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BACKGROUND: Analysis of variance (ANOVA) is a robust test against the normality 

assumption, but it may be inappropriate when the assumption of homogeneity of variance has 

been violated. Welch ANOVA and the Kruskal-Wallis test (a non-parametric method) can be 

applicable for this case. In this study we compare the three methods in empirical type I error rate 

and power, when heterogeneity of variance occurs and find out which method is the most 

suitable with which cases including balanced/unbalanced, small/large sample size, and/or with 

normal/non-normal distributions. 

METHODS: Data for three-group comparison are generated via Monte Carlo simulations with 

the cases of homogeneity/heterogeneity of variance, balanced/unbalanced, normal/non-normal 

distributions, equal/unequal means, in various sample sizes. The three methods, ANOVA, Welch 

and Kruskal-Wallis, are used to compare three-group means in a global test (The null hypothesis 

H0: all three means are the same vs the alternative hypothesis Ha: at least two means are different) 

in each simulated dataset in each scenario. When true means are all equal, a type I error rate is 

calculated to determine the performances of the three methods. When at least two true means are 

unequal, power of detecting the differences among the three groups is calculated instead. 
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RESULTS: When simulated data are normally/mild log-normally distributed in 

balanced/unbalanced designs with homogeneity of variance, the traditional ANOVA controls the 

nominal type I error the best in the most cases and both Welch and Kruskal-Wallis are 

competitive to ANOVA, especially in a large sample size. When data are heterogeneous, normal, 

and balanced, the Welch method controls the nominal type I error the best in all the cases and 

gain the most power in the most cases, while ANOVA and Kruskal-Wallis exceed the nominal 

type I error and have the inflation problem in many cases.  When data are heterogeneous, normal, 

and unbalanced, the Welch method controls the nominal type I error the best in all the cases and 

gain the most power in the most cases, while ANOVA and Kruskal-Wallis are unstable: quite 

conservative in the cases of the large-variance group having a large sample size and quite 

inflated in the cases of the large-variance group having a small sample size. When data are 

heterogeneous, log-normal, and balanced, the Kruskal-Wallis fails to control the nominal type I 

error rate and Welch and ANOVA have inflation problems in many cases.  

CONCLUSIONS: In terms of type I error rate analysis: Traditional ANOVA is the best when 

data are homogeneous, normal, and balanced/unbalanced; Welch method performs the best when 

data are heterogeneous, normal, and balanced/unbalanced; Kruskal-Wallis is most unstable when 

the data are non-normal, while both ANOVA and Welch have type I error inflation problems. In 

terms of power analysis, three methods may have different powers depending on the settings of 

simulations. 

Key words: ANOVA, Welch, Kruskal-Wallis, three-group comparison, Monte Carlo simulations, 

homogeneous/heterogeneous, balanced/unbalanced, type I error, power
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CHAPTER I 

INTRODUCTION 

1.1. Introduction 

Analysis of variance (ANOVA) is one of the most frequently used methods in statistics 

(Moder 2007) and it allows us to compare more than two group means in a continuous response 

variable. An ANOVA model assumes that: 

1. The probability distribution of responses in each group is normal. 

2. Each probability distribution has the same variance. 

3. Samples are independent. 

Note that with the normality of the probability distributions and the constant variability, 

the probability distributions differ only with respect to their means. ANOVA is a very powerful 

test as long as all prerequisites are met. It is not necessary, nor is it usually possible, that an 

ANOVA model fit the data perfectly. ANOVA models are reasonably robust against certain 

types of departures from the model, such as the data not being exactly normally distributed 

(Kutner et al, 2005).  

However, inhomogeneity of variances with data normally distributed may lead to an 

increased type I error rate and it can be found in a lot of practical trials (Moder 2007).   Kutner et 

al (2005) summarize that a standard remedial measure is to use the weighted least squares 

method if data are normally distributed. If data are not normally distributed, appropriate data 

transformation for normality is a standard remedy. When transformations are not successful in 
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stabilizing the group variances and bringing the distribution of the data close to normal, a 

nonparametric method may be used to compare group means.  

Moder (2010) compares the multiple methods in case of heterogeneity of variance with 

normally distributed data: traditional ANOVA, Welch ANOVA, weighted ANOVA, Kruskal-

Wallis test, permutation test using F-statistic as implemented in R-package “coin”, permutation 

test based on Kruskal-Wallis statistic, and a special kind of Hotelling’s T2 method (Moder, 2007; 

Hotteling, 1931). His simulation results show that traditional ANOVA, permutation tests, and 

weighted ANOVA cannot control the nominal type I error rate in many cases. Kruskal-Wallis 

test does not exceed nominal α in some cases but is very conservative. Welch ANOVA may be 

useful for a small number of groups (3 or 5), but cannot control the nominal α well when the 

number of groups is 10 or higher. The Hotelling’s T2 test controls α well in all situations of 

balanced designs, but it is not applicable on unbalanced data (Moder 2010).  

Moder (2010) recommends to use a more stringent significance level, e.g., set α = 0.01 to 

keep Type I error rate below 0.05 (Keppel, 1992), but this approach is not appropriate because 

the power is low when heteroscedasticity is not too extreme.  

No investigations have been done to evaluate which methods gain the most power in case 

of heterogeneity of variance, and Moder (2010) did not consider the situation with non-normal 

distribution. In this study, we will compare the traditional ANOVA, Welch ANOVA, and 

Kruskal-Wallis in terms of the type I error rate and power, in multiple situations including 

homogeneity/ heterogeneity (strong & mild), balanced/unbalanced sample sizes, and 

normal/non-normal distributions. 
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1.2. Organization of Thesis 

Reminder of the thesis is organized as follows. Chapter II gives a brief introduction to the 

three methods and describes the details of our simulations. Chapter III summarizes the 

comparison results. Finally, Chapter IV makes conclusions of the study and provides 

recommendations for the future research. In addition, the appendix presents the simulation data 

derivative process, the compare process and the SAS programming. 
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CHAPTER II 

METHODS 

2.1. Statistical Methods 

The three methods were will be examined in case of three-group heterogeneity of 

variances: the traditional F-test in Analysis of Variance, the Welch’s F-test, the Kruskal-Wallis 

test. 

2.1.1. F-test in Analysis of Variance 

An F-test for equality of group means was used through an ANOVA model (Kutner et al 

2005) in this study, which can be stated as follows: 

𝑌𝑖𝑗 =  𝜇𝑖 + 𝜀𝑖𝑗 

where: 

Yij is the value of response variable in the jth observation for the ith group 

𝜇𝑖 is the mean for the ith group 

𝜀𝑖𝑗 are independent N(0, σ2) 

i = 1,…,r;  j = 1,…, ni 

In order to analyze the differences among the group means (𝜇𝑖) the total variability of the 

𝑌𝑖𝑗 observations (SSTO) is calculated and partitioned into two components: treatment sum of 

squares (SSTR) and error sum of squares (SSE). 

The sample mean for the ith group is denoted by �̅�𝑖.:   �̅�𝑖. =
∑ 𝑌𝑖𝑗 

𝑛𝑖
𝑗=1

𝑛𝑖
 

The sample grant mean of all observations is denoted by 𝑌..:    𝑌.. = ∑ ∑ 𝑌𝑖𝑗
𝑛𝑖
𝑗=1

𝑟
𝑖=1  

Thus SSTO can be calculated as: 

𝑆𝑆𝑇𝑂 = ∑ ∑ (𝑌𝑖𝑗 − 𝑌..̅)
2

𝑗𝑖   
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And SSTO is partitioned into SSTR and SSE:   𝑆𝑆𝑇𝑂 = 𝑆𝑆𝑇𝑅 + 𝑆𝑆𝐸 

where: 

𝑆𝑆𝑇𝑅 = ∑ 𝑛𝑖(�̅�𝑖. − 𝑌..̅)
2

𝑖

 

𝑆𝑆𝐸 = ∑ ∑(𝑌𝑖𝑗 − �̅�𝑖.)
2

𝑗𝑖

 

Corresponding to the decomposition of the total sum of squares, we can also obtain a 

breakdown of the associated degrees of freedom: SSTO has 𝑛𝑡 − 1 degrees of freedom associated 

with it; SSTR has 𝑟 − 1 degrees of freedom associated with it; SSE has 𝑛𝑡 − 𝑟 degrees of 

freedom associated with it. 

The alternative conclusions considered in F-test are: 

H0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑟 

Ha: not all 𝜇𝑖 are equal 

And the test statistic to be used between the alternatives is: 

𝐹∗ =  
𝑀𝑆𝑇𝑅

𝑀𝑆𝐸
=

𝑆𝑆𝑇𝑅
𝜎2 （𝑟 − 1）⁄

𝑆𝑆𝐸
𝜎2 (𝑛𝑡 − 𝑟)⁄

~𝐹𝑟−1,𝑛𝑡−𝑟 

 𝐹∗is distributed as 𝐹(𝑟−1,𝑛𝑡−𝑟) when H0 holds and that large values of 𝐹∗lead to 

conclusion Ha, the appropriate decision rule to control the level of significance at α is: 

If 𝐹∗ ≤ 𝐹(1−α; 𝑟−1,𝑛𝑡−𝑟), conclude H0 

If 𝐹∗ > 𝐹(1−α; 𝑟−1,𝑛𝑡−𝑟), conclude Ha 

 where α is the Nominal Type I error and 𝐹(1−α; 𝑟−1,𝑛𝑡−𝑟) is the (1 − α)100 percentile of 

the appropriate F distribution. 
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2.1.2. Welch’s F-test 

Welch’s F-test (Field 2009) is designed to test the equality of group means when we have 

more than two groups to compare, especially in the cases which didn’t meet the homogeneity of 

variance assumption and sample sizes are small. However, the assumptions of normality and 

independency are remained. 

The main idea of Welch’s F-test is using a weight 𝑤𝑖 to reduce the effect of heterogeneity. 

Here 𝑤𝑖 is based on the sample size (ni) and the observed variance (𝑠𝑖
2) for the ith group: 

𝑤𝑖 =
𝑛𝑖

𝑠𝑖
2 

Then in Welch’s F-test, the adjusted grand mean (�̅�𝑤𝑒𝑙𝑐ℎ) can be calculated based on a 

weighted mean for each group: 

�̅�𝑤𝑒𝑙𝑐ℎ =
∑ 𝑤𝑖�̅�𝑖.

𝑟
𝑖=1

∑ 𝑤𝑖
𝑟
𝑖=1

  where �̅�𝑖. is the sample mean for ith group; i=1,…,r 

Treatment sum of squares (𝑆𝑆𝑇𝑅𝑤𝑒𝑙𝑐ℎ) and treatment mean squares (𝑀𝑆𝑇𝑅𝑤𝑒𝑙𝑐ℎ) are: 

𝑆𝑆𝑇𝑅𝑤𝑒𝑙𝑐ℎ = ∑ 𝑤𝑖(�̅�𝑖. − �̅�𝑤𝑒𝑙𝑐ℎ)2
𝑟

𝑖=1
 

𝑀𝑆𝑇𝑅𝑤𝑒𝑙𝑐ℎ =
𝑆𝑆𝑇𝑅𝑤𝑒𝑙𝑐ℎ

𝑟 − 1
 

Then we need to calculate a term called lambda (Λ), which is based again on weight𝑠: 

Λ =
3 ∑

(1 −
𝑤𝑖

∑ 𝑤𝑖
𝑟
𝑖=1

)2

𝑛𝑖 − 1
𝑟
𝑖=1

𝑟2 − 1
 

The test statistic to be used between the alternatives is: 

𝐹𝑤𝑒𝑙𝑐ℎ
∗ =  

𝑆𝑆𝑇𝑅𝑤𝑒𝑙𝑐ℎ (𝑟 − 1)⁄

1 +
2Λ(𝑟 − 2)

3

~𝐹𝑟−1,1 Λ⁄  
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The alternatives conclusions considered in Welch’s F-test are same as the traditional F-

test: 

H0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑟 

Ha: not all 𝜇𝑖 are equal 

The decision rule to control the level of significance at α is: 

If 𝐹∗ ≤ 𝐹(1−α; 𝑟−1,1 Λ⁄ ), conclude H0 

If 𝐹∗ > 𝐹(1−α; 𝑟−1,1 Λ⁄ ), conclude Ha 

Although Welch’s F-test is an adaptation of the F-test and supposed to be more reliable 

when the assumption of homogeneity of variance was not met, the disadvantage is it has fewer 

degrees of freedom than the F-test (1 Λ⁄ ≤ 𝑛𝑡 − 𝑟). Thus Welch’s F-test is less powerful than the 

F-test. And since the weight factor is highly related to the sample sizes and the observed 

variances (𝑤𝑖 =
𝑛𝑖

𝑠𝑖
2), when the number of observations is small, the results of the Welch’s F-test 

may be quite unstable. 

 

2.1.3. Kruskal-Wallis test 

The Kruskal–Wallis test (Kruskal; Wallis 1952) is a non-parametric method for testing 

whether samples originate from the same distribution. Since it is a non-parametric test, it does 

not assume that the response variable is normally distributed. And like most non-parametric tests, 

it perform the test on ranked data. It is commonly used when we don’t have a large sample size 

and can’t clearly demonstrate that our data are normally distributed. 

To do this test, first we rank all data (Yij) from 1 to 𝑛𝑡 ignoring group membership, assign 

any tied values the average of the ranks they would have received had they not been tied. Denote 

𝑅𝑖𝑗 as the rank of observation j from group i, considered as a new response variable. 
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The alternatives conclusions considered in Kruskal–Wallis test are: 

H0: all mean ranks of the groups are equal 

Ha: not all mean ranks of the groups are equal 

The test statistic to be used between the alternatives is: 

𝐾 = (𝑛𝑡 − 1)
∑ 𝑛𝑖(�̅�𝑖. − �̅�)2𝑟

𝑖=1

∑ ∑ (𝑅𝑖𝑗 − �̅�)2𝑛𝑖

𝑗=1
𝑟
𝑖=1

~𝐹𝑟−1,𝑛𝑡−𝑟 

Where:  

 r is the total number of groups 

 𝑛𝑡  is the total number of observations across all groups 

𝑛𝑖 is the number of observations in group i 

𝑅𝑖𝑗  is the rank (among all observations) of observation j from group i 

�̅�𝑖. =
∑ 𝑅𝑖𝑗

𝑛𝑖
𝑗=1

𝑛𝑖
 is the average rank in ith group 

�̅� =
1

2
(𝑛𝑡 + 1) is the average rank of all observations 

The decision rule to control the level of significance at α is: 

If 𝐾 ≤ 𝐹(1−α; 𝑟−1,𝑛𝑡−𝑟), conclude H0 

If 𝐾 > 𝐹(1−α; 𝑟−1,𝑛𝑡−𝑟), conclude Ha 

 The advantage to using the Kruskal–Wallis test in heterogeneity of variance cases is that 

the ranked data can clearly meet the normality assumption of one-way analysis of variance 

(McDonaldc et al, 2014). However, you lose information when you substitute ranks for the 

original values, which can make this a somewhat less powerful test than a one-way ANOVA. 

Moreover, some researchers hold the opinion that even though ANOVA need the normality 

assumption, it is not very sensitive to deviations from normality (McDonaldc et al, 2014) and in 

some non-normal distributions, the performance of ANOVA is better than Kruskal–Wallis test.  
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2.2. Simulation methods 

Monte Carlo simulation studies are performed using SAS 9.4. 10,000 datasets are generated 

for each simulation scenario including balanced/unbalanced sample sizes, equal/unequal means, 

homogeneity/ heterogeneity of variance, normal/non-normal data sets. Each statistical method is 

assessed to compare three group means in a simulated dataset. We focus on three groups because 

it is quite common and can be found in a lot of trials. 

2.2.1. Balanced/Unbalanced 

A balanced design means all groups have the same sample size, while an unbalanced 

design represents unequal sample size among groups. In our balanced simulation studies, the 

sample sizes are 5, 10, 20, or 40 per group, respectively. For example 𝑛1 = 𝑛2 = 𝑛3 = 10 

or 𝑛1 = 𝑛2 =  𝑛3 = 20. In our unbalanced studies, the total sample size is 60 but sample size in 

each group is different. For example 𝑛1 = 10, 𝑛2 = 20, and 𝑛3 = 30 or 𝑛1 = 40, 𝑛2 =

10, and 𝑛3 = 10. 

2.2.2. Equal/Unequal Means 

In our simulated data sets, group means are varied between 0 and 2. And for equal means 

studies, we set the group means equal (e.g., 𝜇1 = 0, 𝜇2 = 0, 𝜇3 = 0), and in unequal means 

studies, at least two group means are unequal (e.g., 𝜇1 = 0, 𝜇2 = 0, 𝜇3 = 2). Equal-means studies 

are used to compare the three statistical methods in terms of empirical type I error rate and 

unequal-means studies are used to compare power of detecting mean differences among groups. 

2.2.3. Homogeneity/ Heterogeneity of Variance 

We generated homogeneous data (where group variances are equal) as well as 

heterogeneous data (where at least two group variances are unequal). The values of standard 
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deviation are varied between 1 and 4. For example in a homogeneity design we set the equal 

standard deviation for each group: 𝜎1 = 𝜎2 = 𝜎3 = 1; in a heterogeneity design, at least two 

standard deviations are not equal: for example 𝜎1 = 1, 𝜎2 = 1, 𝜎3 = 4. 

2.2.4. Normal/Non-normal 

In this simulation log-normally distributed data are generated and considered as non-

normal data. We set parameters 𝑎 and 𝑏 to generated the log-normal data 𝑌 as:  

𝑌 = 𝑒𝑎+𝑏∗𝑍    where: 𝑍~𝑁(0,1) 

Thus the mean value of log-normal data 𝑌 is:        𝐸(𝑌) = 𝑒𝑎+
𝑏2

2   

And its variance is:     𝑉𝑎𝑟(𝑌) = (𝑒𝑏2
− 1) ∗ 𝑒2𝑎+𝑏2

 

In this study, for empirical type I error rate comparison in log-normal cases, and we set 

the mean of log-normal data 𝐸(𝑌) = 1, the scale parameter 𝑏 varies between 0.25, 0.5 and 0.75. 

Thus the standard deviations ( 𝜎(𝑌) = √𝑉𝑎𝑟(𝑌)) varies between 0.254, 0.533 and 0.869. 

 

2.3. Comparison methods 

In each simulation scenario, a test is considered to be significant when a p-value is less than 

the nominal α=0.05. The number of significant tests will be counted in 10,000 simulated datasets 

in a scenario and the rejection rate will be calculated. 

The comparison procedures will be divided into two parts: 

a. In the situation that the null hypothesis (H0: 𝜇1 = 𝜇2 = 𝜇3) is true, the rejection rate of 

the null hypothesis will be considered as the empirical type I error rate for each test 

method. The method that have the closest empirical type I error rate to the nominal 

α=0.05is considered as the best among these three methods. 
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b. In the situation that the alternative hypothesis (Ha: not all μi are equal) was true, the 

rejection rate of the null hypothesis will be considered as the power for each test 

method. The method that have largest power is considered as the best among these 

three methods.   
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CHAPTER III 

RESULTS 

3.1. Results for Normal Balanced Heterogeneity Data 

3.1.1. Type I Error Analysis for Normal Balanced Heterogeneity Data 

Table 1 and Figure 1 show the empirical type I error rates of the F-test (by a traditional 

ANOVA), Welch’s F and Kruskal-Wallis test for a normal balanced homogeneous variance 

situation. Data are normally distributed: 𝑌~𝑁(𝜇𝑖, 𝜎𝑖
2). Equal sample sizes are 5, 10, 20, and 40. 

Equal means are 𝜇1 = 𝜇2 = 𝜇3 = 0. Standard deviations (𝜎1: 𝜎2: 𝜎3) was given by 1: 1: 1. The 

nominal α level is 0.05. (The results of Table 1 are visually presented in Figure 1 and thus Table 

1 is moved to the end of the References. The same arrangement is applied to the other tables.) 

Blue lines represent the results of F-test, red lines for Welch’s F-test and green lines for Kruskal-

Wallis test. 

 

Figure 1. 

Empirical type I error rate of equal sample sizes 5, 10, 20 and 40,  
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Equal means 𝜇1 = 𝜇2 = 𝜇3 = 0, ratio of 𝜎1: 𝜎2: 𝜎3 = 1: 1: 1, nominal α of 0.05. 

 

From Table 1 and Figure 1, we can see that in this normal balanced homogeneity case 

(𝜇1 = 𝜇2 = 𝜇3 = 0, 𝜎1: 𝜎2: 𝜎3 = 1: 1: 1), when sample sizes are small, the calculated type I error 

rates of the three methods are relatively different: the ANOVA F-test has the closest type I error 

rate to the nominal α of 0.05. When the sample size gets larger, the three methods have similar 

type I error rates and all control the nominal α value well.  

Similar to the homogeneity case in Figure 1, Table 2 and Figure 2 show the results in the 

empirical type I error rates of three methods in nine different heterogeneity scenarios, plus the 

homogeneity scenario shown in Figure 1. The group means are all the same (𝜇1 = 𝜇2 = 𝜇3 = 0), 

and the standard deviation are varied between 1 and 4 (𝜎1: 𝜎2: 𝜎3 = 1: 1: 1~1: 4: 4). The 

simulation settings (both sample sizes and standard deviation values) for each scenario is 

presented at the bottom of the figure. 

Figure 2. 

Empirical type I error rate of equal sample sizes 5, 10, 20 and 40,  
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Equal means 𝜇1 = 𝜇2 = 𝜇3 = 0, ratios of 𝜎1: 𝜎2: 𝜎3 = 1: 1: 1~1: 4: 4, nominal α of 0.05. 

In Figure 2, unlike the homogeneity set (𝜎1: 𝜎2: 𝜎3 = 1: 1: 1), the performances of the 

three statistic methods are various. In every heterogeneity simulation set, the empirical type I 

error rate of Welch’s F-test are all around 0.05 (red lines in the figure are all close the black 

horizontal line) and performs the best in normal balanced heterogeneity data. However, the type I 

error rates of the F-test and Kruskal-Wallis test are all greater than 0.05 and exceed the nominal 

type I error by up to 4.57%. As the sample size gets larger, the empirical error rates are closer to 

0.05.  

In the mild heterogeneity case (𝜎1: 𝜎2: 𝜎3 = 1: 2: 2), when the sample size is 40 per group, 

the type I error inflation problem by both F-test and Kruskal-Wallis test is mild (around 0.0580). 

But when the heterogeneity of variances gets stronger, the inflation problem by the two methods 

gets much worse. For example, the type error rates by the two methods are inflated to 0.0809 and 

0.0734, respectively, in the 8th setting (𝜎1: 𝜎2: 𝜎3 = 1: 1: 4, 𝑛1: 𝑛2: 𝑛3 = 40). 

The results of the 4th and 6th settings (𝜎1: 𝜎2: 𝜎3 = 1: 1: 3 and 1: 3: 3) and results of 7th and 

10th settings (𝜎1: 𝜎2: 𝜎3 = 1: 1: 4 and 1: 4: 4) indicate that F-test has the very strong inflation 

problem when one group has relatively bigger variance and the other two smaller variances 

(𝜎1: 𝜎2: 𝜎3 = 1: 1: 3  𝑎𝑛𝑑 1: 1: 4). However when one group has smaller variance and the other 

two larger variances (𝜎1: 𝜎2: 𝜎3 = 1: 3: 3 and 1: 4: 4), the performance of F-test is much better 

than in the cases with (𝜎1: 𝜎2: 𝜎3 = 1: 1: 3  𝑎𝑛𝑑 1: 1: 4). These results are consistent with the 

opinion by Underwood (1997), who concluded that analysis of variance has problems with 

heterogeneity in balanced samples only when the variance of one group is markedly larger than 

the others. 
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3.1.2. Power Analysis for Normal Balanced Heterogeneity Data 

From the type I error analysis we can see that when there is mild heterogeneity of 

variances (𝜎1: 𝜎2: 𝜎3 = 1: 1: 2 and 1: 2: 2) there is relatively mild inflation of type I error for the 

three methods. In these cases, we can’t decide which method is the best only depend on the 

results of type I error analysis. In this situation, a statistical method that has the largest power 

will be considered as the best method. Therefore we conduct the power analysis in these two 

cases with mild heterogeneity of variances to compare the power of these three methods when 

they have relatively similar type I error rates. 

In the simulation settings that the alternative hypothesis (Ha: not all μi are equal) was true, 

we calculated the rejection rates of F-test, Welch’s F and Kruskal-Wallis test, respectively. The 

rejection rates for each test were calculated in 10,000 simulated datasets, and these rejection rates 

are considered as power of these tests. The larger the power is, the better a method performs. 

Table 3 and Figure 3 showed the calculated powers of F-test, Welch’s F and Kruskal-

Wallis test in a normal balanced situation with unequal group means, equal sample sizes are 5, 

10, 20, and 40 and𝜇1: 𝜇2: 𝜇3 = 0: 0: 1~0: 2: 2. Standard deviations (𝜎1: 𝜎2: 𝜎3) were given 

as 𝜎1: 𝜎2: 𝜎3 = 1: 1: 2, nominal α of 0.05. 
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Figure 3. Power of equal sample sizes 5, 10, 20 and 40, unequal means 𝜇1: 𝜇2: 𝜇3 =

0: 0: 1~0: 2: 2, Ratio of 𝜎1: 𝜎2: 𝜎3 = 1: 1: 2. 

 

 

Table 4 and Figure 4 showed the power of F-test, Welch’s F and Kruskal-Wallis test in a normal 

balanced situation with unequal group means: equal sample sizes were 5, 10, 20, and 40, unequal 

means are 𝜇1: 𝜇2: 𝜇3 = 0: 0: 1~0: 2: 2. Standard deviations (𝜎1: 𝜎2: 𝜎3) were given as 𝜎1: 𝜎2: 𝜎3 =

1: 2: 2, nominal α of 0.05. 

 

Figure 4. 

Power of equal sample sizes 5, 10, 20 and 40, unequal means 𝜇1: 𝜇2: 𝜇3 = 0: 0: 1~0: 2: 2,  

Ratio of 𝜎1: 𝜎2: 𝜎3 = 1: 2: 2. 
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Figures 3 and 4 showed us in some settings, Welch’s test is the best, but in some other 

cases it’s not. We can try to find the reason in the mathematical analysis. 

 In ANOVA, the F ratio is calculated by: 

𝐹∗ =  
𝑀𝑆𝑇𝑅

𝑀𝑆𝐸
=

𝑆𝑆𝑇𝑅
𝜎2 （𝑟 − 1）⁄

𝑆𝑆𝐸
𝜎2 (𝑛𝑡 − 𝑟)⁄

 

 In the power analysis above, we set group number 𝑟 = 3, and the sample sizes for each 

group are the same n1=n2=n3=n. That means, if every simulation is followed the distributions we 

set, the F ratio will be: 

𝐹∗ =
[(𝜇1 − �̅�)2 + (𝜇2 − �̅�)2 + (𝜇3 − �̅�)2]/2

(𝜎1
2 + 𝜎2

2 + 𝜎3
2)/(3𝑛 − 3)

∝
𝑉𝑎𝑟(𝜇𝑖)

(𝜎1
2 + 𝜎2

2 + 𝜎3
2)

∗ (𝑛 − 1) 

 The F ratio will only related to the variance of means (𝑉𝑎𝑟(𝜇𝑖)), sum of variances (𝜎1
2 +

𝜎2
2 + 𝜎3

2) and sample sizes (𝑛 − 1). In a particular setting (e.g.𝜎1: 𝜎2: 𝜎3 = 1: 1: 2, n1 = n2 =

n3 = 5, 10, 20, 40), the sum of variances and sample sizes are fixed, thus the F ratio is only 

depend of the variance of means. From the results of the setting 𝜎1: 𝜎2: 𝜎3 = 1: 1: 2, 𝜇1: 𝜇2: 𝜇3 =

0: 0: 1 (𝑉𝑎𝑟(𝜇𝑖) = 0.33) and 𝜇1: 𝜇2: 𝜇3 = 0: 0: 2(𝑉𝑎𝑟(𝜇𝑖) = 1.33) we can see in the higher 

variance of means settings, the results of ANOVA are better than the lower variance of means 

settings. 

In Welch’s F-test, since the weight factor (𝑤𝑖 =
𝑛𝑖

𝑠𝑖
2) is used, when sample sizes are the 

same, the big variance group will have smaller weight. That means in the calculation of variance 

of means, the model in Welch’s test should focus more on the means in small variance groups. 

The results in the setting  𝜎1: 𝜎2: 𝜎3 = 1: 1: 2,  𝜇1: 𝜇2: 𝜇3 = 0: 0: 1 (𝑉𝑎𝑟(𝜇𝑖) = 0.33) and 

𝜇1: 𝜇2: 𝜇3 = 0: 1: 1(𝑉𝑎𝑟(𝜇𝑖) = 0.33) confirmed this assumption. Since the variance of means in 

these two settings are the same, the results of traditional ANOVA are alike, however, the 
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variance of means in small variance groups are not the same, in the setting  𝜇1: 𝜇2: 𝜇3 =

0: 1: 1Welch’s F-test works much better than in the setting  𝜇1: 𝜇2: 𝜇3 = 0: 0: 1. 

From Figure 3 and 4, all the results of Kruskal-Wallis test are all between the traditional 

ANOVA and Welch’s F-test. And Figures 3 and 4 also showed us that in normal balanced 

unequal heterogeneity data, the sample size plays the most important role on the outcome of 

power. The power of these three tests increase rapidly when the sample size gets larger.  

In the power analysis, we know that the performances of these three methods are depend 

on the setting of group means. We should choose appropriate statistical method in particular 

situation.  
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3.2. Results for Non-normal (log-normal) Balanced Heterogeneity Data 

Table 5 and Figure 5 showed the empirical type I error rates of F-test, Welch’s F and 

Kruskal-Wallis test for a log-normal balanced situation. Data are lognormal distributed: 

𝑌~ln𝑁(𝜇𝑖, 𝜎𝑖). Equal sample sizes are 5, 10, 20, and 40, respectively. Equal means are E(𝑌1̅) =

E(𝑌2̅) = E(𝑌3̅) = 1. Scale parameters (𝑏1, 𝑏2, 𝑏3) varies between 0.25, 0.5 and 0.75, presenting 

mild skewness (skewness is calculated by (𝑒𝑏2
+ 2)√𝑒𝑏2

− 1)), and the standard deviations 

( 𝜎(𝑌) = √𝑉𝑎𝑟(𝑌)) varies between 0.254, 0.533 and 0.869. The scale parameter b decides the 

shape of the distribution. When b is small like 0.25 and 0.5, the distribution of log-normal is very 

similar to normal distribution. In this study, we only consider small b cases because when the b 

parameter is big, we can easily know the data are not normal distributed and it doesn’t make 

sense to use ANOVA on non-normal data. 

 

Figure 5 (1). 

Empirical type I error rates of log-normal data, equal sample sizes 5, 10, 20 and 40, equal 

means E(𝑌1̅) = E(𝑌2̅) = E(𝑌3̅) = 1, 𝜎(𝑌1): 𝜎(𝑌2): 𝜎(𝑌3) = 0.25: 0.25: 0.25~0.25: 0.87: 0.87 

Ratios of scale parameter 𝑏1: 𝑏2: 𝑏3 = 0.25: 0.25: 0.25~0.25: 0.75: 0.75, nominal α of 0.05. 
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Figure 5 (2). 

Empirical type I error rates of log-normal data, equal sample sizes 5, 10, 20 and 40, equal 

means E(𝑌1̅) = E(𝑌2̅) = E(𝑌3̅) = 1, 𝜎(𝑌1): 𝜎(𝑌2): 𝜎(𝑌3) = 0.25: 0.25: 0.25~0.25: 0.87: 0.87 

Ratios of scale parameter 𝑏1: 𝑏2: 𝑏3 = 0.25: 0.25: 0.25~0.25: 0.75: 0.75, nominal α of 0.05. 

 

In Figure 5(1), the results of all these heterogeneity simulation settings are different with 

the homogeneity set (the first setting in Figure 5(1), 𝜎(𝑌1): 𝜎(𝑌2): 𝜎(𝑌3) = 0.25: 0.25: 0.25) . 

Unlike the homogeneity set, the results of these three statistical methods showed us they are 

more or less inappropriate in log-normal heterogeneity cases. In all heterogeneity simulation sets, 

the Kruskal-Wallis test has the type I error inflation problem and this inflation gets larger as the 

sample size increases.  

Figure 5 (2), since Kruskal-Wallis test has been showed very inappropriate in this log-

normal heterogeneity case, we exclude the results of Kruskal-Wallis test and only show the 

results of F-test and Welch’s F-test in much smaller scales than in Figure 5 (1). In these 

heterogeneity cases, the empirical type I error rate of Welch’s F-test are all above 0.05 even in 
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mild heterogeneity cases (e.g., in case scale parameter 𝜎1: 𝜎2: 𝜎3 =

0.25: 0.25: 0.5 and 𝜎1: 𝜎2: 𝜎3 = 0.25: 0.5: 0.5). And when the heterogeneity get more and more 

severe, the results get worse. Thus Welch’s F-test is not suitable for severe log-normal balanced 

heterogeneity data. 

The results of F-test in log-normal settings are similar to those in the normal settings in 

section 3.1.1., when mild heterogeneity happens (scale parameter 𝜎1: 𝜎2: 𝜎3 = 0.25: 0.5: 0.5) its 

results are still acceptable (The type I error of F-test is 0.0550). From the results of 2nd and 3rd 

settings (scale parameter 𝜎1: 𝜎2: 𝜎3 = 0.25: 0.25: 0.5 and 𝜎1: 𝜎2: 𝜎3 = 0.25: 0.5: 0.5) and results 

of 4th and 6th settings (scale parameter 𝜎1: 𝜎2: 𝜎3 = 0.25: 0.25: 0.75 and 𝜎1: 𝜎2: 𝜎3 =

0.25: 0.75: 0.75), we can know F-test presents the inflation problems when there is a big 

variance group in the data. When there is a small variance group in the data, the performance of 

F-test is better. In all these 5 heterogeneity settings, the empirical type I error rate of the F-test 

are all above 0.05. 

 Thus all these three methods are not suitable for log-normal heterogeneity cases. 
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3.3. Results for Normal Unbalanced Heterogeneity Data 

3.3.1. Type I Error Analysis 

Table 6 and Figure 6 showed the empirical type I error rates of F-test, Welch’s F and 

Kruskal-Wallis test for 9 sets of normal unbalanced situation along with a set of normal balanced 

situation. Data are normally distributed: 𝑌~𝑁(𝜇𝑖, 𝜎𝑖).For these three groups in the analysis, the 

total sample size is 60 and the sample size for each group varies from 10 to 40. Equal means 

are 𝜇1 = 𝜇2 = 𝜇3 = 0. Standard deviations (𝜎1: 𝜎2: 𝜎3) was given between 1 and 4 (𝜎1: 𝜎2: 𝜎3 =

1: 1: 1~1: 4: 4). The nominal α level is 0.05. 

 

 

Figure 6 

Empirical type I error rate of unequal sample sizes, equal means 𝜇1 = 𝜇2 = 𝜇3 = 0,  

Ratios of 𝜎1: 𝜎2: 𝜎3 = 1: 1: 1~1: 4: 4, nominal α of 0.05. 

 

Table 6 and Figure 6 reflect the situations that in normal unbalanced heterogeneity data, 

the empirical type I error rate depends to a high degree on how sample sizes and variances are 

combined. The result of 7th setting (𝜎1: 𝜎2: 𝜎3 = 1: 1: 4, n1: n2: n3 = 30: 15: 15) shows when a 
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small number of observations comes with a high variance, then the type I error rates of all three 

methods exceed the nominal α level, the F-test has the worst type I error rate (0.1476), the 

Kruskal-Wallis test has the second worse type I error rate (0.1002), however the result of the 

Welch’s F test doesn’t exceed nominalα level too much (0.0547). And compared to the results of 

2nd and 7th settings, we can see when this “high variance” get larger, the results of F-test and 

Kruskal-Wallis test will get worse. 

If small sample sizes comes with small standard deviations (e.g. 𝜎1: 𝜎2: 𝜎3 =

1: 1: 4, n1: n2: n3 = 15: 15: 30), then Welch’s F-test works well and the type I error rate is 

around the nominal α level. However the other two methods are too conservative, their type I 

error rates are much smaller than the nominal α level (F-test 0.0160, Kruskal-Wallis test 0.0363).  

In other situations where the highest variance is not bound to high or low sample sizes, F-

test and Kruskal-Wallis test are more or less inappropriate. After comparing these results, we can 

say among these three methods Welch’s F-test is most appropriate in normal unbalanced 

heterogeneity data. 
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CHAPTER IV 

DISCUSSION 

4.1. Conclusion and Implications 

After doing these comparisons, now we can go back to the questions that motivated this 

study. The first question is under what conditions is heterogeneity of variances really a problem 

in ANOVA. We can state that heterogeneity of variances is always a problem in ANOVA even 

in the moderate heterogeneity cases, i.e., when one group variance is smaller than the others. 

And the problem is worse when the heterogeneity get more and more extreme, i.e., when one 

group variance is very larger than the others. Thus we can know one effect of heterogeneity on 

ANOVA is the inflation of the type I error rate. 

We arrived at several conclusions from the present analyses to answer the second 

question - which method should be chosen when there is heterogeneity of variance in three-group 

cases: 

(1) F-test in analysis of variance is unsuitable in three-group heterogeneity cases, even 

though it is a robust test when data are homogeneous, normal and equal/unequal sample 

sizes. 

(2) Welch’s test performs the best in three-group heterogeneity cases when data are normal 

and equal and unequal sample sizes. And this result is consistent with the results from 

Moder (2010) that Welch’s F-test is useful for a small number of group cases. 

(3) Kuskal-Wallis test is acceptable in mild heterogeneity cases (𝜎1: 𝜎2: 𝜎3 =

1: 1: 2, 𝜎1: 𝜎2: 𝜎3 = 1: 2: 2) when data are normal and equal sample sizes.  

To summarize, no one of these three methods can be suitable in every heterogeneity case, 

but if we have doubts about the homogeneity of variances, Welch’s test is recommended for 
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normal and balanced/unbalanced designs. For a specific situation, we should use the method 

which works best to do the analysis. 

4.2. Limitation and Future Work 

Although the present study and analyses used many situations of heterogeneity data, we 

only considered the 3 group situations. In the analysis of non-normal data, we only used log-

normal data, thus the conclusion we got from log-normal data may not suitable for all non-

normal cases. Only three analysis methods were examined. 

The recommendations we have as the future work of this research are listed as follows: 

(1) We need to expand to comparing more than 3 groups and try other kinds of non-normal 

data. 

(2) More statistical methods are needed to be examined in this study, like Hotelling’s T2 test. 

(3) We can try to reduce the variance by transform the original data to relieve the effect of 

heterogeneity. 

(4) Prior to the analysis of variance, the test of homogeneity of variance (e.g., Barlett’s test) 

should be used to assess the homogeneity of within-group variances. 

(5) Real world data may be used in this study to see which way to deal with the 

heterogeneity is most applicable. 
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APPENDIX A 

RESULT TABLES 
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Table 1： 

Empirical type I error rate of equal sample sizes 5, 10, 20 and 40, equal means 𝜇1 = 𝜇2 =

𝜇3 = 0, ratio of 𝜎1: 𝜎2: 𝜎3 = 1: 1: 1, nominal α of 0.05. Best values in bold. 

n1=n2=n3 F-test Welch's F Kruskal-Wallis 

5 0.0501 0.0445 0.0577 

10 0.0500 0.0493 0.052 

20 0.0544 0.0545 0.0555 

40 0.0482 0.0467 0.0500 

 

 

Table 2： 

Empirical type I error rate of equal sample sizes 5, 10, 20 and 40, equal means 𝜇1 =

𝜇2 = 𝜇3 = 0, ratios of 𝜎1: 𝜎2: 𝜎3 = 1: 1: 2~1: 4: 4, nominal α of 0.05. Best values in bold. 

𝜎1: 𝜎2: 𝜎3 n1=n2=n3 F-test Welch's F Kruskal-Wallis 

1:1:2 5 0.0672 0.0497 0.0636 

10 0.0629 0.0489 0.0595 

20 0.0617 0.0503 0.0605 

40 0.0617 0.0487 0.0587 

1:2:2 5 0.0604 0.0519 0.0659 

10 0.0566 0.0512 0.0589 

20 0.0556 0.0465 0.0557 

40 0.055 0.0528 0.0556 

1:1:3 5 0.0837 0.0502 0.0718 

10 0.0803 0.0526 0.0696 

20 0.0774 0.0538 0.0726 

40 0.0734 0.0523 0.0719 

1:2:3 5 0.0702 0.0515 0.0711 

10 0.0654 0.0525 0.0638 

20 0.0598 0.0482 0.0611 

40 0.0604 0.0536 0.0624 

1:3:3 5 0.0647 0.0574 0.0707 

10 0.0577 0.0527 0.0651 

20 0.0568 0.0487 0.0622 

40 0.0575 0.0473 0.0606 

1:1:4 5 0.0957 0.0504 0.0729 

10 0.082 0.0496 0.0767 

20 0.0843 0.0537 0.0793 

40 0.0809 0.0533 0.0734 
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1:2:4 5 0.0796 0.0506 0.0731 

10 0.0715 0.0529 0.0698 

20 0.0741 0.0545 0.0733 

40 0.0645 0.0482 0.064 

1:3:4 5 0.0665 0.0579 0.0731 

10 0.0613 0.0481 0.0677 

20 0.0589 0.0509 0.0657 

40 0.0567 0.0471 0.0612 

1:4:4 5 0.0686 0.0582 0.0754 

10 0.0609 0.0557 0.0706 

20 0.0613 0.0501 0.0702 

40 0.0602 0.0502 0.0675 

 

Table 3： 

Power of equal sample sizes 5, 10, 20 and 40, unequal means 𝜇1: 𝜇2: 𝜇3 =

0: 0: 1~0: 2: 2, ratio of 𝜎1: 𝜎2: 𝜎3 = 1: 1: 2. Best values in bold. 

𝜇1: 𝜇2: 𝜇3 n1=n2=n3 F-test Welch's F Kruskal-Wallis 

0:0:1 5 0.1923 0.1175 0.1672 

10 0.3174 0.2124 0.2653 

20 0.564 0.4311 0.4788 

40 0.8467 0.7429 0.7695 

0:0:2 5 0.4978  0.3153  0.4220  

10 0.8161  0.6715  0.7315  

20 0.9856  0.9592  0.9654  

40 1.0000  1.0000  1.0000  

0:1:1 5 0.1758  0.2034  0.1983  

10 0.3240  0.4697  0.4083  

20 0.6342  0.8217  0.7449  

40 0.9469  0.9891  0.9764  

0:1:2 5 0.4085  0.3532  0.4076  

10 0.7275  0.7323  0.7315  

20 0.9662  0.9765  0.9656  

40 0.9998  0.9999  1.0000  

0:2:2 5 0.5389  0.6537  0.6076  

10 0.9113  0.9771  0.9579  

20 0.9997  1.0000  1.0000  

40 1.0000  1.0000  1.0000  
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Table 4： 

Power of equal sample sizes 5, 10, 20 and 40, unequal means 𝜇1: 𝜇2: 𝜇3 =

0: 0: 1~0: 2: 2, ratio of 𝜎1: 𝜎2: 𝜎3 = 1: 2: 2. Best values in bold. 

𝜇1: 𝜇2: 𝜇3 n1=n2=n3 F-test Welch's F Kruskal-Wallis 

0:0:1 5 0.1318  0.1067  0.1325  

10 0.2248  0.1938  0.2155  

20 0.4262  0.3962  0.4120  

40 0.7305  0.7174  0.7094  

0:0:2 5 0.3582  0.2864  0.3440  

10 0.6912  0.6420  0.6648  

20 0.9575  0.9456  0.9434  

40 0.9997  0.9997  0.9996  

0:1:1 5 0.1244  0.1326  0.1412  

10 0.2218  0.2929  0.2546  

20 0.4477  0.5901  0.5030  

40 0.8101  0.9026  0.8405  

0:1:2 5 0.2876  0.2938  0.3094  

10 0.5896  0.6582  0.6156  

20 0.9201  0.9573  0.9242  

40 0.9985  0.9994  0.9982  

0:2:2 5 0.3748  0.4357  0.4256  

10 0.7586  0.8527  0.7961  

20 0.9874  0.9962  0.9895  

40 0.9998  0.9998  1.0000  
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Table 5: 

Empirical type I error rate of log-normal data, equal sample sizes 5, 10, 20 and 40, Equal 

means E(𝑌1̅) = E(𝑌2̅) = E(𝑌3̅) = 1, 𝜎(𝑌1): 𝜎(𝑌2): 𝜎(𝑌3) = 0.25: 0.25: 0.25~0.25: 0.87: 0.87 

Ratios of scale parameter 𝑏1: 𝑏2: 𝑏3 = 0.25: 0.25: 0.25~0.25: 0.75: 0.75, nominal α of 0.05. Best 

values in bold. 

𝜎1: 𝜎2: 𝜎3 n1=n2=n3 F-test Welch's F Kruskal-Wallis 

1/4:1/4:1/4 5 0.0472 0.043 0.054 

10 0.0503 0.0476 0.0519 

20 0.0487 0.048 0.0523 

40 0.0482 0.0496 0.0506 

1/4:1/4:1/2 5 0.0774 0.0583 0.0778 

10 0.0721 0.0608 0.0877 

20 0.0649 0.0543 0.113 

40 0.0648 0.0554 0.1744 

1/4:1/2:1/2 5 0.062 0.0655 0.0756 

10 0.0557 0.0652 0.0788 

20 0.052 0.0603 0.1095 

40 0.0565 0.0583 0.1702 

1/4:1/4:3/4 5 0.1239 0.0933 0.1129 

10 0.1201 0.0932 0.1721 

20 0.1132 0.0882 0.2811 

40 0.0969 0.0713 0.4862 

1/4:1/2:3/4 5 0.0825 0.098 0.1033 

10 0.0842 0.0947 0.1389 

20 0.0759 0.0827 0.2243 

40 0.0734 0.0736 0.4187 

1/4:3/4:3/4 5 0.0746 0.1207 0.109 

10 0.0681 0.1253 0.159 

20 0.0652 0.1091 0.2869 

40 0.0591 0.0861 0.5192 
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Table 6： 

Empirical type I error rate of unequal sample sizes, equal means 𝜇1 = 𝜇2 = 𝜇3 = 0, 

the ratios of 𝜎1: 𝜎2: 𝜎3 = 1: 1: 1~1: 4: 4, nominal α of 0.05. Best values in bold. 

𝜎1: 𝜎2: 𝜎3 n1:n2:n3 F-test Welch's F Kruskal-Wallis 

1:1:1 15:15:30 0.0524  0.0487  0.0520  

15:20:25 0.0537  0.0528  0.0566  

30:20:10 0.0494  0.0491  0.0501  

25:20:15 0.0510  0.0516  0.0522  

30:15:15 0.0503  0.0513  0.0522  

1:1:2 15:15:30 0.0194  0.0469  0.0339  

15:20:25 0.0381  0.0509  0.0475  

30:20:10 0.0625  0.0528  0.0616  

25:20:15 0.0937  0.0477  0.0705  

30:15:15 0.0968  0.0527  0.0750  

1:2:2 15:15:30 0.0407 0.0507 0.0476 

15:20:25 0.039 0.0478 0.0426 

30:20:10 0.0546 0.0483 0.056 

25:20:15 0.0776 0.0478 0.0709 

30:15:15 0.1058 0.0498 0.0820 

1:1:3 15:15:30 0.0202  0.0486  0.0365  

15:20:25 0.0375  0.0502  0.0495  

30:20:10 0.0708  0.0509  0.0646  

25:20:15 0.1241  0.0510  0.0840  

30:15:15 0.1241  0.0531  0.0888  

1:2:3 15:15:30 0.0248 0.0544 0.0393 

15:20:25 0.0369 0.0533 0.0448 

30:20:10 0.0618 0.0528 0.0635 

25:20:15 0.1014 0.0484 0.0827 

30:15:15 0.1174 0.0482 0.0982 

1:3:3 15:15:30 0.0386  0.0522  0.0458  

15:20:25 0.0384  0.0496  0.0444  

30:20:10 0.0567  0.0477  0.0639  

25:20:15 0.0911  0.0499  0.0873  

30:15:15 0.1262  0.0490  0.1076  

1:1:4 15:15:30 0.016 0.0484 0.0363 

15:20:25 0.0425 0.0507 0.0543 

30:20:10 0.0808 0.0485 0.0728 

25:20:15 0.1409 0.053 0.0973 

30:15:15 0.1476 0.0547 0.1002 

1:2:4 15:15:30 0.0202  0.0530  0.0363  

15:20:25 0.0348  0.0496  0.0425  

30:20:10 0.0693  0.0493  0.0659  

25:20:15 0.1229  0.0516  0.0924  
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30:15:15 0.1336  0.0522  0.1056  

1:3:4 15:15:30 0.0260  0.0530  0.0404  

15:20:25 0.0356  0.0507  0.0431  

30:20:10 0.0600  0.0513  0.0654  

25:20:15 0.1021  0.0526  0.0904  

30:15:15 0.1299  0.0476  0.1120  

1:4:4 15:15:30 0.0393  0.0496  0.0464  

15:20:25 0.0379  0.0527  0.0475  

30:20:10 0.0585  0.0465  0.0650  

25:20:15 0.0890  0.0535  0.0904  

30:15:15 0.1285  0.0514  0.1186  
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APPENDIX B 

SAS CODE FOR THE SIMULATION STUDY 
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SAS CODE 

/* Balanced Normal TypeI error rate*/ 

/*Simulating the data*/ 

%macro ODSOff(); /* Call prior to BY-group processing */ 

   ods graphics off;  ods exclude all;  ods noresults; 

%mend; 

  

%macro ODSOn(); /* Call after BY-group processing */ 

   ods graphics on;  ods exclude none;  ods results; 

%mend; 

 

%macro simu (r=, n1=, n2=, n3=, mu1=, mu2=, mu3=, sigma1=, sigma2=, sigma3=, 

times=); 

data Simulation(drop=i); 

do SampleID = 1 to &Times; 

   do i = 1 to &n1; 

      group=1;  y=rand("normal",&mu1,&sigma1);/* Group 1: x ~ N(mu1,sigma1^) 

*/  

      output; 

   end; 

   do i = 1 to &n2; 

      group=2;  y=rand("normal",&mu2,&sigma2);      /* Group 2: x ~ 

N(mu2,sigma2^) */ 

      output; 

   end; 

 do i = 1 to &n3; 

      group=3;  y=rand("normal",&mu3,&sigma3);      /* Group 3: x ~ 

N(mu3,sigma2^) */ 

      output; 

   end; 

end; 

run; 

 

/* 1. Analyzing Classic F-test */ 

 %ODSOff ; 

proc glm data=Simulation;  

   by SampleID;  

   class group;  

   model y=group; 

   ods output ModelANOVA=OutDataF;  

   ods graphics off; 

   ods noresults; 

run;  

ods graphics on; 

ods results; 

%ODSOn 

 

/* Construct indicator var for obs that reject H0 at 0.05 significance */  

data ResultF_&n1;  

   set OutDataF; if HypothesisType=3; 

   ConcludeH0 = (ProbF > 0.05);  

run;  

  

/* Compute proportion: (# that conclude H0)/Times and CI */  

proc freq data=ResultF_&n1; 
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 title "Result of Classic F"; 

    tables ConcludeH0 / nocum;* binomial(level='1'); 

 ods output OneWayFreqs=finalF; 

run; 

 

/* 2. Analyzing Welch F-test */ 

%ODSOff  

proc glm data=Simulation;  

   by SampleID;  

   class group; 

 model y=group; 

 means group/welch; 

   ods output Welch=OutWelch;  

run;  

%ODSOn 

 

/* Construct indicator var for obs that reject H0 at 0.05 significance */  

data ResultWelch_&n1;  

   set OutWelch; if DF=2; 

   ConcludeH0 = (ProbF > 0.05);  

run;  

  

/* Compute proportion: (# that conclude H0)/Times and CI */  

proc freq data=ResultWelch_&n1 ;  

    tables ConcludeH0 / nocum;* binomial(level='1'); 

ods output OneWayFreqs=finalWelch; 

run; 

 

/* 3. Analyzing Kruskal-Wallis */ 

/*First get the ranked data*/ 

proc sort data=Simulation out=Rank; 

by SampleID y; 

run; 

 

data Rank1; 

set Rank; 

rank+1; 

by SampleID; 

if first.SampleID then rank=1; 

run; 

 

/*Second do the analysis*/ 

%ODSOff  

proc glm data=rank1; 

 by SampleID;  

 class group; 

 model rank=group; 

 ods output ModelANOVA=OutKruskal; 

run; 

%ODSOn 

 

/* Construct indicator var for obs that reject H0 at 0.05 significance */  

data ResultKruskal_&n1;  

   set OutKruskal; if HypothesisType=3; 

   ConcludeH0 = (ProbF > 0.05);  

run;  

/* Compute proportion: (# that conclude H0)/Times and CI */  
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proc freq data=ResultKruskal_&n1 ;  

    tables ConcludeH0 / nocum; * binomial(level='1'); 

ods output OneWayFreqs=finalKruskal; 

run; 

 

data final; 

set finalF finalWelch finalKruskal; 

if ConcludeH0=0 then delete; 

truepercent=1-Frequency/&times; 

run; 

title; 

 

data final; 

set final; 

obs=_N_; 

run; 

 

proc transpose data=final out=table; 

id obs; 

var truepercent; 

run; 

 

data initial; 

set initial table; 

run; 

proc print data=initial; run; 

%mend; 

 

data initial; 

input Obs _NAME_ $ _1 _2 _3 ; 

cards; 

0 NA . . . 

; 

run; 

 

********************************Table 1**********************************  

* scenario 1; 

%simu (n1=5, n2=5, n3=5, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=1, 

times=10000); 

%simu (n1=10, n2=10, n3=10, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=1, 

times=10000); 

%simu (n1=20, n2=20, n3=20, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=1, 

times=10000); 

%simu (n1=40, n2=40, n3=40, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=1, 

times=10000); 

 

* scenario 2; 

%simu (n1=5, n2=5, n3=5, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=2, 

times=10000); 

%simu (n1=10, n2=10, n3=10, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=2, 

times=10000); 

%simu (n1=20, n2=20, n3=20, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=2, 

times=10000); 

%simu (n1=40, n2=40, n3=40, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=2, 

times=10000); 

 

* scenario 3; 
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%simu (n1=5, n2=5, n3=5, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=2, 

times=10000); 

%simu (n1=10, n2=10, n3=10, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=2, 

times=10000); 

%simu (n1=20, n2=20, n3=20, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=2, 

times=10000); 

%simu (n1=40, n2=40, n3=40, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=2, 

times=10000); 

 

* scenario 4; 

%simu (n1=5, n2=5, n3=5, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=3, 

times=10000); 

%simu (n1=10, n2=10, n3=10, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=3, 

times=10000); 

%simu (n1=20, n2=20, n3=20, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=3, 

times=10000); 

%simu (n1=40, n2=40, n3=40, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=3, 

times=10000); 

 

* scenario 5; 

%simu (n1=5, n2=5, n3=5, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=3, 

times=10000); 

%simu (n1=10, n2=10, n3=10, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=3, 

times=10000); 

%simu (n1=20, n2=20, n3=20, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=3, 

times=10000); 

%simu (n1=40, n2=40, n3=40, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=3, 

times=10000); 

 

 

* scenario 6; 

%simu (n1=5, n2=5, n3=5, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=3, sigma3=3, 

times=10000); 

%simu (n1=10, n2=10, n3=10, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=3, sigma3=3, 

times=10000); 

%simu (n1=20, n2=20, n3=20, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=3, sigma3=3, 

times=10000); 

%simu (n1=40, n2=40, n3=40, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=3, sigma3=3, 

times=10000); 

 

* scenario 7; 

%simu (n1=5, n2=5, n3=5, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=4, 

times=10000); 

%simu (n1=10, n2=10, n3=10, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=4, 

times=10000); 

%simu (n1=20, n2=20, n3=20, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=4, 

times=10000); 

%simu (n1=40, n2=40, n3=40, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=1, sigma3=4, 

times=10000); 

 

* scenario 8; 

%simu (n1=5, n2=5, n3=5, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=4, 

times=10000); 

%simu (n1=10, n2=10, n3=10, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=4, 

times=10000); 

%simu (n1=20, n2=20, n3=20, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=4, 

times=10000); 
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%simu (n1=40, n2=40, n3=40, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=2, sigma3=4, 

times=10000); 

 

* scenario 9; 

%simu (n1=5, n2=5, n3=5, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=3, sigma3=4, 

times=10000); 

%simu (n1=10, n2=10, n3=10, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=3, sigma3=4, 

times=10000); 

%simu (n1=20, n2=20, n3=20, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=3, sigma3=4, 

times=10000); 

%simu (n1=40, n2=40, n3=40, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=3, sigma3=4, 

times=10000); 

 

* scenario 10; 

%simu (n1=5, n2=5, n3=5, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=4, sigma3=4, 

times=10000); 

%simu (n1=10, n2=10, n3=10, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=4, sigma3=4, 

times=10000); 

%simu (n1=20, n2=20, n3=20, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=4, sigma3=4, 

times=10000); 

%simu (n1=40, n2=40, n3=40, mu1=0, mu2=0, mu3=0, sigma1=1, sigma2=4, sigma3=4, 

times=10000); 

/* Balanced Log-normal TypeI error rate*/ 

/*Simulating the data*/ 

%macro ODSOff(); /* Call prior to BY-group processing */ 

   ods graphics off;  ods exclude all;  ods noresults; 

%mend; 

  

%macro ODSOn(); /* Call after BY-group processing */ 

   ods graphics on;  ods exclude none;  ods results; 

%mend; 

 

%macro simu (r=, n1=, n2=, n3=, mu1=, mu2=, mu3=, sigma1=, sigma2=, sigma3=, 

times=); 

data Simulation(drop=i); 

*call streaminit(321); 

do SampleID = 1 to &Times; 

   do i = 1 to &n1; 

      group=1;  y = exp(rand("normal",&mu1,&sigma1));      /* Group 1: x ~ 

N(mu1,var1^) */ 

      output; 

   end; 

   do i = 1 to &n2; 

      group=2;  y = exp(rand("normal",&mu2,&sigma2));      /* Group 2: x ~ 

N(mu2,var2^) */ 

      output; 

   end; 

 do i = 1 to &n3; 

      group=3;  y = exp(rand("normal",&mu3,&sigma3));      /* Group 3: x ~ 

N(mu3,var3^) */ 

      output; 

   end; 

end; 

run; 
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