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Abstract

Spatio-Temporal Modeling Of Anatomic Motion For Radiation Therapy
By Elizabeth Zachariah, M.S.

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2015.
Major Director: Alen Docef, Ph.D., Associate Professor, Department of Electrical and
Computer Engineering

In radiation therapy, it is imperative to deliver high doses of radiation to the
tumor while reducing radiation to the healthy tissue. Respiratory motion is the most
significant source of errors during treatment. Therefore, it is essential to accurately
model respiratory motion for precise and effective radiation delivery. Many
approaches exist to account for respiratory motion, such as controlled breath hold
and respiratory gating, and they have been relatively successful. They still present
many drawbacks. Thus, research has been expanded to tumor tracking.

The overall goal of 4D-CT is to predict tumor motion in real time, and this
work attempts to move in that direction. The following work addresses both the
temporal and the spatial aspects of four-dimensional CT reconstruction. The aims of
the paper are to (1) estimate the temporal parameters of 4D models for anatomy

deformation using a novel neural network approach and (2) to use intelligently

Xi



chosen non-uniform, non-separable splines to improve the spatial resolution of the

deformation models in image registration.
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CHAPTER 1

INTRODUCTION

Radiation therapy is the primary method used for eradicating tumors in the
thorax and abdomen. A major problem in radiation therapy is that normal healthy
tissue in the path of radiation is affected and incorrectly irradiated. Another
problem is identifying the tumor or tissues to be irradiated and delivering the dose
to the appropriate tissues once they have been identified. For this reason, there is a
need to minimize the amount of radiation received by the healthy cells adjacent to
the tumor [1].

To understand why this collateral damage might occur even with a priori
knowledge of the position and size of the tumor, one must consider that the tumor
can move in unpredictable ways, either because of patient motion or, as in the case
of a lung tumor, because of a patient's unique breathing patterns. Thus, it is
important to track the location and changing geometry of the tumor during therapy
[2]; in fact, because of the latency of the available medical devices, one must predict
the location and geometry of the tumor through the study of its behavior in previous
breathing cycles. This technique, known as image guided radiation therapy (IGRT),
is a prominent method used to increase accuracy in dose targeting. IGRT uses
numerous and repetitive imaging to improve the localization of the target tissue by

tracking the changes of the target during the radiation delivery [3,4].



A critical tool in the acquisition of data for IGRT is time-dependent computed
tomography (ordinarily denoted as 4DCT). 4DCT is able to image the movement of
the anatomy [5]. It is principally used to account for respiratory motion. As such,
4DCT requires a large amount of data to reconstruct a time sequence of CTs from
scratch [6]. Numerous methods have been implemented to construct a 4DCT model
of the moving anatomy. Some methods include modeling respiratory motion with
cosine models, or using multiple breathing periods and averaging them to create
one model period. In actuality, respiratory motion is more complex, and studies
show breathing changes during treatment [6].

While the major goal of 4D-CT is to predict tumor motion in real time, or
tumor tracking, this research seeks to take a step in that direction by modeling
breathing induced motion and tumor deformation, the change in its location and
geometry. This research models the respiratory motion using 4D-CT model that uses
areal breathing trace, a static high-resolution CT, and CT projections.

This paper presents a method to create a more realistic and versatile spatio-
temporal model of the moving anatomy for use in 4D cone beam CT
reconstruction. The aims of this paper are two-fold: to (1) estimate the temporal
parameters of 4D models for anatomy deformation and (2) to use non-uniform, non-
separable splines to improve the spatial resolution of the deformation models. For
aim 1, it is hypothesized that temporal parameter estimation using neural networks
will result in clinically accurate DVF estimation. For aim 2, it is hypothesized that

using non-uniform, non-separable splines in deformable image registration will



result in greater registration accuracy than the conventional method of using

uniform splines.

CONTEXT OF THE PROBLEM

In this section we briefly clarify the role that the techniques developed in our
research have in the image-guided radiation therapy cycle shown in Figure 1.
Radiation therapy begins with a treatment planning CT scan, where the cancerous
tumor is delineated and the treatment parameters of the radiation field are
determined for optimal coverage of a static tumor. The planning scan is a one-time
process, and is not acquired during radiation treatment; therefore, patient comfort
is less of a concern. Thus the scan can be as long as needed and can employ
controlled breathing techniques in order to obtain a high quality image of the tumor.

Radiation is then delivered over several fractions (days) as determined by
the particular type, size, and location of the tumor. The patient breathes freely
during treatment. Each treatment fraction may start with a calibration or training
phase where additional imaging is performed but no radiation is delivered.

Tumor displacement occurs both between planning and treatment and
within each treatment fraction. An ideal image guided system would allow perfect
tracking of the tumor by adjusting the radiation parameters in real time based on
both a priori information (the planning scan, images acquired during training) and
real time information (such as a breathing trace and x-ray images acquired in real

time). This is, as of now, an unsolved problem and research carried out in 4D-CT,



including the research presented in this dissertation, aims to take steps towards the

goal of perfect tumor tracking.

Planning Fraction (day) 1 Fraction (day) 2 Fraction (day) n

Intra-fraction motion

Inter-fraction motion

Figure 1: The radiation therapy cycle

While the ideal tracking system needs to predict the tumor location in real
time, most of the research so far has focused on modeling the breathing-induced
motion and tumor deformation. The intention has been to understand this motion
to eventually be able to predict it. In conventional binning-based 4D-CT, motion is
reconstructed at 8-10 time instants within a breathing period, as depicted in Figure
3. Model-based 4D-CTs, such as the one employed in this research, attempt instead
to produce a much higher temporal resolution by reconstructing the motion at an

arbitrary time t. The scope of this research fits into this context by:



Aim 1 (Chapter 3): A 4D-CT technique based on a PCA representation
of anatomical motion was introduced in Staub et al. [9]. | proposed, in
a previous work, an efficient method for estimating the basis
functions that does not require a full PCA analysis [10]. The method
requires prior knowledge of a few temporal parameters. This thesis
developed a method for estimating these parameters using neural

networks.

Aim 2 (Chapter 4): Image registration is a critical component of
image-guided therapy. For inter-fraction motion, it is used to map the
planning CT to the daily anatomical geometry. For intra-fraction
motion it is used to generate a small number of DVFs, which in turn
can be used to obtain the PCA basis functions. This thesis outlines an
innovative method for image registration which can model

discontinuous anatomical motion, such as sliding motion.

IMPACT OF THE RESEARCH

The significance of this research has both short-term and long-term
implications. In the short term, the results presented in this work, in Chapters 3 and
4, are of interest mostly to other researchers working to improve image-guided
radiation therapy for cancers in the chest and abdomen. The temporal estimation

method discussed in Chapter 3 can be used with the 4D-CT model to accurately



model realistic breathing motion. The image registration method is useful in
estimating a deformation vector field modeling the motion between consecutive
bins in a conventional 4D-CT. The techniques developed here are additional tools,
which will prove to be useful in optimizing tumor tracking. While these techniques
are not yet ready for integration into clinical systems, they are at the stage where
they can be disseminated to therapists and equipment manufacturers in order to
ensure clinical relevance, to identify potential applications in other clinical
procedures, and to determine synergies with existing equipment functionalities. In
the long term, these techniques can potentially be useful in creating a 4D-CT model
that can predict tumor motion and deformation in real-time. Finally, although these
techniques are specific to radiation therapy in the thorax, these techniques,
especially image registration using splines, are applicable for and have potential

value for any medical imaging modality.

NOVELTY AND CONTRIBUTIONS

The focus of this dissertation is two-fold; (1) it is to estimate the temporal
parameters of the 4D-CT model using statistical features of CT projections, and (2)
to a rough DVF of the deformation, from splines, between consecutive bins during a
conventional 4D-CT. The most common method for model-based 4D-CT is using an
a priori deformation model with a corresponding respiratory trace taken from the
patient [11,12,13,14,15,2,3,16]. The model in this research is based on the one

introduced by Docef and Murphy [15]. This 4D-CT DVF model that uses basis



vectors to model the spatial variation and a breathing (respiratory) trace to model
temporal variations. In this method the breathing trace and CT projections are
collected and a 4D-CT image is reconstructed using filtered back-projection. Staub
et al. have elaborated on this model and have used it with Principal Component
Analysis, where the PCA method is used to determine the basis vectors [9]. I have,
in a previous work, developed a way to estimate the basis vectors that does not
require a full PCA analysis [10]. However, this method requires previous knowledge
of temporal parameters of the model.  Figure 2 shows the contributions this work
makes to the overall modeling of the 4D-CT.

In the 4D-CT process, initially a patient scan is conducted, and from the scan
projections, a breathing trace, and a conventional filtered back projection 4D CT is
constructed. An estimated rough DVF of the deformation between consecutive time
bins is modeled using non-uniform, non-separable spline based image registration
(aim 2). A detailed schematic diagram of the image registration is shown in Figure
19 and the methodology is further explained in Chapter 4. The DVF is used to
compute the basis vectors for the 4D spatio-temporal model. In parallel, the
temporal delays are estimated using neural networks (aim 1). The temporal
parameter estimation method is explained in Chapter 3, and a schematic diagram of
the process is shown in Figure 6. The temporal parameters are used to compute the
DVF basis vectors using the methodology developed by the author’s previous work.
The DVF basis vectors, temporal parameters, projections and breathing trace form
the patient scan are used to model a DVF using the spatio-temporal model. This

results in a reconstructed 4D-CT of the patient’s anatomy.



The novelties of this approach are in two main objectives, shown in the green
blocks on the schematic diagram in Figure 2. One of the objectives of this research is
to model these temporal parameters using a novel neural network based method.
The second objective of this research is to create a new image registration technique
using splines that models the deformation vector field between consecutive
reconstructed CT images acquired from the filtered back-projection method. The
proposed methodology, which addresses these objectives, is shown in two main
components:

1. A new neural network method, described in Chapter 3, is
developed to estimate the temporal parameters for the 4D-CT
reconstruction model. The network is evaluated using a set of
statistical features from a set of CT projections.

a. The proposed method uses a set of statistical features
instead of a full set of CT projections to determine the
phase delays (temporal parameters) of the 4D-CT
deformation model. This methodology reduces the amount
of computation time and memory needed to estimate the
temporal parameters.

b. The methodology also estimates the delay values in the x
and y directions independently on separate neural
networks, thereby reducing the computation time and

allowing for a smaller number of neural network neurons.



2. A novel non-uniform, non-separable spline based image
registration technique, described in Chapter 4, is used to model
deformation vector fields.

a. The proposed method uses a set of intelligently chosen
spline knots to accurately model a deformation vector field
given a reference image, deformed image, and an original
deformation vector field.

b. The novel non-uniform, non-separable spline method is
used to model a deformation vector field representing the
change in motion between two images.

c. The method reduces the modeling error significantly when

compared to standard uniform spline based methods.



Scan Patient

el |Natworle basec Perform Conventional
Temporal Parameter Projections Breathing Trace
P 4D-CT
Estimation

Estimate Rough DVF Using
Image Registration

Compute DVF Basis
Vectors

Estimate DVF Using
Spatio-Temporal Model

4D-CT

Figure 2: Schematic diagram of the overall 4D-CT process
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CHAPTER 2

BACKGROUND

RADIATION THERAPY

Radiation therapy is the preferred method of eradicating tumors in the thorax and
abdomen. The radiation is deposited as energy into the patient's body. When human body
cells acquire too much energy at one time, they are damaged. They lose their ability to
reproduce. Because a tumor is an abnormal growth of cells within the human body, it is
necessary to inhibit their reproductive ability. An unfortunate side effect, however, of
radiation is that normal cells in the path of the radiation are also affected. Other
uncertainties in radiation therapy planning and treatment include distinguishing the
tissues to be radiated and delivering the radiation dose once the tissue is identified [2,7,4].
For this reason, there is a need to locate and differentiate between normal cells and cancer
cells during radiation therapy treatment [4,6,8,17,18].

Imaging is used in all stages of the radiation therapy process from patient staging to
simulation, treatment planning, and radiation delivery; it is an image-guided intervention
[6]. While all steps of radiation therapy are image guided, traditionally imaging
technologies have only been used in identifying the location of a tumor prior to radiation

treatment. With the invention of the x-ray, the scientists have been able to see two-

11



dimensional (2D) representations of the interior of the human body. These x-rays, at the
time, provided unique images of the body structures of the human body. By using the
location of the bony structures, radiologists were able to locate the position of internal
organs [6]. As such, initial cancer treatments were planned by collimating rectangular

fields that bounded the presumed locations of tumors based on x-ray data.

COMPUTED TOMOGRAPHY

Current practices use computed tomography (CT) for planning and treatment in
radiation therapy. Computed tomography, also known as digital radiography, is an imaging
technique that produces a three-dimensional representation of the anatomy through a
number of radiologic images from different viewpoints [19]. CT is advantageous because it
allows for the acquisition of volumetric data that outputs high quality images [20]. Benefits
include the capability to process and obtain thin cross-sectional images with superior
spatial resolution and spatial integrity than other imaging modalities, such as ultrasound,
magnetic resonance imaging (MRI), and nuclear medicine [1,21]. Other advantages include
depicting bony structure with very good accuracy, as well as providing relative electron
density information. Electron density information becomes useful in calculations for dose
distribution [6]. CT also displays precise information of the human anatomy by avoiding
the overlay of three-dimensional information onto a single two-dimensional image, thus
allowing for the use of methods such as tumor localization and treatment in radiation

therapy [21].

12



IMAGE GUIDED RADIATION THERAPY

With the advent of computed tomography (CT), image data was used to build three-
dimensional (3D) models of the patient anatomy and 3D conformal radiation therapy was
developed. 3D conformal radiation therapy (3D CRT) is an image guided radiation therapy
(IGRT) method where a 3DCT image of the anatomy is taken, and visualized using
computer software. Mathematical algorithms are used to calculate a conformed or focused
target area for radiation, corresponding to the tumor target volume. Another technique
commonly used in image-guided radiation therapy is intensity modulated radiation
therapy (IMRT). IMRT, like 3D CRT, uses a 3D image and delivers a high dose of radiation
fit tightly around the target volume, with greater dosage to the center and diminished
dosage to the outer boundaries of the tumor volume [6,4].

3D CRT and IMRT technologies, allow for the optimization of both accuracy and
precision of radiation therapy planning and treatment. This is done by allowing the
radiation beam to be adjusted based on the position of the tumor and the critical organs.
These advances, 3D CRT and IMRT, provide an unparalleled method where high-dose
radiation conforms closely around the tumor, while at the same time doses are reduced to
susceptible healthy tissue [4]. This diminishes the toxic effect to the healthy tissues.

A health risk is associated with ionizing radiation. McCollough, et al. states that the
radiation dose of one CT scan, 1-14mSv (milli-Sieverts), is equivalent to the annual dose of
background radiation (1-10mSv), as with radon and cosmic radiation. Further statistics
show that 0.4 percent of all cancers in the United States are caused from CT radiation [1].

Improvement of precision from 3D CRT and IMRT has been shown to shorten the duration

13



of radiation therapy, thereby reducing the number of treatment sessions for some types of
cancer, which also reduces the amount of radiation a patient receives [6]. While these
technologies provide a means for delivering radiation within the target volume dimensions

and sparing healthy tissue, they so only when the patient is completely immobile [6].

RESPIRATORY MOTION IN RADIATION THERAPY

In practice, considerable ambiguities still exist in tumor volume delineation, patient
immobilization, and the patient’s breathing motion that makes it difficult to administer the
high dose required to irradiate the tumor [6]. In these cases, the dose delivered to the
tumor might be lower than projected, whereas the dose to the healthy tissue will be higher
than what was planned [4,22]. As such, accounting for anatomical motion can help
improve radiation planning, thereby improving coverage and reducing excessive radiation
dose [23,24,25].

Organs in the upper abdomen can move up to 4cm during the breathing cycle.
Consequently, 3D CRT and IMRT cannot be fully utilized until temporal motion is accounted
for during therapy planning and radiation. Time-dependent imaging is necessary to
account for the tumor motion due to breathing [5].

Respiration-induced motion is the most significant source of positional errors in the
thorax and abdomen [11]. This motion affects the reproducibility of the target volume
during radiation therapy by distorting the target volume. This results in the positioning
errors where parts of the tumor move in and out of dosing image window. Internal motion

of the body can be classified into inter-fraction and intra-fraction components. Inter-

14



fraction motion occurs through the change in tumor size, either growth or shrinkage, as
well as the daily filling and emptying of the bladder and bowel [26]. Motion can also be the
result of weight loss or gain between radiation therapy treatment sessions. Intra-fraction
motion occurs through organ processes, such as motions related to respiration, the cardiac
cycle, or peristalsis of the digestive system [6,26].

Intra-fraction motion, in the thorax and abdomen, is the primary cause for tumor
movement. Several studies have determined that the range of motion in the superior-
inferior direction of the diaphragm due to normal respiration is approximately ~0.5 - 4.0
cm [4,6,27,28]. Motion distorts the target volume to move in and out of the dose-targeting
window. Subsequently, the area to dose the tumor is increased to compensate for the

organ motion. As a result, large amounts of normal tissue are radiated.

FOUR DIMENSIONAL COMPUTED TOMOGRAPHY (4DCT)

The goal of four-dimensional radiation therapy is to deliver high doses of radiation
to the tumor, while minimizing the dose to the surrounding healthy tissue [29]. Respiratory
motion should be considered and compensated for beginning with the simulation of
radiation therapy treatment planning. 4D imaging focuses on reconstructing a volume that
shows the changes in tumor shape, size, and position, as well as accounts for respiratory
motion with minimized motion artifacts [30,31].

Current practices of 4D CT attempt to include temporal aspects and have been
reasonably successful, yet areas that need improvement exist. The standard practice

requires the acquisition of large amounts of CT data to reconstruct a complete temporal
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sequence. A typical three-dimensional CT data set generally contains approximately 100
axial slices, where each slice contains 512x512 pixels. With 16 bits per pixel, a single data
set takes over 50 megabytes of storage [6]. Therefore, large data sets increase processing
time. Also, as stated previously, larger amounts of data require a greater all around
radiation increase to the patient. It is imperative that the amount of data is decreased so
patient radiation dose and processing time is decreased.

4D CT is used as verification imaging; it is obtained before, during, and/or after
radiation therapy treatment. With such numerous imaging, large setup errors can be
detected. Imaging at the time of treatment can also help identify and increase awareness of
the range of motion, size, and shape of the tumor [4].

A 4D CT is in either of two cases: prospective 4D CT or retrospective 4D CT. I
prospective 4D CT is collected by collecting CT images at one static breathing phase versus
collecting at all phases. Whereas, the retrospective 4D CT collects information
corresponding to multiple breathing phases by recording respiratory signals, acquiring
time-dependent CT data, and constructing a 4D image from the two previous sets of data
[32,33,34].

The breathing signal, in conventional approaches, is assumed by the location of
internal anatomy from some set of surface marks [8]. A substitute of respiration motion is
measured by using a reflective maker, which is tracked by a camera, on the abdomen, or by
measuring the tidal volume with a spirometer [32,14]. When using the substitute signal for
respiration, the signal is recorded only when the CT is also simultaneously collecting
imaging data, so that the temporal data correlates with the CT imaging data [35]. Once the

breathing pattern has been established, time dependent CT projection data is acquired in
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the helical or cine mode [11,14,36,33], and CT slices are constructed correlating to the full
respiratory cycle [34,37].

The 4D CT patient setup is similar to that of a standard 3D CT exam. The patient is
positioned as for treatment delivery with the aid of optical lasers and is immobilized [4,18].
An initial CT scan is conducted to obtain structural information on the patient's anatomy
[18]. The information is contained in a three-dimensional data set. The information
collected in this data set is used to guide any radiation therapy treatment as well as to
position the patient during multiple treatment sessions [4]. Once the CT data set is
obtained and the physical examination is conducted, the images and information are
transferred to the radiation treatment-planning phase. In the radiation therapy treatment-
planning phase, tumor extension and the organs at risk are determined and assessed [4].
The target volume to treat is also defined. The treatment parameters and the target
volume are defined with the information taken from the previous stage. The plan for
treatment is calculated with the parameters and is transferred to the next phase, the set-up
verification phase.

The set-up verification phase occurs each time the patient is administered radiation.
The patient is positioned in the exact manner as in the patient staging and simulation phase.
Typically a reflecting block is attached just inferior to the xiphoid process on the patient’s
abdomen, and a camera captures and analyzes the anterioposterior motion of the moving
block in real-time [6]. The breathing pattern is recorded from the rise and fall of the
reflecting block and is referred to as the “respiratory trace” [6]. 4D CT is designed to create
image data from the respiratory trace, captured by a reflecting block or other acquisition

device, and with images obtained from the CT scan [14,35,37,34].
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CONVENTIONAL 4D CT

In the conventional method, once the breathing pattern has been established, time
dependent CT projection data is acquired in the helical or cine mode [4,14,33,37]. The data,
projections or images from the CT scan for each anatomical section is partitioned into time
bins, based on amplitude or phase values of the breathing trace, corresponding to a user
specific time interval [38,39]. Generally, a time cycle is divided into 10 time bins [6]. CT
slices are then generated from these bins. Amplitude-based methods take the raw image
data or projections and label it based on the relative magnitude with respect to the
respiratory trace [40]. The conventional method is to use phase-based binning, where
corresponding CT images are assigned to the respiratory phase, calculated from the
recorded breathing trace for the corresponding point in time [34,40]. The end-respiration
peaks are detected by software, and a linear interpolation method is used to assign
percentages, based on the end-respiration peak, to the remaining points on the trace [18].
The sorted images on the time sequence form the basis for 4D CT treatment. This is

depicted in Figure 3.
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PEAK EXHALATION

PEAK INHALATION

Figure 3: Conventional 4D-CT sorting method: CT images acquired and sorted into time bins

by phase

Breathing must be regular when acquiring the respiratory trace; therefore the
patient is encouraged to breath calmly and consistently. The patient’s compliance is
necessary to achieve a steady breathing trace. Variations between the breathing cycles will
affect the consistency of the data set, as the 3D data sets representing each phase are
collected from multiple breathing cycles [32]. Breathing training techniques are
introduced in the form of audio coaching and active breath control (ABC) [23,41,42]. In the
former case, audio and/or video coaching is provided by a “breathe in, breathe out”

recording. Audio and video coaching has shown to help stabilize the respiratory period,
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amplitude, and base line; however for patients who have compromised respiratory
function, it is very difficult and nearly impossible for the patient to keep a regular rhythm
[6,43,44].

For the latter case, active breath control, either actively or passively suspends the
patient’s breathing. The patient will either hold his or her breath, or a modified ventilator
is used to control the patient’s airflow [41]. While the respiration is halted, and thereby
tumor motion is negligible, the treatment is administered in the interval [4,41]. This
method, while effective, is at the expense of patient comfort [41]. Many patients have
difficulty holding breath, especially those with lung cancer [26,13]. For this reason, there is
need for technologies that allow the patient to breathe freely.

Respiratory gating is a technique that allows the patient to breathe freely. The
patient's natural breathing pattern is observed, and treatment is delivered periodically
when breathing reaches a particular phase [6,18,42]. Usually, the dose is delivered at end-
inhale or end-exhale [6]. The patient's respiration is observed and the thoracic wall
displacement generally triggers the activation of the radiation dose [45]. Like the
controlled breath hold procedure, the initial CT scan taken during simulation must
represent the CT sets taken during treatment. A disadvantage of respiratory gating is the
active participation of the patient. The patient is required to control breathing to a steady
pattern. This is not always possible as there are patients with respiratory complications
who are unable to breathe steadily [13]. Another disadvantage is that treatment is longer,
since radiation is delivered only over a fraction of the breathing cycle.

Tumor tracking, however, allows for the patient to breathe freely. The delivery field

follows the displacement of the target volume during the entire breathing cycle. The field
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follows the 4DCT set acquired during simulation. Multiple methods have been proposed to
increase the accuracy of tumor tracking, but the subject still requires more research.

An accurate method of four-dimensional computed tomography reconstruction is
necessary to conduct the previous treatment procedures. 4D imaging focuses on
reconstructing a volume that accounts for respiratory motion with minimized motion
artifacts [30]. Respiration motion must be accounted for during imaging of moving objects,
else the motion artifacts will lead to errors in the detection of the shape and position of the
target structures as well as any critical structures [32,5,31]. It has been observed that
image quality and information from CTs have been degraded with respiratory motion, and
these temporal inaccuracies have lead up to 40% delineation of target sizes and volumes

[46,5]. This makes it such that the planned dose is delivered inaccurately [22].

21



CHAPTER 3

ESTIMATION OF TEMPORAL PARAMETERS USING NEURAL
NETWORKS

ESTIMATION OF TEMPORAL PARAMETERS OF 4D MODELS FOR

ANATOMY DEFORMATION

The purpose of this work is to create a network that can determine phases
for a spatio-temporal model of the moving anatomy. When modeling anatomic
motion, the most challenging task is to achieve a suitable representation of
displacement variation in time.

A critical requirement for tumor tracking is a time-dependent CT study,
ordinarily denoted as 4D CT. Numerous methods have been implemented to
construct a 4D-CT model of the moving anatomy. Some methods include modeling
respiratory motion with cosine models, or averaging multiple breathing periods to
create one model period [12]. In actuality, respiratory motion is more complex, and
breathing periods change during treatment [6]. The more common approach is to
combine CT data with a respiratory trace and assume that anatomical motion occurs

in synchrony with the trace [11,41,47]. The trace can be obtained by monitoring a
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physical marker (such as a reflecting block attached to the patient's abdomen) or by
measuring the tidal volume using a spirometer [48].

In the conventional 4D-CT method, the breathing trace is collected as CT
projections are acquired [4,47,33,49]. Based on their temporal locations within a
breathing cycle, the projections are partitioned into several bins [48]. Commonly, 10
time bins are used. A 3D CT image is reconstructed for each time bin using filtered
back-projection, resulting in ten CTs covering a typical breathing period.

Model-based 4D-CT methods do not limit the 4D-CT to one typical period,
thus addressing inter-period variations. They also provide much better temporal
resolution, potentially providing images of the anatomy at arbitrary time instants.
These methods use a reference 3D image S(r) which is deformed by a time-
dependent Displacement Vector Field (DVF) d(r,t) such that the anatomy at any
time t is

S'(r,t) =S(r+d(r,¢1)) (1)

Here, r is the 3D spatial variable. In our notation all bold-faced variables are
vectors in space.

The spatio-temporal DVF model employed in this research is the one

introduced in [15,3,9]. This model employs DVF basis vectors u; (r) to model spatial

variation in the DVF and the breathing trace b(t) to model temporal variation:
d(r,t) = X;a;u;(r)b(t — 6;) (2)

Each spatial basis vector u;(r) is scaled by the amplitude a; and modulated

by the term b(t — 6;), resulting in a DVF component that varies proportionally with
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breathing, with a delay ;. It has been shown that three basis vectors are sufficient
for accurate representation of DVFs [9]. The basis vectors are obtained as follows:
First, conventional 4D-CT is performed on the CT projection set. Pairs of consecutive
projections are then registered, resulting in a set of 3D DVFs. Lastly, three basis
vectors are computed from this set by means of Principal Component Analysis
(PCA).

The model parameters a; and 6; could be computed using a curve-fitting
approach for anatomical landmarks (either fiducials or manually identified
features); however, these are not available in realistic scenarios. Instead, projection-
matching methods have been proposed in [3,9]. These methods deform the
reference image using a DVF model, compute simulated projections, and iteratively
adjust the DVF model parameters to minimize the difference between simulated and
actual projections. Each iteration involves a large number of computations, and the
algorithm may converge to a local minimum.

A method is proposed for computationally efficient marker-less estimation of
the temporal parameters. A neural network is trained to estimate the parameters
based on simple statistical features of the CT projections. For projection-based
parameter estimation, this method reduces the number of computations and the
likelihood of convergence to local minima. For binning-based DVF interpolation, the

method becomes a two-step non-iterative algorithm.
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NEURAL NETWORKS

Neural networks belong to a field of study that models and simulates the
characteristics of the human brain [50]. A neural network is a data processing unit
that is modeled on the cerebral cortex of the brain; as such artificial neurons are the
basic unit of the neural network [51]. The purpose of each neuron is to relay
information and make connections. These neurons have multiple inputs, and the
sum of these inputs is passed through a transfer function, usually a nonlinear filter.
Each neural network consists of processing elements whose outputs are summed
with connection weights.

The processing elements are organized such that they form a sequence of
layers (Figure 4). A neural network consists of a minimum of three layers: an input
layer, one or more hidden layers, and an output layer. These layers are created as
multiple processing elements (neurons) joined together [51]. The network is
parameterized by weights associated to the connections between neurons in the

various layers.
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Figure 4: Neural network processing elements for the Feed-forward Neural Network

The network operates two processes, learning and recall. As with the human
brain, the neurons learn and adapt weights as inputs or stimuli are presented to it.
Learning is conducted through multiple learning processes; these include
supervised learning, unsupervised learning, random learning, and graded learning.
In all the learning algorithms, an input is presented to the network and an output is
generated. The weights are then adjusted accordingly until a desired output is
reached. These learning processes are governed by a learning algorithm [50].

Once the network has been trained, it recalls the information when new

inputs are introduced to the network. As such, neural networks are valuable for
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their ability to learn by example, their ability to recognize patterns, their fault
tolerance, and for their distributed associative memory [50].

The most widely used neural network is the Feed-Forward neural network
(multilayer perceptron), shown in Figure 4. It is the network used in this work. In
the Feed-Forward network, as the name implies, information is fed forward through
the input, hidden, and output layers without any feedback loops. The input layer
consists of the inputs to the network is defined by the number of input data. The
hidden layer has neurons placed in parallel, with weights and biases. The number
of hidden layers and the number of neurons in each hidden layer is determined
when the neural network is defined and is irrespective of the number of input and
output values. The output of each neuron is defined by Eq. 3. The output layer is
defined by the number of output values and is formed by a weighted summation of

the outputs of the hidden layer [52].

y = o(Xk, xwi; + by) (3)

where v is the output of each neuron,
o () is the activation function,
x; is the input to each neuron,
b; is the bias weight to the neuron,

and w;; is the weight between the each neuron and input.
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Figure 5: Schematic diagram of the Elman Recurrent Neural Network

The Elman recurrent neural network is specifically designed for the
detection of time-varying patterns [53,54]. The Elman neural network consists of a
two-layer back-propagation network that is connected as feedback from the outputs
of the first layer to the inputs of the first layer [53,54]. This connection allows for
the network to detect temporal and spatial patterns. The hidden layers all have a
hyperbolic tangent sigmoid transfer function as the learning algorithm, while the
output layer has a linear transfer function [54]. The Elman network is unique
because every output of a hidden layer in the network is fed back to the input layer

of the very same hidden layer.

ESTIMATION METHODS

In a typical clinical scenario, a 4D-CT image set must be reconstructed from

the following available data: a complete set of CT projections collected as the patient
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breathes freely, a digitized breathing trace, and an a priori 3D reference CT scan
acquired for treatment planning. From these inputs, a complete 4D volumetric
image must be computed. Usually, the reference is a fan-beam scan while the free-
breathing scan is a cone-beam CT. To assess the accuracy of the reconstructed
images, these must be compared to the true state of the anatomy during the scan.
Since this is not available, for the purpose of algorithm development a combination
of synthetic data and simulated CT scanning is used.

The temporal parameters for the model are estimated in this work using
neural networks. Neural networks have been used successfully for prediction of
breathing amplitudes and irregular breathing patterns [55,56]. Given their proven
ability to model temporal behavior, neural networks are a good candidate for

temporal parameter estimation. The use of the method in two different scenarios is

described.

CASE 1: USE IN PROJECTION MATCHING 4D-CT

In this scenario, the spatial basis vectors u; in Eq. 2 are known; a; and 6; are
sought. A feature vector is first computed from the projection set{P;,i = 1,...,N}.
The features are then fed to a neural network trained to estimate the delay
parameters 6;. Once 6; are known, the amplitudes a; are found using the projection
matching approach. An initial guess of a; is assumed and a DVF is computed using
Eq. 2. The DVF is used to deform the reference image at time instants ty, ..., ty.

Simulated CT projections {P;'} are computed through the moving anatomy and
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compared to the actual projections {P;}. The parameters q; are iteratively adjusted
to minimize the difference between the simulated and actual projections.

The features used to estimate 8; are simple statistical features of the CT
projections. In this paper, the mean, standard deviation, and centroid of each
projection are computed and grouped in a vector of size 3N. The neural network is
trained using a large number of simulated projection sets corresponding to known
0; values.

In contrast with existing projection matching methods [3,15], the proposed
method estimates a; and 6; separately. Since the number of free parameters is
reduced by half, projection matching is less likely to converge to a local minimum,
requires fewer iterations, and fewer computations in each iteration. The single-step

estimation of 8; requires a comparatively insignificant amount of computation.

CASE 2: USE IN BASIS DVF COMPUTATION

The proposed method can be used to simplify the process by which the DVF
basis functions are obtained. The PCA method of [9] assumes no knowledge of the
delays 6;. The computations can be significantly simplified if ; are first estimated
using the method described in Case 1. We next describe the method for computing
u; and a;, when 6; are known.

The method assumes that N 3D DVFs are known at time instants ty, ..., ty.
These have been computed from a conventional 4D-CT. Eq. 2 is applied N times,

resulting in a set of equations that can be written in matrix form as:
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D = BAU, (4)

where each row of matrix @ is a DVF, each row of matrix U is a row basis vector,

A = diag(ay, a,, a3) is a diagonal matrix of amplitude parameters, the matrix

b(t; —8;) b(t; —6,) b(t; —63)

b(t; —8;) b(t,; —0;) b(t; —63)

B = (5)

b(ty —8;) bty —8,) b(ty — 85)

contains values of the breathing trace, and 8, 6,, 85 are the temporal parameters. In
Eq. 4, the unknowns are the matrices A and U. This is an over-determined system,

and the least-square solution for the product AU is given by
AU= B*D, (6)

where Bt is the Moore-Penrose pseudo-inverse of B [57]. Since u; are unit vectors,

they, together with a;, can be computed by normalization of a;u;, the rows of AU:

aju; a;u;
u; = iU , a; = iU (7)
lajull lluill

The method is non-iterative and involves computation of the pseudo-inverse
of a small matrix (typically 10x3). By comparison, the PCA method of [9] processes
vectors of size equal to the number of voxels in the image. More details about the
pseudo-inverse method and its performance can be found in [10]. Note that in this
context the proposed method can also be seen as a model-based DVF interpolation

method.
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Figure 6: Schematic diagram of the Temporal Parameter Estimation Process



The proposed method is evaluated in the context of Case 1 described in the
previous section. The methodology is depicted as a block diagram in Figure 6. The
CT images in real clinical settings are 3D, and cone-beam CT projections are 2D. In
this paper, the feasibility of the proposed method is assessed in a simplified setting
using 2D CT images. The projections are therefore 1D and the DVF in Eq. 2 is 3D (2D
+ time).
Since ground truth 6; values are not available for real clinical data, a
combination of real anatomy, real breathing, synthetic motion, and simulated
projections was used, as follows:
* The reference static CT image S used in all experiments is an axial
fan-beam CT slice of size 256%x256. A cropped version of the image
is shown in Figure 7.

* The real trace b(t) previously used in [55] was chosen to model
breathing and is shown in Figure 8. The trace was normalized to
have zero mean and a maximum absolute value of 1.0. The scan
time instants ty, ..., ty were chosen to uniformly cover two full
breathing periods. The period was estimated to be T = 3.1 s based
on the average interval between peaks.

* The synthetic motion corresponds to a DVF computed using Eq. 2

with two basis vectors: u; being an antero-posterior expansion
and u, a lateral contraction of the anatomy. In both directions the

maximum displacement was chosen to be 3.5 cm. For clarity, we
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hereafter denote the two vectors by u, and u, and the
corresponding delays by 8, and 6,,.

* Foragiven (8,, 6, ) pair, the DVF is computed and used to animate
the reference image. A set of N simulated parallel projections is
then computed at time instants ty, ..., ty. The N projection angles
uniformly cover a full gantry rotation. The algorithm is evaluated
for N ranging from 8 to 64.

* For each projection, the features (mean, standard deviation, and
centroid) are computed. The N triplets are merged into a single
feature vector, then fed to the neural network, which estimates the
two delays.

This approach made possible the comparison between the estimated and actual

temporal parameters.
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Figure 8: Breathing trace, in arbitrary dimensionless units.

A feed-forward neural network with one hidden layer of 20 neurons was
used. The network takes a vector of projection features as input and outputs the
estimated delay parameters. The network is trained to minimize the estimation
error in the Mean Square Error (MSE) sense. The testing data sets, consisting of
representative input feature vectors and target delay parameters, were created as
follows: A set of random (6,, 6,) delays is first generated with values ranging from
—T/2to+T/2where T is the period of the breathing trace. For each of these, a DVF
is computed and used to animate the reference image, simulated projections are
computed, and a feature vector is calculated. A total of 2200 samples were used to

train and test the network, with 10-fold cross-validation. In all the experiments
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described below, the neural network is trained for 50 Levenberg-Marquardt
iterations.

To evaluate the accuracy and robustness of the proposed method, multiple
scenarios have been considered, with varying numbers of projections, projection
resolutions, and levels of projection noise. The method's accuracy was quantified by
means of the root MSE (rMSE) error between the actual output delays and the target

delays.

RESULTS

The neural network model is evaluated by comparing the estimated temporal
delays with the actual temporal delays by means of the root mean square error.
Initially the model is evaluated with the feed-forward network and the Elman
network. The results show the feed-forward network estimates the temporal delays
more accurately than the Elman.

The neural network model is tested and trained with the Elman network and
the feed-forward network. The model is evaluated under ideal conditions where
there is no noise present and the projections have not been downsampled. The
time delays in the x and y directions are trained together on a single neural network
implementation and then trained separately on two separate neural networks.
When training on a single network, the rMSE values for 6, and 6,, are 0.2499 and
0.2186 seconds, respectively. On the other hand training in separate networks gives

rMSE values for 6, and 6,, to be 0.2136 and 0.2140 seconds, respectively. While the
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error values for the separate networks are only slightly less than the single network,
one advantage is the computation time is reduced when training and testing with
the separate networks by half of the single network. For this reason, all
experiments carried out have been conducted on separate networks.

Next the suitability of the networks is compared. Both the Elman and feed-
forward networks are tested on the same data set with ideal condition where there
is zero noise present and full projection resolution. When training with separate
networks, the rMSE values for 6, and 6, to be 0.2136 and 0.2140 seconds,
respectively for the Elman network. For the feed-forward network, the rMSE values
are 0.0062 and 0.0159 seconds for 6, and 6,, respectively. The feed-forward
network implementation gives an average decrease in error by 95% compared to
the Elman network. This difference in this error is seen clearly in Figure 9, which
shows the regression analysis for the temporal delays for the Elman and feed-
forward networks. Accordingly, all experiments shown are conducted on the feed-

forward network.
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Figure 9: Regression analysis of the target and output temporal parameter values for

Elman and Feed-Forward networks

The reference scenario, against which all scenarios are evaluated, assumes

that 32 full-resolution noise-free projections are available. The neural network

implementation is with the feed-forward network where the time delays are trained

separately on two networks. The input to the neural network is the feature vector

described previously. The rMSE values for 6, and 6,, are 0.0062 and 0.0159 seconds,

respectively.
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The effect of the number of projections on accuracy is evaluated by changing
the reference setting of N = 32 up to 64 and down to 16, 8, and 4. The results are
shown in Figure 10. The root mean square error for 64 projections is 0.0063 and
0.0079 seconds for the x and y temporal delays. For 16 projections, they are 0.0164
and 0.0283 seconds. For 8 and 4 projections the root mean square error values
increase at a gradual rate. As expected, as the number of projections decrease, the
accuracy worsens. While the algorithm does not completely fail when fewer than 16

projections are used, such settings are probably of little practical use.

01 T T T T T 1
—o— B
009t o\ 81
—o— "y
0.08f i
007} ]
0.06

0.05

0.04

0.03

Foot Mean Square Error MSE)

0.02

0.01

10 20 30 40 50 60
Number of Projections

Figure 10: Estimation error as a function of the number of projections
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Number of Projections
64 32 16 8 4

Ox Oy Ox Oy Ox Oy Ox Oy Ox Oy

1 0.0061 0.0068 0.0071 0.0157 0.0169 0.0278 0.0373 0.0589 0.0376 0.0427
2 0.0066 0.0081 0.0058 0.0150 0.0086 0.0252 0.0557 0.0550 0.0420 0.0500
3 0.0072 0.0064 0.0062 0.0178 0.0091 0.0250 0.0356 0.0598 0.0507 0.0491
0.0062 0.0077 0.0062 0.0161 0.0181 0.0258 0.0405 0.0549 0.0421 0.0541
0.0057 0.0081 0.0063 0.0160 0.0205 0.0287 0.0398 0.0643 0.0697 0.0596
0.0063 0.0089 0.0051 0.0139 0.0188 0.0309 0.0457 0.0613 0.0430 0.0565
0.0052 0.0074 0.0067 0.0164 0.0197 0.0294 0.0503 0.0586 0.0636 0.0454
0.0070 0.0084 0.0073 0.0163 0.0167 0.0272 0.0852 0.0558 0.0476 0.0416
0.0056 0.0082 0.0051 0.0150 0.0180 0.0358 0.0430 0.0633 0.0616 0.0578

Root Mean Square Error (seconds)
Ne} [ee] ~N [e)} ol S

10 0.0070 0.0086 0.0063 0.0173 0.0180 0.0276 0.0411 0.0555 0.0548 0.0539

Avg. 0.0063 0.0079 0.0062 0.0159 0.0164 0.0283 0.0474 0.0587 0.0513 0.0511

Table 1: 10-fold cross validation of the estimation error of the number of projections

Next, to assess the necessary projection resolution, the CT projections are
downsampled by a factor of 2, then 4. The resolution of the parallel projections in
the reference setting is equal to the spatial resolution of the reference CT image.
When decreasing the projections resolution by a factor of 2, the average root mean
square error values are 0.0082 seconds and 0.0168 seconds for 6, and 6,,,
respectively. When downsampled by 4, the average root means square error values
are 0.0372 and 0.1048 seconds for the x and y delays. The results shown in Figure
11 and Table 2 indicate that downsampling by 2 is acceptable but the accuracy
decreases significantly for higher ratios. The plot also suggests that higher

resolution projections would have little benefit.
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Figure 11: Estimation error as a function of the projection resolution
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Reference Scenario Downsampled by 2 Downsampled by 4

0, 0, 0, 0, 0, 0,

1 0.0071 0.0157  0.0070 0.0182 0.0372 0.1064
w 2 0.0058 0.0150 0.0076 0.0149 0.0389 0.1020
% 3 0.0062 0.0178  0.0082 0.0170 0.0372 0.1139
o}
Z 4 0.0062 0.0161 0.0067 0.0163 0.0373 0.1089
E 5 0.0063 0.0160 0.0088 0.0167 0.0387 0.1098
f—% 6 0.0051 0.0139 0.0073 0.0159 0.0333 0.1005
Ug; 7 0.0067 0.0164  0.0104 0.0183 0.0344 0.1013
% 8 0.0073 0.0163 0.0101 0.0164 0.0408 0.1014
§ 9 0.0051 0.0150 0.0076 0.0189 0.0374 0.1045
Z 10 0.0063 0.0173 0.0085 0.0156 0.0363 0.0991

Avg. 0.0062 0.0159 0.0082 0.0168 0.0372 0.1048

Table 2: 10-fold cross validation of the estimation error of the projection resolution

The method's robustness in the presence of projection noise is also evaluated.
Zero-mean white Gaussian noise is added to the projections in increasing amounts
(5%, 10%, 20%, and 40%). These noise levels represent the ratio between the
standard deviations of noise and projection. The results in Figure 12 show,
unsurprisingly, higher estimation errors for increased noise. Noise levels higher

than 10% are unacceptable.
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Figure 12: Estimation error as a function of the noise level
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Percent Projection Noise

0% 5% 10% 20% 40%
Fold
GX ey GX ey GX ey GX ey GX ey

1 0.0071 0.0157 0.0358 0.0527 0.1038 0.0815 0.2832 0.2584 0.3784 0.3247

2 0.0058 0.0150 0.0407 0.0523 0.0936 0.1017 0.2878 0.2947 0.3911 0.3823

3 0.0062 0.0178 0.0379 0.0584 0.1041 0.0875 0.2833 0.2605 0.3621 0.3378

4 0.0062 0.0161 0.0415 0.0519 0.1055 0.0764 0.3035 0.2608 0.3903 0.3543

5 0.0063 0.0160 0.0409 0.0611 0.1249 0.0912 0.2680 0.2792 0.4174 0.3673

0.0051 0.0139 0.0379 0.0515 0.0840 0.0741 0.3018 0.2749 0.3916 0.3384

7 0.0067 0.0164 0.0417 0.0600 0.1216 0.0938 0.3053 0.3014 0.4198 0.4122

8 0.0073 0.0163 0.0422 0.0509 0.1046 0.0872 0.2735 0.2642 0.3501 0.3304

Root Mean Square Error (seconds)
[e)}

9 0.0051 0.0150 0.0376 0.0466 0.1024 0.0811 0.2564 0.2938 0.3653 0.3744

10 0.0063 0.0173 0.0376 0.0466 0.0874 0.0880 0.2564 0.2742 0.3913 0.3367

Avg. 0.0062 0.0159 0.0394 0.0532 0.1032 0.0863 0.2820 0.2762 0.3857 0.3559

Table 3: 10-fold cross validation of the estimation error of the percent projection

noise

In an attempt to assess the suitability of the features chosen for temporal
parameter estimation, a final experiment was carried out, comparing feature-based
estimation to estimation based on the entire projection sequence. The dimension of
a full projection set is prohibitive (for both statistical and computational reasons),
therefore we chose to downsample the reference image to 32x32 and to use at most

8 noise-free projections. This is clearly not a practical setting, however, the results
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in Table 4 indicate that a larger feature set may achieve improved accuracy or allow

the use of fewer projections.

Full Projections Features
Number of Projections rMSE (6,) rMSE(6,) rMSE(6,) rMSE(6,)
8 0.0042 0.0050 0.0849 0.0603
4 0.0109 0.0108 0.1178 0.1136

Table 4: Suitability of the feature set: effect of full projections vs. set of statistical

features

DISCUSSION AND CONCLUSIONS

A neural network model has been proposed to estimate the temporal delays
in the 4D CT model described in Eq. 2. The model applies motion through a
deformation vector field to a set of CT projections. Relevant features are extracted
from these projections to estimate the temporal delays.

To evaluate the performance of the proposed method, two neural network
implementations are compared, the Elman neural network and the Feed-Forward
neural network. They are evaluated on ideal conditions with zero noise and
features extracted from full resolution projections. The effect of a separate or
singular neural network implementation is also considered. Imperfect conditions

were introduced by reducing the number of projections, adding noise, and reducing
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the projection resolution. Finally the statistical features extracted from the
projection data set are compared to the full projection set.

The Elman and Feed-Forward networks were trained and tested on the same
data set, and the mean square error values show that the Feed-Forward network
fare outperforms the Elman network. The feed-forward network shows a decrease
in error from the Elman network by 95%. From this we can infer, for the scope of
this work, recurrent or feedback are not suitable.

Next the need for a singular neural network or separate networks is
evaluated. With singular and separate neural networks, the root mean square error
values are comparable,; however, the computation time is significantly less for the
separate networks. When training and testing with separate networks, the
computation time decreases by approximately 50%.

Several scenarios were considered for model where imperfect conditions
were introduced. One such scenario is the where experiments were conducted to
see the effect of the number of projections. Thirty-two projections were
downsampled to 16, 8, and 4 projections. The projections were also increased to 64.
The algorithm broke down for less than 16 projections. These results are acceptable
because for a typical CT scans operate with a much larger set of projections. They
usually range higher than 100 projections [6]. Thus, the feed-forward neural
network model proves to be able to model the temporal delays accurately with a
limited number of projections.

Later the effect of projection resolution was considered. It is seen

downsampling by a factor of 2 and 4 did not show a significant increase in the
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estimation error. This is significant because it suggests that increasing the
resolution of the projections, which correlates to the spatial resolution of the CT
image, will not have a significant improvement on the estimation error. As such, a
higher resolution image and projections will not prove to have a significant benefit.
As typical projections are of higher resolution, it is advantageous for computing time
to a lower resolution projection data set [6].

The effect of noise was also considered. It can be seen that as the percent
noise increases, the root mean square error values increase with respect to the
noise. The model breaks down gradually, but noise values greater than 10% are not
acceptable. This is expected as higher noise values give higher estimation errors.
Literature shows that projection noise is not correlated in space or time, so
increasing the spatial and temporal resolution by increasing the projection
resolution may decrease effect of the amount of noise.

Finally the suitability of the feature set was considered. The feature set was
compared to a full set of projections. While the projection set performs one order of
magnitude better than the feature set, it is not realistic for fast computing. From
the results for the previous experiments, it can be seen that the feature set is
suitable for estimating the temporal delays accurately. There is still a difference
between the accuracy with the full projections versus the features. This may be
remedied by adding more features to the feature set. This is a possible future work
that can be conducted.

To understand the significance of the results and put these rMSE numbers in

context, recall that the delays take values from — T /2 to + T /2, where T = 3.1. Thus
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the rMSE values for the reference setting are 0.6% of the breathing period, or 6% of
the interval between the time bins of a typical conventional 4D-CT. An even more
illuminating interpretation of these results is to consider the effect of the estimation
error on the DVF accuracy. In a worst-case scenario, considering the maximum
slope of the trace b(t) in Eq. 2 and a maximum deformation of 3.5 cm, which is
relative to normal deformation in the lungs which exhibits approximately 0.5 - 4.0
cm of deformation [4,5,6], the maximum DVF error is found to be 1.3 mm. This value
is well within the accuracy of DVF estimation methods.

One limitation of the experimental setup is that the neural network is trained
for a particular reference image and set of DVF basis vectors. When these change, it
may therefore fail to accurately estimate 6; values. Addressing this issue is beyond
the scope of this feasibility study., and can be considered potential future work.
However, the rather generic nature of the features and the substantial amount of a
priori information that can be exploited (reference image, lengthy breathing trace,
conventional 4D-CT) are grounds for optimism that the issue could be successfully
addressed in future work. Another minor limitation is that the test DVF is perfectly
modeled by Eq. 2. However, it has been shown previously that the equation
accurately models realistic breathing motion [9]. Real anatomical motion will be
used in future work.

It was hypothesized that temporal parameter estimation using neural
networks will result in clinically accurate DVF estimation, as such a neural network-
based method for estimating temporal parameters of a DVF model has been

proposed. The method's average estimation error is less than 0.02 seconds, and its
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worst-case DVF error is 1.3 mm. The method has been shown to accurately estimate
the temporal parameters of the DVF model and has shown to have a worst-case DVF
error of 1.3 mm. Considering the maximum deformation accounted for is 3.5 cm, an
error of 1.3 mm is within the bounds of acceptable error. The accuracy of the
proposed method has been evaluated in the presence of computational complexity
constraints and CT projection noise. In the future, further experiments can be
designed to evaluate the algorithm (1) with more features, (2) different reference

images and DVF basis vectors, and (3) 4D moving anatomy.
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CHAPTER 4

IMAGE REGISTRATION USING NON-UNIFORM SPLINES

USING NON-UNIFORM, NON-SEPARABLE SPLINES TO IMPROVE THE

SPATIAL RESOLUTION OF DEFORMATION MODELS

IMAGE REGISTRATION

Image registration is a technique used to establish an exact point-to-point
correspondence between two or more pictures. While the registration method
proposed in this paper can be used in various imaging applications, it presented in
the context of medical imaging where the images are representations of human
anatomy. The images may be taken at different times, with different sensors,
imaging modalities, or with different viewpoints [58,59]. Image registration can be
also used to map an image of a subject to an image of a different subject or to a
reference atlas image [60]. Generally, registration is accomplished by applying a
spatial transformation to an image or image set such that it matches a reference
image. The spatial transformation is iteratively adjusted to minimize the difference
between the transformed image and the reference image through the use of an

optimization algorithm [59].
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Many image registration techniques assume a rigid-body, where the distance
between any two points in the body is the same, regardless of the way the body is
imaged. This has been shown to be a reasonable assumption for imaging the brain of
a singular subject with the same or different modalities. For other parts of the body,
or even imaging the brain of different subjects, this assumption does not hold, as
internal organs change their position and shape during the imaging process and the
size of the brain and other organs vary from individual to individual [59,60]. As such,
techniques for non-rigid registration, also known as deformable image registration
(DIR), have been developed to address these shortcomings [61].

Deformable image registration is used to map the movement of anatomy
from one moment in time to another during imaging. This mapping is represented
by a free-form deformation vector field (DVF), which relates the position of each
anatomical element in the deformed image S’(r) to the position in the reference
image S(r), as described in Eq. 1. Here, r is the 2D spatial variable and d(r) is the
DVF. With this formulation, image registration becomes a problem of DVF
estimation. In this paper we look at image registration for tumor tracking in time-
dependent, or four-dimensional, CT studies (4D-CTs) in radiation therapy.

We know that radiation therapy is the preferred method of eradicating
cancerous tumors located in the thorax and abdomen. To accurately target radiation
to the tumor, its size, shape and location have to be known for both planning and
delivery [6,4,8,62,48]. Image-guided radiation therapy (IGRT) techniques, such as
conformal radiation therapy and intensity modulated radiation therapy, use CT

imaging to optimize coverage of the target volume without affecting surrounding
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healthy tissue [6,63]. A critical feature of IGRT is addressing tumor motion. The
most prevalent cause for motion in the thorax and abdomen is breathing [6,11,64].
4D-CT has been used for tumor tracking, where the delivery field follows the tumor
during the entire breathing cycle, allowing the patient to breathe freely [65].

As stated previously, in the conventional 4D-CT method, a breathing trace is
collected as CT projections are acquired, projections are partitioned into several
bins, and a 3D-CT image is reconstructed for each time bin using filtered back-
projection, resulting in multiple CTs covering a breathing period.

Image registration can be used to create an accurate and versatile high-
resolution DVF for each pair of consecutive reconstructed CT images. A major
concern for image registration is the appropriate modeling of DVFs in the presence
of discontinuous motion between organs, for example the sliding motion that occurs
between the pleural membranes and the lung wall due to contractions of the
diaphragm from breathing inhalation and exhalation [66,67]. Estimating DVFs in
image registration poses the significant challenge of modeling both the smooth
movements inside organs, as well as the discontinuous motions of multiple organs

moving freely [68,69].

MODELING WITH SPLINES

A majority of spline-based spatial modeling techniques in 4DCT imaging
employ uniformly distributed splines. The basis functions are identical across the CT

volume and they are centered at points on a uniform rectangular grid. It should be
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pointed out that in image modeling, the splines are bivariate surfaces rather than the
curves more commonly associated with the term spline. The disadvantage of such
basis functions is that the spatial resolution is the same across the image. In most
practical scenarios, anatomical details are not uniformly similar in space. One such
example is the deformation, due to breathing, in the thorax. This is even more so
when only part of the anatomy is in motion. As a result, models using uniform
splines end up having a large number of parameters. A large number of degrees of
freedom drastically diminishes the robustness of the algorithm, almost guarantees
the solution will not be globally optimal, and increases computational complexity.
To illustrate the limitations of uniform splines, a few one-dimensional signals
with both uniform and non-uniform splines are modeled, as shown in Figure 13,
Figure 14, Figure 15, and Figure 16. Seven knots are used, depicted by x-marks on the
horizontal axis, resulting in four basis functions. Even for a relatively smooth
Gaussian-like function, the difference in modeling accuracy is visible. The relative

RMS modeling error is 9.4% for uniform splines and 1.6% for non-uniform splines.
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(b)
Figure 13: (a) Modeling a Gaussian signal with uniform splines; (b) The basis function

decomposition
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Figure 14: (a) Modeling a Gaussian signal with non-uniform splines; (b) The basis

function decomposition
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Figure 15: (a) Modeling a rectangular signal with uniform splines; (b) The basis

function decomposition
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Figure 16: (a) Modeling a rectangular signal with non-uniform splines; (b) The basis

function decomposition
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The advantage of non-uniform splines is even more visible for a signal with
discontinuities, like the rectangular signal, shown in Figure 15 and Figure 16. He
uniform splines blur the discontinuities present at the edges of the rectangular
signal. This creates large errors. These errors can be reduced, but only with an
increase in the number of knots. The advantage of non-uniform splines for a signal
with discontinuities is clear when comparing the relative RMS modeling error for
the same number of knots. The relative RMS modeling error is 32% for uniform
splines and 8% for non-uniform splines.

In two or three dimensions, the limitations of uniform basis function
placement are even more detrimental. Due to the exponential increase in degrees of
freedom when going from 1D to 2D to 3D, many model parameters are wasted
modeling parts of the anatomy with very little detail or very little motion. These
parameters would be considerably more useful if they controlled the model in areas
of high interest, such as the area around the moving tumor. In addition, while most
of the anatomical motion is spatially smooth thanks to the inherent continuity of
tissue, there are situations where the motion is discontinuous, for example for
organs on either side of the diaphragm. Thus the DVF model needs to be able to
handle discontinuous motion.

Attempts to extend DVF modeling to non-uniform splines have been
hampered by the theoretical and computational complexity of multivariate splines.
As a result, the only progress in this direction has been made by using separable

splines [16]. These splines still use a rectangular grid for the basis functions but the
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grid lines are non-uniform along each of the x, y, and z-axes. This approach works
well if motion occurs in a large but spatially limited area of the anatomy, for
example when the upper half of the volume exhibits significantly more motion than
the lower half. But this method's performance is limited when motion occurs in a
region that is not well aligned with the x, y, and z-axes. The aim of this paper is to
develop a model that uses truly non-uniform splines, which can be located at
arbitrary locations in the anatomy.

To justify the approach, a few test images that were modeled with uniform
splines and non-uniform but separable splines were tested. Several results are
presented below. In a first image featuring a vertical boundary, we first used a
model using 4-by-4 basis functions positioned on a rectangular grid with x and y
nodes depicted by the circle symbols. The non-separable splines produced a very
rough approximation of the original. When the x and y grids are allowed to converge
to optimum coordinates the approximation is significantly more accurate.

For an image with anatomical features that are not aligned with the x and y
axes, such as the circular boundary shown below, the improvement obtained by
allowing non-uniform x and y grids is negligible. These results indicate that
separable splines fall short of the requirement for accurate modeling of realistic

DVFs.
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Figure 18: (a) Modeling a circular boundary (b) using uniform separable splines (c)

and non-uniform separable splines
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NON-UNIFORM, NON-SEPARABLE SPLINES IMPLEMENTATION

This paper seeks to develop a model that uses truly non-uniform splines,
which can be located at arbitrary locations in the image. For simplicity, we chose
thin-plate splines. The process by which the spline points are chosen is as follows:
First, the gradients of DVFx and DVFy are estimated, resulting in four gradient
images. A single gradient combining the variation in both the x and y directions is
computed by summing the squares of these four images. The combined gradient is a
local measure of the amount of discontinuity in the DVF. If N is the number of
desired spline points, N/2 points are placed randomly where the combined gradient
of the original DVFs is high. This is achieved by sampling a bivariate distribution
equal to the combined gradient. As a result, more points are chosen in highly
discontinuous areas. Finally, each of the N/2 points is split into 2 separate points a
small distance apart in the direction of the gradient motion, i.e. perpendicular to the

discontinuity, resulting in N spline points.

IMAGE REGISTRATION WITH NON-UNIFORM SPLINES

The image registration process that implements the proposed method is
outlined in Figure 19. The reference image S(r), and the deformed image S’(r) are
the inputs to the algorithm. The output is the optimal set of DVF model parameters,
consisting of the amplitudes corresponding to the spline basis functions. Initially, all

DVF model parameters are assumed to be zero. An initial DVF is computed using (1)
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and applied to the reference image. The difference between the computed deformed
image and the actual one is then used to drive a gradient-based optimization

algorithm. The iterative process is continued until the mismatch converges to a

minimum.
Reference Image Sf) Deformed Image S'(r)
DVF d() Deféfrglgtion
DVF Model —
T
Model parameters | Minimization

Figure 19: Schematic diagram of the image registration process.
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EXPERIMENTAL SETUP

Two sets of experiments have been carried out to evaluate the proposed
method's registration performance. First, the ability of non-uniform splines to
model discontinuous motion is assessed. Second, the suitability of non-uniform
spline-based for accurate image registration is investigated. The CT images in real
clinical settings are 3D. In this paper, the feasibility of the proposed registration

method is assessed in a simplified setting using 2D CT images.

IMAGE AND DISPLACEMENT DATA

The proposed method is evaluated using a set of synthetic 2D images and
DVFs. Three DVFs that represent sliding motion in the lung cavity along different
types of boundary are considered: a vertical boundary, a linear diagonal boundary,
and a circular boundary. The DVFs are illustrated by quiver plots in Figure 20

(b,c,d).
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Figure 20: (a) Original reference image. (b, c, d) Test DVFs with vertical, diagonal, and

circular boundaries and their corresponding deformed images.
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The vertical boundary DVF corresponds to a global displacement to the right
by 10% of the image size and a downward motion by 5% for the region to the right
of the boundary. The diagonal boundary DVF corresponds to a global displacement
to the right by 10% of the image size and a downward sliding along the boundary by
about 6% for the region to the right of the boundary. The circular boundary DVF
corresponds to a global displacement to the right by 10% of the image size and a
downward rotation along the boundary by 3.6° for the region to the right of the
boundary.

The test reference image is a 256x256-pixel smooth rectangular grid shown
in Figure 20 (a). It is obtained by smoothing a perfect grid of pitch equal to 64 pixels
in both directions with a Gaussian lowpass filter with standard deviation equal to
12.8. The three test DVFs are applied to the reference image; the three

corresponding deformed images are also shown in Figure 20 (b,c,d).

MODELING EXPERIMENTS

For the first set of experiments, given the reference image, the deformed
image, and the original deformation vector fields, we model a set of estimated
deformation vector fields using splines and apply the resulting DVFs to the original
deformed image which results in an estimated deformed image.

* Initially the DVFs are reconstructed using a set of 64 spline knots

placed on a uniformly distributed grid.
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A combined gradient is computed for the original DVF and 30
spline points are placed randomly in areas where the gradient of
the combined gradient is high.

* Each of the 30 knots is split into 2 separate knots placed one pixel
apart in the direction of the gradient, resulting in a total of 60
knots.

* One knot is placed at each of the four corners of the image,
bringing the total number of knots to 64, same as in the uniformly
distributed grid.

* The estimated DVFs, both with uniformly distributed knots and
randomly distributed knots, are optimized using the Levenberg-
Marquardt iterative optimization method. The nonlinear least
squares minimization method terminates when the mismatch in
the current iteration is essentially the same (within 10-15) as in
the previous iteration.

The accuracy of the method is evaluated by taking the RMS error of the estimated

DVFs with the original DVFs.

REGISTRATION EXPERIMENTS

In real image registration applications, DVFs are evidently not available a
priori; only the reference and deformed images are available. This makes the

problem challenging for uniform spline modeling and even more so for non-uniform
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splines, where an estimate of the gradient of the DVF is also necessary for spline
point placement.

To concentrate on assessing the merits of non-uniform splines and avoid the
difficulty of actual image registration, in this paper we focus on the challenge of
choosing spline point locations from the images themselves when the DVF is
actually available. The method we used is a two-step process. First, the DVF is
modeled using uniform splines. The estimated DVF is applied to the reference image
and the resulting image is subtracted from the original deformed image. The spline
points are then randomly chosen in areas where this difference is high. The DVF is
then modeled again with non-uniform splines and the modeling performance is
compared to the ideal model obtained using the method described. We are
confident that actual image registration, which will be addressed in future work, is

achievable with a hierarchical, multi-resolution approach.

RESULTS

In the several experiments that were carried out, the image registration
performance is quantified by the RMS modeling error. It is the RMS value of the
difference between the actual DVF and the estimated DVF. Separate modeling
errors are computed for the horizontal and vertical components of the DVF (DVFx
and DVFy). An aggregate error is also computed as the RMS value of the vector
modeling error. The reported error values are not normalized; they are absolute

distances in an image with coordinates extending from —1 to +1 in both directions.
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For instance, a horizontal error of 0.02 corresponds to 1% of the horizontal size of
the image.

In a first experiment, the modeling ability of uniform and non-uniform
splines for the three test DVFs were compared. The DVFs have been modeled using
an 8x8 grid of uniform, separable splines and then using 64 non-uniform, splines
with points placed intelligently using the procedure described previously in the
experimental setup. For the vertical boundary, the aggregate modeling error for the
DVF modeled using the uniform grid is 0.0232 and 0.0210 for the DVF modeled by
the non-uniform, non-separable spline placement. For the diagonal boundary, the
uniform grid had a larger aggregate error of 0.0278, and the non-uniform grid had
the smaller error of 0.0177. A greater difference in error is seen with the circular
boundary. The uniform grid gave an error of 0.0275 and the non-uniform grid, and
error of 0.0169. The results are summarized in Table 5: Comparison of modeling

performance for uniform and non-uniform splines.

RMS Aggregate Error
DVF Uniform Grid Non-Uniform Grid
Vertical 0.0232 0.0210
Diagonal 0.0278 0.0177
Circular 0.0275 0.0169

Table 5: Comparison of modeling performance for uniform and non-uniform splines.
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To illustrate the modeling error, the estimated circular DVFs have been used
to deform the original image and the resulting images are shown in Figure 21. Both
the uniform and non-non uniform spline placements are able to accurately model
the areas of little discontinuity. However, the uniform splines produced a rough
estimation of the original DVF, unable to account for the sharp motion
discontinuities. The non-uniform splines produce a visibly superior registered

image accounting for the discontinuities.

(a) (b)
Figure 21: Modeled deformation of original image, from DVF model acquired using (a)

uniform splines and (b) non-uniform splines.

A further optimization of the spline locations was attempted by allowing
both spline amplitudes and locations to be free parameters and thus be
simultaneously optimized. The amplitudes and locations previously obtained for
the circular DVF have been used as the initial guess. The modeling error was
reduced insignificantly (by about 10-4); based on this result, no further efforts to

optimize the locations have been made.
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Figure 22: (a) Original DVF,; (b) original DVF,; (c) and (d) DVFx and DVF, modeled

using gradient-based non-uniform, non-separable splines.

In a second experiment, we evaluated the effect of the number of free
parameters on the modeling accuracy. Accuracy can always be improved by
increasing the number of free parameters, but this approach has certain drawbacks..
A large number of parameters offer a larger number of degrees of freedom, which
severely diminishes the robustness of the algorithm, almost guarantees that the
solution will not be globally optimal, and increases computational complexity of the

problem. Both uniform and non-uniform splines were used to model the circular
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boundary DVF with a number of spline points varying from 36 points to 144 points.
The results are shown in Table 6: Modeling error for different numbers of control
points. It can be seen that as the number of free parameters increase, the aggregate
error for the uniform grid reduces from 0.0310 to 0.0222. For the non-uniform

spline placement, it can be seen that the aggregate error reduces from 0.0185 to

0.0112.
RMS Aggregate Error
Number of Spline Points Uniform Grid Non-Uniform Grid
36 0.0310 0.0185
49 0.0288 0.0171
64 0.0275 0.0169
144 0.0222 0.0112

Table 6: Modeling error for different numbers of control points

Next, the suitability of the proposed modeling method for image registration
is evaluated as described previously in the experimental setup. The best trade-off
between complexity (as given by the number of free parameters) and accuracy was
obtained for 50 splines. The RMS aggregate modeling error is 0.0159. The
estimated DVF and the image difference-based spline locations are shown in Figure

23.
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Figure 23: (a) DVFx and (b) DVF, modeled using image difference-based non-uniform,

non-separable splines.

DISCUSSION AND CONCLUSIONS

A novel spline method has been proposed for image registration in the 4D CT
model described in Eq. 2. The proposed method uses non-uniform, non-separable
cubic splines to accurately model a DVF for image registration.

Multiple experiments were conducted to evaluate the image registration
method, and the mean of comparison of the rMSE aggregate error between the
actual and estimated DVFs. In the first experiment, three test DVFs were modeled
using the conventional uniform grid method and the proposed intelligently selected
non-uniform, non-separable spline method. Table 5 lists the summary of results.
From the table, it can be seen the aggregate modeling error is reduced by 9%, from
0.0232 to 0.0210, for the uniform grid to the non-uniform, non-separable spline
placement. This is for the vertical boundary. For the diagonal boundary, the

aggregate modeling error is reduced by 36% from uniform to non-uniform. Finally
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for the circular boundary the error is reduced by 39%. Not surprisingly, the least
impressive improvement is achieved for the simplest, least realistic DVF that best
aligns with the uniform rectangular grid. This is expected because, from the
justification of the approach, uniform grids have been shown to model boundaries
that are in the direction of the grid. Therefore, the uniform grid is able to fairly
accurately model the vertical boundary. Even so, the non-uniform, non-separable
spline based method is able to giver a smaller aggregate error, thereby modeling the
vertical boundary more accurately than the grid.

The breakdown of the aggregate error in the horizontal and vertical
directions depends on the nature of the DVF. For the three test DVFs, most of the
gain is for the vertical deformation. For example, for the circular boundary DVF, the
error is (0.0096, 0.0258) for uniform splines and (0.0070, 0.0154) for non-uniform
splines.

The second method evaluated the effect of the number of free parameters on
the modeling accuracy. For both uniform and non-uniform splines, it can be seen
the modeling error decreased for the larger the number of free parameters. As
stated previously, too many free parameters can reduce the robustness of the
model. Table 6 shows the RMS aggregate error for uniform and non-uniform spline
methods. The non-uniform, non-separable splines reduce the modeling error by
40% to 50% compared to the uniform splines, when going from 36 spline points to
144 spline points. A more illuminating interpretation of the results is that the
accuracy achieved by 144 uniform splines can be achieved by at most 36 non-

uniform splines. The number of free parameters is reduced by a factor of four. This
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is significant because this shows the robustness of the non-uniform, non-separable
spline model. From this we can show that the proposed model can accurately model
the same DVF with a smaller number of points, thereby creating a more robust
model .

The final experiment was conducted on image-to-image registration. The
best result was obtained with 50 splines. The RMS aggregate modeling error is
0.0159. The RMS aggregate modeling error is 0.0159, which is slightly better than
the error for 64 splines listed in Table 6. This somewhat unexpected result indicates
that further research into optimal placement of spline points is warranted.

It was hypothesized that using non-uniform, non-separable splines in
deformable image registration will result in greater registration accuracy than the
conventional method of using uniform splines. Hence a novel method for image
registration using non-uniform, non-separable cubic splines was proposed. The
method has been evaluated in the context of 4D-CT imaging. Experimental results
using a synthetic test image and three synthetic DVFs indicate that the proposed
method reduces the modeling error by 40% on average compared to the standard
methodology which uses a uniform grid of spline points. Alternately, it allows the
number of free model parameters to be reduced by a factor of four while
maintaining the same modeling accuracy. Therefore it can be seen that the non-
uniform, non-separable spline method results in greater registration accuracy than
the convention uniform grid of splines.

The promising results for the non-uniform, non-separable spline method are

stimuli to further explore the possibility of new work in this field. In the future,
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further experiments can be designed to determine the optimal spline placement for
intelligently placing the spline knots. Further, projection-to-projection registration
can be considered. The data evaluated in this work is on two-dimensional
registration. = Future work can be conducted on three-dimensional image
registration to model the deformation in the x, y, and z directions. This can further
expand to two-dimensional and three-dimensional projection-to-projection

registration.
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