between RSF and SSDF attacks, i.e. between rogue signals and malicious

SUs. It is worth noting that the MDT method is also preferable because the KNN

method requires an arbitrarily chosen K value, which may or may not be optimal for

the given scenario.
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6.5 RSF Defense on Trust-based CSS Protocols

I apply clustering methods SDT, KNN, and MDT to three different trust-based CSS

protocols (which I borrow from [12, 30, 5]) to analyze my solution’s ability to protect

sensor reputations. The previous subsection simply compares the accuracy of detecting

sensors affected by rogue signals, which is represented by (Sp/Sa).

The first protocol FA, by Chen et al. [12], utilizes the sequential probability ratio

test (SPRT) and weights the probability by the sensor’s reputation to mitigate the

impact of SSDF attacks. The second protocol FB, by Kaligineedi et al. [30], utilizes a

pre-filtering average combination scheme. These filters are responsible for (1) filtering

extreme outlier sensor reports and (2) ignoring sensors with high-trust penalties. The

third protocol FC , by Arshad et al. [5], utilizes a beta reputation system model for

hard-decision CSS protocols. Like FA, the sensors are rewarded for agreeing with the

global spectrum decision, but otherwise penalized.
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Figure 36: Comparison of clustering techniques with protocols FA, FB, and FC on a
dense network.

Figures 36 and 37 shows the network’s reputation retention (i.e., the system’s total

trust on a scale between 0 and 1) at the end of a sustained RSF attack lasting 50

quiet periods. Besides incorporating the RSF defense into the three protocols, the

parameters are the same from the “Simulation Setup” subsection.
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Figure 37: Comparison of clustering techniques with protocols FA, FB, and FC on a
sparse network.

As expected, Figure 36 shows all clustering methods providing nearly perfect protec-

tion of sensor reputations. The experiment’s parameters, along with the SDT method,

were used in my previous work [28], and showed similar results. However, Figure 37

shows KNN and MDT methods clearly outperforming the SDT method in sparse net-

works. In particular, the KNN and MDT methods perform roughly 10% better in

RSF-30 scenarios and 20% better in RSF-45 scenarios. Simply put, the SDT method

is not flexible or robust enough to handle different network densities, especially when

the distance threshold is statically assigned.

I purposely picked a distance threshold dθ = 150 to show that clustering parameters

must be dynamic to account for certain variables in an attack scenario, such as the

proximity of sensors in cooperative spectrum sensing. As indicated in my test results, it

worked well for dense networks, but not in sparse networks where the average distance

between sensors was greater.

6.6 Clustering Figures - False Alarms (SSDF)

Figure 38 illustrates three clustering methods (SDT, KNN, MDT) on a dense network

of size 400 in a 2, 000× 2, 000 grid, and a clustering threshold zθ = 0.33. For the SDT
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method, I used a distance threshold of dθ = 150m. The purpose of these figures is to

test the resilience of the RCD solution against large scale SSDF attacks. In particular,

I am testing the RCD module’s ability to distinguish between RSF and SSDF attacks.

The false alarm rate corresponds (roughly) to the number of edges in a figure, so less

edges is better in this case. The exact number of false alarms is in the SSDF-30 column

in Table 9.
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Figure 38: Demonstrates the clustering behavior of SDT, KNN, and MDT methods on
the SSDF-30 scenario applied to a dense network, or simply put, when 120 out of 400
sensors suffer an SSDF attack

As demonstrated in Figure 38, the MDT method appears to have the least amount

of false alarms, meaning that it can better distinguish between RSF and SSDF attacks,

i.e. between rogue signals and malicious SUs. It is worth noting that the MDT method

is also preferable because the KNN method requires an arbitrarily chosen K value,

which may or may not be optimal for the given scenario.
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6.7 Clustering Figures - Dense Network

This subsection presents figures to illustrate the three clustering methods (SDT, KNN,

MDT) on a dense network of size 400 in a 2, 000 × 2, 000 grid. These figures reflect

the RSF columns from Table 9. For the SDT method, I used a distance threshold of

dθ = 150m. As illustrated in Figure 12, the rogue transmitters are positioned at the

center of the map.
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6.8 Clustering Figures - Sparse Network

This subsection presents figures to illustrate the three clustering methods (SDT, KNN,

MDT) on a sparse network of size 100 in a 2, 000 × 2, 000 grid. These figures reflect

the RSF columns from Table 10. For the SDT method, I used a distance threshold of

dθ = 150m. As illustrated in Figure 12, the rogue transmitters are positioned at the

center of the map.
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7 Conclusion

My work demonstrates the RSF intrusion, a new threat to trust-based CSS protocols.

The attackers can transmit rogue signals onto groups of sensors to emulate SSDF and

ruin their reputation with the intent of having them removed from the shared spectrum

sensing. My findings caution the use of trust-based CSS protocols and warrants a line

of defense against rogue signals. The RSF simulations were conducted in a realistic

environment based on the 802.22 WRAN standard and illustrates the impact of the

RSF intrusions on sensor reputation scores. To mitigate the trust damage, I introduced

a new defense based on community detection via cluster analysis. The simulation ex-

periments showed that my defense solution, the RCD module, could effectively keep

the sensor reputations intact while distinguishing rogue signals from malicious sensors.
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I discuss the challenges in detecting rogue signals in cooperative spectrum sensing, in

an effort to better mitigate the impact of RSF attacks on sensor reputations. Addition-

ally, my rogue signal detection solution has a dynamic clustering threshold based on the

density of the network at a given location. This gives the advantage of a one-size-fits-all

solution when it comes to handling networks that are sparse, dense, and disproportion-

ate. My work contributes to making cognitive radio networks a viable technology, in

particular, promoting research that helps shed some light on the difficulties of utilizing

fallow spectrum safely.
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APPENDIX - Rogue Signal Clustering Defense (RCD) Algorithm - the
psuedo code that locates sensors affected by rogue signals in trust-based CSS protocols.

Algorithm 1 The RSF Cluster Detection Module

Function:RCD(A, SH0 , SH1)

1: Initialize cluster index k ← 0
2: Initialize set of protected sensors SP
3: Initialize set of visited nodes V
4: Initialize Breadth-First-Search queue Q
5: Initialize set of clusters Ck
6: Initialize list clustering strength values Zk
7: for all si ∈ SH1 do
8: if si /∈ V then
9: k ← k + 1
10: add si onto Ck, V, and Q
11: while Q is not empty do
12: sq ← dequeue(Q)
13: for all sj ∈ SH1 do
14: if sj /∈ V and Aqj = 1 then
15: add sj onto Ck, V, and Q
16: end if
17: end for
18: end while
19: {dH1

i }k ← D(Ck)
20: {d∆

i }k ← D′(Ck, SH0)
21: zk ← Z({dH1

i }k, {d∆
i }k))

22: add zk onto Zk
23: end if
24: end for
25: for all zk ∈ ZK do
26: if |Ck| ≥ Cmin and zk > Zθ then
27: SP ← SP ∪ Ck
28: end if
29: end for
30: return SP

82



Vita

David Scott Jackson was born on July 5th of 1988 in Fort Benning, Georgia. He
graduated from Brooke Point High School located in Stafford, Virginia in 2006. He
received his B.S. and M.S. degrees in Computer Science from Virginia Commonwealth
University in 2011 and 2013, respectively. Prior to joining Dr. Yu and Dr. Zang’s
security lab, he worked as an undergraduate research assistant in a VCU Biomedical
Engineering Lab which resulted in his first accepted paper at the ASEE 2011 Confer-
ence, titled Development of Haptic Virtual Reality Gaming Environments for Teaching
Nanotechnology. In April of 2013, he received the Outstanding Graduate Teacher As-
sistant Award by the VCU School of Engineering for that year. David is the recipient of
numerous awards from intercollegiate computer science competitions, including “Most
Innovative App” at Dominion Enterprise’s Hackathon (HackU) in 2013, 2nd place at
UNC’s Hackathon in 2014, and winner of the GhostRed CTF hosted by GE’s cyber
security division in 2014. As a Ph.D. candidate, he went on to publish one conference
and two journal papers regarding his work in the area of wireless network security.
In the summer of 2015, David joined the cyber-security firm, FireEye Inc., as a Sr.
Software Engineer on the mobile security team.

83


	Rogue Signal Threat on Trust-based Cooperative Spectrum Sensing in Cognitive Radio Networks
	Downloaded from

	tmp.1438886767.pdf.V5I4N

