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Abstract 

EXPRESSION AND PHARMACOLOGICAL MODULATION OF PAIN-DEPRESSED 

BEHAVIOR IN RATS  

 

By Michael D. Leitl 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy at Virginia Commonwealth University 

 

Virginia Commonwealth University, 2015 

 

Advisor: S. Stevens Negus, Ph.D. 
 

Pain is often associated with depression of behavior and mood, and relief of pain-related 

depression is a common goal of treatment. This goal of this dissertation was to conduct 

preclinical research experiments designed to address a set of three inter-related aims that 

examine the expression, mechanisms and treatment of pain-related depression of Intracranial 

Self-Stimulation (ICSS) in rats.  First, studies evaluated the hypothesis that acute acid-induced 

depression of ICSS was mediated by a kappa opioid receptor mediated decrease in mesolimbic 

dopamine release in the nucleus accumbens.  Results support a role for depressed mesolimbic 

dopamine release in pain-related depression of ICSS; however, a role for kappa opioid receptors 

is not supported.  Second, studies evaluated the effectiveness of a more sustained inflammatory 

noxious stimulus (intraplantar CFA) and a sustained neuropathic stimulus (intraplantar formalin) 

to produce a long-term pain-related depression of ICSS, and the role of kappa opioid receptors in 

mediating this sustained pain-related depression of ICSS.  Results indicated that only the 

neuropathic stimulus (formalin) was sufficient to produce sustained depression of ICSS, and as 

in the initial studies, our data did not support a role for kappa receptors in mediating this effect.  

Given the poor effectiveness of a kappa receptor antagonist to block acute or chronic pain-related 
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depression of ICSS, the final set of studies evaluated the pharmacology of representative drugs 

from five different classes of established or candidate analgesics (mu opioid agonists, non-

steroidal anti-inflammatory drugs, monoamine uptake inhibitors, anticonvulsants, and 

cannabinoid agonists) to reverse the sustained depression of ICSS produced by formalin as a 

neuropathic stimulus.  Results demonstrate the mu agonist morphine, the monoamine uptake 

inhibitor bupropion, the anticonvulsant gabapentin, and the cannabinoid agonist THC were able 

to reverse formalin-induced mechanical allodynia as a pain-stimulated behavior, but only the mu 

agonist morphine and the monoamine uptake inhibitor bupropion were effective to reverse 

formalin-induced depression of ICSS.  These results provided additional evidence for dissociable 

drug effects in preclinical assays of pain-stimulated and pain-depressed behavior and also 

support further studies with monoamine uptake inhibitors with a dopaminergic component (like 

bupropion) for treatment of neuropathic pain.        
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Chapter 1: Introduction 

I. Definition, Clinical Expression, and Measurement of Pain in Humans  

One of the vital functions of the nervous system is to provide information about the 

occurrence or threat of injury. The sensation of pain contributes to that function, and pain is 

described by the International Association for the Study of Pain (IASP) as “an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage, or described 

in terms of such damage.”  Accordingly, pain is appreciated to be a multi-dimensional 

experience that includes sensory, functional, and affective components. Pain affects 

approximately 100 million U.S. adults at a cost of $560-635 billion annually; this includes direct 

medical treatment costs and lost productivity (Institute of Medicine, 2011).  

Figure I.1 shows trends of pain prevalence in the United States from 1999-2003 (adapted 

from Institute of Medicine, 2011). Data in the left panel show the percentage of adults reporting 

pain in the previous month (men and women) in respective age bins (20-44, 45-64, and 65+). 

Data suggest that age plays a role in the prevalence at which pain is reported; specifically, those 

65 and older, and increasingly, those 45-64 years of age report pain at higher absolute 

percentages than those aged 20-44. Interestingly, while relative rates of younger people (20-44) 

reporting pain remain relatively low(er) compared to older patient populations, it is noteworthy 

that the increase in prevalence of people reporting pain in that age bin is increasing at rates 

consistent with older patient populations, as shown in the panel on the right. Additionally, there 

was an increase in the percentage of people reporting pain from 1999-2003, regardless of age or 

sex. 
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Figure I.1 

 

Trends in pain prevalence in the United States from 1999-2003 (adapted from (Institute of 

Medicine, 2011). 

 

The pervasive nature of pain and its burden on patients and society has stimulated efforts 

both to treat pain and to conduct research to understand its underlying neurobiological 

mechanisms. These efforts depend on strategies to measure the expression of pain and to 

quantify the effectiveness of clinical interventions. The most common dependent measures used 

by clinicians include metrics of the intensity of the pain a patient is experiencing (Institute of 

Medicine, 2011; Melzack, 1975; Cleeland & Ryan, 1994). In brief, pain intensity is generally 

measured on a unidimensional rating scale, such as a Visual Analog Scale (VAS) or an 11-point 

Numeric Rating Scale (NRS), in which patients are asked to verbally self-report their pain, 

subjectively, along a continuum from “no pain” (left end of a horizontal line in a VAS, 0 in a 

NRS) to “the worst imaginable pain” (right end of a horizontal line in a VAS, 10 in a NRS). 

VAS or numeric pain scores are considered valuable to clinicians as they provide a rapid 

determination of the pain intensity currently being experienced by a patient, and the primary goal 

of pain treatment is to reduce the pain intensity level on these scales.  
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In addition to pain intensity, effort has been placed on gathering more detailed 

information about the pain experience, including body regions that are most prone to (or most 

commonly reported to) produce pain. In a recent survey of U.S. patients reporting pain, seven 

distinct body regions stood out as being primary sources of pain, with low back pain being the 

most prevalent (or commonly reported) anatomical source of pain, as shown below in Table I.1, 

below. 

 

Table I.1 

Anatomical Location of Pain U.S. Average 

Adults I8 and Over (%) 

Low back pain 28.1 

Knee pain 19.5 

Severe headache or migraine 16.1 

Neck pain 15.1 

Shoulder pain 9.0 

Finger pain 7.6 

Hip pain 7.1 

 

2009 Survey results of U.S. adults reporting pain in the preceding 3 month period:  

body regions affected (Institute of Medicine, 2011). 

 

Although verbal and/or written measures and descriptions of pain intensity and 

identification of the anatomical regions where pain is reported to be produced are informative 

and can aid in treatment, additional attempts have been made to: 1) integrate these features into a 
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single questionnaire, and 2) further elucidate the quality and features of pain experiences. These 

attempts have taken several forms, and two pertinent examples of advancements include the 

Short Form of the McGill Pain Questionnaire (or SFMPQ; Melzack, 1987) and the Brief Pain 

Inventory (or BPI; Cleeland and Ryan, 1994).  

In 1987, the Short Form of the McGill Pain Questionnaire (Melzack, 1987) was 

introduced. The SFMPQ, shown in Figure I.2, includes a qualitative assessment of pain by the 

patient, as well as a means for quantification by a clinician. The SFMPQ provides insight into 4 

categories of pain that include: 1) intensity, 2) anatomical location, 3) adjectives or verbal 

descriptors that are said to be correlates of sensory qualities, and 4) adjectives or verbal 

descriptors that are said to be correlates of affective qualities. In the SFMPQ, pain intensity is 

indicated by a VAS in which the patient makes a mark along a (non-numeric) horizontal line that 

ranges from “no pain” (far left) to “worst possible pain” (far right). Pain location is indicated by 

marks on forward-facing and backward-facing diagrams of the human body. The patient is asked 

to draw on the diagram to identify where they are experiencing pain. Importantly, the SFMPQ 

expands upon these measures through inclusion of two additional components. Key additions to 

the SFMPQ include verbal descriptors (adjectives) that are considered to be correlates to sensory 

and affective features of pain quality. Specifically, 15 adjectives are provided, and (the first) 11 

are considered correlates of sensory components of pain (including throbbing, stabbing, and 

splitting, among others) while (the last) 4 adjectives are considered correlates of affective 

components of pain quality (tiring-exhausting, sickening, fearful, and cruel-punishing). When 

filling out the SFMPQ, the patient indicates if they are experiencing each of the verbal 

descriptors or adjectives. The patient has the opportunity to leave each adjective blank (no 

response implies the adjective or feature of pain is not being experienced), or to rate each 



5 

 

adjective as mild, moderate, or severe. This form is a powerful tool for clinicians as guidance is 

provided to quantify the qualitative responses made by the patient. Specifically, with regard to 

pain intensity, the clinician assigns a number from 0-10 on the VAS based on the distance of the 

mark along the horizontal line. The clinician is further able to quantify the degree to which the 

pain being experienced by the patient is sensory or affective, and this is accomplished through 

assigning a numerical scoring system to responses to each of the verbal descriptors or adjectives. 

The SFMPQ includes guidance to the clinician that suggests summation of the ratings for the 

first 11 adjectives (0= no pain, 1= mild pain, 2= moderate pain, 3= severe pain; total possible 

equals 11*3=33) /33 (listed at the bottom of the form), and this summary score is considered to 

be a means of quantifying the sensory component of the pain being experienced. Similarly, 

summation of responses described above for the last 4 adjectives (4*3=12; score/12) provides the 

clinician an ability to quantify the affective nature of the pain. In summary, by using the 

SFMPQ, a clinician is able to determine 1) the intensity of pain being experienced, 2) where the 

pain is being experienced, and 3) if the pain is primarily sensory or affective in nature (or both). 

This additional information not only provides insight into the pain the patient is experiencing but 

also aids on how to treat the respective pain.   
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Figure I.2  

 

The Short Form of the McGill Pain Questionnaire (SFMPQ; Melzack, 1987) 
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A second clinical tool representing another major advancement for pain assessment was 

introduced in 1994, and is called the Brief Pain Inventory or BPI (Figure I.3; Cleeland and Ryan, 

1994). The BPI seeks to characterize pain through additional and different means; specifically, 

the BPI specifically taps into the idea that clinically relevant pain states are also often 

accompanied by overt changes in behavior.  The BPI advances upon the information gained in 

the SFMPQ through employment of a 0-10 scale to assess interference of pain on functional or 

quality-of-life dependent measures (including mood, walking ability, work, relationships with 

other people, sleep, and enjoyment of life), where “0” indicates no interference and “10” 

indicates complete interference. This information helps patients and clinicians further understand 

and recognize the implications of the pain being experienced on routine daily activities. This 

concept has been expanded upon, and it is now recognized that one of the most important 

categories of overt behavior associated with pain is functional impairment (Dworkin et al., 2005; 

Stewart et al., 2003).   

Functional impairment and pain-related disabilities have profound impacts on 

individuals, and additionally result in productivity decreases in the economy and work-force. For 

example, more than half of 29,000 respondents to the American Productivity Audit telephone 

survey reported experiencing headache or musculoskeletal pain-related conditions during the 

previous 2 weeks (Stewart et al., 2003), and 1 in 8 respondents said their pain caused a loss of 

productive time. 1 in 14 said this lost work time exceeded 2 hours, and on average, respondents 

reported that their reduced performance amounted to 3.6 lost work hours per week (Stewart et 

al., 2003). Instruments such as the Brief Pain Inventory (Figure I.3, below) can be and are 

increasingly used to assess pain-related functional impairment (Cleeland and Ryan, 1994; 

Dworkin et al., 2005). 
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Figure I.3 (1/2) 

 

The Brief Pain Inventory (BPI) is a clinical tool that incorporates functional aspects of 

pain and allows the patient an opportunity to provide additional information about how pain 

they are experiencing is affecting their daily routines and/or quality of life 

 (Cleeland and Ryan, 1994). 
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Figure I.3 (2/2) 

 

The Brief Pain Inventory (BPI) is a clinical tool that incorporates functional aspects of 

pain and allows the patient an opportunity to provide additional information about how pain 

they are experiencing is affecting their daily routines and/or quality of life 

 (Cleeland and Ryan, 1994). 
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II. Mechanisms of Pain 

In order to provide clinically meaningful treatment of pain, it is useful to understand the 

different etiologies and neurobiological mechanisms that underlie the signaling and encoding of 

noxious stimuli and their role in the perception of pain. Advanced understanding of the 

neurobiology of different pain states has aided in not only the treatment of pain, but also in 

identifying patient populations that may (or may not) be likely to respond to particular 

pharmacotherapies. Three general categories of pain mechanisms have been identified: 

nociceptive pain, inflammatory pain, and neuropathic pain. It is reasonable to hypothesize that 

different etiologies of pain may be responsive to different pharmacotherapies, or alternative 

strategies, such as altering immune function.  

 



11 

 

Figure I.4 

 

Nociception is the neural process of encoding noxious stimuli, which can be defined as stimuli 

capable of producing tissue damage.  This diagram shows a simplified neural circuit of 

nociception composed of a chain of three neurons that project from the periphery to the brain.  

DRG=dorsal root ganglion, M1=primary motor cortex, MCC=medial cingulate cortex, 

S1=primary somatosensory cortex. 
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Nociception is the neural process of encoding noxious stimuli (which can be defined as 

stimuli capable of producing tissue damage), and Figure I.4 shows a simplified neural circuit of 

nociception.  As a first step in nociception, a noxious stimulus activates primary (1°) nociceptors 

in the periphery. Primary nociceptors are pseudounipolar neurons with cell bodies that reside in 

dorsal root ganglia located along the spinal cord. One branch of these neurons projects 

peripherally to innervate skin, muscle or viscera, and the other branch projects centrally to the 

dorsal horn of the spinal cord. Primary nociceptors include both neurons with small, 

unmyelinated and slowly conducting axons (C fibers), as well as neurons with larger, myelinated 

and faster conducting axons (A∂ fibers). Under normal physiological conditions, some 

nociceptors respond exclusively to noxious stimuli, whereas other “wide dynamic range” 

neurons display graded responses from stimulus intensities the span the range from innocuous to 

noxious.  Both types of neurons are considered to be “nociceptors” because they display different 

responses to innocuous vs. noxious stimuli.  Stimulation of the peripheral terminals of primary 

nociceptors produces an action potential that travels centrally to promote release of the excitatory 

amino acid neurotransmitter glutamate, as well as of peptidic neurotransmitters (e.g. substance 

P), and subsequent activation of secondary (2°) nociceptors.  Secondary nociceptors have cell 

bodies that reside in the dorsal horn of the spinal cord, and their axons project contralaterally and 

ascend via the spinothalamic tract to the ventrobasal nucleus of thalamus.  Tertiary (3°) neurons 

have their cell bodies in thalamus, and they project to cortical targets including somatosensory 

cortex, anterior cingulate cortex, and insular cortex.  In addition to this spino-thalamo-cortical 

neural circuit, other secondary nociceptors project from spinal dorsal horn to brainstem targets, 

and other tertiary neurons project from these brainstem targets to other higher centers including 

hypothalamus, amygdala and ventral tegmental area (VTA; Meyer et al., 2006; IASP, 2011).   
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Nociceptive pain is initiated by depolarization and subsequent activation of primary 

nociceptors by one of four modalities of noxious stimuli: thermal, chemical, mechanical and 

electrical. For example, hot and cold noxious stimuli activate primary nociceptors by activating 

TRPV1 and TRPM8 cation channels, respectively (Palkar et al., 2015; Okun et al., 2011). 

Chemical stimuli such as capsaicin can also activate TRPV1 channels, whereas other noxious 

chemical stimuli, such as acids, can activate members of the family of acid sensing ion channels 

(ASICS; Deval & Lingueglia, 2015; Karczewski et al., 2010; Deval E et al., 2013).  Less is 

known about sensors to noxious mechanical stimulation, but a family of piezo proteins has 

recently been identified, and these proteins may contribute to mechanical nociception 

(Bagriantsev, et al., 2014). Lastly, electrical stimuli activate nociceptors and other primary 

afferents through direct depolarization of afferent terminals (Biurrun et al., 2011; Aasvang et al., 

2015). 

Nociceptive pain is localized to the site affected by the noxious stimulus, and it serves to 

detect, localize and limit tissue damage.  The unpleasant experience of nociceptive pain is often 

associated with motor withdrawal reactions that remove the affected body part away from the 

noxious stimulus, and both nociceptive pain and withdrawal behaviors typically subside when 

the noxious stimulus is no longer in contact with the body. Examples of nociceptive pain include 

pain derived from a thermal source by touching a hot stove or from a chemical source after 

consumption of capsaicin, the pungent ingredient in chili peppers.  An example of mechanical 

nociception and associated pain is the unpleasant sensation and associated withdrawal response 

that occurs after stepping on a sharp object.  
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Figure I.5 

 

Inflammation is a process in response to an injurious stimulus and resulting presentation the 

immune system of damage-associated and pathogen-associated molecular patterns (DAMPs and 

PAMPs, respectively). Inflammation is associated with four cardinal signs: 1) Rubor (redness) 

due to capillary dilation resulting in increased blood flow, 2) Tumor (swelling) due to passage of 

plasma from the blood stream to interstitial tissue, 3) Calor (heat) due to capillary dilation 

resulting in increased blood flow, and 4) Dolor (pain; mainly due to nociceptor sensitization and 

activation).  Inflammatory pain is thought to result from sensitization of nociceptors by 

inflammatory mediators released at the site of inflammation.  

Image on left adapted from (Meyer et al., 2007) 



15 

 

Inflammation is produced by infections or physical injuries that promote immune 

responses to products of host-cell damage (DAMPs) or to invading pathogens (PAMPs), or by 

auto-immune responses that target host proteins normally expressed in uninjured tissue. As one 

component of this immune response, inflammatory mediators such as cytokines, bradykinin, 

prostaglandins, and growth factors infiltrate the area of injury, bind to receptors expressed on 

sensory nerves, and sensitize nociceptors (Ren and Dubner, 2010; Meyer et al., 2006; Coruzzi et 

al., 2004). Behaviorally, this nociceptor sensitization can result in hypersensitive pain behaviors, 

and two terms are commonly used to describe this behavioral hypersensitivity.  “Allodynia” 

indicates induction of pain behaviors by normally innocuous stimuli, and “hyperalgesia” 

indicates induction of exaggerated pain behaviors by normally noxious stimuli (IASP, 2011). 

Examples of inflammatory pain and associated behavioral hypersensitivity include sunburn 

produced by exposure to ultraviolet radiation and pain at the site of tissue incision after surgery.  

Inflammatory pain typically lasts longer than nociceptive pain because its time course is 

associated with the onset and offset of the inflammatory response at the site of injury rather than 

onset and offset of a particular external stimulus; however, it is usually localized to the site of 

injury and resolves once the injury heals.   More sustained inflammatory pain can occur in cases 

of chronic inflammation, and in particular, in cases of auto-immune disorders such as rheumatoid 

arthritis.   
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Figure I.6 

 

Neuropathy is defined as a disturbance of function or pathological change in a nerve, 

and neuropathy can result in abnormal activity in neural circuits that process noxious stimuli. 

For example, spinal cord injury can produce damage to spinothalamic tract neurons resulting in 

ectopic spontaneous discharge independent of normal nociceptor input.  This abnormal activity 

in spinothalamic tract neurons would still activate higher order neurons in brain and may 

produce sensations of pain in the absence of a noxious stimulus. 
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Neuropathy results from an injury to a nerve and can result in neuropathic pain in some 

circumstances. Neuropathies can be considered mononeuropathies (one nerve damaged) or 

polyneuropathies (diffuse and bilateral nerve damage). Neuropathic pain is caused by a lesion or 

disease of the somatosensory nervous system and can be either central or peripheral. Central 

neuropathic pain is caused by a lesion or disease of the central somatosensory nervous system 

while peripheral neuropathic pain is caused by a lesion or disease of the peripheral 

somatosensory nervous system (IASP, 2011). 

Neuropathic pain may resemble inflammatory pain because spontaneous pain, allodnyia 

and/or hyperalgesia are often present. However, the underlying pathology is specifically in nerve 

tissue, as indicated above. After nerve injury, irregular regeneration injury can cause dysfunction 

in nociceptive processing and subsequent pain experiences by at least three different 

mechanisms.  First, damaged primary, secondary or tertiary nociceptors may develop 

spontaneous patterns of ectopic activity that may produce sensations of spontaneous pain in the 

absence of an external stimulus.  Second, nerve damage may promote plasticity in neuronal 

projections, such that reduced presynaptic inputs from the damaged nociceptor are replaced by 

inputs for other neurons not normally involved in nociception.   As a result, innocuous stimuli 

that activate these new inputs may now activate higher order nociceptive neurons and produce 

allodynia.  Lastly, reduced inputs from damaged nociceptors may decrease activation of local 

inhibitory interneurons and/or descending inhibitory neurons that normally inhibit nociceptive 

processing in neighboring receptive fields, resulting in disinhibited nociception and hyperalgesia. 

All neuropathic pain is chronic. A wide variety of pathological processes affecting peripheral 

nerves, sensory ganglia, spinal roots and CNS structures can induce neuropathic pain. These 

include trauma, vascular and metabolic disorders, bacterial and viral infection, inflammation, 
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autoimmune attack, genetic abnormalities and neurotoxins (Campbell and Meyer, 2006; IASP, 

2011). 

Symptoms of neuropathic pain can range from numbness, paresthesias and tingling to 

shooting, burning, sharp, electric shock-like pain sensations. Pain associated with spinal cord 

injury, peripheral diabetic neuropathy, chemotherapy-induced neuropathy, and cancer-related 

pain are all examples of neuropathic pain (Campbell and Meyer, 2006). 

 

III. Current Treatments, Limitations, and Opportunities 

Nociceptive pain is usually unintentional and unanticipated (e.g. stepping on a tack), and 

clinical intervention with prophylactic drug treatments is rare because the withdrawal responses 

that normally accompany nociceptive pain are highly adaptive.  An exception is the use of local 

or general anesthetics to reduce nociceptive pain associated with medical procedures (e.g. tissue 

incision by a scalpel during surgery; drilling of a tooth as part of a dental procedure).  

Anesthetics are administered under close medical supervision, and as suggested by the word 

“anesthesia” (from Greek roots meaning “without feeling”), anesthetics decrease sensitivity not 

only to noxious stimuli but also to stimuli in other modalities.   Anesthetics will not be 

considered further here. 

 By contrast, inflammatory and neuropathic pain are currently treated by a range of drugs 

that have varying degrees of effectiveness for producing “analgesia” (i.e. a selective decrease in 

sensitivity to pain; from Greek roots meaning “without pain”), and use of these drugs is often 

limited by side effects.  The mechanisms, effectiveness, and principal side effects of the major 

drug classes that are used to treat pain and that were evaluated in this dissertation are described 

below.   
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The most widely prescribed drugs for treatment of moderate to severe pain are mu opioid 

receptor (MOR) agonists (Institute of Medicine, 2011).  There are three major types of opioid 

receptors, the mu, delta and kappa opioid receptors (MOR, DOR, and KOR, respectively), and 

these receptors bind both endogenous neurotransmitters (e.g. ß-endorphin, met- and leu-

enkephalin, dynorphin) and exogenous drugs such as morphine (Yaksh & Wallace, 2011; 

Finnerup et al., 2015).  Opioid receptors are widely distributed in nociceptive circuitry as well as 

in other regions of the central and peripheral nervous system, the enteric nervous system, and the 

immune system (Yaksh and Wallace, 2011).  All opioids used clinically as analgesics function 

primarily as agonists at MORs, and they are effective for treatment of many types of pain with 

particular effectiveness to treat severe types of inflammatory pain such as postsurgical pain 

(Yaksh and Wallace, 2011).  Despite their clinical utility, the use of mu agonist analgesics is 

limited by side effects that include potentially lethal respiratory depression, nausea/emesis, 

constipation, and effects contributing to high abuse liability (Finnerup et al., 2015).  Consistent 

with their clinical utility as analgesics, morphine and other mu opioid agonists block acid-

induced depression of ICSS (Altarifi et al., 2014; Altarifi et al., 2012; Leitl et al., 2014)   

NSAIDs represent an alternative class of effective analgesics. They are potent inhibitors 

of prostaglandin synthesis because they block cyclo-oxygenase (COX) enzymes necessary to 

produce prostaglandins. NSAIDs have four main pharmacological effects: anti-inflammatory, 

analgesic, antipyretic, and anti-thrombotic. Accordingly, NSAIDs are effective in treating acute 

postoperative inflammation and pain at the site of tissue incision (McQuay, 2007). There is also 

good evidence for the efficacy of oral NSAIDs in acute and chronic musculoskeletal pain (Derry 

et al., 2012; Haroutiunian et al., 2010). Most NSAIDs are appropriate for short-term use in 

inflammatory arthritic conditions such as rheumatoid arthritis and are reported to relieve pain of 
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headache, joint pain, and other mild-to-moderate pain syndromes (Ostor & Watson, 2013; 

McQuay, 2007). NSAIDs can also be used alone for mild-to-moderate pain or in combination 

with opioids for severe pain, and they are generally not habit forming. However, NSAIDs are 

effective only for pain states that involve an inflammatory component; they are not effective for 

treatment of either nociceptive pain or neuropathic pain (Finnerup et al., 2015).  Long-term use 

of NSAIDs can cause a number of adverse effects including gastrointestinal bleeding, renal 

failure, and congestive heart failure (Singh, 1998; Coruzzi et al., 2004).  

Given that there is a high co-morbidity of pain and depression, monoamine reuptake 

inhibitors represent a class of drugs rising in popularity for the treatment of pain. There are 

multiple subtypes of monoamine reuptake inhibitors with different selectivity for the serotonin 

(SERT), norepinephrine (NET), and dopamine (DAT) transporters. These subtypes include 

selective serotonin reuptake inhibitors (SSRIs; e.g. citalopram), serotonin (5-HT) norepinephrine 

(NE) reuptake inhibitors (SNRIs; e.g. duloxetine), NE and dopamine (DA) reuptake inhibitors 

(NDRIs; e.g. bupropion), triple reuptake inhibitors that block all three transporters (e.g. the 

experimental drug amitifadine), and mixed-action reuptake inhibitors including the subclass of 

tricyclic antidepressants (TCAs), named after their chemical structure. Despite the wide varieties 

of monoamine reuptake inhibitors, there is only evidence for limited effectiveness to treat 

neuropathic pain but not inflammatory pain or nociceptive pain (Atluri et al., 2015; Calandre et 

al., 2015; Dharmshaktu et al., 2012; Semenchuk et al., 2001). Additionally, monoamine uptake 

inhibitors have side effects including lethargy, loss of libido, and confusion (Gilron et al., 2015; 

Wang et al., 2015). 

Gabapentin and anticonvulsants are commonly used to treat fibromyalgia and neuropathic 

pain, but generally have low effectiveness and high numbers needed to treat (NNT) (Guy et al., 
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2014; Finnerup et al., 2015). Additionally, similar to monoamine uptake inhibitors, this class of 

drugs are also ineffective in the treatment of inflammatory pain or nociceptive pain (Chang et al., 

2014). Furthermore, side effects limit the clinical utility of gabapentin and other anticonvulsant 

pharmacotherapies (Gilron et al., 2015; Kerstman et al., 2013; Phillips et al., 2010) 

Δ9-tetrahydrocannabinol (THC) and other natural cannabinoids stem from the marijuana 

plant (Cannabis sativa), and many synthetic cannabinoids have also been developed.  THC and 

other cannabinoids have been studied extensively with the intent of characterizing their 

therapeutic properties. Although the marijuana plant itself is widely used by humans, and 

although THC and other cannabinoids often appear analgesic in preclinical studies, there is poor 

evidence supporting its use in the clinic due to poor efficacy and high incidence of adverse 

effects (Finnerup et al., 2015; Lynch & Campbell, 2011; Ware et al., 2010). 

 

IV. Preclinical Assessment of Pain and the Importance of Pre-Clinical Research in Drug 

Discovery and Development  

Preclinical assays of pain have evolved over the years, but most studies probing the 

neurobiology of pain or response to analgesics have relied heavily, if not solely, on assays 

measuring “pain-stimulated behaviors.”  Pain-stimulated behaviors have been described as 

behaviors that increase in rate, frequency, or intensity in response to the delivery of a noxious or 

painful stimulus (Negus et al., 2006; Stevenson et al., 2006). Examples of pain-stimulated 

behaviors include (a) paw- or tail-withdrawal responses elicited by noxious thermal stimuli 

delivered by a light beam, hot plate, or hot-water bath, (b)stretching/writhing responses elicited 

by intraperitoneal (IP) injection of dilute acid, (c) paw flinching elicited by intraplantar 

administration of chemical irritants such as formalin, or (d) withdrawal responses elicited by 
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mechanical stimulation with von Frey filaments applied to tissue rendered hypersensitive by 

inflammation or neuropathy. In these assays, antinociception is implied if compounds decrease 

expression of the target behavior. Despite their wide use, these assays are associated with two 

significant and well-appreciated weaknesses: 1) drugs may produce a “false positive” decrease in 

pain-stimulated behaviors by producing motor impairment and a nonselective decrease in all 

behavior rather than a selective decrease in sensitivity to noxious stimuli, and 2) assays of pain-

stimulated behavior do not model clinically relevant pro-depressant effects of pain (Negus et al., 

2006; Pereira Do Carmo et al., 2009; Dworkin et al., 2009). Sedative drugs such as DA receptor 

antagonists, KOR agonists, and cannabinoid receptor agonists are prone to produce false-positive 

antinociception in assays of pain-stimulated behavior (Finn et al., 2004; Kwilasz and Negus, 

2012). Moreover, pain-stimulated behaviors are rarely used clinically to diagnose pain or assess 

analgesic efficacy.  Overall, excessive reliance on assays of pain-stimulated behaviors may have 

contributed to poor translation of results across species and clinical failures with candidate 

analgesics involving novel mechanisms in the recent past (Negus et al., 2006). 

By contrast, assays of pain-depressed behavior measure ongoing behaviors that decrease 

in rate, frequency or intensity in the presence of a noxious stimulus. Feeding, locomotion and 

positively reinforced operant responding are examples of behaviors that can be depressed by 

pain, and preclinical assays of pain-related depression model pain-related depression of behavior 

and mood in humans. Antinociception is implied in these assays if compounds block or reverse 

pain-related depression of behavior and correspondingly increase expression of the target 

behavior (Negus et al., 2006; Stevenson et al., 2006). Assays of pain-depressed behavior have 

two attributes important to the assessment of candidate analgesics. First, antinociception is 

indicated by increases in the target behavior, and as a result, assays of pain-depressed behavior 
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are not vulnerable to false-positive effects caused by nonselective behavioral depression (Negus 

et al., 2010a; Negus et al., 2010b; Kwilasz and Negus, 2012). Second, assays of pain-depressed 

behavior may model pain-related functional impairment and/or depressed mood used to assess 

pain in both human and veterinary medicine (Cleeland and Ryan, 1994; Dworkin et al., 2005; 

Dworkin et al., 2009), and thus may provide insight into effects of candidate analgesics on these 

clinically relevant components of pain (Negus et al., 2010b). In view of these attributes, we have 

argued that assays of pain-depressed behavior may complement conventional assays of pain-

stimulated behavior and increase the predictive validity of preclinical candidate analgesic 

assessment (Negus et al., 2006; Negus et al., 2010a). 

One assay that has been used to generate baseline behavior for studies of pain-depressed 

behavior is intracranial self-stimulation (ICSS).  ICSS is an operant behavioral procedure in 

which experimental subjects (usually rats) are equipped with an electrode that targets a 

component of the brain reward system, and subjects are trained to emit an operant response (e.g. 

pressing a lever) to receive pulses of brain stimulation delivered via the electrode (Negus and 

Miller, 2014).  The magnitude of brain stimulation can be varied by manipulating stimulation 

frequency, and increasing frequencies of brain stimulation maintain a frequency-dependent 

increase in response rates.  Thus, low brain stimulation frequencies maintain low rates of 

responding, whereas high rates of responding maintain high rates of responding.  The graph that 

relates brain stimulation frequency (on the X-axis) to response rate (on the Y-axis) is called a 

frequency-rate curve, and a hypothetical example is shown in Figure I.7.    
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Figure 1.7 
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Hypothetical frequency-rate curves: (1) normal or baseline response, (2) hypothetical enhanced 

or left-shifted curve that might be produced by drugs of abuse (e.g. cocaine), and (3) 

hypothetical depressed or right-shifted curve that might be produced by a noxious stimulus. 
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Historically, the most common use of ICSS in preclinical behavioral pharmacology has 

been to evaluate neurobiology of brain reward systems and pharmacology of abused drugs.  For 

example, most drugs of abuse (e.g. cocaine) increase low rates of ICSS maintained by low brain-

stimulation frequencies and produce leftward shifts in ICSS frequency-rate curves (Negus and 

Miller, 2014; Figure I.7).  Conversely, many aversive stimuli, including noxious stimuli that 

presumably produce aversive pain states, decrease high ICSS rates maintained by high brain-

stimulation frequencies and produce rightward and/or downward shifts in ICSS frequency-rate 

curves (Negus, 2013; Figure I.7).  Decreases in ICSS rates produced by noxious stimuli provide 

one example of pain-related depression of behavior, and drugs can be evaluated for their 

effectiveness to block or reverse pain-related depression of ICSS (Negus, 2013; Negus and 

Altarifi, 2013).  For example, we have found in previous studies that ICSS can be depressed by 

IP injection of dilute lactic acid as an acute visceral noxious stimulus, and acid-induced 

depression of ICSS can be blocked by clinically effective analgesic drugs including both 

NSAIDs and mu opioid agonists.  Conversely, acid-induced depression of ICSS is not blocked 

by drugs (e.g. centrally acting KOR agonists; DA receptor antagonists) that fail to produce 

clinically effective analgesia in humans but that do produce “false-positive” antinociception in 

conventional assays of pain-stimulated behavior.  Studies in this dissertation used ICSS as the 

primary baseline behavior for studies of pain-depressed behavior.  Major goals of the dissertation 

were to evaluate neural mechanisms of acute ICSS depression produced by IP acid and to 

evaluate sensitivity of ICSS to depression by other noxious stimuli thought to produce more 

sustained chronic inflammatory and neuropathic pain states. 

Preclinical research remains essential to advance our understanding of how the body 

functions, and ultimately on how to treat disorders such as pain. Discovering and developing 
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drugs novel drugs that are safe and effective against the presence of hypersensitivities remains a 

worthwhile goal. While a fair amount of criticism has been attributed to poor “predictive 

validity” of animal models and pre-clinical research, it is important to be mindful of the fact that 

pain drug development can fail for numerous reasons including toxicity and dose-limiting side 

effects that are not always apparent in the model organism. Additionally, drugs fail in clinical 

trials because they fail to show improvement or otherwise differentiate from currently available 

treatment; there are a number of reasons this can occur, with one reason being a poor selection or 

patient population to study. Additional considerations that could be made include which animal 

models and endpoints the investigators feel is most relevant to the cohort of patients enrolling in 

the clinical study (Whiteside et al., 2013; Negus et al., 2006; Mogil, 2009). 

 

V. Mechanisms of pain-related depression of ICSS 

The mechanisms that underlie pain-related depression of behavior in general and of ICSS 

in rats in particular are not well understood.  ICSS is mediated in part by activation of 

mesocorticolimbic DA neurons that originate in the VTA and project to terminal regions that 

include Nucleus Accumbens (NAc) (Stellar and Stellar, 1985; Wise, 2008). The mesolimbic DA 

system has a well-established role in mediating the rewarding effects of not only brain 

stimulation, but also natural reinforcers (e.g, preferred foods) and of abused drugs (e.g, 

stimulants and opioids) (Di Chiara and Imperato, 1988a; Wise, 2008). Depression of ICSS by 

noxious stimuli suggests that noxious stimuli may also depress signaling by mesolimbic DA 

neurons. This hypothesis is supported by other evidence that activity of DAergic neurons is 

negatively correlated with depressive dimensions of pain (Borsook et al., 2007; Jarcho et al., 

2012; Wood PB, 2008). One goal of the present dissertation was to test the hypothesis that IP 
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acid-induced depression of ICSS would be associated with an analgesic-reversible depression of 

mesolimbic DA release as assessed by measures of extracellular NAc DA levels. 

Pain-related depression of motivated behavior and of mesolimbic DA release could be 

mediated by a variety of different mechanisms, and elucidation of these mechanisms could 

suggest novel strategies for analgesic drug development. One possible mechanism is that noxious 

stimuli could activate endogenous dynorphin/kappa –opioid receptor systems as diagrammed in 

Figure I.8.  In this schematic, cortical regions activated by noxious stimuli might provide 

excitatory input to a subset of NAc neurons that in turn project to and inhibit mesolimbic DA 

neurons in part by release of dynorphin. Dynorphin is an endogenous opioid peptide generated 

from the precursor preprodynorphin, and it functions as a moderately selective agonist for the 

kappa subtype of opioid receptors (Chavkin et al., 1982). VTA DA neurons express kappa–

receptors on both their cell bodies and terminals, and activation of these kappa-receptors 

depresses neuronal activity and DA release (Knoll and Carlezon, 2010; Wee and Koob, 2010). 

For example, exogenous kappa -agonists such as salvinorin A and U69593 decrease both 

mesolimbic DA release and behaviors such as ICSS that depend on mesolimbic DA release 

(Carlezon et al., 2006; Di Chiara and Imperato, 1988a; Negus et al., 2012; Todtenkopf et al., 

2004; Zhang et al., 2005). Moreover, recent studies suggest that some non-noxious stressors 

(e.g., forced swim in rats) activate dynorphin/kappa-systems to produce depressive-like effects 

that can be blocked by kappa-opioid receptor antagonists (Bruchas MR et al., 2010; Chartoff et 

al., 2009; McLaughlin et al., 2003). These findings have been interpreted to suggest that kappa-

antagonists represent a novel class of candidate antidepressants that could block depressive-like 

effects associated with stress-induced dynorphin release, but it is unknown if induction of pain-

states activate dynorphin/kappa-systems in a manner similar to non-pain stressors. Accordingly, 
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a secondary goal of this dissertation was to assess the degree to which pain-related depression of 

ICSS and NAc DA release might be (1) mediated by activation of endogenous dynorphin;/kappa-

systems, and (2) blocked by a kappa-antagonist. 
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Figure I.8 

 

Neural schematic of possible mechanisms whereby noxious stimuli could activate endogenous 

dynorphin/kappa–opioid receptor systems. 
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VI. Introduction to Data Chapters 

This dissertation is composed of experiments designed to address a set of three inter-

related aims that examine the expression, mechanisms and treatment of pain-related depression 

of ICSS in rats.  Studies reported in Chapter II evaluated the hypothesis that acute acid-induced 

depression of ICSS was mediated by a KOR-mediated decrease in mesolimbic DA release in 

NAc.  Our results support a role for depressed mesolimbic DA release in pain-related depression 

of ICSS; however, a role for KOR’s is not supported.  Studies reported in Chapter III evaluated 

the effectiveness of a more sustained inflammatory noxious stimulus (intraplantar CFA) and a 

sustained neuropathic stimulus (intraplantar formalin) to produce a long-term pain-related 

depression of ICSS, and the role of KORs in mediating this sustained pain-related depression of 

ICSS was also evaluated.  We hypothesized that both inflammatory and neuropathic stimuli 

would produce long-lasting depression of ICSS, and that KORs would be more likely to play a 

role in sustained than acute pain-related depression of ICSS.  Our results indicated that only the 

neuropathic stimulus (formalin) was sufficient to produce sustained depression of ICSS, and as 

in the initial studies, our data did not support a role for kappa receptors in mediating this effect.  

Given the poor effectiveness of a kappa receptor antagonist to block acute or chronic pain-related 

depression of ICSS, studies reported in Chapter IV evaluated the pharmacology of representative 

drugs from five different classes of established or candidate analgesics (mu opioid agonists, 

NSAIDS, monoamine uptake inhibitors, anticonvulsants, cannabinoid agonists) to reverse the 

sustained depression of ICSS produced by formalin as a neuropathic stimulus.  We hypothesized 

that all drugs except the NSAID would produce dose-dependent and sustained reversal of 

formalin-induced ICSS depression.  Although this hypothesis was supported for the reversal of 

formalin-induced mechanical allodynia as a pain-stimulated behavior, only the mu agonist 
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morphine and the monoamine uptake inhibitor bupropion were effective to reverse formalin-

induced depression of ICSS.  These results provided additional evidence for dissociable drug 

effects in preclinical assays of pain-stimulated and pain-depressed behavior and also support 

further studies with monoamine uptake inhibitors with a DAergic component (like bupropion) 

for treatment of neuropathic pain.        
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Chapter II:  Acute expression of pain-depressed behavior, pharmacological modulation, and the 

role of endogenous kappa opioid system activation in rats. 

 

Published: Leitl, M.D., Onvani, S., Bowers, M.S., Cheng, K., Rice, K.C., Carlezon, W.A., 

Banks, M.L., and Negus, S.S. (2014). Pain-Related Depression of the Mesolimbic Dopamine 

System in Rats: Expression, Blockade by Analgesics, and Role of Endogenous kappa-opioids. 

Neuropsychopharmacology 39, 614–624. 

 

Introduction 

Pain is often associated with depression of behavior and mood, and relief from pain-

related depression is a common goal of treatment with analgesic drugs (Bair et al., 2003;  

Cleeland and Ryan, 1994; Dharmshaktu et al., 2012). The mechanisms of pain-related depression 

are not well understood. In preclinical studies, injury, disease, or treatment with experimental 

noxious stimuli can produce an analgesic-reversible depression of behaviors that include feeding 

(Kwilasz and Negus, 2012; Stevenson et al., 2006), locomotion (Cobos et al., 2012; Stevenson et 

al., 2009), burrowing (Andrews et al., 2012), and positively reinforced operant responding 

(Martin et al., 2004). For example, ICSS is an operant procedure in which subjects emit a learned 

response such as a lever press to earn pulses of electrical stimulation to brain reward areas 

(Carlezon and Chartoff, 2007b; Olds and Milner, 1954). Tissue acidosis is a cardinal component 

of inflammation that contributes to nociception and pain (Bray et al., 2013; Deval et al., 2013), 

and IP administration of exogenous acid functions as one type of physiologically relevant 

noxious visceral stimulus that depresses ICSS (Pereira Do Carmo et al., 2009; Negus, 2013). In 

addition, acid-induced depression of ICSS can be blocked by clinically effective analgesics 
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including both mu-opioid agonists such as morphine and nonsteroidal anti-inflammatory drugs 

(NSAIDs) such as ketoprofen (Kwilasz and Negus, 2012; Negus et al., 2010a; Negus et al., 

2010b; Pereira Do Carmo et al., 2009). Taken together, these observations suggest that acid-

induced depression of ICSS may serve as a useful model for research on mechanisms of pain-

related depression of behavior and brain reward systems. 

ICSS is mediated in part by activation of mesocorticolimbic DA neurons that originate in 

the VTA and project to terminal regions that include NAc (Stellar and Stellar, 1985; Wise RA, 

2008). The mesocorticolimbic DA system has a well-established role in mediating the rewarding 

effects of not only brain stimulation, but also natural reinforcers (eg, preferred foods) and of 

abused drugs (eg, stimulants and opioids) (Di Chiara and Imperato, 1988a; Wise, 2008). 

Depression of ICSS by noxious stimuli suggests that noxious stimuli may also depress signaling 

by mesolimbic DA neurons. This hypothesis is supported by other evidence that activity of 

DAergic neurons is negatively correlated with depressive dimensions of pain (Borsook et al., 

2007; Jarcho et al., 2012; Wood, 2008). One goal of the present study was to test the hypothesis 

that IP acid-induced depression of ICSS would be associated with an analgesic-reversible 

depression of mesolimbic DA release as assessed by measures of extracellular NAc DA levels. 

Pain-related depression of motivated behavior and of mesolimbic DA release could be 

mediated by a variety of different mechanisms, and elucidation of these mechanisms could 

suggest novel strategies for analgesic drug development. One possible mechanism is that noxious 

stimuli could activate endogenous dynorphin/kappa-opioid receptor systems. Dynorphin is an 

endogenous opioid peptide generated from the precursor preprodynorphin, and it functions as a 

moderately selective agonist for the kappa-subtype of opioid receptors (Chavkin et al., 1982). 
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VTA DA neurons receive inputs from dynorphinergic neurons and express κ-receptors, and 

activation of these kappa-receptors depresses neuronal activity and DA release (Knoll and 

Carlezon., 2010; Wee and Koob, 2010). For example, exogenous kappa-agonists such as 

salvinorin A and U69593 decrease both mesolimbic DA release and behaviors such as ICSS that 

depend on mesolimbic DA release (Carlezon et al., 2006; Di Chiara and Imperato, 1988b; Negus 

et al., 2012; Todtenkopf et al., 2004; Zhang et al., 2005). Moreover, recent studies suggest that 

some nonnoxious stressors (eg, forced swim in rats) activate dynorphin/kappa-systems to 

produce depressive-like effects that can be blocked by kappa-opioid receptor antagonists 

(Bruchas et al., 2010; Chartoff et al., 2009; McLaughlin et al., 2003). These findings have been 

interpreted to suggest that kappa-antagonists represent a novel class of candidate antidepressants 

that could block depressive-like effects associated with stress-induced dynorphin release. 

Accordingly, a secondary goal of the present study was to assess the degree to which acid-

induced depression of ICSS and NAc DA release might be (1) mediated by activation of 

endogenous dynorphin/kappa-systems, and (2) blocked by a kappa-antagonist. 

 

Materials and Methods 

Subjects 

Male Sprague–Dawley rats (Harlan, Frederick, MD) with initial weights of 285 to 400 g at the 

time of surgery were used for studies of ICSS and microdialysis. Rats were individually housed 

and maintained on a 12-h light/dark cycle with lights on from 0600 h to 1800 h. Food and water 

were continuously available in the home cage. Animal maintenance and research were in 

compliance with National Research Council (2011) Guide for the Care and Use of Laboratory 
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Animals (National Academies Press, Washington, DC). In addition, animal-use protocols were 

approved by the Virginia Commonwealth University institutional animal care and use 

committee. 

Noxious Stimuli and Drugs 

Lactic acid (Spectrum Chemical, Gardena, CA), U69593 (National Institute on Drug Abuse Drug 

Supply Program, Bethesda, MD), ketoprofen propionate (Spectrum Chemical), morphine sulfate 

(National Institute on Drug Abuse Drug Supply Program), d-amphetamine hemisulfate (Sigma 

Aldrich, St Louis, MO), and norBNI 2 HCl (synthesized by K Cheng and K Rice, National 

Institutes of Health, Bethesda, MD) were dissolved and/or diluted in sterile water. Lactic acid 

and U69593 were administered IP in a volume of 1 ml/kg. Ketoprofen, morphine, and d-

amphetamine were administered subcutaneously in a volume of 1 ml/kg. Norbinaltorphimine 

(norBNI) was administered IP in a volume of 1.5 ml/kg. All doses were calculated using the salt 

forms of each drug as listed above. 

Assay of Microdialysis 

Surgery.  A total of 30 rats were anesthetized with 2.5% isoflurane in oxygen until 

unresponsive to toe-pinch and secured in a sterotaxic apparatus (Kopf Instruments, Tujunga, 

CA). Guide cannulae (8 mm long, 0.5 mm outer diameter; CXG-8, Eicom, San Diego, CA) were 

implanted bilaterally and terminated 1 mm above the NAc (1.5 mm anterior to bregma, 1.8 mm 

lateral to midsaggital line, and 6.0 mm ventral to dura). A dummy cannula (CXD-8, Eicom) was 

inserted into each guide cannula to maintain patency. The guide cannulae were secured to the 
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skull with screws and dental acrylic. Animals were allowed to recover for at least 4 days before 

initiation of microdialysis testing. 

Testing. On a test day, rats were briefly anesthetized with 2% isoflurane in oxygen, one 

dummy cannula was removed, and a microdialysis probe (CX-I-8-2, Eicom) with a 2-mm 

regenerated cellulose membrane (50 KDa molecular weight cutoff) was inserted through the 

guide cannula and into the NAc. The probe was connected to a two-channel liquid swivel (TCS2-

23, Eicom), and the rat was placed in a clear plexiglass chamber (30 cm × 30 cm × 30 cm). 

Probes were perfused with a nonbuffered artificial cerebrospinal fluid solution (147 mM NaCl, 

2.8 mM KCl, 1.2 mM CaCl2, and 1.2 mM MgCl2) at a rate of 1 μl/min. Following an 

equilibration period of at least 60 min, dialysate samples were collected into a 50 μl injector loop 

at 6-min intervals using an EAS-20s online autoinjector (Eicom) and immediately analyzed for 

DA concentrations by high-pressure liquid chromatography coupled to electrochemical detection 

(HTEC-500, Eicom). Preliminary experiments conducted by probe immersion into a known 

standard concentration of DA indicated a lag time of 24 min for dialysate to traverse the tubing 

from the probe to the electrochemical detector at the 1 μl/min flow rate (data not shown). The 

mobile phase consisted of 2% methanol (EMD, Gibbstown, NJ), 100 mM phosphate buffer 

(Sigma Chemicals, St Louis, MO), 500 mg/l 1-Decane sodium sulfonate (TCI America, 

Montgomeryville, PA), and 50 mg/l EDTA-2NA (Dojindo Laboratories, Kumamoto, Japan). DA 

was separated using a PP-ODS II reverse phase C18-column and detected using a graphite work 

electrode and an Ag vs AgCl reference electrode with an applied potential of +450 mV. DA was 

identified according to the retention time of the standard, and concentrations were quantified by 

comparison with peak heights of the standard concentration curve (0.01–100 pg per 10 μl) 

determined before each microdialysis experiment to ensure accuracy of standard retention times. 
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Resolution was sufficient to detect DA levels as low as 0.1 pg. DA levels were considered to 

have stabilized after collection of 10 consecutive baseline samples with <10% variability around 

the running mean. Testing was conducted using drugs, doses, and pretreatment times based on 

previous behavioral studies from our laboratory (see below; Altarifi and Negus, 2011; Negus et 

al., 2010a; Negus et al., 2012). Specifically, ketoprofen (3.2 mg/kg), morphine (3.2 mg/kg), or 

vehicle was administered subcutaneously 30 min before IP administration of dilute lactic acid 

(5.6% in 1 ml/kg), U69593 (0.56 mg/kg), or vehicle, and DA levels were recorded at 6-min 

intervals for 120 min. A higher ketoprofen dose (3.2 mg/kg) was used here than previously 

(1.0 mg/kg; (Negus et al., 2012) because of the higher intensity noxious stimulus (5.6% vs 1.8% 

lactic acid, respectively). The dose of U69593 was selected based on preliminary studies to 

identify a dose that produced depression of mesolimbic DA to a degree comparable to that 

produced by lactic acid. Following the experimental session, each rat (regardless of treatment) 

was administered 1.0 mg/kg d-amphetamine subcutaneously as a positive control to assess 

sensitivity of the preparation to a DA releaser (Baumann et al., 1994; Di Chiara and Imperato, 

1988a). Rats were tested twice, once for each cannula, and treatments were counterbalanced. At 

the end of the experiments, rats were euthanized with CO2, and the brains were removed and 

stored in 10% formalin. Brain tissue was blocked around the anatomic site of the guide cannula, 

and sections (100 μm thick) were made by vibratome through the area. The brain sections were 

then stained with cresyl violet. Anatomical probe placement was verified by gross visual and 

microscopic examination. 

A 4-day experimental design was used in experiments with the κ-opioid antagonist 

norBNI to accommodate its slow onset and long duration of action (Bruchas et al., 2007; Endoh 

T et al., 1992), and two groups of rats were used to examine the effects of norBNI pretreatment 
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on the effects of IP acid and U69593, respectively. In each group, norBNI (32 mg/kg) was 

administered on day 1, and microdialysis test sessions were conducted on days 2 and 4. In one 

group of rats, the effects of vehicle and dilute acid (5.6% in 1 ml/kg), were examined on days 2 

and 4, whereas in the second group, the effects of vehicle and U69593 (0.56 mg/kg) were 

examined on days 2 and 4. In each group, the order of testing was counterbalanced across rats. 

Microdialysis sampling sessions identical to those described above were conducted on test days. 

The effects of vehicle, lactic acid, or U69593 after norBNI pretreatment were compared with the 

effects of vehicle, lactic acid, or U69593 administered alone. 

Histology. After microdialysis experiments, rats were euthanized by CO2, and the brains 

were removed and placed in 10% formalin for at least 1 week. Tissue was blocked around the 

anatomic site of the guide cannula, and sections (100 μm thick) were made by vibratome through 

the area. The brain sections were then stained with cresyl violet. Anatomical placement was 

verified by gross visual and microscopic examination. 

Data analysis.  The primary dependent variable was the concentration of DA in each 

dialysate fraction. DA concentrations in each fraction for each rat were expressed as percent of 

the average of the 10 mean baseline concentrations before drug or vehicle administration. Two-

way repeated measures ANOVA with treatment and time were used as the two main factors in 

Figure II.I (A). This experiment indicated that maximal decreases in DA levels were observed 

from 60 to 90 min after injection of acid, and a similar time course was observed for depression 

of mesolimbic DA by U69593. Accordingly, mean DA levels observed from 60 to 90 min after 

acid/U69593/vehicle injection were used for subsequent analyses. Treatment effects on mean DA 

levels during this time window were analyzed by one-way ANOVA. Significant ANOVAs were 
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followed by the Student–Newman–Keuls post hoc test, and significance was set a priori at the 

95% level of confidence (p<0.05). 

Assay of ICSS 

Surgery. In all, 48 rats were anesthetized and secured in a sterotaxic apparatus as 

described above. The cathode of a stainless steel electrode (0.25 mm diameter, insulated except 

at flattened tip) was inserted into the medial forebrain bundle at the level of the lateral 

hypothalamus (2.8 mm posterior to bregma, 1.7 mm lateral to midsaggital line, and 8.8 mm 

ventral to skull). Three screws were placed in the skull, and the anode (0.125 mm diameter, 

uninsulated) was wrapped around one of the screws to act as a ground. The electrode was 

secured to the skull with dental acrylic. Animals were allowed to recover for at least 7 days 

before beginning ICSS training. 

Apparatus.  Experiments were conducted in sound-attenuating boxes that contained 

modular acrylic test chambers (29.2 × 30.5 × 24.1 cm3) equipped with a response lever (4.5 cm 

wide, extended 2.0 cm through the center of one wall, and 3 cm off the floor), stimulus lights 

(three lights colored red, yellow, and green, positioned 7.6 cm directly above the response lever), 

a 2-W white house light, and an ICSS stimulator (MED Associates, St Albans, VT). Electrodes 

were connected to the stimulator via a swivel connector (model SL2C; Plastics One). The 

stimulator was controlled by computer software that also controlled all of the programming 

parameters and data collection (MED Associates). 
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Testing.  After initial shaping of lever-press responding, rats were trained under a fixed-

ratio 1 schedule of brain stimulation by using procedures similar to those described previously 

(Negus et al., 2010a; Negus et al., 2010b). During initial training sessions lasting 30 to 60 min, 

the white house light was illuminated, and responding produced electrical stimulation under a 

fixed-ratio 1 schedule of reinforcement. Under this schedule, each lever press resulted in the 

delivery of a 0.5-s train of square-wave cathodal pulses (0.1-ms pulse duration) and illumination 

for 0.5 s of the colored stimulus lights over the lever. Responses during the 0.5-s stimulation 

period did not earn additional stimulation. Initially, the frequency of stimulation was held 

constant at 126 Hz, and the stimulation intensity for each rat was adjusted gradually to the lowest 

value that would sustain a high rate of ICSS (≥30 stimulations/min). Frequency manipulations 

were then introduced, and the terminal schedule consisted of sequential 10-min components. 

During each component, a descending series of 10 current frequencies was presented, with a 60-s 

trial at each frequency. The frequency range extended from 158 to 56 Hz in 0.05-log increments. 

Each frequency trial began with a 10-s timeout, during which the house light was off and 

responding had no scheduled consequences. During the last 5 s of this timeout, five 

noncontingent stimulations were delivered once per second at the frequency available during that 

trial, and the lever lights were illuminated during each stimulation. This noncontingent 

stimulation was then followed by a 50-s ‘response’ period, during which the house light was 

illuminated, and responding produced electrical stimulation under the schedule described above. 

Training continued with presentation of three sequential components per day, and intensity was 

again adjusted as necessary until rats reliably responded for at least three and no more than six 

trials of all components for at least two consecutive days. Testing was conducted using drugs, 

doses, and pretreatment times identical to those used in microdialysis experiments, and as noted 
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above, these parameters were based on previous studies from our laboratory (Altarifi and Negus, 

2011; Negus et al., 2010b). ICSS test sessions consisted of seven sequential components. The 

first component of each test session was considered to be an acclimation component, and data 

from this component were discarded. Data from the second and third ‘baseline’ components were 

used to calculate baseline parameters of frequency-rate curves for that session (see Data 

Analysis). After these baseline components, ketoprofen (3.2 mg/kg), morphine (3.2 mg/kg), or 

vehicle was administered subcutaneously 30 min before IP administration of dilute lactic acid 

(5.6% in 1 ml/kg), U69593 (0.56 mg/kg), or vehicle. Two sequential pairs of 10-min test 

components were then conducted 10–30 min and 70–90 min after the second injection. Testing 

was conducted twice per week (usually Tuesday and Friday), and the order of treatments for a 

group of rats was arranged according to a within-subject, counterbalanced design. Training 

sessions were conducted on other weekdays. 

As in the microdialysis studies, a 4-day experimental design was used in experiments with 

norBNI, and two groups of rats were used to examine the effects of norBNI pretreatment on the 

effects of IP acid and U69593, respectively. In each group, norBNI (32 mg/kg) was administered 

on day 1, and ICSS test sessions were conducted on days 2 and 4 at 24 and 72 h after norBNI 

administration. In one group of rats, the effects of vehicle and dilute acid (5.6% in 1 ml/kg) were 

examined on days 2 and 4, whereas in the second group, the effects of vehicle and U69593 

(0.56 mg/kg) were examined on days 2 and 4. In each group, the order of testing was 

counterbalanced across rats. ICSS test sessions identical to those described above were 

conducted on test days. 
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Data analysis. The primary dependent variable was the reinforcement rate in 

stimulations/trial during each frequency trial. To normalize these data, raw reinforcement rates 

from each trial in each rat were converted to percentage of maximum control rate (%MCR), with 

the maximum control rate defined as the mean of the maximal rates observed during any 

frequency trial of the second and third baseline components for that session. Thus, %MCR 

values for each trial were calculated as (response rate during a frequency trial÷maximum control 

rate) × 100. For each test session, data from the second and third components were averaged to 

yield a baseline frequency-rate curve, and data from each pair of test components were averaged 

to yield test frequency-rate curves for the 10–30 min and 70–90 min time points. Baseline and 

test curves were then averaged across rats to yield mean baseline and test curves for each 

manipulation. For statistical analysis, results were compared by two-way, within-subject 

ANOVA, with treatment and ICSS frequency as the two factors. A significant ANOVA was 

followed by the Student–Newman–Keuls post hoc test, and the criterion for significance was set 

a priori at p<0.05. 

As an additional summary measure of ICSS performance, the total number of 

stimulations per component obtained across all frequencies was determined, and the average 

number of stimulations per test component was expressed as a percentage of the average number 

of stimulations per baseline component during each session. These values were then averaged 

across rats in each experimental condition and compared by one-way ANOVA. A significant 

ANOVA was followed by the Student–Newman–Keuls post hoc test, and the criterion for 

significance was set a priori at p<0.05. 
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Quantitative real-time reverse transcriptase polymerase chain reaction (studies conducted 

in collaboration with S. Onvani and W.A. Carlezon Jr. at McLean Hospital, Harvard 

Medical School). 

A total of 36 rats were used for qRT-PCR studies designed to assess the effects of acid 

noxious stimulus on endogenous prodynorphin (PDYN) and kappa-opioid receptor (KOR) 

mRNA. Rats were treated with IP saline vehicle or 5.6% lactic acid in a volume of 1 mg/kg and 

then killed by rapid decapitation after 1.5 h, 24 h, or 4 days (N=6 per treatment and time point). 

Brains were immediately extracted, rapidly frozen in −80 °C isopentane, and stored at −80 °C 

until analysis. Tissue punches were collected by sectioning frozen brains on a cryostat at −20 °C 

until the areas of interest were exposed. Bilateral punches of tissues from prefrontal cortex 

(PFC), NAc shell (NAcSh), NAc core (NAcC), caudate/putamen (CPu), and VTA were then 

collected and placed in Eppendorf tubes on dry ice. Total RNA was purified using PureLink 

RNA Mini Kit (Ambion). RNA quantity was measured (Nanodrop 2000, Thermo Scientific), and 

cDNA was synthesized from 500 ng of total RNA by using the iScript cDNA Synthesis Kit (Bio-

Rad) and a ThermoHybrid iCycler (Thermo Scientific). The qPCR reactions were performed 

using the iQ SybrGreen Supermix (Bio-Rad) and the following primer pairs: KOR (5′-

CTCCCAGTGCTTGCCTACTC-3′, and 5′-AGATGTTGGTTGCGGTCTTC-3′), PDYN (5′-

ACTGCCTGTCCTTGTGTTCC-3′ and 5′-CCAAAGCAACCTCATTCTCC-3′), β-actin (NBA; 

5′-AGGGAAATCGTGCGTGACAT-3′ and 5′-AAGGAAGGCTGGAAG AGAGC-3′), and 

Calnexin (CNX; 5′-GCTCTGGTCCATGACATCCG-3′ and 5′-

CAGCATCTGCCCCACTACAC-3′). Primer specificity was confirmed by melt-curve analysis 

and polyacrylamide gel electrophoresis. The PCR reaction mix consisted of: 10 μl SybrGreen 

Supermix; 2 μl RNase/DNase-free water; 2 μl (3 μM) of each forward and reverse primers; and 
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4 μl (200 ng) cDNA template. Amplification was performed on a MyiQ Single Color Real-Time 

PCR Detection System (Bio-Rad) under the following protocol: 95 °C for 5 min; 40 cycles at 

94 °C for 15 s, 60 °C for 15 s, and 70 °C for 20 s. Read temperature for data collection was set 

between 81 °C and 86 °C for 15 s depending on the primer pair. A master cDNA mix was 

generated by mixing 10 μl of cDNA from all samples and used to produce a standard dilution 

curve on each plate. This was accomplished by serially diluting the master mix (1, 0.25, 0.0625, 

and 0.0156) and assigning to the undiluted sample an arbitrary concentration of 1 in the MyiQ 

Optical System Software (Bio-Rad). Two samples, each of which lacked either the cDNA 

template or reverse transcriptase enzyme, were run on every plate to control for reagent 

contamination and genomic DNA contamination, respectively. All samples were run in triplicate. 

Data analysis. To normalize data, kappa-opioid receptor and PDYN values were divided 

by the average values of the two internal controls (β-actin and Calnexin). Values are reported as 

percent vehicle controls calculated as (normalized vehicle and experimental means/normalized 

vehicle group mean for the corresponding time point) × 100. Data for PDYN and KOR mRNA in 

each region were analyzed using two-way ANOVA with treatment and time as the two factors, 

followed by the Bonferroni post hoc test. The criterion for significance was set at p<0.01 to 

correct for multiple comparisons across the five different regions examined. 

 

Results 

Figure II.1 Shows the effects of IP lactic acid on NAc DA levels and ICSS. Over the 

course of the study, baseline extracellular DA levels in NAc were 1.0±0.1 pg per 5 μl. Figure II.1 

(A) shows that IP vehicle injection had no effect on NAc DA, whereas IP injection of 5.6% lactic 
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acid produced a time-dependent decrease in DA. DA levels did not change for the first four 

samples (0–24 min) after acid injection because of the lag time for dialysate to travel from the 

probe to the electrochemical detector. Beginning at the time of treatment effect onset at the 

detector, DA levels decreased for the next seven samples (24–66 min after injection of vehicle or 

lactic acid, 0–42 min after treatment effect onset at the detector), and reached a nadir for the last 

five samples (60–90 min after injection, 36–66 min after treatment effect onset at the detector).  

Treatment with the noxious lactic acid stimulus also depressed ICSS. Over the course of 

the study, the mean±SEM maximum control rate of ICSS was 59.8±1.5 stimulations/trial, and 

the mean total number of stimulations/component delivered across all frequencies was 291±13. 

Figure II.1 (B) shows that, relative to vehicle treatment, 5.6% lactic acid (IP) depressed ICSS 

from 10 to 30 min after acid injection, producing a rightward shift in the ICSS frequency-rate 

curve and significant decreases in ICSS at frequencies of 1.95–2.15 log Hz. ICSS was no longer 

significantly depressed 70–90 min after acid injection (data not shown). The relative time courses 

of these effects will be addressed in the Discussion section, but briefly, these data suggest that 

behavioral depression was associated with declining DA levels rather than with the absolute DA 

levels. 

Figure II.2 Shows the effects of ketoprofen, morphine, and norBNI on lactic acid-induced 

depression of NAc DA levels and ICSS. Figure II.2 (A) shows that both the NSAID ketoprofen 

(3.2 mg/kg, SC) and the μ-opioid analgesic morphine (3.2 mg/kg, SC) blocked acid-induced 

depression of NAc DA at doses that did not significantly alter DA levels in the absence of the 

noxious stimulus. Figure II.2 (B) shows that the same doses of ketoprofen and morphine also 
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blocked acid-induced depression of ICSS at doses that did not significantly alter ICSS in the 

absence of the noxious stimulus. 

Figure II.3 Shows that the kappa-agonist U69593 (0.56 mg/kg) decreased both NAc DA 

levels and ICSS (Figure II.III shows a more detailed display of these effects homologous to 

Figure II.I), and both effects of U69593 were completely antagonized by the kappa-antagonist 

norBNI. Ketoprofen failed to block U69593-induced depression of either NAc DA levels or 

ICSS. Morphine significantly attenuated U69593-induced depression of NAc DA levels, but did 

not alter U69593-induced depression of ICSS. 

Figure II.4 Shows that a dose of norBNI that fully blocked U69593-induced depression 

of NAc DA and ICSS did not alter lactic acid-induced depression of either NAc DA or ICSS. 

Figure II.5 Shows effects of IP lactic acid on transcript levels for PDYN and the kappa-

receptor. Acid injection significantly increased PDYN expression in PFC at 4 days after acid 

injection. No significant changes in PDYN expression were observed in the PFC at earlier times, 

and no significant changes in PDYN expression were observed in NAcC, NAcSh, CPu, or VTA 

at any time. No significant changes in KOR expression levels were observed in any region at any 

time. 

Figure II.6 Shows kappa receptor agonist-induced depression of NAc DA levels (A) and 

of ICSS (B) by U69593 (0.56 mg/kg, IP).   

Figure II.7 Shows stability of basal DA levels prior to treatment for rats shown in Figure 

II.1 (A). A coronal section of the rat brain shows the positions of the microdialysis probes for all 

rats in the study (B).  Numbers to the left of the sections indicate anterior-posterior position 

relative to bregma.  
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Summary 

In agreement with previous studies, IP administration of dilute lactic acid served as a 

physiologically relevant noxious stimulus to produce an analgesic-reversible depression of ICSS, 

an operant procedure in which lever-press responding is maintained by electrical stimulation of a 

key brain reward area. The present study extended this finding in three ways. First, the acid 

noxious stimulus also depressed extracellular levels of the neurotransmitter DA in the NAc. The 

magnitude and valence of this effect was similar to the depression of DA release produced by 

some other dysphoric/aversive stimuli, such as kappa-agonists, and opposite to the stimulation of 

DA release produced by drugs of abuse and other rewarding/reinforcing stimuli. Accordingly, 

these data are consistent with the conclusion that depression of mesolimbic DA release may 

contribute to negative affective dimensions of pain. Second, acid-induced depression of NAc DA 

release was blocked by both NSAID and opioid analgesics. The sensitivity of acid effects to 

analgesic drugs provides further support for the potential relationship of these effects to affective 

dimensions of pain. Third, the acid noxious stimulus perturbed mesocorticolimbic PDYN 

expression, but the results of this study did not support a critical role for the dynorphin/kappa-

opioid receptor system in mediating pain-related depression of ICSS and NAc DA. In particular, 

the kappa-antagonist norBNI failed to produce analgesic-like effects.
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Figure Legends 

Figure II.1 Pain-related depression of (A) NAc DA levels and (B) ICSS by IP injection 

of dilute lactic acid (5.6% in a volume of 1 ml/kg). (A) The abscissa shows time after injection of 

5.6% lactic acid or its vehicle and the ordinate shows % baseline DA levels. The vertical line at 

24 min indicates the lag time required for dialysate to traverse tubing between the dialysis probe 

and the electrochemical detector. The shaded area from 60 to 90 min shows asymptotic 

depression that was averaged for subsequent analyses. (B) The abscissa shows frequency of 

electrical brain stimulation (log Hz) and the ordinate shows ICSS rate expressed as percent 

maximum control rate (%MCR). Data were collected from 10 to 30 min after vehicle or acid 

injection, which corresponds to the time of declining DA levels in (A). In both panels, filled 

points indicate statistical significance of acid vs vehicle effects using two-way repeated measures 

ANOVA with Student–Newman–Keuls post hoc (p<0.05). Insets show average DA levels during 

the period indicated by the shaded region (a, expressed as % baseline DA levels) or average 

ICSS rates across all frequencies (B, expressed as % baseline stimulations across all 

frequencies). Asterisks (*) indicate a significant effect of acid as indicated by t-test (p<0.05). All 

data show mean±SEM from 5 to 7 rats. 

Figure II.2 Effects of the analgesics ketoprofen and morphine on acid-induced 

depression of (A) NAc DA levels and (B) ICSS. (A) The abscissa shows treatment conditions 

and the ordinate shows % baseline DA levels from 60 to 90 min after administration. (B) The 

abscissa shows treatment conditions and the ordinate shows % baseline stimulations from 10 to 

30 min after administration. Asterisks (*) indicate significantly different from vehicle conditions, 

and the symbol (#) indicates significantly different from acid alone as determined by one-way 
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ANOVA followed by the Student–Newman–Keuls post hoc test (p<0.05). All data show 

mean±SEM from 5 to 7 rats. 

Figure II.3 Effects of the kappa-antagonist norBNI and of the analgesics ketoprofen and 

morphine on U69593-induced depression of (A) NAc DA levels and (B) ICSS. (A) The abscissa 

shows treatment conditions and the ordinate shows % baseline DA levels from 60 to 90 min after 

administration. (B) The abscissa shows treatment conditions and the ordinate shows % baseline 

stimulations from 10 to 30 min after administration. Asterisks (*) indicate significantly different 

from vehicle conditions, and the symbol (#) indicates significantly different from U69593 alone 

as determined by one-way ANOVA followed by the Student–Newman–Keuls post hoc test 

(p<0.05). All data show mean±SEM from 5 to 7 rats. 

Figure II.4 Effects of the kappa-antagonist norBNI on acid-induced depression of (A) 

NAc DA levels and (B) ICSS. (A) The abscissa shows treatment conditions and the ordinate 

shows % baseline DA levels from 60 to 90 min after administration. (B) The abscissa shows 

treatment conditions and the ordinate shows % baseline stimulations from 10 to 30 min after 

administration. Asterisks (*) indicate significantly different from vehicle conditions as 

determined by one-way ANOVA followed by the Student–Newman–Keuls post hoc test 

(p<0.05). All data show mean±SEM from 5 to 7 rats. 

Figure II.5 Pain-related modulation of PDYN and KOR mRNA expression levels in 

brain regions implicated in mood disorders as measured by qRT-PCR. Transcript levels of 

mRNA for (A-E) PDYN or (F-J) KOR in various components of midbrain DA systems. The 

abscissae show time after acid administration and the ordinates show transcript levels expressed 

as percent of vehicle control. Data were analyzed by two-way ANOVA followed by the 
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Bonferroni post hoc test. Asterisks indicate significant between-group differences within brain 

regions (**p<0.01). All bars show mean±SEM from 6 rats.  

Figure II.6 Kappa receptor agonist-induced depression of NAc DA levels (A) and ICSS 

(B) by U69593 (0.56 mg/kg, IP).  (A) Abscissa: Time after injection of U69593 or its vehicle.  

Ordinate: % Baseline DA levels.  The vertical line at 24 min indicates the lag time required for 

dialysate to traverse tubing between the dialysis probe and the electrochemical detector. The 

shaded area from 60-90 minutes shows asymptotic depression that was averaged for subsequent 

analyses. (B) Abscissa: Frequency of electrical brain stimulation (log Hz).  Ordinate: ICSS rate 

expressed as percent maximum control rate (%MCR).  Data were collected from 10-30 min after 

vehicle or U69593 injection, which corresponds to the time of declining DA levels in Panel A.  

In both panels, filled points indicate statistical significance of U69593 vs. vehicle effects using 

two-way repeated measures ANOVA with Student-Newman-Keuls post-hoc test (p<0.05).  

Insets show average DA levels during the period indicated by the shaded region (A, expressed as 

% baseline DA levels ± SEM) or average ICSS rates across all frequencies (B, expressed as % 

baseline stimulations across all frequencies ± SEM).  Asterisks indicate a significant effect of 

U69593 as indicated by t-test (t<0.05).  All data show mean±SEM from 5-7 rats per treatment.   

Figure II.7 Stability of basal DA levels prior to treatment and positions of the 

microdialysis probes for all rats. (A) Abscissa: Sample number (6 min consecutive intervals).  

Ordinate: % Baseline DA levels prior to starting any treatment manipulations. Error bars show 

SEM.  (B) Coronal section depictions of the rat brain showing the positions of the microdialysis 

probes.  Numbers to the left of the sections indicate anterior-posterior position relative to 

bregma.  
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Figure II.1 
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Figure II.2 
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Figure II.3 
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Figure II.4 
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Figure II.5 
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Figure II.6 
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Figure II.7 
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Chapter III: Expression of chronic pain-depressed behavior and the role of endogenous 

kappa opioid system activation in rats 

 

Published: Leitl, M.D., Potter, D.N., Cheng, K., Rice, K.C., Carlezon Jr, W.A., and Negus, S.S. 

(2014a). Sustained pain-related depression of behavior: effects of intraplantar formalin and 

complete freund’s adjuvant on intracranial self-stimulation (ICSS) and endogenous kappa opioid 

biomarkers in rats. Molecular Pain, 10: 62. 

 

Introduction 

Preclinical procedures to evaluate pain and analgesia in laboratory animals play a key 

role in research on both neurobiology of pain and analgesic drug development (Negus et al., 

2006; Mogil et al., 2010; Whiteside et al., 2013). Two common chemical stimuli for induction of 

sustained pain states in rodents are intraplantar administration of Complete Freund’s Adjuvant 

(CFA) and formalin.  CFA is a heat-killed bacterial suspension that elicits an immune response at 

the site of its injection.  For example, CFA administration in the hindpaw of rats or mice 

produces paw edema (Brannen et al., 1975; Stein et al., 1988; Djouhri and Lawson, 1999) and 

increased local concentrations of inflammatory cytokines and trophic factors (Woolf et al., 

1997).  These and other inflammatory mediators contribute to peripheral and central sensitization 

of nociceptive neural pathways (Hylden et al., 1989; Ma and Woolf, 1996; Djouhri and Lawson, 

2001), and this neural hypersensitivity correlates with a sustained behavioral hypersensitivity of 

withdrawal responses to mechanical or thermal stimuli (Stein et al., 1988; Hargreaves et al., 

1988; Lin et al., 2007).  These hypersensitive withdrawal responses often serve as a behavioral 

indicator of “pain.”   
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 Formalin, in contrast, is an aqueous solution of formaldehyde, a cell toxin that cross links 

proteins to disrupt dynamic protein interactions critical to cell viability.  Formalin functions as an 

acute irritant, and when administered into the hindpaw of rodents, it elicits transient behaviors 

such as flinching and paw-licking (Tjølsen et al., 1992; Abbott et al., 1999; Fu et al., 2001; Lin et 

al., 2007).  However, formalin also elicits a sustained inflammatory response characterized by 

edema and local release of inflammatory mediators (Lin et al., 2007).  Moreover, formalin also 

damages or kills cells, including primary nociceptors and other sensory neurons, and as a result, 

formalin-induced changes in behavior also include a neuropathic component.  For example, 

formalin injection into the hindpaw of rodents has been shown to produce general necrosis at the 

site of injection, increased expression of the neuropathy-related transduction factor ATF-3 in 

dorsal root ganglion cell bodies, and increased spinal microglial activation to an extent similar to 

that produced by other neuropathy models (Winter and McCarson, 2005; Lin et al., 2007; Berta 

et al., 2014). Consistent with this evidence for long-lasting tissue injury, intraplantar formalin 

also produces hypersensitivity to mechanical and thermal stimuli, and as with CFA, this 

hypersensitivity is sustained for days or weeks and often serves as a behavioral indicator of pain 

(Fu et al., 2001; Grace et al., 2014).   

We have categorized behaviors such as hypersensitive paw withdrawal reflexes as “pain-

stimulated behaviors,” which are defined as behaviors that increase in rate, frequency or intensity 

after delivery of a pain stimulus (Negus et al., 2006; Negus et al., 2010a).  However, pain states 

can also depress other behaviors, and treatment of pain-related behavioral depression is a 

common goal of human and veterinary medicine (Turk et al., 2003; Brown et al., 2009).  

Research on pain-related depression of behavior can be accomplished with procedures that 

measure “pain-depressed behaviors,” which can be defined as behaviors that decrease in rate, 



60 

 

frequency or intensity after a pain stimulus (Negus et al., 2006; Negus et al., 2010a). For 

example, ICSS is a procedure in which subjects perform an operant behavior (e.g. press a lever) 

to receive pulses of electrical stimulation that activate the mesolimbic DA system, and ICSS has 

been used to examine effects of various manipulations on brain reward function (Wise, 1996; 

Carlezon and Chartoff, 2007a; Negus and Miller, 2014).  Previous studies have reported 

relatively transient depression of ICSS by acute noxious stimuli including IP injection of dilute 

acid or paw incision (Do Carmo et al., 2009; Negus, 2013; Ewan and Martin, 2014).  The goal of 

the present study was to compare effects of intraplantar CFA and formalin as more sustained 

pain stimuli on ICSS in rats.  We hypothesized that both stimuli would produce sustained 

depression of ICSS similar to their shared ability to produce sustained thermal and mechanical 

hypersensitivity.  Pain-related depression of ICSS was evaluated for its sensitivity to reversal by 

the mu opioid analgesic morphine.  In addition, pain-related depression of ICSS was evaluated 

for its relationship to central biomarkers of the endogenous kappa opioid system and its 

sensitivity to the kappa antagonist norBNI, because some other stressors depress behavior by 

activating central kappa systems (Knoll and Carlezon, 2010; Bruchas et al., 2010).            

 

Materials and Methods 

Subjects 

Studies were conducted in male Sprague-Dawley rats (Harlan, Frederick MD) with initial 

weights of 285 to 350 g. Rats were individually housed and maintained on a 12-h light/dark 

cycle with lights on from 6:00 AM to 6:00 PM. Food and water were continuously available in 

the home cage. Animal-use protocols were approved by the Virginia Commonwealth University 
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Institutional Animal Care and Use Committee and complied with the National Research Council 

(2011) Guide for the Care and Use of Laboratory Animals.  

Noxious stimuli and Drugs 

CFA was obtained from Sigma Aldrich (St. Louis, MO; Catalog #F5881). Formalin was 

obtained from Fisher Scientific (Waltham, MA; Catalog #305-510) and diluted in saline to final 

concentrations as described below. Rats were lightly restrained in a soft cloth for 100 ul bilateral 

injections administered into the plantar aspect of the left and right hind paws using a 27 gauge 

needle. Morphine sulfate (National Institute on Drug Abuse Drug Supply Program; Bethesda, 

MD) and norBNI 2HCl (synthesized by K. Cheng and K. Rice) were dissolved in saline for SC 

injection, and doses are expressed as the salt.  

Assay of ICSS 

The Surgery, Apparatus, and Training details of this study are the same as those reported 

previously [Chapter II]. 

Experiment 1: Comparison of CFA and formalin: 

Once training was complete, baseline pre-injection ICSS was assessed for three 

consecutive days. Next, rats received bilateral intraplantar injections of CFA, 5% formalin, or 

saline. On the day of injection (Day 0), 3 “baseline” ICSS components were conducted before 

injection, and pairs of ICSS test components were conducted 1, 3, and 10 hr after injection. In 

addition, in the formalin and associated saline control groups, ICSS was also evaluated during 

five consecutive test components from 0-50 mins after injection, a time when formalin has been 

reported to elicit unconditioned flinching responses (“Phase I” and “Phase II” of the formalin 
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response; (Tjølsen et al., 1992; Abbott et al., 1999; Fu et al., 2001; Lin et al., 2007). On Days 1-7 

after injection, ICSS was evaluated during three-component test sessions beginning at 

approximately 3 PM each day. Additionally, on days 1, 3 and 7, manipulations of the height of 

the ICSS response lever were introduced in a subset of 6 rats from each group as a potential 

“use-dependent” measure of injection effects on ICSS responding. Specifically, after testing with 

the standard low lever height (1.5 in above the floor), ICSS was re-determined with a medium 

lever height (2.75 in), and a high lever height (4.5 in), and these lever heights required 

increasingly vertical postures by the rat and increased weight bearing by the injected rear paws. 

Lever heights were presented in ascending order, with a 30-min time out between testing at each 

height.  

ICSS was significantly depressed in the formalin-treated group on Day 7 after injection. 

To assess the sensitivity of formalin-induced depression of ICSS to treatment with an analgesic 

drug, an additional test with the mu opioid agonist morphine was conducted on Day 8 in the 

formalin and associated control groups. Following determination of baseline ICSS performance 

during three ICSS components as described above, cumulative doses of morphine (0.32-

3.2 mg/kg SC) were administered at 60 min intervals, such that each dose increased the total, 

cumulative dose by 0.5 log units. Thirty minutes after each dose of morphine, a pair of ICSS test 

components was conducted.  

Paw edema, body weight and mechanical sensitivity were measured in conjunction with 

ICSS in all rats in Experiment 1. To assess edema, dorsal-ventral thickness of the left hind paw 

was measured with electronic digital calipers (Traceable Calipers, Friendswood, TX) to the 

nearest 0.01 mm. Body weights were assessed using an electric scale (resolution 0.1 g). The von 
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Frey filament test was used to measure sensitivity to a punctate pressure stimulus. Rats were 

placed on an elevated mesh galvanized steel platform in individual chambers with a hinged lid 

and allowed to acclimate for at least 20 min. Subsequently, von Frey filaments (0.4 - 15 g in 

approximate 0.25 log increments; North Coast Medical, Morgan Hill, CA) were applied to the 

plantar aspect of the left hind paw using the “up-down” method to determine log median 

withdrawal threshold (Chaplan et al., 1994). Paw thickness and body weight were assessed for 

each of three days before intraplantar injections and daily on Days 1-7 after intraplantar 

injection. Mechanical sensitivity was assessed for three days before injection, 6 hr after injection 

on Day 0, and on Days 3 and 7 after injection. All measurements were determined after daily 

ICSS sessions.  

Experiment 2: Dose-dependence and persistence of formalin effects: 

Twenty-four rats were trained in the ICSS procedure and divided into four separate 

groups of six each that received 0.5% bilateral formalin, 5% unilateral formalin in one paw + 

saline in the opposite paw, 5% bilateral formalin, or bilateral saline control. ICSS was evaluated 

daily for three days before injection and for 14 days after injection.  

Experiment 3: Effects of norBNI on formalin-depressed ICSS: 

Twelve rats were trained in the ICSS procedure and divided into two groups of six rats 

that received bilateral 5% formalin or bilateral saline control. ICSS was evaluated for three days 

before injection and for 14 days after injection. NorBNI (32 mg/kg SC) was administered 

immediately after ICSS testing on Day 7. Previous studies found that this dose of norBNI was 
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sufficient to block depression of ICSS produced by the kappa agonist U69,593 for at least three 

days (Leitl et al., 2014b).  

Data analysis 

The primary dependent measure for ICSS experiments was the total number of 

stimulations delivered across all 10 frequency trials of each component. The first ICSS 

component each day was considered to be a warm-up component, and data were discarded. 

Baseline ICSS in each subject was determined by averaging the number of stimulations per 

component during the second and third components across the three pre-injection baseline days 

(6 components total). Data collected after intraplantar injections for each subject were then 

normalized to these baselines using the equation % Baseline Stimulations per 

Component = (Stimulations per Test Component /Baseline) × 100.  

An additional dependent measure was the reinforcement rate in stimulations/trial during 

each of the 10 frequency trials. To normalize these data, raw reinforcement rates from each trial 

in each rat were converted to percentage of maximum control rate (%MCR) for that rat, with the 

maximum control rate defined as the mean of the maximal rates observed during any frequency 

trial of the second and third baseline components across the three pre-injection baseline days. 

Thus, %MCR values for each trial were calculated as (response rate during a frequency trial ÷ 

maximum control rate) × 100.  

Data for ICSS, paw thickness, body weight and mechanical sensitivity were averaged 

across rats in each experimental condition and compared by two- or three-way ANOVA as 
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appropriate. For all analyses, a significant ANOVA was followed by the Holm-Sidak post-hoc 

test, and the criterion for significance was set a priori at p < 0.05.  

Quantitative real-time reverse transcriptase polymerase chain reaction (studies conducted 

in collaboration with D.N. Potter and W.A. Carlezon Jr. at McLean Hospital, Harvard 

Medical School). 

Twenty-four rats were used for qRT-PCR studies to assess CFA and formalin effects on 

endogenous PDYN and KOR mRNA in selected brain areas as described previously (Leitl et al., 

2014b). Rats were treated with 100 ul bilateral intraplantar injections of saline, CFA, 0.5% 

formalin or 5% formalin (N = 6 per treatment), then euthanized seven days later by rapid 

decapitation. Brains were immediately extracted, rapidly frozen in -80°C isopentane, and stored 

at -80°C until analysis. Briefly, brains were sliced on a cryostat, and bilateral tissue punches 

were collected from VTA, NAaC and NAaS, CPu, and PFC. PDYN and KOR mRNA values 

were divided by the average values of the two internal controls (β-actin and Calnexin). Values 

are reported as percent saline controls calculated as (normalized saline and experimental 

means/normalized saline group mean for the corresponding time point) × 100. Data for PDYN 

and KOR mRNA were analyzed using two-way ANOVA with treatment and brain areas as the 

two factors.  

Results 

Figure III.1 shows effects of intraplantar saline, CFA or formalin on paw thickness, 

body weight and mechanical sensitivity. Intraplantar saline had no effect on paw thickness; 

however, both CFA and formalin produced significant and sustained increases in paw thickness 

(e.g. edema) within 24 hours, and these effects persisted for 7 days (Figure III.1 A, B). Body 
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weight increased significantly in the saline-control group for the CFA rats (Figure III.1 C), but 

this increase was small, and weight gain was not significant in the control group for the formalin 

rats (Figure III.1D). Administration of CFA, but not formalin, reduced body weight within 

24 hours, and body weight in CFA rats remained below baseline for 7 days (Figure III.1C, D). 

Saline had no effect on mechanical sensitivity; however, both CFA and formalin produced 

significant and sustained decreases in mechanical thresholds for eliciting paw withdrawal within 

6 hours, and this hypersensitivity persisted for 7 days (Figure III.1 E, F). 

Figure III.2 Shows effects of intraplantar saline, CFA or formalin on ICSS. Prior to 

intraplantar injections, the mean ± SEM baseline number of stimulation per component across all 

stimulation frequencies was 264 ± 13, and the mean ± SEM maximum control rate (MCR) at any 

one frequency trial was 58.9 ± 2 stimulations per trial. Intraplantar saline treatment did not alter 

ICSS at any time. CFA produced weak and transient depression of ICSS. Specifically, at 1 and 

3 hr after injection, ICSS in the CFA-treated rats was significantly lower than ICSS in the saline-

treated controls (Figure III.2 A); however, ICSS in CFA- and saline-treated rats did not differ 

after 3 hr, and within the CFA group, ICSS after CFA treatment never differed significantly from 

baseline ICSS before CFA. Figure III.2 (C) shows full frequency-rate ICSS curves at selected 

times in the CFA-treated group. At baseline before CFA administration, electrical brain 

stimulation maintained a frequency-dependent increase in ICSS. In this analysis, ICSS was 

significantly decreased at several brain-stimulation frequencies after 1 hr but not after 7 days. In 

contrast to CFA, formalin produced a more robust and sustained depression of ICSS (Figure III.2 

B). Relative to the saline control group, formalin significantly reduced ICSS during the first 

24 hr after treatment and again on Day 3 and during Days 5-7 after treatment. Relative to the pre-

formalin baseline within the formalin group, formalin significantly depressed ICSS during the 
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first 1 hr and again on Day 7 after treatment. Figure III.2 D shows full frequency-rate curves at 

selected times in the formalin treated group. Formalin significantly depressed ICSS at multiple 

frequencies both 1 hr and 7 days after treatment. 

Figure III.3 Shows formalin effects on ICSS during the first 50 min after formalin 

administration. Formalin decreased ICSS throughout the first 50 min of testing, although the 

magnitude of this decrease was greatest from 20-50 min after treatment. 

Figure III.4 Shows CFA and formalin effects on ICSS at different lever heights in a 

subset of six rats from each group on Days 1, 3 and 7 after intraplantar treatment. In general, 

ICSS decreased as lever height increased, and this effect was largest on Day 1. CFA failed to 

significantly alter ICSS at any lever height on any day, whereas formalin depressed ICSS across 

all lever heights and days.  

Figure III.5 Shows effects of morphine on ICSS 8 days after treatment with intraplantar 

saline or formalin. In the saline-treated rats, cumulative dosing with 0.32-3.2 mg/kg morphine 

produced no significant effect on ICSS. Conversely, in the formalin-treated rats, baseline ICSS 

was depressed before morphine administration, and morphine produced a dose-dependent 

reversal of formalin-induced depression of ICSS. The lowest dose of 0.32 mg/kg morphine was 

sufficient to restore ICSS back to approximately baseline levels, and higher morphine doses 

produced a further facilitation of ICSS. 

Figure III.6 compares ICSS performance over a 14-day period after treatment with 

bilateral saline, bilateral 0.5% formalin, unilateral 5% formalin in one paw + unilateral saline in 

the other paw, and bilateral 5% formalin. Prior to intraplantar injections, the mean ± SEM 

baseline number of stimulations per component across all stimulation frequencies was 274 ± 14, 

and the mean ± SEM MCR at any one frequency was 55.9 ± 3. As in the first experiment, 
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bilateral 5% formalin depressed ICSS relative to bilateral saline treatment, and in this second 

experiment, the formalin effect persisted for 14 days. Unilateral 5% formalin decreased ICSS 

relative to saline controls only on Days 1 and 6, and bilateral 0.5% formalin did not alter ICSS 

relative to the saline controls. 

Figure III.7 Shows data to address the role of kappa opioid systems in mediating effects 

of CFA and formalin on ICSS. Neither CFA nor formalin significantly altered expression of 

PDYN or KOR mRNA in any brain area examined on Day 7 after intraplantar treatment (Figure 

III.5 A, B). Moreover, the kappa antagonist norBNI failed to alter ICSS in rats treated with 

intraplantar saline, and it also failed to block formalin-induced depression of ICSS in rats treated 

with intraplantar formalin (Figure III.V C-E). Data in Figure III.V5 (C-E) show results obtained 

on Day 8 after intraplantar injection and 22 hr after norBNI administration. Rats were also tested 

daily for another six days (Days 9-14 after intraplantar injection), and norBNI did not 

significantly alter either control ICSS or formalin-depressed ICSS on any day (data not shown). 

 

Summary 

This study compared effects of intraplantar CFA and formalin on a series of behavioral 

and physiological endpoints in rats. There were four main findings. First, consistent with 

previous studies, both CFA and formalin produced similar paw swelling and mechanical 

hypersensitivity. Second, CFA produced weak and transient depression of ICSS, whereas 

formalin produced a more robust and sustained depression of ICSS that lasted at least 14 days. 

Third, formalin-induced depression of ICSS was reversed by morphine doses that did not 

significantly alter ICSS in saline-treated rats, suggesting that formalin effects on ICSS can be 

interpreted as an example of pain-related and analgesic-reversible depression of behavior. 
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Finally, formalin-induced depression of ICSS was not associated with changes in central 

biomarkers for activation of endogenous kappa opioid systems, which have been implicated in 

depressive-like states in rodents, nor was it blocked by the kappa antagonist norBNI. These 

results suggest differential efficacy of sustained pain stimuli to depress brain reward function in 

rats as assessed with ICSS. Formalin-induced depression of ICSS does not appear to engage 

brain kappa opioid systems.  

Figure Legends 

Figure III.1 Effects of CFA, formalin, or respective controls on paw width, body weight 

and mechanical sensitivity. The abscissae for all panels is hours or days following bilateral 

intraplantar 100 ul injection of CFA (gray bars, Panels A, C, E), formalin (filled bars, Panels B, 

D, F), or respective saline controls (open bars, all panels). Bars above “BL” show baseline data 

before injection. Ordinates (Panels A, B): paw width in mm. Ordinates (Panels C, D): body 

weight in grams. Ordinates (Panels E, F): paw withdrawal threshold from von Frey filaments in 

grams (log scale). Dollar signs ($) indicate a significant within-group difference from the 

respective baseline, and asterisks (*) indicate a significant between-group difference at a given 

time point, as determined by a significant two-way Repeated Measures ANOVA followed by the 

Holm-Sidak post hoc test (p < 0.05). All points show mean ± SEM from 8 rats.  

Figure III.2 Effects of CFA, formalin, or respective controls on ICSS. Panels A and B: 

Abscissae show hours or days following bilateral intraplantar 100 ul injection of CFA (gray bars, 

Panel A), formalin (filled bars, Panel B), or respective saline controls (open bars, both panels). 

Ordinates show ICSS rate expressed as total stimulations per component relative to pre-injection 

baseline. Dollar signs ($) indicate a significant within-group difference from the respective 

baseline, and asterisks (*) indicate a significant between-group difference at that time point. 
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Panels C and D show full frequency-rate ICSS curves for selected time points from A and B. 

Abscissae show frequency of electrical brain stimulation (Log Hz). Ordinates show ICSS rate 

expressed as percent maximum control rate (%MCR). Filled points indicate statistical 

significance of treatment effects relative to the pre-injection baseline. All statistical analyses 

were performed using two-way Repeated Measures ANOVA followed by the Holm-Sidak post 

hoc test (p < 0.05). All points show mean ± SEM from 8 rats.  

Figure III.3 Shows effects of formalin (filled bars) or saline (open bars) on ICSS during 

the first 50 minutes of testing immediately following intraplantar administration. Abscissa: Time 

(in 10 minute bins) after intraplantar formalin or saline administration. Ordinates: ICSS rate 

expressed as total stimulations per component relative to baseline. Data were analyzed by two-

way ANOVA followed by the Holm-Sidak post-hoc test (p < 0.05). All points show mean ± 

SEM from 8 rats. Statistical results are as follows. Significant main effect of treatment [F(1, 

14) = 13.141; p = 0.003], significant main effect of time [F(4,56) = 13.394; p < 0.001], and a 

significant interaction of treatment x time [F(4,56) = 3.928; p = 0.007]. Dollar signs ($) indicate a 

significant within-group difference from the respective baseline, and asterisks (*) indicate a 

significant between-group difference at a given time point, as determined by a significant two-

way ANOVA followed by the Holm-Sidak post hoc test (p < 0.05). 

Figure III.4 Shows effects of CFA, filled gray bars in Panel A), formalin (filled bars in 

Panel B), or respective controls (open bars in both panels) on ICSS during lever height 

challenges. Abscissae show lever heights (low, middle or high) on days 1, 3 and 7 following 

treatment. Ordinates show ICSS rate expressed as total stimulations per component relative to 

baseline determined at the low lever height before intraplantar treatment. Data were analyzed by 

three-way ANOVA followed by the Holm-Sidak post-hoc test  
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(p < 0.05). All points show mean ± SEM from 6 rats. Statistical results are as follows. Panel A. 

Significant main effect of day [F(2,90) = 4.148, p = 0.019], significant main effect of lever height 

[F(2,90) = 9.097, p < 0.001], but no main effect of CFA treatment [F(1,90) = 0.121, p = 0.729] 

and no significant interactions of day X lever height (p = 0.785), day X treatment (p = 0.417), 

lever height X treatment (p = 0.696), or day X lever height X treatment (p = 0.803). Panel B. 

Significant main effect of day [F(2,90) = 4.669, p = 0.012], significant main effect of lever height 

[F(2,90) = 27.314, p < 0.001], and a significant main effect of formalin treatment 

[F(1,90) = 78.725, p < 0.001], but no interactions of day X lever height (p = 0.108), day X 

treatment (p = 0.154), lever height X treatment (p = 0.794), or day X lever height X treatment 

(p = 0.558). Panels C-E show the posture of a rat responding at the low, medium and high lever 

height, respectively. Increases in lever height required increasingly erect postures and increased 

weight bearing on the hind paws. 

Figure III.5 Effects of the mu opioid agonist morphine (0.32-3.2 mg/kg) on ICSS eight 

days after bilateral intraplantar saline or 5% formalin. Panels A and B: Abscissae show 

frequency of electrical brain stimulation (Log Hz) in rats that received intraplantar saline (A) or 

formalin (B). Ordinates show ICSS rate expressed as percent maximum control rate (%MCR). 

“BL” shows the baseline frequency-rate curve determined before intraplantar treatment, “0.0” 

shows the frequency-rate curve determined on Day 8 after intraplantar treatment but before 

morphine treatment. Filled points in panel B show significant morphine effects relative to “0.0.” 

Panel C: The abscissa shows morphine dose in mg/kg in rats that received intraplantar saline 

(open bars) or formalin (filled bars). The ordinate shows ICSS rate expressed as total 

stimulations per component relative to baseline. Dollar signs ($) indicate a significant within-

group difference from “0.0”, and asterisks (*) indicate a significant between-group difference at 
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a given morphine dose. All statistical analyses were performed using a two-way Repeated 

Measures ANOVA followed by the Holm-Sidak post-hoc test (p < 0.05). All data show mean ± 

SEM from 8 rats per treatment.  

Figure III.6 Formalin induced-depression of ICSS is dose and time related. Abscissa: 

Days after varying doses of intraplantar formalin or saline administration. Ordinate: ICSS rate 

expressed as percent baseline stimulations per component. Statistical analysis was performed 

using two-way Repeated Measures ANOVA followed by the Holm-Sidak post hoc test 

(p < 0.05). Dollar signs ($) indicate a significant within-group difference from the pre-injection 

baseline, and filled points indicate a significant between-group difference at that time point 

relative to saline treatment. All data show mean ± SEM from 6 rats per treatment.  

Figure III.7 Role of the endogenous kappa opioid system in pain-related depression of 

ICSS. Panels A and B: Transcript levels of PDYN (A) or KOR (B) mRNA as measured by qRT-

PCR in brain regions implicated in DA-ergic control of behavior. Abscissae: Brain area 

evaluated. Ordinates: Transcript levels expressed as “Fold-Induction” relative to saline controls. 

“ND” in Panel B signifies “Not Determined” due to low transcript levels below the level of 

detection in some rats. Panel C-D: Effects of the kappa antagonist norBNI (32 mg/kg) on ICSS 

in rats treated with intraplantar saline (C) or formalin (D). Abscissae show frequency of 

electrical brain stimulation (Log Hz). Ordinates show ICSS rate expressed as percent maximum 

control rate (%MCR). “BL” shows the frequency-rate curve determined on Day 7 after 

intraplantar saline or formalin and immediately before norBNI treatment. ICSS was then 

redetermined 24 hr after norBNI. Summary data are shown in Panel E, where the abscissa shows 

norBNI dose in mg/kg in rats that received intraplantar saline (open bars) or formalin (filled 

bars), and the ordinate shows ICSS rate expressed as total stimulations per component relative to 
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the pre-formalin baseline. The asterisk (*) indicates a significant between-group difference at a 

given dose. All data show mean ± SEM from 6 rats.  
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Figure III.1 
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Figure III.2 
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Figure III.3 
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Figure III.4 
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Figure III.5 
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Figure III.6 
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Figure III.7 
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Chapter IV: Pharmacological modulation of sustained pain-related depression of 

behavior: Effects of morphine, ketoprofen, bupropion, ∆9-tetrahydrocannabinol, and gabapentin 

on formalin-induced depression of intracranial self-stimulation (ICSS) in rats 

 

Leitl MD and Negus SS. In preparation.  

 

Introduction 

Clinical pain is often associated with functional impairment and depression of behavior, 

and alleviation of pain-related depression of behavior is a common goal of treatment (Cleeland 

and Ryan, 1994; Dworkin et al., 2005). ICSS is a preclinical procedure in which operant 

behavior is maintained by delivery of electrical stimulation to brain reward areas, and pain-

related depression of ICSS has served as one experimental tool for research on expression and 

treatment of pain-related depression of behavior in rats (Negus and Miller, 2014; Negus, 2013). 

 ICSS in rats can be depressed by relatively transient pain stimuli including IP injection of dilute 

acid (Negus, 2013; Negus and Altarifi, 2013) and hindpaw incision (Ewan and Martin, 2014). 

Moreover, acid-induced depression of ICSS can be alleviated by treatment with clinically 

effective analgesics such as MOR agonists and nonsteroidal anti-inflammatory drugs, but not by 

treatment with other drug classes (e.g. centrally acting KOR agonists) that do not function as 

effective analgesics in humans despite producing apparent antinociception in many conventional 

preclinical pain assays (Negus et al., 2010; Negus et al., 2012).  One implication of these 

findings is that preclinical assays of pain-related depression of ICSS or other behaviors may 

contribute to improved preclinical-to-clinical translation of results for candidate analgesics. 
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Although a need persists for safer and more effective analgesics to treat acute pain, there 

is a more pressing need to develop improved treatments for chronic pain in general and chronic 

neuropathic pain in particular (Institute of Medicine, 2011; Gilron et al., 2015; Kerstman et al., 

2013)  For example, one recent meta-analysis of neuropathic pain pharmacotherapies concluded 

that even the best pharmacotherapies available range from 4-10 in terms of patient “number 

needed to treat” (or NNT; Finnerup et al., 2015) to obtain a significant therapeutic effect in one 

patient.  A common approach to modeling neuropathic pain in rodents involves strategies to 

injure sensory nerves innervating the rear paw to produce hypersensitive withdrawal responses to 

mechanical or thermal stimuli; however, a spinal nerve ligation injury sufficient to produce 

mechanical hypersensitivity failed to decrease ICSS in rats (Ewan and Martin, 2014), and this 

finding is consistent with other evidence to suggest a general absence of pain-related behavioral 

depression in common nerve injury models (Urban et al., 2011; LaCroix-Fralish et al., 2011).  As 

an alternative to nerve injury models, formalin is an aqueous formulation of formaldehyde that 

cross links proteins to produce cell death, including neuropathy (Fu et al., 2001; Fu et al., 2000; 

Vierck et al., 2008), and we recently reported that bilateral intraplantar administration of dilute 

formalin produced not only mechanical hypersensitivity, but also a sustained pain-related 

depression of ICSS in rats (Leitl et al., 2014a).  These results suggested that formalin-induced 

depression of ICSS in rats may serve as a useful procedure to evaluate drug effects on behavioral 

depression associated with sustained neuropathic pain. 

The present study had two goals.  First, we reported previously that acute morphine 

treatment produced a dose-dependent reversal of formalin-induced depression of ICSS (Leitl et 

al., 2014a).  However, opioids and other pharmacotherapies for neuropathic pain are typically 

administered chronically, and changes in drug effects (e.g. tolerance to analgesic effects or to 
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undesirable side effects) can influence drug effectiveness and safety (Turk et al., 2003). 

 Accordingly, one goal of this study was to assess potential changes in morphine effects during 

repeated treatment.  Based on previous studies to evaluate effects of repeated morphine on acute 

acid-induced depression of ICSS (Altarifi and Negus, 2011), we hypothesized that repeated 

morphine would retain its antinociceptive efficacy, and that tolerance would develop to 

undesirable sedative effects. Second, we compared effects of repeated morphine to effects of 

repeated treatment with ketoprofen, bupropion, THC, and gabapentin.  Ketoprofen is an NSAID 

analgesic that blocks acid-induced depression of ICSS (Negus et al., 2012), but NSAIDs are not 

effective against neuropathic pain (McQuay, 2007), and we hypothesized that it would be 

ineffective to block neuropathic pain-related depression of ICSS produced by formalin. 

Bupropion is a DA/NE uptake inhibitor used clinically as an antidepressant (Semenchuk et al., 

2001). Bupropion blocks acid-induced depression of ICSS (Rosenberg et al., 2013), but 

bupropion and some other monoamine uptake inhibitors also have clinical efficacy to treat 

neuropathic pain (Finnerup et al., 2015; Semenchuk et al., 2001), and we hypothesized that 

bupropion would display sustained effectiveness to reverse formalin-induced depression of 

ICSS. THC, a cannabinoid receptor agonist and the principal psychoactive constituent of 

marijuana failed to block acid-induced depression of ICSS (Kwilasz and Negus, 2012), and 

although some studies have suggested effectiveness of THC to treat some forms of neuropathic 

pain (Phillips et al., 2010; Beaulieu and Ware, 2007; FASAM et al., 2005), a recent meta-

analysis recommended against use of THC due to concerns over poor efficacy and unacceptable 

side effects (Finnerup et al., 2015).  We hypothesized that THC would lack efficacy to reverse 

formalin-induced depression of ICSS. Gabapentin is an anticonvulsant that is considered a first 

line therapy for neuropathic pain, but clinical effectiveness is limited despite relatively strong 
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preclinical evidence (Finnerup et al., 2015; Chang et al., 2014; Kerstman et al., 2013), suggesting 

that over-reliance on pain-stimulated dependent measures may be contributing to the appearance 

of efficacy.  For comparison with drug effects on formalin-induced depression of ICSS, effects 

of all drugs were also examined on the more conventional measure of mechanical 

hypersensitivity. 

Materials and Methods 

Subjects 

Studies were conducted in male Sprague-Dawley rats (Harlan, Frederick MD) with initial 

weights of 285 to 350 g. Rats were individually housed and maintained on a 12-h light/dark 

cycle with lights on from 6:00 AM to 6:00 PM. Food and water were continuously available in 

the home cage. Animal-use protocols were approved by the Virginia Commonwealth University 

Institutional Animal Care and Use Committee and complied with the National Research Council 

(2011) Guide for the Care and Use of Laboratory Animals. 

Noxious Stimulus and Drugs 

Formalin was obtained from Fisher Scientific (Waltham, MA; Catalog #305-510) and 

diluted in saline to obtain a 5% final concentration. Rats were lightly restrained in a soft cloth for 

100μl bilateral injections administered into the plantar aspect of the left and right hind paws 

using a 27 gauge needle.  Morphine sulfate (NIDA Drug Supply Program, Bethesda, MD) and 

bupropion HCl (Sigma Chemical, St. Louis, MO) were dissolved in sterile saline.  Ketoprofen 

(Spectrum Chemical Co., New Brunswick, NJ), THC (NIDA Drug Supply Program) and 

gabapentin were prepared in a vehicle of ethanol, Emulphor EL-630 (Rhone-Poulenc; Princeton, 
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NJ), and sterile saline in a ratio of 1:1:18, respectively.  For all drugs, doses are expressed as the 

drug forms named above.  

Assay of ICSS. The Surgery, Apparatus, and Training details of this study are the same as those 

reported previously [Chapter II]. 

Experiment 1: Comparison of morphine, ketoprofen, bupropion, ∆9-

tetrahydrocannabinol (THC), and gabapentin on ICSS: 

 We reported previously that bilateral intraplantar injections of 100 µl/paw 5% formalin 

was the lowest formalin treatment regimen to produce a stable, pain-related depression of ICSS, 

and this depression of ICSS was apparent from 7-14 days after formalin treatment (Leitl et al., 

2014a).  Accordingly, once stable ICSS was established, studies with each drug were conducted 

over a period of 14 days as illustrated in Figure IV.I.  On Day 0, rats received bilateral 

intraplantar injections of 5% formalin or saline. On Days 1-6, no treatments were administered, 

and ICSS was evaluated daily during three-component sessions to monitor onset of formalin-

induced depression of ICSS.  On Days 7-13, drugs were administered and ICSS testing continued 

in three phases.  First, on Day 7, a dose-ranging experiment was conducted using a cumulative 

dosing procedure.  On these days, experimental sessions consisted of three daily-baseline 

components followed by three 60-min test periods.  A dose of drug was administered at the 

beginning of each test period, and 30 min later, ICSS was evaluated during two ICSS test 

components.  Each sequential dose increased the total cumulative dose by 0.5 or 1.0 log units, 

and dose ranges for each drug were as follows: morphine (0.32-3.2 mg/kg, SC), ketoprofen (0.1-

10 mg/kg, IP), bupropion (3.2-32 mg/kg, IP), THC (0.32-3.2, IP), and gabapentin (3.2-32 mg/kg, 

IP).  Doses, routes of administration, and pretreatment times were based on previous ICSS 
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studies with morphine, ketoprofen, bupropion, THC, and gabapentin (Altarifi et al., 2014; 

Kwilasz and Negus, 2012; Rosenberg et al., 2013; Ruyang et al., 2015).  Next, on Days 8-13, the 

effects of repeated daily dosing with a single drug dose were examined.  Experimental sessions 

consisted of three daily-baseline components followed immediately by administration of a single 

dose of test drug and then 30 min later by two ICSS test components.  The dose of drug 

administered on Days 8-13 was selected based on results of the Day 7 dose-ranging study as 

discussed below in Results.  Finally, on Day 14, the cumulative dose-effect curve was re-

determined using procedures identical to those on Day 7 to assess changes in drug effects 

associated with repeated treatment.      

Data analysis. The primary dependent measure for ICSS experiments was the total 

number of stimulations delivered across all 10 frequency trials of each component. The first 

ICSS component each day was considered to be a warm-up component, and data were discarded. 

A “Pretreatment Baseline” measure of ICSS in each subject was determined by averaging the 

number of stimulations per component during the second and third components across the three 

baseline days before intraplantar formalin/saline treatments (6 components total; see Figure 

IV.I). Daily-baseline data and drug-test data collected after intraplantar injections for each 

subject were then normalized to the Pretreatment Baseline using an equation to calculate % 

Pretreatment Baseline Stimulations per Component.  For daily-baseline components, data from 

the first component were discarded, and data from the second and third components on each day 

were first expressed as (Stimulations per Daily-Baseline Component /Pretreatment Baseline) x 

100, and then averaged across components.  For drug-test components, data for each of the two 

test component after each drug dose were expressed as (Stimulations per Drug-Test 

Component/Pretreatment Baseline) x 100, then averaged across components. 
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An additional dependent measure was the reinforcement rate in stimulations per trial 

during each of the 10 frequency trials of each component. To normalize these data, raw 

reinforcement rates from each trial in each rat were converted to percentage of maximum control 

rate (%MCR) for that rat, with the maximum control rate defined as the mean of the maximal 

rates observed during any frequency trial of the second and third baseline components across the 

three Pretreatment Baseline days. Thus, %MCR values for each trial were calculated as 

(response rate during a frequency trial ÷ maximum control rate) × 100.   

ICSS data were averaged across rats in each experimental condition and compared by one 

or two-way ANOVA, as appropriate. A significant ANOVA was followed by either a Dunnett’s 

post-hoc test (one-way ANOVA) or a Holm-Sidak post-hoc test (two-way ANOVA), and the 

criterion for significance was set a priori at p < 0.05.  

Experiment 2: Comparison of morphine, ketoprofen, bupropion, ∆9-

tetrahydrocannabinol, and gabapentin on paw withdrawal from mechanical stimulation: 

To provide a comparison with drug effects on formalin-induced depression of ICSS, 

separate groups of rats were used to assess drug effects on formalin-induced mechanical 

allodynia.  Specifically, the von Frey filament test was used to measure sensitivity to a punctate 

pressure stimulus, as previously described (Leitl et al., 2014a). Briefly, rats were placed on an 

elevated mesh galvanized steel platform in individual chambers with a hinged lid and allowed to 

acclimate for at least 20 min. Subsequently, von Frey filaments (0.4 - 15 g in approximate 0.25 

log increments; North Coast Medical, Morgan Hill, CA) were applied to the plantar aspect of the 

left hind paw using the “up-down” method to determine log median withdrawal threshold 

(Chaplan et al., 1994). Thresholds were determined before intraplantar injection of formalin or 



88 

 

saline and again 7 days after intraplantar treatments.  On day 7, thresholds were determined five 

times, once before any further treatment, once after treatment with drug vehicle, and three 

additional times after treatment with each of three cumulative doses of the test drug.  The dose 

ranges and dose intervals for cumulative dosing were identical to those used on day 7 of ICSS 

studies.  

Data analysis. The primary dependent measure for von Frey experiments was log median 

withdrawal threshold (Chaplan et al., 1994).  These values were averaged across rats for each 

drug dose, and data for each drug dose were compared to the respective vehicle using one-way 

ANOVA followed by Dunnett post hoc test to compare paw withdrawal thresholds after each 

dose to the paw withdrawal thresholds after drug vehicle (p<0.05).  

 

Results 

Formalin-induced depression of ICSS.  For all rats used in the study, the mean±SEM 

Pretreatment Baseline number of stimulations per component was 319.5±9.7, and the 

mean±SEM Maximum Control Rate (MCR) was 52.9±0.3 stimulations per trial. Prior to 

intraplantar treatment, pretreatment baseline rates of ICSS did not differ between groups that 

subsequently received either saline or formalin (data not shown).  Figure IV.1 shows that 

bilateral injection of intraplantar formalin depressed ICSS by day 7 relative to ICSS in saline-

treated rats.  Specifically, formalin produced a rightward and downward shift in the ICSS 

frequency-rate curve (Figure IV.1B) and a decrease in the total numbers of stimulations per 

component delivered across all brain-stimulation frequencies (Figure IV.1C).  Similar formalin 

effects were observed in each group of rats used to study test drugs, and formalin-induced 

depression of baseline ICSS was sustained throughout the subsequent period of drug testing 
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(Figures IV.2-4).  This formalin-induced depression of ICSS served an example of sustained 

pain-related depression of behavior, and drugs were evaluated for their effectiveness to reverse 

formalin effects.  

 Effects of Morphine.  Figure IV.2 shows effects of morphine on ICSS in saline-treated 

rats (Figure IV.IIA-C) and formalin-treated rats (Figure IV.2D-F).  On day 7 after intraplantar 

saline treatment, cumulative doses of 0.32 and 1.0 mg/kg morphine did not alter ICSS, and 3.2 

mg/kg morphine significantly depressed ICSS (Figure IV.2A).  A dose of 1.0 mg/kg morphine 

was selected for daily treatments on days 8-13 after intraplantar saline (see below for rationale), 

and this dose did not alter ICSS on any day (Figure IV.2B).  On day 14 after intraplantar saline, 

cumulative doses of 0.32-3.2 mg/kg morphine had no significant effect on ICSS (Figure IV.2C), 

indicating tolerance to the initial rate-decreasing effects of 3.2 mg/kg morphine observed on day 

7. 

 On day 7 after intraplantar formalin treatment, baseline ICSS was depressed, and 

cumulative morphine reversed this formalin-induced depression of ICSS with an inverted-U 

shaped dose-effect curve (Figure IV.2D).  Significant reversal was obtained with 1.0 mg/kg 

morphine, so this dose was used for repeated daily treatments on days 8-13 after intraplantar 

formalin.  Two-way ANOVA during this treatment period indicated a significant main effect of 

morphine to alleviate formalin-induced depression of ICSS (Figure IV.2E).  On day 14 after 

intraplantar formalin, cumulative morphine produced a dose-dependent reversal of formalin-

induced depression of ICSS, with significant effects produced by 1.0 and 3.2 mg/kg morphine 

(Figure IV.2F).    
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 Effects of Ketoprofen.  Figure IV.3 shows effects of ketoprofen on ICSS in saline-treated 

rats (Figure IV.3A-C) and formalin-treated rats (Figure IV.3D-F).  On day 7 after intraplantar 

saline treatment, cumulative doses of 0.1, 1.0, and 10 mg/kg ketoprofen did not alter ICSS.  A 

dose of 10 mg/kg ketoprofen was selected for daily treatments on days 8-13 after intraplantar 

saline (see below for rationale), and this dose did not alter ICSS on any day (Figure IV.3B).  On 

day 14 after intraplantar saline, cumulative doses of 0.1, 1.0, and 10 mg/kg ketoprofen did not 

alter ICSS (Figure IV.3C).  

 On day 7 after intraplantar formalin treatment, baseline ICSS was depressed, and 

cumulative ketoprofen doses up to 10 mg/kg did not reverse this formalin-induced depression of 

ICSS (Figure IV.3D).  Because no ketoprofen dose altered ICSS, and higher doses may produce 

gastrointestinal toxicity in rodents (Lamon et al., 2008;de la Lastra et al., 2002), the dose of 10 

mg/kg was selected for repeated daily treatments on days 8-13 after intraplantar formalin, and 

two-way ANOVA during this treatment period did not indicate a significant main effect of 

ketoprofen to alleviate formalin-induced depression of ICSS (Figure IV.3E).  On day 14 after 

intraplantar formalin, cumulative doses of 0.1, 1.0, and 10 mg/kg ketoprofen did not alter ICSS 

(Figure IV.IIIF). 

 Effects of Bupropion.  Figure IV.4 shows effects of bupropion on ICSS in saline-treated 

rats (Figure IV.4A-C) and formalin-treated rats (Figure IV.4D-F).  On day 7 after intraplantar 

saline treatment, cumulative doses of 3.2 and 10 mg/kg bupropion did not alter ICSS, and 32 

mg/kg bupropion significantly facilitated ICSS (Figure IV.4A).  A dose of 3.2 mg/kg bupropion 

was selected for daily treatments on days 8-13 after intraplantar saline (see below for rationale), 

and this dose did not alter ICSS on any day (Figure IV.4B).  On day 14 after intraplantar saline, 

cumulative doses of 3.2 and 10 mg/kg bupropion had no significant effect on ICSS, but 32 mg/kg 
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bupropion again significantly facilitated ICSS (Figure IV.4C), indicating a lack of sensitization 

or tolerance to the initial effects of bupropion observed on day 7. 

 On day 7 after intraplantar formalin treatment, baseline ICSS was depressed, and 

cumulative bupropion reversed this formalin-induced depression of ICSS in a dose-dependent 

matter (Figure IV.4D).  Significant reversal was obtained with 10 and 32 mg/kg bupropion, but 

3.2 mg/kg bupropion increased mean ICSS levels back to approximately 100% of the pre-

formalin baseline, and the lack of statistical significance was due in part to high variability in 

effects of 32 mg/kg bupropion (e.g. 3.2 mg/kg bupropion did significantly increase ICSS relative 

to the daily baseline when evaluated by t-test, p<0.05).  Accordingly, 3.2 mg/kg bupropion was 

used for repeated daily treatments on days 8-13 after intraplantar formalin, and two-way 

ANOVA during this treatment period indicated a significant main effect of bupropion to alleviate 

formalin-induced depression of ICSS (Figure IV.4E).  On day 14 after intraplantar formalin, 

cumulative bupropion produced a dose-dependent reversal of formalin-induced depression of 

ICSS, with significant effects again produced by 10 and 32 mg/kg bupropion (Figure IV.4F).  As 

on day 7, effects of 3.2 mg/kg bupropion were not statistically significant, but mean ICSS levels 

were restored to approximate baseline levels. 

Effects of THC.  Figure IV.5 shows effects of THC on ICSS in saline-treated rats (Figure 

IV.5A-C) and formalin-treated rats (Figure IV.5D-F).  On day 7 after intraplantar saline 

treatment, cumulative doses of 0.32 and 1.0 mg/kg THC did not alter ICSS, and 3.2 mg/kg THC 

significantly depressed ICSS (Figure IV.5A).  A dose of 1.0 mg/kg THC was selected for daily 

treatments on days 8-13 after intraplantar saline (see below for rationale), and this dose did not 

significantly alter ICSS during repeated treatment (Figure IV.5B).  On day 14 after intraplantar 

saline, cumulative doses of 0.32, and 1.0 mg/kg THC did not alter ICSS, and 3.2 mg/kg again 
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significantly depressed ICSS (Figure IV.5C), indicating a lack of tolerance to the initial rate-

decreasing effects of 3.2 mg/kg THC observed on day 7. 

 On day 7 after intraplantar formalin treatment, baseline ICSS was depressed, and 

cumulative THC produced a dose-dependent exacerbation of formalin-induced depression of 

ICSS (Figure IV.5D).  Because none of the doses of THC tested alleviated formalin effects, an 

intermediate dose of 1.0 mg/kg THC was evaluated on days 8-13 to assess the potential for 

repeated treatment to produce tolerance to its rate-decreasing effects and unmask a reversal of 

formalin-induced depression of ICSS.  However, two-way ANOVA during this treatment period 

did not indicate a significant main effect of THC (Figure IV.5E), and on day 14, cumulative 

THC again only exacerbated formalin-induced depression of ICSS (Figure IV.5F).  A dose of 1.0 

mg/kg THC, which significantly decreased ICSS on day 7 in the formalin-treated rats, did not 

significantly alter ICSS on Day 14, suggesting tolerance to the rate-decreasing effects of this 

THC dose. 

Effects of Gabapentin.  Figure IV.6 shows effects of gabapentin on ICSS in saline-treated 

rats (Figure IV.6A-C) and formalin-treated rats (Figure IV.6D-F).  On day 7 after intraplantar 

saline treatment, cumulative doses of 3.2 and 10 mg/kg gabapentin did not alter ICSS, and 32 

mg/kg gabapentin significantly depressed ICSS (Figure IV.6A).  A dose of 32 mg/kg gabapentin 

was selected for daily treatments on days 8-13 after intraplantar saline (see below for rationale), 

and two-way ANOVA during this treatment period indicated a significant main effect of 

gabapentin, whereby gabapentin administration exacerbated or further decreased formalin-

induced depression of ICSS (Figure IV.6B). On day 14 after intraplantar saline, cumulative doses 

of 3.2 and 10 mg/kg gabapentin did not alter ICSS, and 32 mg/kg significantly depressed ICSS 
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(Figure IV.6C), indicating a lack of tolerance to the initial rate-decreasing effects of 32 mg/kg 

gabapentin observed on day 7, and observed throughout the study. 

 On day 7 after intraplantar formalin treatment, baseline ICSS was depressed, and 

cumulative gabapentin produced a dose-dependent exacerbation of acid-induced depression of 

ICSS (Figure IV.6D).  No significant reversal was obtained with any gabapentin dose, so the 

highest dose of 32 mg/kg was evaluated on days 8-13 to assess the potential for repeated 

treatment with this dose to produce tolerance to its rate-decreasing effects and thereby unmask a 

reversal of formalin-induced depression of ICSS.  Two-way ANOVA during this treatment 

period revealed a significant main effect of gabapentin treatment, but this main effect was further 

depression of ICSS rather than a reversal of formalin-induced depression of ICSS (Figure 

IV.6E).  On day 14 after intraplantar formalin, cumulative gabapentin again produced a dose-

dependent exacerbation of formalin-induced depression of ICSS, with significant effects 

produced by all gabapentin doses (Figure IV.6F).     

 Drug effects on mechanical allodynia.  Figure IV.7 shows that paw-withdrawal 

thresholds to mechanical stimulation were significantly reduced 7 days after formalin injection 

relative to pre-formalin values (IV.7A). Morphine, bupropion, THC, and gabapentin produced 

reversal of formalin-induced mechanical allodynia in a dose-dependent manner (IV.7B. 

Ketoprofen, in contrast, failed to reverse formalin-induced mechanical allodynia at any dose 

tested (IV.7B).  

Summary 

This study evaluated effects of repeated treatment with morphine, ketoprofen, bupropion, 

THC, and gabapentin on sustained pain-related depression of ICSS produced by intraplantar 
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formalin injection.  For comparison, acute drug effects were also examined on the more 

conventional endpoint of formalin-induced mechanical allodynia using the von Frey assay.  

There were three main findings.  First, in agreement with previous studies, intraplantar formalin 

produced both mechanical allodynia and sustained depression of ICSS.  Second, morphine 

produced a dose-dependent reversal of both formalin-induced mechanical allodynia and 

formalin-induced depression of ICSS, and morphine antinociception in the assay of formalin-

depressed ICSS was sustained during repeated treatment.  Third, the DA/NE uptake inhibitor 

bupropion also blocked formalin-induced mechanical allodynia and produced a sustained 

reversal of formalin-induced depression of ICSS; however, ketoprofen was not effective to 

reverse either formalin effect, while THC and gabapentin were effective in reversing formalin-

induced mechanical allodynia but not formalin-induced depression of ICSS.   These results 

illustrate a range of potential effect profiles and provide further evidence to suggest that 

evaluation of drug effects on pain-related depression of ICSS may both (a) differ from drug 

effects on more conventional endpoints in preclinical pain assays, and (b) contribute new insights 

to preclinical evaluation of candidate analgesic drugs.     
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Figure Legends 

IV.1 Effects of bilateral intraplantar treatment with saline or 5% formalin on ICSS for all 

rats used in ICSS studies. (A)  Panel A shows the experimental timeline for behavioral testing, 

intraplantar treatments with formalin or saline, and drug treatments. (B) Panel B shows full 

frequency-rate curves determined on day 7 after saline or formalin treatment and before initiation 

of drug treatments.  Abscissa: frequency of electrical brain stimulation (Log Hz).  Ordinate: 

ICSS rate expressed as percent maximum control rate (%MCR).  Two-way ANOVA indicated 

significant main effects of treatment [F(1,35)=27.42; p<0.001] and frequency [F(9,207)=307.1; 

p<0.001)], and a significant interaction [F(9,207)=5.879; p<0.001)].  Filled points indicate a 

significant between-group effect of treatment at a given brain-stimulation frequency (Holm-

Sidak post hoc test, p<0.05).  (C) Panel B shows summary data for the total number of 

stimulations delivered across all brain-stimulation frequencies on day 7 after saline or formalin 

treatment.  Abscissa: Intraplantar treatment.  Ordinate: total number of stimulations per 

component, expressed as a percentage of the pretreatment baseline.  The asterisk indicates a 

significant difference between groups as determine by t-test (t=5.910; p<0.001). All points and 

bars show mean ± SEM from 36 rats. 

IV.2 Effects of the mu opioid agonist morphine on ICSS 7-14 days after bilateral 

intraplantar saline (A-C) or 5% formalin (D-F). Panels A, C, D and F show effects of cumulative 

morphine (0.32-3.2 mg/kg) administered on day 7 (A,D) or day 14 (C,F) after intraplantar 

treatment.  Abscissae: dose morphine in mg/kg.  Baseline (BL) ICSS determined before 

morphine treatment is also shown in each panel.  Ordinates: total number of stimulations per 

component, expressed as a percentage of pretreatment baseline.  Asterisks indicate significantly 

different from the daily baseline as determined by a significant one-way ANOVA followed by 
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the Dunnett post hoc test (p<0.05; see ANOVA results below).  Panels B and E show effects of 

1.0 mg/kg morphine administered on days 8-13 after intraplantar treatment.  Abscissae: day after 

intraplantar treatment.  Ordinates: total number of stimulations per component, expressed as a 

percentage of pretreatment baseline.  For each day, data are shown for ICSS before morphine 

administration (Daily Baseline) and after morphine administration (+1.0 morphine).  The p value 

for the main effect of morphine treatment is shown in each panel (see below for full 2-way 

ANOVA results).  ANOVA results for each panel were as follows:  (A) significant effect of 

morphine dose [F(3,15)=5.006; p=0.013];  (B) no main effect of morphine [F(1,5)=1.789; 

p=0.239] or day [F(5,25)=1.426; p=0.250)], and no interaction [F(5,25)=0.3102; p=0.902]; (C) 

no significant effect of morphine dose [F(3,15)=1.775; p=0.195]; (D) significant effect of dose 

[F(3,15)=9.994; p<0.001]; (E) significant main effect of morphine [F(1,5)=15.56; p=0.011] but 

not day [F(5,25)=1.106; p=0.382], and no interaction [F(5,25)=0.5758; p=0.718]; (F) significant 

effect of dose [F(3,15)=4.450; p=0.020]. All points show mean ± SEM from 6 rats. 

IV.3 Effects of the nonsteroidal anti-inflammatory drug ketoprofen on ICSS 7-14 days 

after bilateral intraplantar saline (A-C) or 5% formalin (D-F). Panels A, C, D and F show effects 

of cumulative ketoprofen (0.1-10 mg/kg) administered on day 7 (A,D) or day 14 (C,F) after 

intraplantar treatment.  Abscissae: dose of ketoprofen in mg/kg.  Baseline (BL) ICSS determined 

before ketoprofen treatment is also shown in each panel. Ordinates: total number of stimulations 

per component, expressed as a percentage of pretreatment baseline. Panels B and E show effects 

of 10 mg/kg ketoprofen administered on days 8-13 after intraplantar treatment.  Abscissae: day 

after intraplantar treatment.  Ordinates: total number of stimulations per component, expressed as 

a percentage of pretreatment baseline.  For each day, data are shown for ICSS before ketoprofen 

administration (Daily Baseline) and after ketoprofen administration (+10.0 ketoprofen).  The p 
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value for the main effect of ketoprofen treatment is shown in each panel (see below for full 2-

way ANOVA results).    ANOVA results for each panel were as follows:  (A) no significant 

effect of dose [F(3,15)=0.1368; p=0.937]; (B) no main effect of ketoprofen [F(1,5)=0.07948; 

p=0.789] or day [F(5,25)=0.2518; p=0.935], and no interaction [F(5,25)=0.9778; p=0.451]; (C) 

no significant effect of dose [F(3,15)=0.4254; p=0.425]; (D) no significant effect of dose 

[F(3,15)=0.164; p=0.164]; (E) no significant main effect of ketoprofen [F(1,5)=0.3149; 

p=0.5999] or day [F(5,25)=0.3279; p=0.891], and no interaction [F(5,25)=0.4982; p=0.775]; (F) 

no significant effect of dose [F(3,15)=1.815; p=0.188]. All points show mean ± SEM from 6 rats. 

IV.4 Effects of the DA uptake inhibitor bupropion on ICSS 7-14 days after bilateral 

intraplantar saline (A-C) or 5% formalin (D-F). Panels A, C, D and F show effects of cumulative 

bupropion (3.2-32 mg/kg) administered on day 7 (A,D) or day 14 (C,F) after intraplantar 

treatment.  Abscissae: dose of bupropion in mg/kg.  Baseline (BL) ICSS determined before 

bupropion treatment is also shown in each panel.  Ordinates: total number of stimulations per 

component, expressed as a percentage of pretreatment baseline.  Asterisks indicate significantly 

different from the daily baseline as determined by a significant one-way ANOVA followed by 

the Dunnett post hoc test (p<0.05; see ANOVA results below).  Panels B and E show effects of 

3.2 mg/kg bupropion administered on days 8-13 after intraplantar treatment.  Abscissae: day 

after intraplantar treatment.  Ordinates: total number of stimulations per component, expressed as 

a percentage of pretreatment baseline.  For each day, data are shown for ICSS before bupriopion 

administration (Daily Baseline) and after bupropion administration (+3.2 bupropion).  The p 

value for the main effect of bupropion treatment is shown in each panel (see below for full 2-way 

ANOVA results).  ANOVA results for each panel were as follows:  (A) significant effect of dose 

[F(3,15)=6.088; p=0.006];  (B) no main effect of bupropion [F(1,5)=0.2095; p=0.666] or day 



98 

 

[F(5,25)=0.8404; p=0.534], but a significant interaction [F(5,25)=5.454; p=0.002]; (C) 

significant effect of dose [F(3,15)=9.314; p=0.001]; (D) significant effect of dose 

[F(3,15)=7.151; p=0.003], (E) significant main effect of bupropion [F(1,5)=14.36; p=0.013] but 

not day [F(5,25)=0.2447; p=0.939], and no interaction [F(5,25)=1.773; p=0.167]; (F) significant 

effect of dose [F(3,15)=0.0029; p=0.003]. All points show mean ± SEM from 6 rats. 

IV.5 Effects of the cannabinoid receptor agonist THC on ICSS 7-14 days after bilateral 

intraplantar saline (A-C) or 5% formalin (D-F). Panels A, C, D and F show effects of cumulative 

THC (0.32-3.2 mg/kg) administered on day 7 (A,D) or day 14 (C,F) after intraplantar treatment.  

Abscissae: dose of THC in mg/kg.  Baseline (BL) ICSS determined before THC treatment is also 

shown in each panel.  Ordinates: total number of stimulations per component, expressed as a 

percentage of pretreatment baseline.  Asterisks indicate significantly different from the daily 

baseline as determined by a significant one-way ANOVA followed by the Dunnett post hoc test 

(p<0.05; see ANOVA results below).  Panels B and E show effects of 1.0 mg/kg THC 

administered on days 8-13 after intraplantar treatment.  Abscissae: day after intraplantar 

treatment.  Ordinates: total number of stimulations per component, expressed as a percentage of 

pretreatment baseline.  For each day, data are shown for ICSS before THC administration (Daily 

Baseline) and after THC administration (+1.0 THC).  The p value for the main effect of THC 

treatment is shown in each panel (see below for full 2-way ANOVA results).  ANOVA results 

for each panel were as follows:  (A) significant effect of dose [F(3,15)=8.214; p=0.002];  (B) no 

main effect of THC [F(1,5)=1.796; p=0.238] or day [F(5,25)=0.5944; p=0.704], but there was a 

significant interaction [F(5,25)=5.163; p=0.002]; (C) significant effect of dose [F(3,15)=20.16; 

p<0.001]; (D) significant effect of dose [F(3,15)=29.30; p<0.001], (E) no main effect of THC 

[F(1,5)=4.973; p=0.077] or day [F(5,25)=0.229; p=0.946], and no significant interaction 
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[F(5,25)=1.498; p=0.226]; (F) significant effect of dose [F(3,15)=6.569; p=0.005]. All points 

show mean ± SEM from 6 rats.  

IV.6 Effects of gabapentin on ICSS 7-14 days after bilateral intraplantar saline (A-C) or 

5% formalin (D-F). Panels A, C, D and F show effects of cumulative gabapentin (3.2-32 mg/kg) 

administered on day 7 (A,D) or day 14 (C,F) after intraplantar treatment.  Abscissae: dose of 

gabapentin in mg/kg.  Baseline (BL) ICSS determined before gabapentin treatment is also shown 

in each panel.  Ordinates: total number of stimulations per component, expressed as a percentage 

of pretreatment baseline.  Asterisks indicate significantly different from the daily baseline as 

determined by a significant one-way ANOVA followed by the Dunnett post hoc test (p<0.05; see 

ANOVA results below).  Panels B and E show effects of 32 mg/kg gabapentin administered on 

days 8-13 after intraplantar treatment.  Abscissae: day after intraplantar treatment.  Ordinates: 

total number of stimulations per component, expressed as a percentage of pretreatment baseline.  

For each day, data are shown for ICSS before morphine administration (Daily Baseline) and after 

gabapentin administration (+32 gabapentin).  The p value for the main effect of gabapetin 

treatment is shown in each panel (see below for full 2-way ANOVA results).  ANOVA results 

for each panel were as follows:  (A) significant effect of dose [F(3,15)=5.289; p=0.011];  (B) a 

significant main effect of gabapentin [F(1,5)=10.16; p=0.024] but not day [F(5,25)=0.3089; 

p=0.903)], and no interaction [F(5,25)=0.08467; p=0.994]; (C) significant effect of dose 

[F(3,15)=20.13; p<0.001]; (D) significant effect of dose [F(3,15)=8.654; p= 0.001], (E) 

significant main effect of gabapentin [F(1,5)=16.46; p=0.001] but not of day [F(5,25)=1.214; 

p=0.332], and no interaction [F5,25)=0.5279; p=0.753]; (F) significant effect of dose 

[F(3,15)=30.78; p<0.001]. All points show mean ± SEM from 6 rats. 
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IV.7 Effects of morphine, ketoprofen, bupropion, THC, and gabapentin on formalin-

induced mechanical hypersensitivity (or allodynia) 7 days after formalin-treatment.  Panel A: 

Magnitude of formalin-induced decrease in paw-withdrawal thresholds for all rats in the study.  

Abscissa: Pre- or 7-day Post-formalin treatment conditions.  Ordinate: paw withdrawal threshold 

from von Frey filaments in grams (log scale).  Formalin significantly decreased thresholds 

(t=13.83, df=35; p<0.001).  All bars show mean ± SEM for 24 rats.  Panel B: Effects of test 

drugs.  Abscissa: dose of drug in mg/kg (log scale). Ordinate: paw withdrawal threshold from 

von Frey filaments in grams (log scale). Filled symbols indicate significantly different from the 

vehicle as determined by a significant one-way ANOVA followed by the Dunnett post hoc test 

(p<0.05). ANOVA results were as follows: morphine: [F(5,25)=6.835; p=0.004]; ketoprofen 

[F(5,25)=0.270; p=0.846]; bupropion [F(5,25)=40.133; p<0.001]; THC [F(5,25)=7.932; 

p=0.003]; THC: a significant main effect of dose [F(5,25)=7.932; p=0.003]; gabapentin 

[F(5,25)=11.392; p<0.001]. All points show mean ± SEM from 6 rats. 
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Figure IV.1  

 



102 

 

Figure IV.2: Morphine 

 



103 

 

Figure IV.3: Ketoprofen 
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Figure IV.4: Bupropion 
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Figure IV.5: THC 
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Figure IV.6:  Gabapentin 
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Figure IV.7: Mechanical Allodynia 
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Chapter V: Discussion 

Pain-related depression of behavior. Chapter II studies were conducted to test the 

hypothesis that depression of behavior in rats caused by IP acid as an acute visceral noxious 

stimulus is mediated by depression of mesolimbic dopamine release in nucleus accumbens.  In 

agreement with previous studies (Kwilasz et al, 2012; Negus et al, 2010b; Negus et al, 2012; 

Pereira Do Carmo et al, 2009), data presented in Chapter II showed that IP administration of 

dilute lactic acid served as a noxious stimulus to produce an analgesic-reversible depression of 

ICSS. This study extended previous findings by using a higher intensity noxious stimulus (5.6% 

vs. 1.8% lactic acid, see below), and despite use of this higher intensity stimulus, both ketoprofen 

and morphine retained efficacy to block acid-induced depression of ICSS.  These results also 

agree with previous studies showing pain-related and analgesic-reversible depression of other 

behaviors including feeding (Kwilasz et al, 2012; Stevenson et al, 2006), locomotion (Cobos et 

al, 2012; Stevenson et al, 2009), burrowing (Andrews et al, 2012), and positively reinforced 

operant responding (Martin et al, 2004).   

Pain-related depression of mesolimbic DA release. As shown in Chapter II, acid-

induced depression of ICSS was accompanied by acid-induced depression of NAc DA levels.  In 

this regard, effects of the acid noxious stimulus were similar to effects of the kappa agonist 

U69593, and as will be discussed further below, that similarity provided one rationale for the 

hypothesis that acid effects were mediated by activation of the endogenous dynorphin/KOR 

system.  Before addressing that issue, though, it is relevant first to consider the relationship 

between the time course and potency of neurochemical and behavioral effects produced by IP 

acid and U69593.  First, regarding time course, both acid and U69593 produced an initial period 

of declining DA levels followed by a later period of relatively sustained but reduced DA levels.  
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The time course of ICSS depression corresponded more closely to the time course of declining 

rather than absolute DA levels, although significant depression of behavior was observed before 

significant depression of NAc DA levels.  A similar temporal relationship has been reported 

previously for the neurochemical and behavioral effects of the kappa agonist salvinorin A 

(Carlezon et al, 2006; Zhang et al, 2005).  Second, regarding potency, IP acid was more potent to 

depress ICSS than NAc DA levels.  For example, we have reported previously that a 

concentration of 1.8% lactic acid was sufficient to significantly depress ICSS (Pereira Do Carmo 

et al, 2009). Although this concentration of acid reduced mean NAc DA levels in preliminary 

experiments for this study, the reduction was not statistically significant (mean±SEM % baseline 

DA=95.64±3.87 after saline and 88.15±3.8 after 1.8% acid; p=0.21 by t-test), so a higher 

intensity stimulus of 5.6% acid was tested that did significantly decrease both ICSS and NAc 

DA.  Kappa agonists also tend to be less potent to depress microdialysis measures of NAc DA 

than ICSS and other behavioral endpoints (Carlezon et al, 2006; Negus et al, 2010b; Zhang et al, 

2005).  Moreover, the slower onset, longer duration and lower potency of these treatments to 

depress NAc DA levels vs. behavior is mirrored by a similar slower onset, longer duration and 

lower potency of amphetamine-like drugs to stimulate NAc DA vs. behavior (e.g. amphetamine, 

see (Bauer et al, 2013; Schad et al, 1995)).  Taken together, these results suggest that 

microdialysis measures of NAc DA are slightly less sensitive to, and slower to recover from, 

experimental manipulations than ICSS or other behavioral measures.  This difference may 

involve the lag between treatment-induced changes in synaptic DA (which affect behavior) and 

detection by microdialysis of later changes in extra-synaptic DA levels.   

This is the first study to report a pain-related and analgesic-reversible decrease in 

microdialysis measures of NAc DA after treatment with a noxious stimulus.  However, two other 
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recent studies reported increases in NAc DA release after antinociceptive treatments in rat 

models of post-surgical or cephalic pain (De Felice et al, 2013; Navratilova et al, 2013).  This 

preclinical evidence for reciprocal effects of pain- and analgesia-related manipulations on NAc 

DA corresponds to clinical evidence from functional magnetic resonance imaging studies for 

reciprocal negative/positive signals in NAc at pain onset/offset, respectively (Becerra and 

Borsook, 2008).  Moreover, these findings agree with other clinical evidence for a negative 

correlation between pain and mesolimbic DA in humans (Borsook et al, 2007; Jarcho et al, 2012; 

Wood, 2008).   

In the present study, ketoprofen completely blocked acid-induced depression of both NAc 

DA and ICSS at a dose that did not alter either NAc DA or ICSS when ketoprofen was 

administered alone.  This finding agrees with previous reports that ketoprofen blocks acid-

induced depression of ICSS and supports the proposition that ketoprofen reduced sensitivity to 

the acid noxious stimulus (Negus et al, 2010b; Kwilasz and Negus, 2012).  Morphine also 

blocked acid-induced depression of NAc DA and ICSS at a dose that had no significant effect on 

NAc DA or ICSS; however, mean DA levels were increased by morphine in this study, and 

previous microdialysis studies have reported that similar morphine doses produced significant 

increases in NAc DA (e.g. Cadoni C and DiChiara G, 2007).  In addition, 3.2 mg/kg morphine 

can produce significant facilitation of ICSS depending on variables such as pretreatment time 

and history of opioid exposure (Altarifi and Negus, 2011).  Accordingly, morphine blockade of 

acid effects on NAc DA and ICSS may reflect both reduced sensitivity to the noxious stimulus 

and additivity of opposing acid and morphine effects on NAc DA and ICSS.       

The finding that IP acid depressed NAc DA contrasts with several earlier microdialysis 

studies in rodents showing stimulation in NAc DA release by aversive stimuli such as foot shock, 
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tail shock and tail pinch (Amato et al, 2011; Kalivas and Duffy, 1995; Marinelli et al, 2005).  

Resolution of this discrepancy will require further research, but two issues will be highlighted 

here as potentially important factors.  First, aversive stimuli that stimulated NAc DA have all 

been applied cutaneously, whereas the present study used a visceral noxious stimulus.  

Cutaneous stimuli originating outside the body are more easily escaped than visceral stimuli and 

might therefore be likely to stimulate rather than depress behavior and neurochemical systems 

such as the mesolimbic DA system that mediate behavioral activation. For example, 20-min 

exposure to tail pinch stimulated both NAc DA levels and locomotor activity in rats (Amato et 

al, 2011). Second, the present study found that IP acid-induced depression of ICSS and NAc DA 

release was blocked by analgesic drugs, supporting the relationship of these effects to clinical 

pain.  In contrast, analgesics have not been evaluated for their ability to block stimulation of NAc 

DA release by cutaneous aversive stimuli.   

Role of endogenous dynorphin/KOR systems.  Results presented in Chapter II with 

U69593 agree with numerous previous studies in showing that kappa receptor activation is 

clearly sufficient to depress both ICSS and NAc DA release (Carlezon et al, 2006; Negus et al, 

2010b; Todtenkopf et al, 2004; Zhang et al, 2005). However, a dose of norBNI that fully blocked 

these effects of U69593 failed to block IP acid-induced depression of ICSS and NAc DA release.  

Conversely, U69593 effects were not blocked by a dose of ketoprofen that did block acid effects, 

and morphine was also more effective to block effects of acid than of U69593.  This double 

dissociation suggests that the endogenous dynorphin/KOR system is not necessary for acid-

induced depression of ICSS and NAc DA. 

This conclusion is also consistent with the finding that IP acid did not elevate PDYN in 

NAc or other brain regions at 1.5 or 24 hr after acid administration, and did not alter KOR at any 
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time. However, the present results do suggest a pain-related perturbation in kappa opioid 

systems, and behavioral consequences of that perturbation remain to be determined.  We focused 

on adaptations in mesocorticolimbic PDYN and KOR expression because previous work showed 

that non-noxious stressors activate the transcription factor CREB (cAMP response element 

binding protein) in the NAc, and that CREB-mediated increases in dynorphin function in this 

region contribute to depressive-like behavioral signs including anhedonia in the ICSS test 

(Chartoff et al, 2009; Muschamp et al, 2011; Pliakas et al, 2001).   The acid noxious stimulus did 

not elevate NAc PDYN expression like the stressors tested in these earlier studies, but it did 

significantly increase PFC PDYN expression at the delayed time point (4 days).  Although this 

effect was significant despite the use of conservative post hoc tests and alpha levels, we 

acknowledge that there is a possibility of Type I error whenever large numbers of comparisons 

are made, and future studies will follow up these early results with a more detailed 

characterization of the time course of this effect, as well as analysis of other proteins.  

Nevertheless, these data suggest that a visceral noxious stimulus that depresses ICSS may also 

trigger delayed but more sustained changes (e.g., those in the PFC) that increase vulnerability to 

depressive-like behaviors at later timepoints (e.g., days after the initial pain stimulus).  For 

example, recent work shows that KOR activation in the PFC causes local reductions in DA levels 

and establishes conditioned place aversions (Tejeda et al, 2013), suggesting that elevated 

dynorphin function in this region can produce another hallmark sign of depressive illness 

(dysphoria).  These data provide a rationale for future work in which vulnerability to depressive 

behavior is studied at time points far beyond the acute effects of a painful/stressful stimulus 

(Knoll et al, 2010).  Additionally, the fact that our data demonstrate that acute pain can cause 

adaptations within the mesocorticolimbic system opens the door to the study of other target 
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genes that are implicated in depressive behavior but that would be expected to be minimally 

sensitive to KOR blockade [e.g., BDNF; see (Berton et al, 2006)].   

 

Expression of chronic pain-depressed behavior and the role of endogenous kappa 

opioid system activation in rats. 

Chapter II evaluated expression and mechanisms of behavioral depression produced by an 

acute pain stimulus.  However, clinically relevant depression of behavior by pain is usually 

associated with more chronic inflammatory or neuropathic pain states.  Accordingly, Chapter III 

evaluated the hypothesis that inflammatory and neuropathic challenges thought to produce 

sustained or chronic pain would also produce sustained depression of behavior.  In doing so, a 

comparison of CFA and formalin were made, and a variety of dependent measures (physiological 

and operant) were evaluated. 

CFA-and formalin effects on paw width, mechanical allodynia and body weight.  

The CFA and formalin effects reported in Chapter III agree with previous studies in rats that 

examined the time course of paw swelling and/or mechanical sensitivity after intraplantar CFA 

(Stein et al., 1988; Chaplan et al., 1994; Grace et al., 2014) or formalin (Fu et al., 2001; Fu et al., 

2000; Grace et al., 2014).  For example, (Fu et al., 2001) demonstrated that a 5% formalin 

injection into the hindpaw of rats produced both mechanical and thermal allodynia for up to four 

weeks following administration. Similarly, (Grace et al., 2014) found that bilateral injection of 

either CFA or formalin into the hindpaw resulted in mechanical allodynia that lasted up to seven 

days.  Transient weight loss in CFA-treated rats, but not formalin-treated rats, is also consistent 

with previous studies.  For example, 100µl CFA administered to the tail-base in rats produced a 

magnitude and time course of weight loss similar to that reported here (Rofe et al., 1990), 
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whereas rats gained weight normally for six weeks after unilateral intraplantar injection of 50 µl 

5% formalin (Vierck et al., 2008).       

Differential effects of CFA and formalin on ICSS.  Although CFA and formalin 

produced similar effects on mechanical allodynia as a measure of pain-stimulated behavior, they 

produced distinct effects on depression of ICSS as a measure of pain-depressed behavior.  The 

greater and more sustained efficacy of formalin to depress ICSS may be related to its induction 

of necrosis in the paw, neuropathy of primary afferents, and/or microglial activation at the level 

of the spinal cord (Winter and McCarson, 2005; Lin et al., 2007; Berta et al., 2014), and we are 

actively investigating the role of these formalin effects in formalin-induced depression of ICSS. 

However, regardless of mechanism, these results extend the range of pain-related stimuli that 

have been found to depress brain reward function as assessed with ICSS in rats, and further 

identify bilateral intraplantar formalin as the stimulus producing the most sustained depression of 

ICSS so far reported.  For example, previous studies have shown transient (1-2 hr) pain-related 

and analgesic-reversible depression of ICSS by IP injection of dilute acid (Do Carmo et al., 

2009; Negus, 2013), and ICSS was also depressed for up to three hours by intraplantar CFA 

(present study) and for up to two days by paw incision (Ewan and Martin, 2014).  In contrast, 

effects of bilateral intraplantar formalin in the present study lasted for at least 14 days. Moreover, 

the poor efficacy of unilateral intraplantar formalin to alter ICSS in this study agrees with the 

finding that a unilateral spinal nerve ligation-model of neuropathy also failed to alter ICSS at any 

time (Ewan and Martin, 2014).   

The present evaluation of CFA and formalin effects on ICSS also warrant comparison to 

CFA and formalin effects on some other metrics of pain-related behavioral depression and/or 

negative affective states.  For example, unilateral treatment in rats with intraplantar CFA doses 
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similar to that used here depressed diurnal exploratory activity for four weeks (Larsen and Arnt, 

1985) and burrowing for 10 days (Andrews et al., 2012); however, pain-related changes in facial 

expression or place conditioning were apparent for only one day (Sotocinal et al., 2011; Okun et 

al., 2011), and neither nocturnal locomotor activity nor wheel running were significantly affected 

at any time (Larsen and Arnt, 1985; Grace et al., 2014).  Bilateral CFA injection, such as that 

used in the present study, did depress both nocturnal locomotor activity (for four weeks) and 

wheel running (for two days) in rats, and studies in mice have also reported a requirement for 

bilateral CFA treatment to produce transient depression of wheel running (Cobos et al., 2012).  

Taken together, these results indicate that CFA has different efficacies and time courses to 

produce different pain-related behaviors, and ICSS in rats is relatively resistant to CFA effects.  

Fewer studies have examined effects of formalin in procedures of pain-related behavioral 

depression and/or negative affective states.  Perhaps of greatest relevance to the present study, 

bilateral intraplantar formalin produced avoidance for six weeks of noxious thermal stimuli in an 

operant-escape procedure (Vierck et al., 2008).   Intraplantar formalin has also been shown to 

produce pain-related changes in facial expression and place conditioning (Langford et al., 2010;  

Johansen et al., 2001; Xiao et al., 2013), but these effects were evaluated only for the first hour 

after formalin administration, and more sustained formalin effects on these procedures have not 

been examined.  Lastly, in contrast to formalin effects on ICSS, bilateral intraplantar formalin 

administration had no effect on wheel running in rats (Grace et al., 2014).  This distinction is 

notable, because the failure of bilateral intraplantar formalin to alter either body weight (present 

study) or wheel running (Grace et al., 2014) provides evidence to suggest that ICSS depression 

by formalin could not be attributed to general behavioral impairment.  
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 Morphine reversal of formalin-induced depression of ICSS. The failure of morphine 

to significantly alter ICSS in rats after intraplantar saline treatment is consistent with previous 

studies showing little or no effect of these morphine doses on ICSS in opioid-naïve rats (Do 

Carmo et al., 2009; Negus et al., 2010b; Altarifi et al., 2012).  However, these same morphine 

doses significantly reversed formalin-induced depression of ICSS, consistent with previous 

studies showing that morphine also blocks acute depression of ICSS by IP acid (Do Carmo et al., 

2009; Negus et al., 2010a).  Moreover, the high potency of morphine to block formalin-induced 

depression of ICSS (effective at 0.32 mg/kg) is similar to the high potency of morphine to block 

acid-induced depression of ICSS (Do Carmo et al., 2009).  Reversal of formalin-induced 

depression of ICSS by the opioid analgesic morphine provides one source of evidence to suggest 

that this formalin effect may be related to sustained pain.    

In the present study, high morphine doses not only reversed formalin-induced depression 

of ICSS but also increased ICSS above original baseline levels.  Mechanisms responsible for this 

morphine effect are not currently known; however, the emergence of rate-increasing effects 

produced by these morphine doses after formalin treatment is similar to the emergence or 

enhancement of rate-increasing effects produced by regimens of prior morphine exposure 

(Altarifi and Negus, 2011).  Formalin treatment has been reported to promote endogenous opioid 

release (Kuraishi et al., 1984; Bourgoin et al., 1990; Zangen et al., 1998), and this raises the 

possibility that endogenous opioid release stimulated by formalin treatment had the effect of 

sensitizing rats to rate-increasing effects of subsequent treatment with the exogenous opioid 

morphine. 

NorBNI failed to reverse formalin-induced depression of ICSS.  Administration of the 

endogenous kappa agonist dynorphin or of exogenous kappa agonists like salvinorin A is 
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sufficient to decrease mesolimbic DA release and to depress ICSS in rodents (Yokoo et al., 1994; 

Carlezon, 2005; Todtenkopf et al., 2004; Negus et al., 2010b).  In addition, previous studies have 

shown that some non-pain stressors can increase central biomarkers for kappa opioid function 

and produce depression-like behaviors that can be blocked by kappa antagonists (Mague et al., 

2003; Chartoff et al., 2009; Bruchas et al., 2010; Van’t Veer and Carlezon, 2013).  These 

findings have suggested the possibility that activation of endogenous kappa opioid systems might 

also mediate pain-related depression of ICSS.  Accordingly, the present study tested the 

hypothesis that CFA and/or formalin might activate endogenous kappa opioid signaling and 

produce kappa antagonist-reversible depression of ICSS.  However, the present results do not 

support this hypothesis for four reasons.  First, neither CFA nor formalin significantly increased 

central PDYN or KOR mRNA levels.  Second, although this analysis may have failed to detect 

small but real changes in kappa biomarkers (a Type II error), there was no pattern for either a 

trend toward increased biomarker levels or a difference in CFA and formalin effects on 

biomarkers consistent with the difference in their effects on ICSS.  Third, CFA- and formalin-

induced changes in PDYN never approached the nearly two-fold increase in PDYN produced in 

rats exposed to the stress of a forced swim test (Chartoff et al., 2009).  Finally, the formalin-

induced decrease in ICSS was not blocked by the kappa antagonist norBNI, suggesting that any 

modest effects that formalin might have had on kappa biomarkers were not sufficient to produce 

a kappa receptor-mediated decrease in ICSS. 

The failure of norBNI, to reverse formalin-induced depression of ICSS suggested that 

non-kappa mechanisms were responsible for formalin-induced depression of ICSS. In effort to 

follow-up on these results, we subsequently characterized the pharmacological modulation of 

formalin-depressed by ICSS by drugs from different pharmacological classes to test possible 
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alternative mechanisms in Chapter IV. Endpoints in these studies consisted of classically used 

pain-stimulated (or reflex-withdrawal) dependent measures (e.g. threshold mechanical 

stimulation with von Frey filaments required to elicit paw withdrawal) in addition to pain-

depressed operant responding following acute and repeated administrations of each drug.   

Formalin-induced mechanical allodynia and depression of ICSS.  The effects of 

formalin on the production of mechanical allodynia, or hypersensitivity to a normally non-

noxious stimulus, were evaluated in this study, and the results obtained were consistent with 

previous studies employing a formalin dose of a sufficient intensity (Leitl et al., 2014; Fu et al., 

2000). Here, a dose of 5% formalin was sufficient to produce a hypersensitivity that remained 

present for at least 14 days. To further characterize the effects of formalin induced allodynia, we 

tested a range of prototypical and experimental analgesics. Pain-depressed operant responding of 

ICSS behavior appears to be sensitive to modulation by some noxious stimuli, but not all 

purported noxious stimuli or sub-chronic stimuli (Leitl et al., 2014a). In these studies, we used 

intraplantar formalin to decrease operant response rates; previous studies from our lab have 

shown formalin produced decreases in behavior that were reversed by doses of the mu opioid 

analgesic morphine at doses that did not alter control responding (Leitl et al., 2014a).    

Morphine effects.  Morphine is a clinically effective analgesic and agonist at mu opioid 

receptors. Morphine dose-dependently reversed both formalin-stimulated mechanical allodynia 

and formalin-induced depression of ICSS 7 days following formalin administration. This agrees 

with Chapter III results showing that morphine is capable of acutely reversing formalin-induced 

depression of ICSS on day 7 (Leitl et al., 2014a), and Chapter IV results extend on this finding 

by showing that morphine retained its effectiveness to block formalin-induced depression of 

ICSS during repeated morphine treatment. The effectiveness of the analgesic morphine to block 
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both formalin-stimulated mechanical allodynia and formalin-induced depression of ICSS is 

consistent with the interpretation that depression of ICSS by formalin is related to pain. 

Interestingly, doses of morphine (1.0 mg/kg) that were effective in reversing formalin-induced 

pain measures did not alter ICSS responding in control rats (intraplantar saline) to an appreciable 

(or statistically significant) degree. These results suggest formalin-treated rats may be more 

sensitive to mu opioid analgesic morphine than rats that are not in a purported pain-state. 

Moreover, the sustained effectiveness of morphine to reverse formalin-induced depression of 

ICSS during repeated morphine treatment is consistent with other evidence to suggest that 

morphine antinociception is resistant to tolerance in assays of pain-depressed behavior (Altarifi 

and Negus, 2015) and may also agree with evidence for sustained analgesic effectiveness of 

morphine in many clinical contexts (Harden et al., 2010; Morgan and Christie, 2011).  

Ketoprofen effects.  Ketoprofen is an NSAID, and NSAIDs are a class of analgesics that 

are defined by an ability to inhibit prostaglandin synthesis by blocking the COX enzymes 

necessary to produce prostaglandins (McQuay, 2007). NSAIDs, including ketoprofen, have four 

main pharmacological effects: anti-inflammatory, analgesic, antipyretic, and anti-thrombotic. 

Ketoprofen has previously been shown to block ICSS depression following acute delivery of IP 

acid (Leitl et al., 2014b), but was not sufficient to block ICSS depression following delivery of a 

sustained noxious stimulus. The failure of ketoprofen to block formalin-induced depression of 

ICSS or mechanical allodynia suggests that formalin is producing sustained depression of ICSS 

and mechanical allodynia through an inflammation-independent mechanism such as neuropathy; 

this is further corroborated in by weak efficacy of NSAIDs in the treatment of chronic 

neuropathic pain states in human clinical studies (De Leon-Casasola, 2013; Fornasari, 2012). In 
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sum, neuropathy, but not inflammation, appears to be the driving force behind formalin-induced 

depression of ICSS. 

Bupropion effects.   Bupropion is a DA/NE uptake inhibitor used clinically as an 

antidepressant (Semenchuk et al., 2001). Bupropion has also been shown to block acid-induced 

depression of ICSS (Rosenberg et al., 2013). In Chapter II, we showed induction of a pain-state 

resulted in a hypodopaminergic state in the NAc, and it has previously been shown that 

bupropion increases DA levels in the NAc (Sidhpura et al., 2007). The effectiveness of 

bupropion to also reverse formalin-induced depression of ICSS suggests that sustained formalin-

induced depression of ICSS may also involve a hypodopaminergic state.  Moreover, as with 

morphine, bupropion retained effectiveness during repeated administration, suggesting that 

tolerance does not develop to the antinociceptive effects of bupropion in this procedure. 

Bupropion was also able to dose-dependently reverse mechanical allodynia in addition to dose-

dependently reversing formalin-induced depression of ICSS 7 days following formalin 

administration. This study expands upon previous study showing that bupropion blocks a pain-

stimulated behavior (i.e. stretching) elicited by an acute, visceral noxious stimulus (lactic acid) 

(Rosenberg et al., 2013). These results are also in agreement with evidence demonstrating 

bupropion (and some other monoamine uptake inhibitors) have clinical efficacy to treat 

neuropathic pain (Finnerup et al., 2015; Semenchuk et al., 2001).  Interestingly doses of 

bupropion (3.2-10 mg/kg) that were effective in reversing formalin-induced pain measures did 

not alter ICSS responding in control rats (intraplantar saline) to an appreciable (or statistically 

significant) degree. These results suggest formalin-treated rats are more sensitive to the analgesic 

effects of the DA/NE inhibitor bupropion than rats that are not in a purported pain-state. 
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THC effects.  THC and other natural cannabinoids stem from the marijuana plant 

(Cannabis sativa), and THC itself is an agonist at cannabinoid 1 and cannabinoid 2 receptors 

(Axelrod and Felder, 1998). THC and other cannabinoid receptor agonists have been studied 

extensively with the intent of characterizing their potential therapeutic properties. Although the 

marijuana plant itself is widely used by humans, and although THC and other cannabinoids often 

appear analgesic in preclinical studies, there is poor evidence supporting its use in the clinic due 

to poor efficacy and high incidence of adverse effects (Beaulieu & Ware, 2007; Finnerup et al., 

2015; FASAM et al., 2005). In the studies conducted for this dissertation, THC was able to dose-

dependently reverse mechanical allodynia, a finding that agrees with previous studies that 

evaluated effects of THC on mechanical allodynia elicited by neuropathic manipulations 

(Brownjohn and Ashton, 2012)(Craft et al., 2013).  However, THC doses that blocked 

mechanical allodynia also decreased control (intraplantar saline) ICSS. Additionally, THC (1.0-

3.2 mg/kg) exacerbated formalin-induced depression of ICSS on day 7. Following repeated 

treatment of THC (1.0 mg/kg on Day 8-13), re-determination of the dose-response function did 

not reveal tolerance to the rate decreasing effects of THC on formalin-depressed ICSS, and 

formalin-induced depression of ICSS was exacerbated again on day 14, albeit at a slightly higher 

dose (3.2 mg/kg) than day 7. The apparent efficacy of THC on mechanical allodynia should be 

viewed with caution and in parallel with its inability to reverse pain-related depression of a 

positively reinforced operant procedure.  In particular, the similar potencies of THC to reduce 

mechanical allodynia, reduce control ICSS, and exacerbate formalin-induced depression of ICSS 

suggests that THC effects on mechanical allodynia reflect motor impairment rather than 

analgesia.  Furthermore, these results are in agreement with clinical data that suggests THC is 

generally not recommend as a first-line therapy in human patients based on a high number 
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needed to treat relative to the number of adverse events that are observed clinically (Finnerup et 

al., 2015).  

Gabapentin effects.  Gabapentin is used clinically as an anticonvulsant, and although its 

precise mechanism(s) of action remain a topic of research, it is generally thought binding to the 

alpha(2)delta subunit of voltage-gated calcium channels contributes to antinociceptive properties 

(Urban, 2005). Similar to THC, gabapentin was able to dose-dependently reverse mechanical 

allodynia while decreasing control (intraplantar saline) ICSS. Additionally, gabapentin 

exacerbated, or further reduced formalin-induced depression of ICSS on day 6. Following 

repeated treatment of gabapentin (32 mg/kg on Day 8-13), and re-determination of the dose-

response function, it did not reveal tolerance to the rate decreasing effects of gabapentin on 

formalin-depressed ICSS. The apparent efficacy of gabapentin to alleviate mechanical allodynia 

should also be viewed with caution and in parallel with its inability to reverse formalin-induced 

depression of ICSS.  These results also offer a counterpoint to clinical use of gabapentin for pain 

treatment.   Although gabapentin is commonly recommended as a first-line therapy in humans 

suffering from chronic and/or neuropathic pain, it shows efficacy in only a small subset of 

patients, but is reasonably safe and tolerable, thus recommended prior to opiates despite inferior 

clinical efficacy to opioids and other drugs (Finnerup et al., 2015; Chang et al., 2014).   

 

Conclusions   

Pain-related depression of ICSS.  In the clinical setting, functional impairment and 

behavioral depression are common manifestations of pain, and efforts have been made to not 

only capture these behaviors but also monitor their responsivity to pharmacological modulation 
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(Cleeland and Ryan, 1994; Melzack, 1975; Turk et al., 2003; Melzack, 1987). Procedures used in 

this dissertation extend evaluation of pain-related functional impairment and behavioral 

depression from clinical to preclinical studies.  We have evaluated effects of numerous putative 

pain manipulations on ICSS in rats. ICSS was most reliably depressed by IP lactic acid as an 

acute and transient inflammatory stimulus and by intraplantar formalin as a more sustained 

neuropathic stimulus. ICSS was also transiently decreased by intraplantar CFA, and by a paw-

incision model of post-surgical pain (Ewan and Martin, 2014).  In general, though, pain-related 

depression of ICSS was weaker and more transient with these manipulations than pain-related 

stimulation of other behaviors such as mechanical allodynia.  Moreover, other putative pain 

models that produce signs of pain-stimulated behavior have failed to alter ICSS.  For example, 

spinal nerve ligation is a surgical method for modeling neuropathy, and it produced mechanical 

allodynia but failed to depress ICSS (Ewan and Martin, 2011; Ewan and Martin, 2014), and 

preliminary studies for this dissertation found that intra-articular administration of CFA into the 

knee joint (a model for arthritis pain) also produced mechanical allodynia without depressing 

ICSS.  Finally, studies using other behaviors such as wheel-running in mice or rats have also 

found that pain-related depression of behavior is less sensitive than pain-stimulated behaviors 

(e.g. mechanical allodynia) to inflammatory or neuropathic manipulations (Grace et al., 2014; 

Cobos et al., 2012).  Taken together, these results suggest that commonly used preclinical pain 

manipulations often produce weaker and/or more transient signs of pain-depressed behavior than 

pain-stimulated behavior.  

Role of decreased DA signaling in pain-related depression of ICSS. Microdialysis 

studies performed in this series of research experiments support a relationship between pain-

related depression of behavior and pain-related depression of DA after IP lactic acid (Leitl et al., 
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2014b).  We did not investigate DA levels after intraplantar formalin, but effectiveness of the 

DA/NE uptake inhibitor bupropion to alleviate both acute IP lactic acid-induced depression of 

ICSS and sustained intraplantar formalin-induced depression of ICSS suggests that both acute 

and chronic pain-related depression of ICSS may involve a hypodopaminergic state, in 

agreement with other evidence for a relationship between pain and reduced mesolimbic DA 

signaling (Coffeen et al., 2010; Taylor et al., 2015). 

Role of dynorphin and KORs as mechanism for pain-related depression of DA.  

Mesolimbic DA neurons express kappa receptors, and activation of those receptors either by 

endogenous dynorphin or by exogenous kappa agonists like U69593 can depress both ICSS and 

mesolimbic DA release (Leitl et al., 2014b; Carlezon et al., 2006).  Moreover, previous studies 

have suggested that activation of this endogenous dynorphin/kappa receptor system by some 

non-pain stressors can produce signs of behavioral depression (Chartoff et al., 2009; Borsook et 

al., 2007; Knoll and Carlezon, 2010).  However, data reported in this dissertation do not support 

a role for the dynorphin/kappa receptor system in acute or chronic pain-related depression of 

ICSS; furthermore no purported pain stimuli examined in these studies reliably altered 

biomarkers for dynorphin or kappa receptors, and the kappa antagonist was ineffective to block 

pain-related depression of DA release or ICSS (Leitl et al., 2014b; Leitl et al., 2014a). 

Predictive validity of preclinical models of pain-depressed ICSS. In general, these 

studies demonstrate good concordance with clinical data for NSAIDs, which are effective for 

inflammatory but not neuropathic pain, and for opioids and monoamine uptake inhibitors with a 

DA-ergic component, which are effective for both inflammatory and neuropathic pain (Leitl et 

al., 2014b; Miller et al., 2015; Leitl et al., 2014a; Finnerup et al., 2015; McQuay, 2007; Sarzi-

Puttini et al., 2010). However, these procedures were not sensitive to THC and gabapentin, and 
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this preclinical result is consistent with clinical evidence that these drugs are not effective for the 

treatment of inflammatory pain and have weak if any effectiveness to treat neuropathic pain 

(Beaulieu and Ware, 2007; Lynch and Campbell, 2011; Ware et al., 2010; Chang et al., 2014; 

Finnerup et al., 2015). 

 

Future directions 

Studies conducted here support a role for decreased mesolimbic DA signaling in pain-

related depression of behavior; however, the mechanisms that mediate decreases in DA signaling 

by noxious stimuli remain to be determined.  Although activation of endogenous kappa opioid 

systems have emerged as one mechanism whereby some stressors can reduce DA signaling and 

produce behavioral depression, evidence collected for this dissertation do not support a role for 

kappa mechanisms in mediating pain-related behavioral depression.  Accordingly, it will be 

necessary to search for other possible mechanisms.  One possibility is that formalin-induced 

depression of ICSS is mediated through glial activation following induction of a neuropathic 

pain state. Toll-like receptors (TLRs) are commonly known for their expression on immune 

cells, and for their role in initiating immune responses in the presence of pathogens (Watkins et 

al., 2009). Increasing evidence suggests glial cells and/or macrophages, as well as primary 

sensory neurons, are involved in pain sensation. Moreover, formalin-induced neuropathy has 

been shown to result in an increase in glial activation in the spinal cord.  This glial activation and 

presence of macrophages in response to nerve injury may be partially or fully responsible for 

sustained pain-related depression of behavior and mechanical hypersensitivity (Ji et al., 2013). 

Glial inhibitors, including minocycline and ibudalast (AV411) exist, are currently being 

evaluated, and have shown promising results for the potential treatment of neuropathic pain 
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(Ellis et al., 2014; Berta et al., 2014; Ledeboer et al., 2006).  Studies are underway to evaluate 

effectiveness of ibudilast in rats to block both formalin-induced glial activation in spinal cord 

and formalin-induced depression of ICSS.
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