
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2015

Spiking Neural Networks: Neuron Models, Plasticity, and Graph Spiking Neural Networks: Neuron Models, Plasticity, and Graph

Applications Applications

Shaun Donachy
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Theory and Algorithms Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/3984

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarscompass.vcu.edu%2Fetd%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/3984?utm_source=scholarscompass.vcu.edu%2Fetd%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

c©Shaun Donachy, July 2015

All Rights Reserved.

SPIKING NEURAL NETWORKS: NEURON MODELS, PLASTICITY, AND

GRAPH APPLICATIONS

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science at Virginia Commonwealth University.

by

SHAUN DONACHY

B.S. Computer Science, Virginia Commonwealth University, May 2013

Director: Krzysztof J. Cios,

Professor and Chair, Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia

July, 2015

TABLE OF CONTENTS

Chapter Page

Table of Contents . i

List of Figures . ii

Abstract . v

1 Introduction . 1

2 Models of a Single Neuron . 3

2.1 McCulloch-Pitts Model . 3

2.2 Hodgkin-Huxley Model . 4

2.3 Integrate and Fire Model . 6

2.4 Izhikevich Model . 8

3 Neural Coding Techniques . 14

3.1 Input Encoding . 14

3.1.1 Grandmother Cell and Distributed Representations 14

3.1.2 Rate Coding . 15

3.1.3 Sine Wave Encoding . 15

3.1.4 Spike Density Encoding . 15

3.1.5 Temporal Encoding . 16

3.1.6 Synaptic Propagation Delay Encoding 16

3.1.7 Rank Order Encoding . 17

3.2 Output Decoding . 17

3.2.1 Temporal Decoding . 17

3.2.2 Race-Based Decoding . 18

4 Konorski/Hebbian Learning Rules . 20

4.1 Synaptic weight modification . 20

4.2 Spike Timing-Dependent Plasticity 20

4.3 Synaptic Activity Plasticity Rule 22

5 Topology . 24

i

6 Applications . 25

6.1 Shortest Path . 25

6.2 Clustering . 28

7 Discussion . 32

8 Conclusions . 34

9 Future Work . 35

Appendix A Abbreviations . 36

References . 37

Vita . 40

ii

LIST OF FIGURES

Figure Page

1 As seen in (Anderson, 1995) a McCulloch-Pitts neuron with threshold

theta = 1 is capable of implementing an inclusive OR logic gate. 4

2 Model parameters for the Hodgkin-Huxley single neuron model as seen

in (Gerstner and Kistler, 2002). 6

3 A diagram of the integrate-and-fire neuron model as seen in (Gerstner

and Kistler, 2002). 7

4 An explanation of the Izhikevich neuron model. The mathematical

model and parameter values for producing various neuron spiking be-

havior can be seen. (Electronic version of the figure and reproduction

permissions are freely available at www.izhikevich.com) 9

5 Simulations of the Izhikevich neuron model with different parameters

as seen in Izhikevich, 2004 to exhibit some of the spiking behaviors

that are possible with the model. Each horizontal bar represents 20

ms of simulation. (Electronic version of the figure and reproduction

permissions are freely available at www.izhikevich.com) 10

6 Comparison of different neuron models with their computational cost

and biological plausibility as seen in (Izhikevich, 2004). 12

7 An illustration of temporal encoding and decoding as seen in (Paugam-

Moisy and Bohte, 2012). 16

8 SNN network architecture used for MNIST handwritten digit classifi-

cation as seen in (Beyeler, Dutt, and Krichmar, 2013). 19

9 STDP value vs ∆t. 21

10 Example shapes of STDP windows as seen in (Paugam-Moisy and

Bohte, 2012). Long term potentiation shown in red and long term

depression shown in blue for excitatory synapses. In (4) a standard

Hebbian learning rule is commonly applied to inhibitory synapses. 22

iii

11 SAPR function values vs ∆t. 23

12 (a). An example shortest path input graph with 9 nodes and 14 edges.

The node with label ’1’ acts as the source node. (b). The shortest

path solution from using either STDP or SAPR learning rules. The

edges which do not lie on the shortest path from the source node, 1,

to any other node are removed. 26

13 (a). An example clustering input graph with 8 nodes and 10 edges.

(b). The clustering solution from using either STDP or SAPR learning

rules. The edges which do not participate in cluster formation are removed. 29

14 (a). Clustering solution using either STDP or SAPR learning rules for

the Iris data set reduced to two dimensions (b). The output solution

where the data points are given different shapes based on class labels.

The edges which do not participate in cluster formation are removed. . . 31

iv

Abstract

SPIKING NEURAL NETWORKS: NEURON MODELS, PLASTICITY, AND

GRAPH APPLICATIONS

By Shaun Donachy

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2015.

Director: Krzysztof J. Cios,

Professor and Chair, Department of Computer Science

Networks of spiking neurons can be used not only for brain modeling but also

to solve graph problems (Sala and Cios, 1999). With the use of a computationally

efficient Izhikevich neuron model combined with plasticity rules, the networks possess

self-organizing characteristics. Two different time-based synaptic plasticity rules are

used to adjust weights among nodes in a graph resulting in solutions to graph prob-

lems such as finding the shortest path and clustering.

v

CHAPTER 1

INTRODUCTION

A neural network consists of neurons and the connections among them. This view

of the network is easily transformed into a graph with the neurons as nodes and the

connections as edges, and is often represented in this way. Looking at the neural

network from the perspective of a graph allows us to treat the network as a problem

to be solved. In this setting, the resulting graph itself is the solution to a problem.

This is a different view, since neural networks are typically used to find a function

which maps known inputs to corresponding known outputs for finding a solution to

a classification problem. Spiking Neural Networks (SNN) are considered the third

generation of neural networks. Taking advantage of the precise timing of spikes

generated by neurons they have greater computational power than the preceding

forms (Gerstner and Kistler, 2002). Spikes are produced when a neuron receives

sufficient input to excite the neuron and generate an output current.

An SNN can be used to solve graph problems by exploiting their ability to self-

organize. This self-organization is formed from local learning based on information

from the timing of spikes between neurons. Although there are many different neuron

models formulated and used within SNN, the Izhikevich neuron model has been shown

to be efficient computationally Izhikevich, 2003. Here we will show how to use the

Izhikevich neuron model and two synaptic plasticity rules to produce solutions to two

graph problems: that of finding the shortest path and clustering of data points (the

nodes of a graph).

The human brain, particularly the neo-cortex, is proof of the computational

1

power of a vast network of neurons. The complexity of neuron structure and con-

nections has made it difficult to discover the inner workings of such huge networks.

Neuroscientists, computer scientists, and scientists among other disciplines have been

working for many years to uncover the unifying algorithms of the neocortex. While

much progress has been made towards understanding neuronal systems, the exact

methods employed to perform such incredible computation, memorization, and learn-

ing capabilities of the neocortex remain elusive. Thus, further investigations which

intend to uncover the secrets of the brain are well-founded.

2

CHAPTER 2

MODELS OF A SINGLE NEURON

A spiking neural network consists of many neurons and the connections among them.

This chapter discusses individual neuron models. Multiple neuron models have been

introduced based on findings from neuroscience research with varying degrees of bio-

logical plausibility. Here, a selection of important models will be described and their

inherent attributes discussed.

2.1 McCulloch-Pitts Model

McCulloch and Pitts were interested in investigating the components of the ner-

vous system to determine how it might be working. The computational capabilities

of their two-state neuron model were reported in (McCulloch and Pitts, 1943). This

neuron model has become known as the McCulloch-Pitts neuron model, or threshold

logic unit. In such a model the neuron is only capable of two states, active and inac-

tive. Each neuron has a fixed threshold for which it transfers from an inactive state

to an active state, which is equivalent to the Heaviside step function. Some of the

synapses between neurons may be inhibitory such that if a neuron is connected to

an active inhibitory synapse it may not, itself, become active. The most dramatic

result of the work of McCulloch and Pitts was that any finite logical expression can

be reified in a network of McCulloch-Pitts neurons. This was particularly interesting

to computer scientists and played a role in the development of what is now called the

Von Neumann architecture (Anderson, 1995). The McCulloch-Pitts neuron model

does not attempt to exhibit biologically plausible properties. Significant advance-

3

Fig. 1. As seen in (Anderson, 1995) a McCulloch-Pitts neuron with threshold theta =

1 is capable of implementing an inclusive OR logic gate.

ments in neuroscience suggest that human brains and the individual neurons which

constitute them do not perform formal logic and symbolic operations as the modern

digital computer does. Thus, to simulate neuronal activity observed in the human

neocortex, more complex neuron models are required.

2.2 Hodgkin-Huxley Model

On the opposite end of the spectrum of biological plausibility lies the well-known

Hodgkin-Huxley neuron model. This model represents a relatively high degree of

biological accuracy describing neuron function. The price for this level of biological

accuracy is a high computational cost. This model has been widely and successfully

used in neuroscience research. The implementation of large numbers of neurons of

this type for computational simulation quickly becomes intractable, though.

Hodgkin and Huxley performed experiments on the giant axon of the squid in

1952. They found three different ion channels, one for sodium ions, one for potassium

ions and a third which handles other types of channels and is given the name leakage

channel (Gerstner and Kistler, 2002). The cell membrane of the neuron is semi-

permeable and the flow of ions across the membrane determines potential internal

to the cell with respect to the fluid external to the cell. This membrane therefore

4

acts as a capacitor in an electrical circuit. The term u refers to the potential across

this membrane. Hodgkin and Huxley formulated three current components of their

model as shown in equation 2.1. The channels are characterized by their respective

resistances. When the sodium and potassium channels are open they have maximum

conductance of gNa and gK . The terms m and h control the sodium channels while

the potassium channels are controlled by the n term. Reversal potentials are given

by ENa, EK , and EL.

∑
k

Ik = gNam
3h(u− ENa) + gKn

4(u− Ek) + gL(u− EL) (2.1)

Gating variables m, n, and h are modified according to the differential equations

of equation 2.2. These gating variables describe the probability that a particular

channel is open, since normally some of the channels are blocked.

ṁ = αm(u)(1−m)− βm(u)m

ṅ = αn(u)(1− n)− βn(u)n

ḣ = αh(u)(1− h)− βh(u)h

(2.2)

The parameters of the model are given in Figure 2. It should be noted that the

parameters shown expect the neuron resting potential to be 0 V. The resting potential

is now understood to be -65 mV, thus the model parameters should be shifted by -65

mV to achieve this resting potential.

This model is biologically accurate for the subject of Hodgkin and Huxley’s

work, the squid. However, there are many more electro-physiological properties in

cortical neurons of vertebrates. Detailed models for these types of neurons have been

developed that describe additional channels. Such models are, of course, even more

computationally demanding than the Hodgkin-Huxley model for simulation purposes.

5

Fig. 2. Model parameters for the Hodgkin-Huxley single neuron model as seen in (Ger-

stner and Kistler, 2002).

2.3 Integrate and Fire Model

An integrate and fire neuron model originally presented by Lapicque in 1907

retains some neuron properties and the membrane potential but simplifies spike gen-

eration (Abbott, 1999). The best known model is named the leaky integrate and fire

model. This model is essentially a capacitor C in parallel with a resistor R driven by

a current I (t); see Figure 3. The addition of the leak is an improvement by permitting

the neuron’s membrane voltage to leak and therefore decay to an equilibrium state

in the absence of stimulation. The neuron model can be seen in equation 2.3 where

Vm, Cm, and Rm refer to membrane voltage, capacitance, and resistance, respectively.

The addition of the Vm(t)/Rm term forces the input current to overcome a threshold

in order to produce a spike as seen in equation 2.4. If this threshold is not met and

the input current ceases, then the potential will simply leak out.

I(t)− Vm(t)

Rm

= Cm
dVm(t)

dt
(2.3)

Ith =
Vth
Rm

(2.4)

6

Fig. 3. A diagram of the integrate-and-fire neuron model as seen in (Gerstner and

Kistler, 2002).

Multiple variations of the integrate and fire model have been developed. MacGre-

gor increased the biological accuracy of the model including an absolute and relative

refractory period for each neuron (MacGregor, 1987). An absolute refractory period

is a phenomenon of naturally occurring neurons which prevents them from firing for

some period after their last fire event. Similarly, a relative refractory period occurs

after the absolute refractory period. During the relative refractory period the neuron

is only capable of firing under very high stimulation conditions. MacGregor’s model

accounts for membrane potential and the potassium channel response.

The modified MacGregor model is described by equations 2.5 - 2.8. Equation

2.5 shows how spikes are generated where E is membrane potential and Th is the

threshold. Equation 2.6 shows the refractory properties of the neuron; GK is the

potassium channel conductance. Equation 2.7 describes the threshold accommodation

and equation 2.8 describes the transmembrane potential.

7

S =

1 if E ≥ Th

0 if E < Th

(2.5)

dGk

dt
=
−Gk +B · S

TGK
(2.6)

dTh
dt

=
−(Th − Th0) + c · E

Tth
(2.7)

dE

dt
=
−E +Gk · (EK − E) +Ge · (Ee − E) +Gi · (Ei − E) + SCN +N

Tmem
(2.8)

2.4 Izhikevich Model

The Izhikevich neuron model was developed by Eugene Izhikevich (Izhikevich,

2003). It is among the class of neuron models which seek to reduce the complexity

of the highly accurate Hodgkin-Huxley model from four differential equations down

to two. Izhikevich has shown that his neuron model is capable of reproducing many

of the output behaviors observed with biological neurons, thus similar in this regard

to the Hodgkin-Huxley model (Izhikevich, 2004). As can be seen in Figure 6, the

number of floating point operations (flops) required to produce these behaviors with

the Izhikevich neuron model is 13 whereas the Hodgkin-Huxley neuron model requires

1200.

The Izhikevich model is described by equations 2.9 - 2.11. Here, v is the mem-

brane potential variable and u is the membrane recovery variable that provides nega-

tive feedback to v, both of which are dimensionless; v′ =
dv

dt
and u′ =

du

dt
and t is time.

In this model there are four dimensionless parameters: a, b, c, and d. The parameter

a describes the scale of time that u operates on. The parameter b describes how

sensitive u is to fluctuations in v below the firing threshold. The parameter c is used

to define the reset potential of v after a spike is generated. The parameter d describes

the reset of the variable u after a spike is generated. The section 0.04v2 + 5v + 140

8

Fig. 4. An explanation of the Izhikevich neuron model. The mathematical model

and parameter values for producing various neuron spiking behavior can be

seen. (Electronic version of the figure and reproduction permissions are freely

available at www.izhikevich.com)

9

Fig. 5. Simulations of the Izhikevich neuron model with different parameters as seen

in Izhikevich, 2004 to exhibit some of the spiking behaviors that are possible

with the model. Each horizontal bar represents 20 ms of simulation. (Elec-

tronic version of the figure and reproduction permissions are freely available at

www.izhikevich.com)

10

was determined by fitting the model dynamics to operate on the voltage scale of mv

and the time scale of ms. This aspect of the model may be modified to fit other scales

Izhikevich, 2003. The model incorporates the input current to the system using pa-

rameter I. By modifying the model parameters a, b, c, and d it is possible to produce

different kinds of neuron spiking behavior as demonstrated in Figure 4 and Figure 5.

v′ = 0.04v2 + 5v + 140− u+ I (2.9)

u′ = a(bv − u) (2.10)

if v ≥ 30 mV, then

v ← c

u← u+ d
(2.11)

The Izhikevich neuron model does not model the absolute or relative refractory

periods, which reduces the biological plausibility of the model and may lead to un-

realistic neuron behaviors under certain conditions. A solution to this problem was

given by (Strack, Jacobs, and Cios, 2013) by preventing the neuron from generating

an output spike until a specified time after a spike has occurred. To incorporate an

absolute refractory period, when v reaches the threshold at time t = tf , the dynamics

are interrupted (equations 2.9-2.11) until time tf + ∆(abs). Therefore, equation 2.11

was modified to have an additional constraint as shown in equation 2.12.

if v ≥ 30 mV and t− tprev ≥ ∆(abs), then

v ← c

u← u+ d

else if v ≥ 30 mV then, v ← 30 (2.12)

Since the Izhikevich neuron model is capable of biological realism and computa-

11

Fig. 6. Comparison of different neuron models with their computational cost and bio-

logical plausibility as seen in (Izhikevich, 2004).

12

tional efficiency it stands out as a candidate for large computational simulations. For

example, Izhikevich implemented a network of 10,000 neurons with 1,000,000 random

synapse connections using a 1GHz desktop PC in real-time (Izhikevich, 2003).

13

CHAPTER 3

NEURAL CODING TECHNIQUES

3.1 Input Encoding

Spiking neural networks differ significantly from early neural network paradigms.

The presence and precise timing of spikes encapsulates meaning. Different techniques

are therefore required to submit a stimulus to the network. This chapter discusses

techniques of transforming data into a suitable form for network submission.

3.1.1 Grandmother Cell and Distributed Representations

An important consideration is how to represent information in a system(Anderson,

1995). One type of representation is called grandmother cell. Grandmother cell repre-

sentation gets its name from an assumption that a single cell becomes active whenever

a person sees their grandmother. This example is reinforced by neuroscience stud-

ies of place cells (Martig and Mizumori, 2010). Place cells become active in the

hippocampus when the subject navigates through a particular area.

A second type is termed distributed representation. The semantic meaning of a

distributed representation by definition cannot be interpreted by observing a single

neuron. Extending the grandmother cell representation to a pool of neurons produces

a distributed representation. Thus the data can be represented in a spatial fashion.

Similar inputs could be represented as spatially similar using such a technique. The

challenge becomes determining a way in which similar inputs can be transformed to

spatially similar representations and therefore this may only be relevant for ordinal

data types.

14

3.1.2 Rate Coding

The notion of rate coding assumes that a significant portion of information is

encoded in the firing rate or frequency of neurons (Meftah, Lezoray, and Chaturvedi,

2012). Probabilistic firing rates can be used to encode information. This technique

of encoding has been criticized for several reasons (Gerstner and Kistler, 2002). In

particular, behavioral experiments show that human response times to visual stimuli

are very short, which would not leave enough time for an average firing rate to be

determined by the system. Thus, an additional information source is likely.

3.1.3 Sine Wave Encoding

In the supervised classification problem there exists input features which must be

transformed to an acceptable format for the SNN. One method of transformation as

seen in (Shin et al., 2010) is sine wave encoding. The raw feature values are normalized

and then the amplitude of the sine wave is adjusted based on the normalized feature

value. This signal is presented to the network for some portion of the total simulation

time. Since the amplitude of the signal is encoding the information this technique is

very similar to the continuous inputs of traditional neural networks.

3.1.4 Spike Density Encoding

A spike density code is a form of population coding that measures how many

neurons are firing. So, a pool of neurons could be set up such that neurons fire

stochastically relative to the size of the input value. Therefore, the density of the

spikes generated by the pool as an entire unit encodes the input information (Paugam-

Moisy and Bohte, 2012). One issue with this method is the apparent inefficiency of

using such a large number of neurons to encode a relatively few number of inputs.

15

Fig. 7. An illustration of temporal encoding and decoding as seen in (Paugam-Moisy

and Bohte, 2012).

The increased number of neurons implies increased amounts of synaptic connections

and there for energy within the system to represent the signal.

3.1.5 Temporal Encoding

Temporal coding is a way of encoding input information as time differentials.

This technique may also be called latency coding or time-to-first-spike coding (Paugam-

Moisy and Bohte, 2012; Gerstner and Kistler, 2002). As can be seen in Figure 7 the

timing of the spikes is varied by some delay relative to the strength of the inputs.

This technique takes advantage of the SNN’s ability to encode information tempo-

rally. The biological relevance of this technique is well-founded by the observations

made in the visual system. More intense signals are seen as spike transmissions earlier

than less intense inputs.

3.1.6 Synaptic Propagation Delay Encoding

Encoding the edge weights of a graph as synaptic propagation delays encodes

information temporally. The timing of spikes is influenced heavily by introducing a

16

delay between neurons. This method is based on biological networks which possess

a variable delay between neurons based on the length of the dendrites connecting

neurons.

3.1.7 Rank Order Encoding

Coding by rank order is a technique where the order of the spikes is used to

encode information. Such a coding scheme would require the mapping of input val-

ues to a rank order over n neurons. The spike emissions are among one of the n!

possible orderings of n neurons. Therefore, log2(n!) bits may be used to represent

such an ordering. Such a capacity is optimistic as using this method within com-

puter simulations necessitates the ability to differentiate between two spike timings

(Paugam-Moisy and Bohte, 2012).

3.2 Output Decoding

In addition to using special techniques to encode information to a usable form for

the SNN, specific techniques will be required for decoding the output from an SNN.

This section will look at some techniques that are used to decode such information

into a form suitable for classification decision making.

3.2.1 Temporal Decoding

Similar to temporal encoding as seen in section 3.1.5, temporal decoding trans-

forms the first spike time information of individual neurons into an output vector (see

Figure 7). To transform this output into a format capable of decision making, the

output vector can be used to form signatures as in (Shin et al., 2010). The signatures

are formed by calculating an average of spike outputs generated by all inputs of a

selected class. Once signatures are computed a distance based comparison may be

17

used to generate a decision.

Alternatively, a system may use such an output vector as input to an optimization

technique which minimizes classification error mapping the vector to a class label. In

this scenario the SNN becomes a feature extraction system.

3.2.2 Race-Based Decoding

Another method which considers spike timing as essential information is a race-

based decoding mechanism. In this paradigm a single neuron or a pool of neurons is

set up for each class label. The role of these neurons is to identify which class type

the input belongs to by firing before the members of the other neuron pools.

To achieve this there is some form of feedback to the decision nodes about the

class label of input being submitted to the network. It may come in the form of

supervised training of weights leading into the decision pools.

In (Beyeler, Dutt, and Krichmar, 2013) a clever method of feedback is used,

called supervised Hebbian learning (Kasinski and Ponulak, 2006). The pool of de-

cision neurons have recurrent excitatory connections among themselves as well as

inhibitory connections to other neuron decision pools (see Figure 8). When a stim-

ulus is presented to the network a single neuron in the pool corresponding to the

correct label is also stimulated. Combined with Hebbian plasticity (see section 4.2

and 4.3) this teacher signal causes increased excitement, thus generating faster and

more frequent spikes among the correct pool of neurons.

18

Fig. 8. SNN network architecture used for MNIST handwritten digit classification as

seen in (Beyeler, Dutt, and Krichmar, 2013).

19

CHAPTER 4

KONORSKI/HEBBIAN LEARNING RULES

Biologically founded neural networks like SNN are capable of self-learning from their

input. The network’s behavior is shaped by inputs that it has received over time.

The concept of synaptic plasticity was first presented by Konorski (Konorski, 1948)

in 1948 and later by Hebb (Hebb, 1949) in 1949 and has come to be known as Hebbian

style learning. Here we take a closer look at two different synaptic plasticity rules

that may be used for networks of spiking neurons.

4.1 Synaptic weight modification

A common method used to modify the connection weights is based on the obser-

vations of Konorski and Hebb (Hebb, 1949; Konorski, 1948). Such synaptic weight

modifications are termed plasticity. The Konorski/Hebbian learning rule changes the

weight of a synaptic connection based upon the pre- and post-synaptic neuron activ-

ity. When the firing of a pre-synaptic neuron regularly participates in the firing of

a post-synaptic neuron, the strength of the action of the pre-synaptic neuron onto

the post-synaptic neuron increases. Conversely, if the pre-synaptic neuron regularly

fires after the post-synaptic neuron, the strength of the action from the pre-synaptic

neuron onto the post-synaptic neuron decreases.

4.2 Spike Timing-Dependent Plasticity

Spike timing-dependent plasticity (STDP) is a temporally asymmetric form of

Konorski/Hebbian learning that modifies synaptic connections between pre- and post-

20

−25 −20 −15 −10 −5 0 5 10 15 20 25
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

STDP

time difference

S
T

D
P

 v
a

lu
e

Fig. 9. STDP value vs ∆t.

synaptic neurons that are temporally correlated. In addition, a winner takes all

approach is often used where only the weight of the first post-synaptic neuron to fire

is updated. Such plasticity is believed to be an underlying learning and information

storage mechanism and possibly contributes to the development of neuronal circuits

during brain development (Sjostrom and Gerstner, 2010). For these reasons it is

relevant to many SNN implementations.

Equations 4.2 and 4.3 define the STDP weight update rule. The ∆t term in equa-

tion 4.1 is the difference in firing times between pre- and post-synaptic neurons. To

emphasize that weight updates occur only when a post-synaptic neuron fires w(new)

has a tfpost subscript. Separate τ time constants (τ+, τ−) are used for ∆t > 0 and

∆t ≤ 0, respectively, and α is the learning rate.

For computer simulations taking advantage of any STDP-like rule it is neces-

sary to prevent the synapse weights from exceeding a maximum value or minimum

value. Otherwise, weight modifications will diverge to ±∞ (Paugam-Moisy and Bo-

hte, 2012). It is known that using STDP to modify weights will result in a bimodal

21

Fig. 10. Example shapes of STDP windows as seen in (Paugam-Moisy and Bohte,

2012). Long term potentiation shown in red and long term depression shown

in blue for excitatory synapses. In (4) a standard Hebbian learning rule is

commonly applied to inhibitory synapses.

distribution of weights (Legenstein, Naeger, and Maass, 2005). The weights will tend

toward either the maximum value or the minimum value.

∆t = tfpost − tfpre (4.1)

wtfpost (new) = w(old) + STDP (∆t) (4.2)

STDP (∆t) =

α+e
−∆t/τ+ if∆t > 0

−α−e∆t/τ− if∆t ≤ 0
(4.3)

4.3 Synaptic Activity Plasticity Rule

The Synaptic Activity Plasticity Rule (SAPR) is a temporally symmetric form of

Konorski/Hebbian learning. The synaptic connection strength in SAPR is modified

using an update function that takes advantage of the membrane potential of the post-

synaptic neuron (Swiercz et al., 2006). In contrast to the STDP function, SAPR is

continuous when the time difference between pre- and post-synaptic firing times is

zero, where STDP is undefined. Values for STDP approach ±∞ as the time difference

nears zero, whereas SAPR is bounded to a finite range.

Equation 4.5 is used to calculate Excitatory Post-Synaptic Potential (EPSP),

22

−15 −10 −5 0 5 10 15
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

SAPR

time difference

E
P

S
P

 v
a

lu
e

Fig. 11. SAPR function values vs ∆t.

given the learning rate α , and synapse time constants τd and τr. With the time

difference between when the neuron fired (tf) and the current time step (t) the mem-

brane potential can be computed. This value is used to update the synaptic weights

between two neurons by equation 4.4. If the post-synaptic neuron fires after the

pre-synaptic neuron fired then the pre-synaptic neuron contributes positively to the

firing of the post-synaptic neuron and its weight is increased, otherwise the weight is

decreased.

wtfpost (new) =

 w(old) + SAPR(∆t) if∆t > 0

w(old)− SAPR(abs(∆t)) if∆t ≤ 0
(4.4)

SAPR(∆t) = α

[
e
−
(

∆t
τd

)
− e−(∆t

τr
)
]

(t− tf) = EPSP (4.5)

23

CHAPTER 5

TOPOLOGY

The way in which the neurons within a neural network are connected constitutes a

neural network topology (Fiesler, 1996). Every neuron will have a connection to at

least one other neuron, and the way these connections are determined is one of the

fundamental factors of how the network will behave. The neurons may be organized

into layers and have intra- and inter-layer connections.

For the applications presented in this work, the translation from an input graph

to an SNN topology is straight-forward. There will only be one layer of neurons and

each node in the input graph becomes a neuron in the SNN. The edges of the input

graph become connections (synapses) among the neurons in the SNN as explained in

the following section.

24

CHAPTER 6

APPLICATIONS

6.1 Shortest Path

This investigation looks at the one-to-all shortest path problem, that is: given a

source node, find the shortest paths to all other nodes. Using the Izhikevich neuron

model and both STDP and SAPR, we will describe how to accomplish this task using

an SNN.

We begin by assigning the nodes in the graph to neurons in the SNN and the edges

as synapses. The edge values in the graph become respective synaptic propagation

delays between neurons in the SNN. All of the synaptic weights are initialized to

0.5 and restricted to the range [0.01, 1]. In the case of STDP this is a hard limit

imposed by a step function, and in the case of SAPR a sigmoid function is used to

meet this constraint. The source node is then stimulated with current I in equation

2.11 that is large enough to elicit a spike response. The initial weights and spike

currents must combine in such a way that a spike response is created in each and

all post-synaptic neurons. Weight values may increase or decrease but it is known

that they will eventually diverge to the maximum or minimum value (Gerstner and

Kistler, 2002). All neurons are inhibited from spiking a second time after they have

spiked once and produced an action potential. Once all neurons have fired, a cycle

is concluded. Since it is known that the weight values will diverge to minimum or

maximum, or in some cases remain the same, the simulation stops if the the weights

have climbed sufficiently high, fallen sufficiently low, or remain unchanged. Often,

this will take only one cycle.

25

 4

 7
 5

 3

 5

 9

 8

 7

 6

 3

 7

 3

 4

 5

1

2

3

4

5

6

7

8

9

(a)

 4

 7

 5

 3

 3

 3

 4

 5

1

2

3

4

5

6

7

8

9

(b)

Fig. 12. (a). An example shortest path input graph with 9 nodes and 14 edges. The

node with label ’1’ acts as the source node. (b). The shortest path solution

from using either STDP or SAPR learning rules. The edges which do not lie

on the shortest path from the source node, 1, to any other node are removed.

26

If the pre-synaptic neuron fires before the post synaptic neuron, then the synaptic

strength between the neurons is increased. But, because winner-takes-all is being

used, only the neuron whose action potential arrives first at the post-synaptic neuron

will have the synaptic strength between itself and the post-synaptic neuron increased.

All others’ synaptic connection strength to the post synaptic neuron will remain

unchanged. If the pre-synaptic neuron fires after the post-synaptic neuron fires then

the synaptic strength between the neurons is decreased. In this case all neurons

whose action potentials arrive after the post-synaptic neuron after it has fired have

their synaptic strengths decreased.

Upon conclusion of the simulation the synaptic connections whose weights are

near the maximum weight value represent the set of edges that constitute the shortest

paths in the graph from the source node.

As an example, Figure 12(a) shows a graph with 9 nodes and 14 edges. The

edge weights shown become propagation delays between synapses in an SNN. This

means that an action potential produced at time t will be supplied as input current to

the post-synaptic neuron at time t+ d where d is the propagation delay. The source

neuron, 1, is stimulated and produces an action potential to be received by its four

connected neurons which receive input stimulation after their respective propagation

delays have passed. Upon receipt of the input stimulation, the edge weights will

be positively modified based on which neuron’s action potential arrived first using

equation 4.3 in the case of STDP and equation 4.4 for SAPR. After iterating over

individual time-steps until each neuron fires, forming a cycle, the neurons are reset

to a resting state. The cycles continue until all of the edge weights have settled. The

result is shown in Figure 12(b) where it can be seen that only the edges along the

shortest paths from the source node, in this case node 1, to all other nodes remain.

27

6.2 Clustering

The goal of clustering within a graph is to group together similar nodes based on

their edge distances to the adjacent nodes. To solve this problem in an unsupervised

fashion (without a priori specifying the number of clusters) a network of spiking

neurons using the Izhikevich neuron model, and STDP and SAPR plasticity rules are

used.

The initial translation of the graph to the SNN is similar to that of the shortest

path explained above. Synaptic weights are again initialized to 0.5 and restricted to

the range [0.01, 1]. However instead of stimulating a single node during the first time

step, all neurons are stimulated with the exception of one. All neurons take a turn as

the non-stimulated neuron in a round-robin fashion. Time advances forward in one

millisecond steps until the non-stimulated node fires, thus completing a cycle. All

neurons are inhibited from firing more than once during a cycle. Once all neurons

have taken their turn as the dormant node for a cycle the simulation completes and

the remaining edges form clusters.

Unlike the shortest path simulation in which all edges are directed, graph cluster-

ing requires all edges in the input graph to be bi-directional. This becomes an issue

because the synaptic weights are updated independently of one another, yet they

logically represent the same edge in the associated graph. To address this issue, only

incoming edges are updated when a post-synaptic neuron fires and upon conclusion

of the simulation, if the pair of synaptic weights differ, then the higher weight is used

to determine which edges survive.

Figure 13(a) shows an example graph consisting of 8 nodes and 10 edges. The

graph is translated into an SNN structure as in the shortest path example where the

edge weights become propagation delays. Neuron number 1 is initially dormant at

28

 4

 10

 8

 9

 16

 6

 13

 10

 4

 13

1

2

3

4

5

6

7

8

(a)

 4

 6

 10

 4

 13

1

2

3

4

5

6

7

8

(b)

Fig. 13. (a). An example clustering input graph with 8 nodes and 10 edges. (b).

The clustering solution from using either STDP or SAPR learning rules. The

edges which do not participate in cluster formation are removed.

29

time step 1 while all other nodes are stimulated. When an action potential arrives

and elicits a spike response at neuron 1 then the incoming synapses to neuron 1, in

this case synapses originating at neurons 2, 3, and 5 have their weights updated. The

action potential from node 2 should arrive first and thus the synaptic weight between

neuron 2 and neuron 1 will be positively modified. Neurons 2-8 will take their turn

as the dormant node and synapses will be updated accordingly. After 8 cycles are

completed the synapses which are near the maximum weight value are kept. These

represent the edges that constitute the clustering output as seen in Figure 13(b).

Next, we show how clustering is performed on real data. Fisher’s original data set

consists of 50 samples each of three different species of Iris flowers and is described

by four features: sepal length, sepal width, petal length, and petal width Fisher,

1936. The Iris Setosa class is linearly separable from the other classes, but Iris

Virginica and Iris Versicolor have overlapping data points and thus are not linearly

separable. It has been shown, for example in (Valko, Marques, and Castellani, 2005),

that petal length and width features are sufficient for correct classification. Here we

use the data described by these two features, which enables visualization of clustering

performance. A matrix representing the complete graph’s edge weights is computed

by calculating the Euclidean distances from one observation to all others. This graph

becomes the input and is translated into an SNN. The clustering result is shown in

Figure 14(a). To provide a better sense of the clustering performance, the data points

are assigned three shapes according to their class labels shown in Figure 14(b). Since

Iris Virginica and Iris Versicolor classes overlap there are a few data points which are

clustered together. Biologists have confirmed that the species are co-mingled, so this

clustering result was expected.

30

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5
Iris Data Clustering

Petal Length

P
e

ta
l
W

id
th

(a)

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Petal Length

P
e

ta
l
W

id
th

Iris Data Clustering

Iris Setosa

Iris Versicolor

Iris Virginica

(b)

Fig. 14. (a). Clustering solution using either STDP or SAPR learning rules for the

Iris data set reduced to two dimensions (b). The output solution where the

data points are given different shapes based on class labels. The edges which

do not participate in cluster formation are removed.

31

CHAPTER 7

DISCUSSION

The choice of neuron model, learning rule, neural encoding scheme, and topology must

all be deliberately made to address the specific nature of the problem to be solved

with SNN. Studies have shown that use of all of the spiking neuron models presented

in this work are viable different computing tasks. Many studies in the literature take

advantage of the computationally simpler integrate-and-fire type of neuron models.

Such neurons are a good choice when the acceptable level of biological plausibility

does not necessitate the use of a complex model such as the Hodgkin-Huxley model.

The selection of a neural coding scheme significantly affects the operation of

the network. The minutiae of the problem must be taken into consideration. It is

currently believed that a rate coding or frequency based coding scheme is unlikely to

contain the data required for generalization. Though the coding techniques mentioned

above have been used successfully, others yet exist. It is possible to combine some of

these techniques to address the particular needs of a problem. Although it presents

an increase in pre-processing, Gaussian receptive fields have been used to distribute

the input values throughout a given range (Meftah, Lezoray, and Chaturvedi, 2012).

Konorski/Hebbian learning rules exploit the temporal difference among spikes,

making it necessary to encode information in such a way that any underlying pattern

within the data is discernible in time. Pure temporal encoding would be a good en-

coding scheme to take advantage of this characteristic. Using a synaptic propagation

delay is also an effective approach for the use of Konorski/Hebbian learning rules as

it introduces temporal characteristics to the network.

32

There are extensive quantities of model parameters to consider when developing

an SNN model. Consideration must be given to the amplitude of a generated spike;

this value determines how many pre-synaptic spikes must be generated to elevate the

post-synaptic potential to a threshold value. The acceptable range of synaptic weights

must be determined, since Hebbian-style rules will result in a bi-modal distribution

of weights near the minimum and maximum. Synaptic weights are often initialized

randomly, but consideration should be given to the range of these initial weights

as well. Topological attributes are also important, the number of layers, number

of neurons, and probability of connections among them all affect the operation of

the network. Experiments in neuroscience have found a biologically plausible ratio of

inhibitory to excitatory connections to be about 20%. Which synaptic weights receive

updates during learning can vary, for example, most studies reduce the learning ability

of inhibitory synapses. Selecting these parameters depends upon the problem being

solved, but can pose a considerable challenge to creating a well-tuned network.

Asynchronous message passing systems which do not rely on a global time-step to

keep the network synchronized have interesting properties. Computation and commu-

nication time for neuron membrane potential updates should remain small. Careful

attention to the time required for network maintenance operations could permit the

use of artificial delays to maintain consistent spike fire timings. Such a parallel im-

plementation is closer to biological observations. The improvements gained by such

an implementation are increased scalability and higher computational performance.

33

CHAPTER 8

CONCLUSIONS

Applications in this work have shown how a computationally efficient neuron model

can be used as the basis of an SNN capable of solving common graph problems.

Combining a temporal encoding in the form of synaptic delays with the addition of

synaptic plasticity rules like STDP and SAPR, the network exhibited self-organizing

properties. Although SAPR was shown to improve performance over STDP when

used for face image recognition (Shin et al., 2010) there was no significant difference

between using STDP and SAPR for the graph problems presented here. The Izhike-

vich neuron model and the STDP and SAPR synaptic plasticity rules are biologically

realistic, giving an interesting perspective on the applicability of biologically inspired

artificial neural networks to graph solutions.

34

CHAPTER 9

FUTURE WORK

There are many opportunities for further investigations into the use of SNN for prob-

lem solving. Some optimizations could be investigated to improve the speed and

scalability of SNN-based approaches for solving graph problems. It may be possible

to parallelize computations by using a message passing system as mentioned above

to achieve improved performance. Significant intricacies arise when spiking neurons

interact with each other, such as neuron firing order, and how the synaptic connec-

tion strengths should be modified. Since time plays such a crucial part of SNN, it

is imperative this be accurate. Simplification or generalization of how to solve this

implementation issue could reduce the steepness of the learning curve for working

with SNN. This work used the Izhikevich neuron model coupled with two types of

Konorski/Hebbian learning. Possible continuations of this work could compare the

characteristics of different combinations of neuron models and learning rules with the

characteristics of using the Izhikevich neuron model combined with STDP and SAPR.

35

Appendix A

ABBREVIATIONS

VCU Virginia Commonwealth University

NN Neural Network

SNN Spiking Neural Network

STDP Spike Timing-Dependent Plasticity

SAPR Synaptic Activity Plasticity Rule

SRM Spike Response Model

36

REFERENCES

Fisher, R.A. (1936). “The use of multiple measurements in taxonomic problems”. In:

Annual Eugenics 7, pp. 179–188.

McCulloch, W.S. and W. Pitts (1943). “A logical calculus of the ideas immanent in

nervous activity”. English. In: Bulletin of Mathematical Biology 52.1-2, pp. 99–

115. issn: 0092-8240. doi: 10.1007/BF02459570.

Konorski, J. (1948). Conditioned Reflexes and Neuron Organization. Cambridge bio-

logical studies. University Press, p. 89.

Hebb, D. (1949). The Organization of Behavior; a Neuropsychological Theory. Wiley.

MacGregor, R. (1987). Neural and brain modeling. Academic Press.

Anderson, J.A. (1995). An Introduction to Neural Networks. A Bradford book. MIT

Press. isbn: 9780262510813.

Fiesler, E. (1996). Neural Network Topologies.

Abbott, L.F. (1999). “Lapicque’s introduction of the integrate-and-fire model neuron

(1907)”. In: Brain Research Bulletin 50, pp. 303–304.

Sala, D.M. and K.J. Cios (1999). In: IEEE Transactions on Neural Networks 10.4,

pp. 953–957.

Gerstner, W. and W.M. Kistler (2002). Spiking Neuron Models : Single Neurons,

Populations, Plasticity. Cambridge University Press. isbn: 9780521813846.

Izhikevich, E.M. (2003). “Simple model of spiking neurons”. In: Neural Networks,

IEEE Transactions on 14.6, pp. 1569–1572. issn: 1045-9227. doi: 10.1109/TNN.

2003.820440.

— (2004). “Which model to use for cortical spiking neurons?” In: Neural Networks,

IEEE Transactions on 15.5, pp. 1063–1070.

37

http://dx.doi.org/10.1007/BF02459570
http://dx.doi.org/10.1109/TNN.2003.820440
http://dx.doi.org/10.1109/TNN.2003.820440

Legenstein, R., C. Naeger, and W. Maass (2005). “What Can a Neuron Learn with

Spike-Timing-Dependent Plasticity?” In: Neural Computation 17.11, pp. 2337–

2382.

Valko, M., N.C. Marques, and M. Castellani (2005). “Evolutionary feature selection

for spiking neural network pattern classifiers”. In: Artificial intelligence, 2005.

epia 2005. portuguese conference on. IEEE, pp. 181–187.

Kasinski, A. and F. Ponulak (2006). “F.: Comparison of supervised learning methods

for spike time coding in spiking neural networks”. In: International Journal of

APplied Mathematics and Computer Science 16.1, pp. 101–113.

Swiercz, W. et al. (2006). “A New Synaptic Plasticity Rule for Networks of Spiking

Neurons”. In: IEEE Transactions on Neural Networks 17.1, pp. 94–105.

Martig, A.K. and S.J.Y. Mizumori (2010). “Place Cells”. In: Encyclopedia of Behav-

ioral Neuroscience. Ed. by George F. KoobMichel Le MoalRichard F. Thomp-

son. Oxford: Academic Press, pp. 70–78. isbn: 978-0-08-045396-5. doi: http:

/ / dx . doi . org / 10 . 1016 / B978 - 0 - 08 - 045396 - 5 . 00154 - 8. url: http :

//www.sciencedirect.com/science/article/pii/B9780080453965001548.

Shin, J. et al. (2010). “Recognition of partially occluded and rotated images with a

network of spiking neurons”. In: Neural Networks, IEEE Transactions on 21.11,

pp. 1697–1709.

Sjostrom, J. and W. Gerstner (2010). “Spike-timing dependent plasticity”. In: Schol-

arpedia 5.2. revision 142314, p. 1362.

Meftah, B., O. Lezoray, and S. Chaturvedi (2012). “Image Processing with Spik-

ing Neuron Networks”. In: Artificial Intelligence, Evolutionary Computing and

Metaheuristics. Springer Berlin Heidelberg, pp. 525–544. isbn: 978-3-642-29693-

2. doi: 10.1007/978-3-642-29694-9_20.

38

http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-08-045396-5.00154-8
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-08-045396-5.00154-8
http://www.sciencedirect.com/science/article/pii/B9780080453965001548
http://www.sciencedirect.com/science/article/pii/B9780080453965001548
http://dx.doi.org/10.1007/978-3-642-29694-9_20

Paugam-Moisy, H. and S. Bohte (2012). “Computing with spiking neuron networks”.

In: Handbook of natural computing. Springer, pp. 335–376.

Beyeler, M., N.D. Dutt, and J.L. Krichmar (2013). “Categorization and decision-

making in a neurobiologically plausible spiking network using a STDP-like learn-

ing rule”. In: Neural Networks 48, pp. 109–124. issn: 0893-6080. doi: http:

/ / dx . doi . org / 10 . 1016 / j . neunet . 2013 . 07 . 012. url: http : / / www .

sciencedirect.com/science/article/pii/S0893608013001986.

Strack, B., K. Jacobs, and K.J. Cios (2013). “Biological Restraint on the Izhikevich

Neuron Model Essential for Seizure Modeling”. In: Conf. Proceedings of the 6th

Int. IEEE EMBS Conference on Neural Engineering, pp. 395–398.

39

http://dx.doi.org/http://dx.doi.org/10.1016/j.neunet.2013.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.neunet.2013.07.012
http://www.sciencedirect.com/science/article/pii/S0893608013001986
http://www.sciencedirect.com/science/article/pii/S0893608013001986

VITA

Shaun Donachy received his B.S. degree in Computer Science in 2013 from Virginia

Commonwealth University. His research interests include data mining and machine

learning.

40

	Spiking Neural Networks: Neuron Models, Plasticity, and Graph Applications
	Downloaded from

	Table of Contents
	List of Figures
	Abstract
	 Introduction
	 Models of a Single Neuron
	McCulloch-Pitts Model
	Hodgkin-Huxley Model
	Integrate and Fire Model
	Izhikevich Model

	 Neural Coding Techniques
	Input Encoding
	Grandmother Cell and Distributed Representations
	Rate Coding
	Sine Wave Encoding
	Spike Density Encoding
	Temporal Encoding
	Synaptic Propagation Delay Encoding
	Rank Order Encoding

	Output Decoding
	Temporal Decoding
	Race-Based Decoding

	 Konorski/Hebbian Learning Rules
	Synaptic weight modification
	Spike Timing-Dependent Plasticity
	Synaptic Activity Plasticity Rule

	 Topology
	 Applications
	Shortest Path
	Clustering

	 Discussion
	 Conclusions
	 Future Work
	Appendix Abbreviations
	References
	Vita

