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The human body is colonized by more than 100 trillion microbes which make up an 

essential part of the body and plays a significant role in health. We now know the over 

use and misuse of broad-spectrum antibiotics can disrupt this microbiome contributing to 

the onset of disease and runs the risk of promoting antibiotic resistance. With antibiotic 

research still on the decline, new strategies are greatly needed to combat emerging 

pathogens while maintaining a healthy microbiome. We therefore set out to present a 

novel species-selective antimicrobial drug discovery strategy.  

Disruption of the homeostasis within the oral cavity can trigger the onset of one of 

the most common bacterial infections, periodontal disease. Even though the oral cavity is 

one of the most diverse sites on the human body, the Gram-negative colonizer, 

Porphyromonas gingivalis has long been considered a key player in the initiation of 

periodontitis, suggesting the potential for novel narrow-spectrum therapeutics. By 

targeting key pathogens, it may be possible to treat periodontitis while allowing for the 
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recolonization of the beneficial, healthy flora. Therefore, we set out to use P. gingivalis 

and periodontal disease as a model for pathogen-specific antimicrobial drug discovery.  

In this study we present a unique approach to predict essential gene targets selective for 

the periodontal pathogen within the oral environment. Using our knowledge of metabolic 

networks and essential genes we identified a “druggable” essential target, meso-

diaminopimelate dehydrogenase, which is found in a limited number of species. This 

enzyme, meso-diaminopimelate dehydrogenase from P. gingivalis, was first expressed 

and purified, then characterized for enzymatic inhibitor screening studies. We then 

applied a computer-based drug discovery method, combining pharmacophore models, 

high-throughput virtual screening and molecular docking. Utilizing the ZINC database 

we virtually screened over 9 million small-molecules to identify several potential target-

specific inhibitors. Finally, we used target-based and whole-cell based biochemical 

screening to assess in vitro activity. We conclude that the establishment of this target and 

screening strategy provides a framework for the future development of new 

antimicrobials and drug discovery.  
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Introduction 

 

I. The Oral Microbiome  

The term “microbiome” was coined by Joshua Lederberg describing “the ecological community 

of commensal, symbiotic, and pathogenic microorganisms that literally share our body space” [1, 

2]. The start of the microbiome era resulted in the question of how commensal microorganisms 

contribute to human health and disease and sparked new areas of research. This directly led to 

the NIH-sponsored Human Microbiome Project. We now know that microbes outnumber our 

cells 10 to 1, making bacteria an important component of the human body. Through this project 

it was discovered the oral cavity is one of the most complex and diverse sites [3], containing up 

to 1000 phylotypes composed of viruses, protozoa, fungi, archaea and bacteria. However, since 

many oral bacteria have yet to be cultured, the number may be even higher [1, 4]. While the 

functional role of oral colonizers is not completely understood, studies indicate this area of the 

microbiome plays a role in maintaining oral health. For one, the occupation by commensal oral 

bacteria prevent the colonization of pathogens, a phenomenon known as colonization resistance 

[5]. Commensal bacteria occupy the niche, limiting the available space and preventing the 

establishment of foreign colonizers. As an indirect mechanism of colonization resistance, 

commensal oral colonizers can produce antagonistic substances against pathogenic species [4, 6]. 

For example, many streptococcal species can synthesize inhibitory substances that prevent 

colonization of other species. Streptococcus sanguinis produces hydrogen peroxide, which can 

inhibit the growth of methicillin-resistant Staphylococcus aureus [7] and Streptococcus mutans, a 

major contributor to dental caries [8]. Interestingly, studies also show the oral microbiome plays 

a functional role in systemic health. Inorganic nitrate obtained through the diet is reduced to 
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nitrite within the oral cavity, absorbed into the bloodstream and then converted to nitric oxide. 

This is beneficial, as metabolic studies show nitric oxide is important for maintaining 

cardiovascular health through improved mitochondrial function and reduced blood pressure [9]. 

Petersson et al. linked oral bacteria to this metabolic role by noting the use of antimicrobial 

mouthwash attenuated the nitrate reduction and abolished the associated decrease in blood 

pressure [10].  

Dental plaque. How is the complex oral microbiome established? The bacteria have the ability 

to colonize the hard and soft surfaces (e.g., teeth, surfaces of the tongue, and epithelium) of the 

oral cavity to form biofilms, more commonly known as dental plaque. Oral biofilms are 

polymicrobial 3D structures composed of proteins, polysaccharides, nucleic acids, salts and cells 

allowing for microbial interactions and cell-cell communication. It also provides the population 

with nutrients, protection from antibiotics and other environmental threats [11, 12]. The 

development of dental plaque is a systematic process occurring through five stages [12]. The first 

stage begins almost immediately following brushing. The tooth surface obtains a coating of 

glycoprotein deposits derived from saliva called the acquired pellicle. Through interactions with 

cell surface structures, the pellicle mediates the initial bacterial attachment. It can be 1-20 layers 

thick and within a clinically healthy cavity is composed of Gram-positive cocci, mainly of the 

streptococcus species [13, 14]. These early colonizers are aerobes or facultative anaerobes as 

they are able to tolerate the higher oxygen levels present [14, 15]. The second stage involves a 

stronger attachment of the bacteria to the tooth surface. Following initial attachment to the 

pellicle, weak, long-ranged interactions are formed that allows the bacteria to reverse the 

attachment to the pellicle and tooth surface. Stronger short-range, irreversible attachments 

between structures on the bacterial cell surface and the complementary receptors on the pellicle 
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are then formed [15]. The third step involves adhesion and aggregation of later colonizers to 

previously attached early colonizers.  Inter-bacterial adhesion-receptor interactions are initiated, 

resulting in the diversification of the biofilm [13], as well as generating synergistic and 

antagonistic interactions between species [15]. Fourth is the multiplication of the colonized 

bacteria; this step involves cell division of colonized bacteria and expansion of the biofilm into a 

complex 3D environment. Polymer composed of soluble and insoluble glucans is produced 

forming the extracellular matrix. This matrix provides structural integrity and retains nutrients 

within the biofilm. At this stage the biofilm is around 100-300 layers thick, generating an oxygen 

depleted environment that allows for an increase in the number of Gram-negative anaerobic 

bacteria [14, 16]. Last is active detachment. In response to environmental cues, the biofilm can 

detach from the surface, disperse and colonize at different locations [15].   

Periodontal disease. Typically, with proper oral hygiene, the oral microbiome exists in a 

beneficial or benign state. However, ecological changes in the oral cavity can alter the 

environment, shifting the dominant species from Gram-positive facultative anaerobes to Gram-

negative anaerobes. The resulting change in the environment can lead to a major health concern 

within the oral cavity known as periodontal disease [12]. Periodontal disease refers to a group of 

chronic inflammatory processes that affect the gingival tissue and surrounding tooth supporting 

structures [17]. Periodontal disease is a progressive disease that occurs in distinct stages. 

Gingivitis, the most common form, is the early non-destructive stage, which is composed of the 

initial, early and established lesion stages. It is reversible with proper cleaning and maintenance; 

however, without treatment gingivitis may progress into a more chronic infection. The advanced 

lesion stage marks the transition from gingivitis to periodontitis, the non-reversible destructive 

form. Periodontitis is characterized by severe inflammation, plaque calcification, bone 



4 
 

resorption, and tooth loss [18]. During the early lesion stages of the infection, within 2-10 days, 

accumulation of dental plaque triggers the host innate immune response where resident mast 

cells produce histamine causing the endothelium to release IL-8 [19, 20]. Additionally, 

macrophages recognize pathogen-associated molecular patterns (i.e., peptidoglycan, 

lipopolysaccharide and foreign DNA) through toll-like receptors (TLRs), triggering the uptake of 

the bacteria through phagocytosis and the release of cytokines such as IL-1β, IL-6 and TNF-α. 

The release of these pro-inflammatory cytokines cause vascular dilation of blood vessels, 

increasing permeability and blood flow. This also leads to the expression of adhesin molecules 

on the endothelium surface, aiding in the recruitment and sticking of polymorphonuclear 

neutrophils (PMNs) and activation of complement [21]. PMNs migrate to the epithelium and 

gingival crevice releasing more IL-8, amplifying inflammation. However, the PMNs are unable 

to phagocytose the bacteria, which are now associated within a thick biofilm. After 

approximately 2-3 weeks of biofilm accumulation, antigen-presenting cells begin to stimulate 

naïve T-cells. At this stage if T-cells have not eliminated the bacteria, an established lesion is set. 

This stage is defined by B-cell activation to plasma cells [20, 21]. Th2 cells activate B-cells and 

conversion of plasma cells leads to the secretion of antibodies. CD4+ T-cells continue to secrete 

cytokines contributing to collagen degradation and inflammation [21]. At this point, if the 

infection is not cleared, gingivitis progresses into periodontitis, corresponding to the advanced 

lesion stage and marked by severe collagen degradation. The formation of deep periodontal 

pockets allows for the migration of the biofilm, increased production of pro-inflammatory 

cytokines and continued tissue degradation [21]. Plasma cells are now the dominant immune 

cells. Continued T-cell response leads to the release of interleukins, TNF-α and prostaglandin 

E2, being mainly responsible for the alveolar bone destruction [22].  
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 Clinical Significance. The high prevalence of periodontal disease in developing and 

industrialized countries has made it a significant public health concern [14, 23]. The economic 

burden of the disease and subsequent treatment can be overwhelming. Oral related issues are the 

fourth most expensive disease, contributing up to 5-10% of health-care related costs [23, 24]. 

There are also corresponding psychological effects as the deterioration of the gum line and tooth 

loss can lead to embarrassment and low self-esteem [25, 26]. In addition, poor oral hygiene has 

been associated with systemic comorbidities. Brushing and invasive dental procedures allow 

bacteria to enter the bloodstream and disseminate to other sites, such as the brain, lungs and 

liver, linking periodontal disease to pregnancy complications, respiratory, cardiovascular and 

cerebrovascular diseases [23, 27, 28].  

Epidemiology. Periodontal diseases are some of the most common bacterial infections 

worldwide. It is estimated that approximately 82% of US children and 50% of adults display 

overt signs of gingivitis with gingival inflammation and bleeding. This percentage is higher for 

both children and adults in developing countries [29]. For the more severe form, it is estimated 

that around 46% or 64.7 million US adults 30 years and older have some stage of periodontitis. 

Unfortunately, this only increases with age. Chronic periodontitis is most prevalent in adults or 

seniors 65 years and older, with approximately 70.1% of the population afflicted [30]. 

Epidemiological studies have shown clear disparities in the estimated populations affected by 

periodontal disease. There are higher incidences of periodontitis in men than women (56.4% vs 

38.4%) and higher frequencies in individuals of African (59.1%) and Hispanic descent (63.5%) 

[30]. There is also a socioeconomic trend, with individuals with lower socioeconomic status 

more likely to present with periodontitis than those with a higher socioeconomic status [29, 31]. 

Specifically, approximately 65.4% of individuals in the US living below the federal poverty line 
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and 66.9% of individuals with less than a high school education have reported cases of 

periodontitis associated tooth loss.  

Risk Factors. A risk factor is defined as a variable that has been associated with 

increased risk of disease or infection [32] and studies show certain elements contribute to the 

development of periodontitis. Smoking, diabetes mellitus, age and stress are all strongly linked to 

the development of the disease [32, 33]. While these factors may not directly contribute to the 

disease, it is likely that the systemic changes (chronic inflammation and altered immune 

response) associated with these factors disrupt the oral ecosystem and contribute to the onset and 

prevalence of the disease. For example, patients with diabetes exhibit increased vascular 

permeability and impaired neutrophil migration contributing to their increased susceptibility for 

the disease [34]. However, it is important to note inherent non-modifiable factors such as genetic 

susceptibility and host response play a role in the progression of periodontal disease, as some 

people may exhibit one or more of the associated risk factors and never develop the disease [32].   

 It is widely accepted that the microbial population is a significant risk factor. Initially, it 

was believed periodontal disease was a result of the overwhelming presence of total bacteria in 

what was known as the non-specific plaque hypothesis [35-37]. However, in the 1970s, the 

specific plaque hypothesis was offered, stating that certain species played an etiological role in 

the onset. Evidence for this theory began with cariogenic bacteria. Loesche et al. noticed that 

antimicrobial therapy with kanamycin targeting oral streptococci reduced caries formation [35, 

38, 39]. Following this, Socranksy et al. offered supporting evidence by studying the complex 

poly-microbial environment based on the bacterial relationships corresponding to health and 

disease state. Socransky recognized that late colonizers Porphyromonas gingivalis, Treponema 

denticola and Tannerella forsythia (formerly Bacteroides forsythus) were isolated together from 
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diseased sites and expressed numerous virulence factors, corresponding to the effects of 

periodontitis. This bacteria group makes up what is still known as the ‘red complex’ [40, 41].  

 

II. Porphyromonas gingivalis 

One of the main pathogens within the oral cavity is Porphyromonas gingivalis. P. gingivalis is a 

Gram-negative non-motile, rod-shaped organism that belongs to the phylum Bacteroidetes and 

has long been considered a major causative agent in the onset and progression of periodontal 

disease [42, 43]. Identifying characteristics of the bacterium include anaerobic respiration, which 

is the degradation of amino acids for energy and the accumulation of hemin on the cell surface 

for the acquisition of iron, forming the characteristic black colonies on blood agar. P. gingivalis 

has been isolated from the oral cavity [18], the respiratory tract [44, 45], and from the vagina of 

women with bacterial vaginosis [46]. The genome of virulent P. gingivalis strain W83 was 

sequenced in 2003 by Nelson et al. revealing a 2.3 Mbp genome with 2,015 protein-coding genes 

[43]. P. gingivalis is a secondary colonizer thriving in nutrient rich areas with reduced oxygen 

levels, attaching to streptococci early colonizers [18, 47] as well as other late colonizers such as 

Fusobacterium nucleatum and Treponeam denticola [43, 48]. The bacterium is a part of the “red 

complex” as it is readily isolated from diseased sites and commonly found with other known oral 

pathogens [40, 49]. There is a positive correlation between an increase in periodontal pocket 

depth and P. gingivalis colonization [50]. Additionally, studies show there is improvement in 

periodontal health following the reduction of P. gingivalis [51]. Colonization and virulence of P. 

gingivalis is aided by the expression of protein adhesins, proteinases and hemagglutinins [18]. 

Virulence factors. A virulence factor is defined as a molecule produced by a pathogenic 

organism that contributes to the destructive nature of a disease and enables the pathogen to 
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survive within a specific host [52]. As previously mentioned, numerous studies have revealed a 

plethora of virulence factors that contribute to the colonization of P. gingivalis, the subversion of 

the host immune response and the destruction of the periodontal structures [18, 52].  

Gingipains. P. gingivalis possesses several proteases; however, the most studied belongs to a 

group of cell associated and secreted cysteine proteases known as gingipains. Gingipains 

contribute to a variety of virulent functions and have been classified based on their enzymatic 

specificity: arginine specific gingipains, Rgp and lysine specific gingipains, Kgp [18, 52]. One 

major purpose of gingipains is nutrient acquisition. Expression of Rgp and Kgp can induce 

epithelial cell death and tissue degradation that results in attainable nutrients for the bacteria 

within the environment [53]. It is also thought that P. gingivalis utilizes gingipains to break 

down transferrin and hemoglobin to obtain the iron necessary for survival [54]. This theory was 

supported by studying ginipain-deficient P. gingivalis cells. These mutants lost their 

characteristic black pigment on blood agar and their ability to bind hemoglobin [55, 56]. 

Gingipains also play a role in the deregulation of the host immune defense. Studies show that 

gingipains possess complement-like convertase activity by cleaving complement components 

and allowing for immune dysregulation [57, 58].  

Fimbriae. The fimbriae are long protein structures peritrichously arranged on the outer cell 

surface of the bacteria and facilitate adhesion to the surfaces of the oral cavity as well as other 

bacteria. Addition of purified monoclonal anti-fimbriae antibodies prevented binding and 

colonization of P. gingivalis to oral epithelial cells [59, 60] and strains of P. gingivalis with short 

or very few fimbriae were typically non-adherent to host cells [52]. The fimbriae may also play a 

role in periodontitis associated tissue destruction as immunization against P. gingivalis fimbriae 

in a rat model prevented tissue breakdown and characteristic periodontal destruction [52, 61].  
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Hemagglutinins. Hemagglutinins are microbial lectins or adhesins expressed on the bacterial 

cell surface and are essential for the initial attachment and establishment of infection. Binding is 

mediated through glycan receptors on host cells which may be facilitated by the fimbriae.  

Consequently, studies show antibodies against hemagglutinin HagB in P. gingivalis significantly 

reduced attachment to endothelial cells [62]. Hemagglutinins have long been associated with 

virulence as they may agglutinate erythrocytes [63] and sequence data shows that certain 

hemagglutinins can be co-expressed with genes containing proteolytic activity for the acquisition 

of iron [17]. The ability to block attachment and therefore colonization have led to new studies 

into vaccines targeting hemagglutinins as potential therapeutics [63].   

Lipopolysaccharide. Lipopolysaccharide (LPS) is a glycolipid found on the outer membrane 

of the bacterial cell surface. It is a potent immunostimulant, generating an array of 

immunological responses triggering inflammation and tissue destruction. P. gingivalis LPS has 

been shown to be endotoxic since the bacteria has the ability to release LPS in vesicles [64], 

which can then enter the host tissues [65, 66]. The interaction of LPS with the host tissues 

induces hallmark pro-inflammatory cytokines such as IL-1β, TNF-α and IL-6. Recognition of 

LPS can directly stimulate osteoclasts leading to the release of IL-1β and TNF-α from various 

immune cells causing the hallmark signs of periodontitis: bone resorption and tissue destruction 

[17]. Toll-like receptor 4 (TLR4) is the major signal transducer for bacterial lipopolysaccharides; 

however, the P. gingivalis lipid A moiety of LPS has been described as atypical. It is less potent 

compared to other bacterial LPS. Furthermore, it is agonistic against TLR2, while being both 

antagonistic and agonistic for TLR4 [67]. This may be due to the differences in the chemical 

composition in response to environmental cues (i.e., fatty acid chain heterogeneity [68], changes 

in acylation patterns or phosphorylation of the lipid A moiety [17, 67]). The ability to alter the 
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LPS structure can be beneficial to P. gingivalis survival through manipulation of the innate 

immune response. This response suppresses inflammation and immune clearance early during 

infection, then later induces inflammation for nutrient acquisition. Furthermore, studies show 

that the atypical P. gingivalis LPS is able to down-regulate the stimulatory effect of other 

bacterial LPS by TLR4, which may stimulate E-selection on endothelial cells, thereby preventing 

neutrophil migration and evading clearance [17, 69].  

Keystone pathogen hypothesis. The ecological application of the term “keystone” refers to a 

species that is present in low numbers relative to the total population but still plays a major role 

in maintaining the integrity of the community [70]. Historically, P. gingivalis is known to be 

highly associated with the clinical signs of periodontal disease such as oral lesions and bone loss, 

while accounting for a small fraction of the oral population [71]. Evidence suggesting P. 

gingivalis could be a “keystone pathogen” began from a study when P. gingivalis colonized at 

less than 0.01% in specific-pathogen free mice, induced destructive periodontitis. These effects 

were not observed in germ-free mice, indicating the onset of periodontal disease is related to 

changes in the microbial population induced by P. gingivalis [58]. This was further characterized 

by showing that the colonization of P. gingivalis selectively modified the host immune response 

leading to the disruption of the normal host microbiota [58]. Following colonization, P. 

gingivalis prevented epithelial cell secretion of IL-8, a chemoattractant for PMN that hindered 

neutrophil migration and attenuated the first line of immune defense [58, 72, 73]. Interestingly, 

this colonization also prevented complement activation, which facilitated in the survival of the 

periodontal pathogen, the increase in commensal bacterial load and induction of bone loss [58]. 

P. gingivalis cleaves the complement component C5 into C5a by gingipains [74] and the 

downstream effect of C5aR in conjunction with TLR2 stimulated by the pathogen-associated 
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LPS leads to a break within the signaling pathway preventing phagocytosis. This interaction is 

important to the dysregulation as gingipain-deficient strains of P. gingivalis show no changes in 

the oral micro-environment maintaining the bacterial balance [75, 76]. The interaction with 

TLR2 prevents the production of IL-12 cytokines, but increases proinflammatory mediators IL-

1β, IL-6 and TNF-α. This selective immunosuppressive mechanism aids P. gingivalis in resisting 

immune clearance while allowing for cytokines that are involved in bone resorption and tissue 

degradation to generate a nutrient rich, inflamed site [77]. The now altered oral environment may 

select for asaccharolytic organisms such as P. gingivalis since they are able to utilize available 

nutrients. In addition, the degeneration of alveolar bone provides new niches for pathogenic 

species. P. gingivalis also alters macrophage function. The bacteria interact with lipid rafts on 

the macrophage cell surface, allowing for a close interaction between FimA and CXCR4 and 

TLR2 on the macrophage cell surface. Crosstalk between the two receptors increases cAMP 

levels and inhibits the oxidative burst facilitated clearance by macrophages [45, 78].  

P. gingivalis as a potential target. Corresponding to the evidence of being a keystone pathogen, 

studies of immunization directed specifically against P. gingivalis have shown promise as a 

therapeutic strategy for periodontal disease. Mice immunized with purified P. gingivalis capsular 

polysaccharide developed high IgM and IgG serum titers, which elicited protection against P. 

gingivalis-induced bone loss [79]. Several studies have shown success in targeting outer-

membrane proteins (OMP) [80-83]. For instance, P. gingivalis-challenged mice exhibited 

decreased oral lesions when immunized against recombinant forms of an OMP-like protein [83]. 

Another study using a rat model examining immunization against the adhesin motif of 

hemagglutinin HagB showed a reduction in periodontitis associated bone loss [62, 84, 85]. A 

study in non-human primates, vaccinating against an outer membrane protein or a lysine 
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gingipain protease complex significantly reduced alveolar bone loss and decreased P. gingivalis 

cell viability [86, 87]. Finally, a human clinical study providing repeated applications of 

monoclonal antibodies specific to a P. gingivalis protease complex prevented recolonization of 

the pathogen for approximately 9 months, leading to significant improvement of oral health [84, 

88]. 

 

III. Antibiotics 
 

Antibiotics or antimicrobials are some of the most commonly prescribed medications worldwide 

[89] and describe any molecule that targets essential functions (e.g., DNA replication, protein 

synthesis, cell wall synthesis and cell membrane) to kill or stop the growth of infectious 

organisms [90-92]. Around 1930, the modern “golden age” of antimicrobial research began, 

representing one of the greatest medical achievements [93, 94]. Beginning in the early 1900s, 

Paul Ehrlich hypothesized the possibility of selectively targeting pathogenic microbes while 

sparing the host [90]. However, it wasn’t until 1928 that the theory became a reality when 

Alexander Flemming made a fortuitous discovery that resulted in the wide spread use of 

penicillin [90]. Spanning a 40-year period, researchers and pharmaceutical companies examined 

microbial and fungal metabolites for naturally occurring antibiotics leading to discovery of the 

major antibiotic class scaffolds: cephalosporins, penicillins, quinolones and macrolides, still used 

today [90, 95]. During this period, steady progress was made with improvements in the form of 

second and third generation synthetic derivatives, resulting in various β-lactams, sulfonamides, 

and aminoglycosides then tetracyclines, macrolides and glycopeptides [90, 95, 96]. By the 

1980s, development began to slow. The ideal natural sources had been exhausted, leading to a 

drop in progress and interest. Any newly designed antimicrobials, by that point, were chemical 
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modifications of common core scaffolds and targets, incrementally improving potency and 

efficacy. A few novel compounds were identified however, but none made it to market until 

years later. This included linezolid, an oxazolidinone class discovered in 1978, approved in 

2000, daptomycin, a lipopeptide antibiotic discovered in 1986, approved in 2003 and 

retapamulin, a pleuromutilin approved in 2007 [93]. 

Antibiotic resistance. The discovery of antimicrobials brought about a significant turn in the 

constant battle against bacterial infections, increasing both the quality and span of the average 

life [92, 97]. However, the rise of antibiotic resistance has threatened to diminish this feat, 

rendering many antibiotics ineffective. Resistance is defined as a change in the bacteria’s level of 

susceptibility to a drug, in regards to the normal population. This change can occur through 

mutations or the acquirement of heterologous genes coding for resistance by means of horizontal 

gene transfer [98]. Once expressed, the acquired gene provides a selective advantage for the 

pathogen when exposed to antibiotics leading to the spread and dominance of resistant strains 

within the population [90]. Mechanistically, bacterial resistance can occur in four ways. First, the 

modification of the drug target. For example, resistance to the glycopeptide vancomycin is 

mediated through the acquired vanA gene. VanA codes for an enzyme that synthesizes a 

peptidoglycan with one less hydrogen bond, decreasing vancomycin’s affinity by 1000-fold. 

Second is the inactivation of the drug. Aminoglycoside antibiotics such as kanamycin are left 

ineffective due to the production of aminoglycoside-modifying enzymes that covalently attach a 

moiety (e.g., phosphate, acetyl or adenyl) to a key functional group of the antibiotic. This 

modification is a steric hinderance to binding of the ribosome. The third method is 

impermeability, such as the down-regulation of porins. Fourth, resistance can occur through the 
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explusion of the drug. Streptogramin resistance by E. faecalis is partially due to the presence of 

ABC transporter Lsa, which removes the drug and prevents access to the target [98-101].  

Antibiotic resistance not only increases healthcare related cost forcing the use of more 

expensive drugs and prolonging treatment times, but it is a significant threat to our morbidity and 

mortality [98]. By 2004, it was documented that approximately 70% of pathogenic bacteria were 

resistant to at least one antibiotic. This has resulted in at least two million illnesses and 23,000 

deaths, adding an additional $20 billion to healthcare cost [102]. Rising resistance in 

Staphylococcus aureus is one well-known example. This Gram-positive pathogen 

asymptomatically colonizes 30% of the population and is known to be extremely adaptable 

against antibiotic pressure [103, 104]. By the beginning of 1950, shortly following the 

introduction of penicillin into clinical practice, a large proportion of hospital staphylococcal 

infections were already penicillin-resistant [105]. Initially only found throughout hospitals, 

within a few years, penicillin-resistant strains began causing community acquired infections. 

This led to the use of methicillin as the first drug of choice. Nevertheless, by 1961, cases of 

methicillin-resistant Staphylococcus aureus (MRSA) were on the rise in the United Kingdom and 

by the 1980s, MRSA infections were widespread within the United States [104, 106, 107]. From 

that point, vancomycin became the last line of effective antibiotics. Again, antibiotic pressure led 

to the emergence of vancomycin-intermediate S. aureus strains (VISA) and by 2002, cases of 

strains displaying complete resistance or vancomycin-resistant S. aureus strains (VRSA) were 

found within the US [104]. In 2006 the CDC reported antibiotic resistant S. aureus infections 

such as pneumonia, sepsis and necrotizing fasciitis, resulted in approximately 19,000 deaths [95, 

102]. Re-emerging pathogens such as Mycobacterium tuberculosis, the etiological agent for 

tuberculosis (TB), add another layer of concern. While TB infections were once on the decline, 
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in 2013 there were around 480,000 new multi-drug resistant TB (MDR-TB) cases and 100 

countries reporting cases of extensively-drug resistant TB (XDR-TB) strains resistant to first-line 

and second-line therapies [92, 108, 109]. XDR-TB is extremely difficult to treat, requiring at 

least two years of antimicrobial therapy. Additionally, effective therapy typically relies on 

antibiotic drugs that are expensive, toxic and potentially lethal [95].  

Antibiotics and the microbiome. Humans are colonized with over 100 trillion bacteria, which 

led to a symbiotic host-microbe relationship [110]. The microbiome plays important functional 

roles, from establishing our immune system after birth [111, 112] to influencing how our brains 

process information [113, 114]. Since the Human Microbiome Project, there has been growing 

interest in the healthy human microbiome and how changes in it relate to the development of 

disease [3, 110, 115, 116]. Therefore, it is not surprising that disruption in that normal microbiota 

(as a result of the overuse or misuse of broad-spectrum antibiotics) has been linked to a multitude 

of systemic diseases. Reoccurring Clostridium difficile infection is a distinctive case of changes 

in the microbiome due to antibiotic therapy. Usage of antimicrobials disrupts the normal gut 

microbiota allowing for the colonization of C. difficile, resulting in fever, severe diarrhea and 

colitis [117]. Research has begun linking the alteration of the microbiome to obesity. Ley et al. 

noted significant changes in the dominant gastrointestinal microbial species in obese mice 

compared to lean mice [118]. Correspondingly, mice given the fecal extract from an obese twin 

subsequently led to weight gain, while the extract from the leaner twin did not [119]. Infants 

treated with ampicillin/gentamicin soon after birth showed a decrease in beneficial gut species 

that did not recover within 8 weeks post treatment and increased the incidence of weight gain 

[120, 121].  
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 This brings in to play the rationale for alternative strategies such as narrow-spectrum or 

pathogenic-specific antimicrobials. Improvements in diagnostics have decreased the time it takes 

to identify the etiological agent and narrow-spectrum treatment can be more cost effective long-

term. Antibiotics drug design against a limited population may also lead to faster discovery rates 

as targets will not need to be conserved or effective across a range of disparate species. With 

rising resistance, the necessity of maintaining the healthy microbial population and progress in 

general antimicrobial development of novel approaches are imperative.  

Strategies in antimicrobial drug discovery.  Drug discovery is a multi-step process spanning 

from target selection to drug optimization and clinical trials [122]. Historically, there have been 

two main approaches to antimicrobial drug discovery: empirical screening and target-based 

discovery (Fig 1). The empirical approach involved whole-cell based, trial and error screening of 

naturally occurring compounds or their synthetic derivatives. Compounds displaying growth 

inhibition against the desired spectrum of bacteria would be screened for eukaryotic cytotoxicity, 

followed by secondary screening to identify the mode of action. Biological assays would be used 

to verify the activity of the compound, ending with optimization and development for clinical 

trials [97]. By the early 1990s it was clear, even though successful in the past, this could no 

longer provide the results needed. The decreasing success of this process was due to the fact it 

was: (1) expensive and time consuming, while yielding a poor return for the effort [94, 123]; (2) 

had been depleted of easily obtainable products isolated from organisms culturable at the time 

[97]; and (3) changes in regulatory policies made it increasingly difficult to obtain clinical 

approval [124].  
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Figure 1. Workflow for two methods of antimicrobial drug discovery. 
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In 1995, the DNA sequence for the genome of Haemophilus influenza was completed 

[125], promising new approaches for the challenges in drug discovery and renewed excitement 

by various pharmaceutical companies such as GlaxoSmithKline (GSK), Merck, Pfizer, and 

Wyeth [126]. Before then, few genome maps were publicly available, leaving researchers with 

the ability to only examine small areas of a specific sequence. With increased computational 

power and the availability of whole genomes, bioinformatics analysis allowed for the 

examination of new gene targets from various species [127]. Screening strategies then shifted to 

target-based drug design. The initial strategy was to focus on identifying as many potential 

targets available within a genome and one could then work to inhibit the targets by a high-

throughput screening (HTS) of drug-like compounds instead of blindly searching for compounds 

with antibacterial activity [97]. One prime example of the boom in research during the genomic 

age was that of GlaxoSmithKline (GSK). From 1995-2002, GSK attempted to identify a 

compound with Gram-positive or broad-spectrum antimicrobial activity. Using Streptococcus 

pneumoniae as the primary comparison genome, GSK analyzed genes across five pathogens for 

highly-conserved sequences resulting in more than 350 S. pneumoniae, S. aureus, and H. 

influenzae candidate target genes. From the 350 potential genes, 127 were classified as essential 

in vitro in at least one of the three organisms and 64 targets displayed attenuated growth in vivo. 

The company screened targets against more than 250,000 compounds from their library [126]. 

The screening led to 16 positive ‘hits’, five which went on to ‘lead’ compounds. Of the five 

targets (FabH, FabI, peptide deformylase, methionine tRNA synthetase, and phenylalanine tRNA 

synthetase) only one, peptide deformylase, led to an optimized lead molecule (GSK 1322322) 

that successfully went on to Phase II clinical trials [124, 126, 128]. The disappointing results 
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produced during these large screens were partially due to the newness of the era, the lack of 

knowledge of suitable targets and the feasibility of the HTS [97, 126].  

 Current strategies shifted towards a rational structure-based approach due to technological 

advances in genomic sequencing, high resolution protein structures and computational modeling. 

This led to a better understanding of the bacteria and target proteins [97, 129-131]. The basic 

concept is that the structural properties of a specific target relates to its biological activity and 

modification of the target will have therapeutic effects. Computer-aided molecular modeling of 

protein structures allows for virtual HTS screening of compounds rationally determined to interact 

with the target [131]. As a result, the initial trial-and-error of drug discovery is reduced as inhibitors 

are selected based on structural properties and there are increases in the screening efficiency since 

compounds have a higher chance of binding [129]. This approach was successful in the relatively 

rapid design of Iclaprim, a structural derivative of trimethoprim. Trimethoprim resistance in S. 

aureus is a result of a single amino acid substitution of the target dihydrofolate reductase (DHFR), 

resulting in a 20-fold decrease in affinity due to the loss of a hydrogen bond. Through molecular 

modeling of the mutated DHFR, Iclaprim was designed with a trimethochromene side chain in 

place of the original trimethophenyl resulting in a 20-fold increase in binding affinity, maintaining 

potency [97, 132].  

  

IV. Summary  
 

Currently, supplemental therapy for destructive periodontal disease can include the application of 

broad-spectrum antibiotics [133-135]. However, we now know that this is not ideal as it can alter 

the essential microbiome and runs the risk of promoting antibiotic resistance. While the oral 

cavity is a complex poly-microbial environment, it is evident that the interaction of specific 
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species disrupts the oral homeostasis, triggering the onset of periodontal disease. The hypothesis 

of P. gingivalis being a key player in the initiation of periodontitis suggests the potential for 

novel narrow-spectrum therapeutics. By targeting the key pathogens, it may be possible to treat 

periodontitis while allowing for the recolonization of the beneficial, healthy flora. In this study, 

we present a unique approach to predict essential gene targets selective for the periodontal 

pathogen within the oral environment. We then utilize a rational-based approach to identify 

small-molecule inhibitors for the potential development of antimicrobial agents against P. 

gingivalis and periodontal disease. We believe by using P. gingivalis and periodontal disease as a 

model we can begin to develop an approach for pathogen-specific antimicrobial drug discovery.  

 

V. Outline 

Following the general introduction and summary, the main goals of this dissertation are divided 

into three chapters. Background, methodologies, results and discussion relating to the specific 

aim are reported for each chapter.  

Chapter One focuses on the development and verification of the framework for a novel essential 

gene prediction model. The benefit of the model is displayed through the quick and accurate 

selection of a potential species-selective drug target in the Gram-negative periodontal pathogen, 

P. gingivalis. 

Chapter Two continues the evaluation of the potential drug target identified in Chapter One. 

The application of a CBDD method is used to identify new target specific inhibitors. 

Chapter Three details the biochemical screening from the compounds identified in Chapter 

Two.  A target-based and whole-cell based approach is used to assess in vitro activity. 
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This is concluded with an overall summary and conclusion. 
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Chapter One 

Applying a Novel Framework for the Prediction of Essential Genes as 

Antimicrobial Targets 
 

 

Victoria N. Stone, Brian A. Klein, Linden Hu and Ping Xu 
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Background 

With the onset of the genomics era came the availability of completed genome sequences and put 

new focus on the study of essential genes that held the promise of a wealth of biological and 

genomic data. Identification of these genes enhances our knowledge of gene regulatory networks 

[136] and aids in our understanding of cellular functions [137]. They can provide clues to the 

origins of life through the examination of the minimal genome [138] and evolutionary 

divergence [136, 137, 139]. Additionally, the understanding of the minimal number of genes 

required to sustain life supports research for the developing field of synthetic biology [138, 140]. 

Essential genes, by definition, are critical for the growth and/or survival of an organism. 

Antimicrobials target key metabolic and cellular functions, making essential genes attractive 

targets for drug discovery. Hu et al. was able to successfully identify drug targets for the fungus 

Aspergillus fumigatus from in vivo mouse model essential gene studies [141]. This has become 

more important with increasing rates of antibiotic resistance. Furthermore, the discovery of 

genome-wide essential gene data can present previously unexplored therapeutic targets [99, 142]. 

To date, a variety of approaches have been utilized to identify essential genes in a number 

of organisms. Large-scale experimental approaches such as systematic single gene deletions 

[139, 143-147], random transposon mutagenesis [148-151] and RNA interference [152, 153] 

utilize gene disruptions to evaluate the viability of the organism. However, these approaches can 

be extremely time-consuming, expensive and technically difficult with certain microbial systems. 

Due to the large investment, comprehensive experimental essential gene data is not readily 

available for the majority of sequenced genomes [154]. Currently only 31 species have genome-

wide experimental data that has been deposited into the Database of Essential Genes (DEG) 

[155]. Computational assessment of bacterial systems offer alternatives to experimental 
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procedures. In silico methods rely on information garnered from experimentally identified 

essential genes to predict essentiality based on orthologous genes, protein expression, 

phylogenetic conservation, similar GC content and codon usage [136]. These bioinformatics 

approaches have recently become standard for the prediction of essential genes. Unfortunately, 

orthologous genes account for only a fraction of the total genome and as genetic diversity 

increases in phylogenetically unrelated organisms, prediction accuracy decreases due to variation 

in gene sequences, alternate cellular pathways and genetic redundancy [136, 156]. In addition, 

experimental essential gene data, which in silico approaches are based on, is only available in a 

fraction of species and differences in experimental parameters (bacteria grown in rich versus 

minimal medium), mutagenesis techniques (site-directed versus random transposon insertion) or 

simply the definition of essential has led to a lack of consensus, making predictions difficult 

[140, 142]. 

Previously, we conducted a genome-wide essential gene identification study in the Gram-

positive, early oral colonizer Streptococcus sanguinis using systematic single and double gene 

deletions [139]. These essential genes were grouped by specific categories based on their KEGG 

functional annotation. Once linked together, we were able to create a model of essential 

pathways and determined that essential genes were conserved within three major categories of 

biological function: maintenance of the cell envelope, energy production and processing of 

genetic information. These three features also follow the ideal for what is considered the core of 

the hypothetical minimal genome encompassing the basic components necessary for cell survival 

[138, 140, 157]. Studies show that although essential genes themselves may diverge or change, 

the essential function remains relatively unaltered [140]. From these observations we established 

a framework to predict essential genes based on genome annotation and function. Our prediction 
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does not rely on sequence features among different species, but a gene’s contribution to an 

essential end product or the overall essential function that it plays. We believe that the reliance 

on genomic function instead of sequence addresses inconsistencies of essential gene data among 

different bacterial species as a result of genetic diversity while still allowing for an accurate 

prediction [140]. Furthermore, as a predictive method our approach simply requires a sequenced 

and annotated genome, bypassing the need for previous experimental data from closely related 

species. When lacking comprehensive essential gene datasets, we believe our approach provides 

a quick and accurate prediction of essential genes within the genome of different organisms. This 

could be extremely beneficial, especially when concerning drug target identification of emerging 

pathogens or difficult to culture organisms. Knowledge based on metabolic or gene functional 

networks have increasingly become an invaluable tool [158]. This was evident when a previous 

genome-scale study with metabolic networks, similarly based on genome information, showed 

high accuracy in the prediction of amino acid preference and by-product secretion rates [159].  

In this study, we demonstrate the framework for our essential gene predictive model is 

both accurate and useful for the identification of antimicrobial targets. First, using KEGG 

pathways and genome annotation, we identify relevant pathways and predict essential genes for 

the periodontal pathogen Porphyromonas gingivalis. The selection of P. gingivalis to evaluate 

our accuracy was valuable as it is phylogenetically distinct from S. sanguinis, from which the 

prediction model was derived. Second, we cross-validate our prediction with experimental data. 

During our study, P. gingivalis lacked a large-scale essential gene study. However, a genome-

wide Mariner-based transposon mutagenesis study was recently carried out [Klein BA, 

unpublished], allowing us to verify the accuracy of our prediction. Third, we identify P. 

gingivalis-selective essential gene targets, through the comparison of essential gene data sets 
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between the primary, non-pathogenic colonizer, S. sanguinis [139] and P. gingivalis. Last, based 

on “druggable” target criteria, we select a promising candidate target to experimentally 

characterize for future drug development studies.  

 

Materials and Methods 

Bacterial Strains, plasmids and growth conditions. Porphyromonas gingivalis W83 strain was 

cultured anaerobically (10% CO2, 10% H2, and 80% N2) at 37 °C in tryptic soy broth (TSB) 

(Becton Dickinson, Franklin Lakes, NJ) supplemented with 1 µg/ml menadione and 5 µg/ml 

hemin. When appropriate, erythromycin (Fisher Scientific, Fair Lawn, NJ) was used at a 

concentration of 5 µg/ml. Plasmid pVA2198 (Richmond, VA) [160] was used to isolate the 

erythromycin resistance cassette.  

Prediction of P. gingivalis essential genes. The prediction of essential genes was based on data 

derived from Xu et al. [139]. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database [161] for the genome-wide analysis of P. gingivalis strain W83, pathways such as 

glycolysis and fatty acid biosynthesis that were related to the three broader categories previously 

described (maintenance of the cell envelope, energy production and processing of genetic 

information) were manually examined and a network of predicted essential pathways was 

determined. We identified genes whose function singularly contributed to the formation of an 

essential end product for each of the pathways within our described network. Alternative 

pathways would be noted for any essential pathways within our network and paralogs/isozymes 

of predicted essential genes would be noted and listed as putatively essential. The assigned KO 

numbers and path numbers of genes predicted to be essential were listed and grouped by 

biological function. Multiple KO numbers or path numbers from KEGG were often assigned for 
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a single gene if it was involved in different pathways. Predicted essential gene functions wrongly 

annotated or missing annotation would be predicted by BLAST comparison of genes with similar 

gene functions from phylogenetically similar species.  

Gene functions assignment. To determine putative gene function, protein sequences were 

searched against annotated Porphyromonas gingivalis strain W83. The Cluster of Orthologous 

Groups (COG) annotation [162] was downloaded from the NCBI database and essential 

pathways were analyzed via the KEGG database [161]. Putative gene functions and COGs were 

recorded for predicted essential genes and the total number of genes in the genome. Ratios of the 

number of essential genes for each COG and the total number of genes belonging to a specific 

COG category were calculated. 

Comparison of Essential Gene Homologs. To identify essential genes conserved in P. 

gingivalis W83, a comparative genomics analysis was performed. Thirty-one other organisms 

with essential genes annotated in the DEG v10.0 [163] were obtained and protein sequence 

conservation was determined by BLASTP. Significant matches (E <1e-5) were analyzed to find 

homologs to P. gingivalis genes. Protein sequence conservation was calculated by percent amino 

acid identity. 

Multiple sequence alignment. For the prediction of the substrate binding site, the protein 

knowledge database, UniProtKB/Swiss-Prot (www.uniprot.org) [164], was referenced for 

organisms with completed enzymatic and functional data for m-Ddh. This included 

Corynebacterium glutamicum ATCC 27405, Lysinibacillus sphaericus, Bacteroides fragilis 

ATCC 25285, Clostridium thermocellum ATCC 13032 and Ureibacillus thermosphaericus 

(Uniprot ID: P04964, Q9KWR0, Q5L9Q6, A3DDX7, G1UII1). Complete protein sequences 

http://www.uniprot.org/
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were obtained from the National Center for Biotechnology Information (NCBI, 

www.ncbi.nlm.nih.gov/) database. Sequence alignment analyses were then performed using the 

ClustalW multiple alignment [165] via the BioEdit program v7.1.7. The alignment figure was 

generated in Espript 3.0 [166] for visualization.  

Primer design and recombinant PCR product construction. Primer design was based on the 

method of Xu et al. [139]. Two sets of primers, F1/F2 (5’- CTC CGA ATA GCA AAC ATC 

TAC TG -3’ and 5’- GAA AAA TTT CAT CCT TCG TAG TCG AGC AGC CAT GCG C -3’) 

and F3/R3 (5’- GGG CAA TTT CTT TTT TGT CAT TTG TCA AAT CTG GGG G -3’ and 5’- 

GAT AAT CAT GCT TCG GAG ATG -3’), were designed to amplify a 1.2kb sequence 

upstream and downstream, respectively, of the P. gingivalis target gene. A third primer set, 

F2/R2 (5’- GCG CAT GGC TGC TCG ACT ACG AAG GAT GAA ATT TTT C -3’ and 5’- 

CCC CCA GAT TTG ACA AAT GAC AAA AAA GAA ATT GCC C -3’) was designed to 

amplify the 800 bp erythromycin resistance cassette (ErmR) containing the ermF gene from 

plasmid pVA2198. To minimize polar effects from mutagenesis, primers were designed to 

include stop codons within frame and the antibiotic resistance cassette was designed to run in the 

same orientation as the target gene to ensure transcription. The three PCR fragments were 

created using F1/R1, F2/R2 and F3/R3. All PCR reactions were performed with an initial 

denature of 98 ˚C for 30 sec, 30 cycles of 98 ˚C for 10 sec, 56 ˚C for 30 sec, 72 ˚C for 36 sec and 

a final extension of 72 ˚C for 7 min. The PCR products were purified using QIAquick PCR 

Purification Kit (Qiagen, Valencia, CA); the three fragments were then combined in equal 

amounts and amplified again using F1 and R3 primers to generate the final linear recombinant 

product. The PCR reaction was performed with an initial denature of 98 ˚C for 30 sec, 30 cycles 

of 98 ˚C for 10 sec, 56 ˚C for 30 sec, 72 ˚C for 1 min 36 sec and a final extension of 72 ˚C for 7 
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min. Phusion High-Fidelity Taq DNA polymerase (New England Biolabs, Ipswich, MA) was 

used in all reactions. 

Transformation. The electroporation method was adapted from Fletcher et al. [167]. Briefly, 

0.2 ml of an actively growing culture of P. gingivalis was used to inoculate 2 ml of TSB 

supplemented with yeast extract, hemin and menadione, which was then incubated overnight at 

37 ˚C. Five ml of the same medium pre-warmed to 37 ˚C was then inoculated with 0.5 ml of the 

overnight culture and was incubated for an additional 4 h (OD600 ≈ 0.7). The cells were harvested 

by centrifugation at 6,000 × g for 15 min at 4 ˚C and washed twice in 10 ml of ice-cold 

electroporation buffer (10% glycerol, 1 mM MgCl2). The final cell pellet was re-suspended in 

0.5 ml of electroporation buffer. A 100 l sample of re-suspended cells and 5 µg of DNA were 

placed in a sterile electrode cuvette (0.2-cm gap). The cells were then pulsed with a Bio-Rad 

(Hercules, Calif.) gene pulser at 2,500 V for 9.5 ms and incubated on ice for 5 min. The cell 

suspension was then added to 0.6 ml of TSB broth supplemented with yeast extract, hemin and 

menadione and incubated for approximately 16 h. A 100 l sample was plated on 5% sheep 

blood agar medium containing erythromycin and incubated anaerobically at 37 ˚C for 5 to 10 

days. 

 

Results 

Defining our framework of essential gene prediction. The definition of gene essentiality can 

vary between researchers, by experimental parameters and/or growth conditions. Genes that are 

essential for growth in minimal medium or during in vivo conditions may not necessarily reflect 

what is essential for survival in ‘ideal’ laboratory conditions. Also, a deletion or mutation of a 

defined essential gene may not be lethal but may lead to decreased fitness [168]. These 
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discrepancies are clear in the model organism Escherichia coli. Studies performed by several 

laboratories, showed clear differences in their definition and number of experimentally identified 

essential genes. Gerdes et al. performed genome-wide transposon mutagenesis in 2003, where 

they identified 609 essential genes [169], the Keio collection is currently defined as 296 essential 

genes [143] and a metabolic study described 119 genes as being conditionally essential [170]. In 

this study we focused our prediction on genes we considered to be necessary for growth in rich 

media, implying that certain vitamins, amino acids and nucleotide precursors would be provided. 

These genes represent the ‘core’ of the cell’s biological and cellular functions and would be 

considered essential in typical experimental in vitro conditions [171]. Furthermore, as these core 

essential functions are crucial to bacterial fitness, they represent a set of genes less affected by 

evolutionary processes [172-174]. 

From experimental studies in S. sanguinis SK36 [139], we saw that, while essential genes 

were distributed in various pathways, they could be associated through key biochemical 

pathways or functions. Genes required for peptidoglycan biosynthesis, terpenoid backbone 

biosynthesis, glycerophospholipid metabolism and fatty acid biosynthesis all related to the 

maintenance of the cell envelope. The pentose phosphate pathway and glycolysis provided 

energy. Nucleotide biosynthesis, DNA replication, cell division proteins, and protein 

biosynthesis were associated with the processing of the cell’s genetic information. In order to 

predict essential genes, we identified essential metabolic pathways corresponding to the three 

core biological functions. The functional genome annotation was obtained from the KEGG 

database and assigned to genes within the pathways. Our approach defined essential as a gene 

whose functional role individually contributed to the formation of a crucial chemical compound. 

Therefore the single deletion or mutation of the gene would result in a non-viable cell.   
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Prediction of essential genes by gene annotation in P. gingivalis strain W83. To predict 

essential genes in P. gingivalis strain W83, we manually examined our essential biochemical 

pathway maps through the KEGG database, a workflow schematic is shown in Fig. 2. Annotated 

genes were viewed for each pathway and from 1909 protein coding genes, 212 were predicted to 

be essential (Fig. 3, for complete list, see Appendix, Supp. Table 1). During our prediction, we 

noted several instances of paralogs or potential isozymes (PG1852/PG0223, exonuclease, DNA 

polymerase III subunit epsilon; PG0121/PG1258, DNA binding protein HU; and 

PG1940/PG0933, elongation factor G). Many paralogous genes code for proteins that have 

redundant functions, which is why a majority of computational models predict them to be non-

essential. However, it has also been noted that paralogous genes can have distinct roles through 

functional divergence [175]. For example, N. meningitidis possess paralogous genes for 

glyceraldehyde-3P dehydrogenase (NMB2159 and NMB0207). However, only NMB2159 was 

determined to be essential, as NMB2159 is involved in glycolysis and NMB0207 is involved in 

gluconeogenesis [176]. As experimental data would be needed to determine if both or one gene 

was essential, we listed paralogs as potentially essential. Hypothetical proteins were left out of 

our analysis unless a conserved motif and putative function was noted in the KEGG database. 

One such example was PG2046, which was annotated as a hypothetical protein in the KEGG 

database. Based on our database searches the gene contained a conserved tRNA 

methyltransferase motif and had orthologous matches to other tRNA(Ile)-lysidine synthases. 

This indicated that the gene might have a putative essential function in tRNA processing. 
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Figure 2. Workflow schematic for the prediction model framework. 

(a) A strategy to predict essential genes. (b) Example of an essential pathway from S. sanguinis strain 

SK36. Circles represent key intermediates; green boxes represent essential genes; red boxes represent 

non-essential genes; white boxes represent genes not present within the genome of S. sanguinis. 
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Figure 3. Predicted essential genes and corresponding pathways for P. gingivalis strain W83.  

The three biological categories associated with essential genes, previously determined from experimental 

studies in S. sanguinis SK36, are indicated by color: dark blue, maintenance of cell envelope; grey, 

energy production; light green, processing of genetic information. Predicted essential gene numbers 

(PG#) are shown in red, predicted non-essential genes are shown in black. Solid arrows indicate 

enzymatic reaction, dashed arrows dashed arrow, multistep pathway; blue dashed arrow, products 

involved in cell wall and membrane formation; block arrow, product from one pathway serving as input 

to another pathway; oval with bold arrow, transporter; slash, separating paralogs. Ado, adenosine; Cyd, 

cytidine; DAG, 1,2-diacylglycerol; DHAP, dihydroxyacetone phosphate; DHF, dihydrofolate; L-G3P, sn-

glycerol 3-phosphate; Guo, guanosine; LPA, lysophosphatidic acid; LTA, lipoteichoic acid; PA, 

phosphatidic acid; PS, phosphatidylserine; PE, phosphatidylethanolamine; PGP, 

phosphatidylglycerophosphate; PG, phosphatidylglycerol; PPP, pentose phosphate pathway; LPS, 

lipopolysaccharide; THF, tetrahydrofolate; Urd, uridine. Genes assumed to be essential based on 

prediction, but not annotated in the KEGG database, are represented by red letters (see Table 1). Predicted 

essential genes associated with ribosome and aminoacyl-tRNA biosynthesis are not indicated here. For 

the complete essential gene prediction see Appendix, Supp. Table 1. 
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From our assessment of the core essential pathways, we knew certain genes should be 

critical to the formation of certain compounds. However, during our analyses we saw that a small 

fraction of genes were missing annotations for certain essential functions in the KEGG database, 

noted in Fig. 3 as lowercase letters. For example, in the glycolysis pathway, the gene responsible 

for the conversion of pyruvate to acetyl-CoA is not noted. To identify these missing genes, we 

compared the genome of P. gingivalis against annotated genes in the NCBI database using a 

BLASTP analysis. Proteins with e-values of 1×10-8 or less were then prioritized and missing 

genes were identified by their potential function or motif (Table 1, Fig. 3).     

There is no direct correlation between the number of essential genes and the total number 

of genes in the genome as different experimental approaches or conditions may derive various 

outcomes. However, on average, essential genes account for around 10-20% of the genome. S. 

sanguinis SK36 with 2270 protein encoding genes has 218 essential genes or 9.6% of the 

genome [139], S. pneumoniae D39 with 2,046 ORFs has 244 essential genes or 11.9% [146, 147] 

the 4,291 protein encoding genes in E. coli MG1655, 620 were assessed to be essential or 14.4% 

[169]. B. subtilis 168 resulted in 271 essential genes from a total ORF of 4,099 genes, accounting 

for 6.8% of the genome [145] and P. aeruginosa contains 678 putatively essential genes from 

5,500 genes or approximately 12% [177]. Our prediction of 212 essential genes accounted for 

11% of the genome, fitting with the expected percentage of essential genes within a microbial 

genome. Nonetheless, this prediction may not be comprehensive. Some genes could have been 

overlooked due to a lack of biological data annotated in the KEGG database, for instance the 

lack of annotation for hypothetical genes.  
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Table 1. Non-annotated predicted essential genes in P. gingivalis strain W83. 

 

 

 

 

 

 

 



39 
 

Functional analysis and examination of predicted essential genes by biological categories. 

To ensure that our essential genes followed our model, we next examined them to determine if 

they were associated with the three major biological categories. The predicted essential genes in 

P. gingivalis were grouped into a pathway based on the KEGG pathway orthology (KO number) 

and the final end product. Of the 212 predicted genes, 46 genes fell into the maintenance of the 

cell envelope category. About 32% (7% of total predicted essential genes) of those genes were 

directly related to peptidoglycan biosynthesis while about 19% (4% of total) were related to fatty 

acid biosynthesis. Sixteen genes were involved in energy production with about 69% (5% of 

total) related to glycolysis. The majority of the predicted essential genes (148 genes) were 

grouped into the processing of genetic information category. About 9% (6% of total) were 

related to nucleotide biosynthesis including both and pyrimidine metabolism and 33% (24% of 

total) were related to ribosomal biosynthesis. Two genes were involved in the synthesis of 

cofactors: PG0957, a riboflavin biosynthesis protein involved in FMN/FAD biosynthesis, and 

PG1896, annotated as S-adenosylmethionine (SAM) synthetase. Both of these genes fit into a 

variety of metabolic roles, producing energy which feed into other pathways (Fig. 4a). 

 To further study the functional characteristics of our predicted essential gene list, Clusters 

of Orthologous Groups of proteins (COG) [162] classifications were examined. COGs are 

defined through protein sequence comparison of completed genomes and functional categories 

such as RNA processing and modification, cell motility and lipid metabolism are grouped. A 

high number of genes predicted to be essential, were involved in translation, ribosomal structure 

and biogenesis (group J; Fig 4b) following other essential gene and minimal genome studies 

[143, 157, 162]. These COG functions belong to the information storage and processing category 

which includes critical cellular functions that require multiple proteins such as 30S and 50S 
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ribosomal proteins, cell division proteins and translation factors. However, the larger total 

proportion of genes belonged to COG functional groups that are related to metabolism (group C, 

E, F, G, H, I and Q; Fig 4b). COG assignments are influenced by genome annotation. Our 

prediction was mostly lacking hypothetical proteins without a functional annotation; therefore, 

only eight genes did not have a clearly defined COG function and are classified by general 

function. This included GTP-binding proteins era, obgE, engB and engA, acyl carrier proteins 

involved in fatty acid biosynthesis fabG and fabK, an oxidoreductase involved in peptidoglycan 

biosynthesis, and the ribonuclease Z elaC. This COG distribution is consistent with genes 

necessary for in vitro growth under laboratory conditions. Alteration in the environmental 

conditions would lead to changes in genes required for survival. Studies show that cells grown 

under chemically defined minimal media or during in vivo conditions were not enriched for 

translation, ribosomal structure and biogenesis (group J), but for amino acid 

transport/metabolism (group E), nucleotide transport/metabolism (group F) and energy 

production/conversion (group C) [178]. This suggests there are different needs for different 

environmental conditions.  

Cross-validation of prediction with experimental validation of essential genes in P. 

gingivalis strain W83. To evaluate our model, we performed a comparison of the predicted 

essential with putative experimental essential gene data. A transposon mutant library was 

generated in P. gingivalis strain W83 using a pSAM_Bt-based Mariner mutagenesis vector as 

previously carried out in Klein et al. for the genome-wide mutagenesis of P. gingivalis strain 

ATCC 33277 [149]. Approximately 20,000 colonies were pooled following multiple separate 

transpositions. Strain W83 proved difficult to obtain transposon mutants, which may be a result  
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Figure 4. Pathway association and COG distribution for predicted essential genes in P. gingivalis 

strain W83. 

(a) Distribution of predicted essential genes divided by pathway and three conserved biological functions. 

(b) The number of predicted essential genes and the percent distribution for the total number of predicted 

essential genes were calculated for the individual COG function.  
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of known capsule and fimbriae structures, characteristic of this strain. A small degree of 

resistance to the selective antibiotic (Erm) was also observed, which may point to survival of a 

mutant clone being correlated with the expression level of the Erm cassette. Following Illumina 

sequencing of two technical replicates, it was determined that about 12,000 distinct insertion 

mutants were present in the strain W83-background mutant pool. Around 12,000 insertions is 5-

fold coverage of the genome, which is sub-optimal for characterization of gene essentiality. 

Based on the limited number of insertions relative to the 36,000 distinct insertions in the ATCC 

33277-background, we decided to focus on grouping genes as either containing zero insertions or 

greater than two insertions, corresponding to putatively essential and putatively non-essential 

respectively (Appendix, Supp. Fig. 1) With this grouping guideline, 759 putatively essential and 

680 putatively non-essential genes were noted. It is important to note that the guidelines for 

determining putatively essential and non-essential in strain W83 were not as stringent as those in 

the previous study for strain ATCC 33277 due to the different library complexities. 

  From 212 predicted essential genes, 173 matched the experimental data, giving us a 

prediction accuracy of 81.6% (Fig 5, Supp. Table 1). Of the predicted essential genes not 

experimentally validated, three of these genes (PG0223, DNA polymerase III subunit epsilon; 

PG0121, DNA binding protein HU; PG0933, elongation factor G) may have been essential if not 

for possible isozymes or paralogs to predicted essential genes that were validated (PG1852, 

PG1258, PG1940, respectively). A large subset was annotated as hypothetical and therefore 

could not be predicted by our model without an assigned cellular function. A majority of these 

genes coded for functions that play multiple, non-specific roles. For example, there were several 

ABC transporters, ATP-binding proteins, glycoslytransferase and putative transcriptional 

regulators. In addition, many of these genes were not linked or associated with biochemical 
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pathways in KEGG. Lacking this information made it difficult to assess the essential role the 

gene would play to the overall cell survival. KEGG annotations are not necessarily the most up-

to-date.  

Although we were interested in the prediction of essential genes, to further validate the 

accuracy of our model, we compared the predicted essential genes to the experimentally 

determined non-essential genes to see if there was any overlap between the two data sets. From 

680 observed non-essential genes in strain W83 (Appendix, Supp. Table 1), only 7 genes (or 3% 

total) were predicted to be essential by our model (Fig. 5). These few false positives were again 

due to the presence of potential isozymes, paralogs or alternative pathways. PG0223 and 

PG1852, for example, both encode exonuclease DNA polymerase III subunit epsilon involved in 

DNA replication. While PG1852 is putatively essential, PG0223 is not. Mis-predictions may also 

come from lack of, or incorrect, annotation. In glycolysis, the conversion of PEP to pyruvate by 

the irreversible enzyme pyruvate kinase should be essential for energy production by the cell. 

However, the annotation for pyruvate kinase was missing in KEGG for P. gingivalis. A 

reversible enzyme with a similar function, pyruvate phosphate kinase, is found in some bacteria 

for the conversion of pyruvate to PEP and this enzyme was present and annotated as PG1017. 

Due to the lack of annotation for pyruvate kinase, we predicted pyruvate phosphate kinase to 

play that essential function. As PG1017 was experimentally shown to be non-essential, it is 

likely pyruvate kinase has not been noted within the database or another enzyme must be present. 

A small number of genes (32 out of 212) were unaccounted for in both the non-essential and 

essential experimental data. As mentioned earlier, due to complexities in the experimental 

conditions, some genes could not be accurately assigned to a category and therefore left out of 

the analysis.  
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Figure 5. Cross-validation of prediction to experimental essential gene data. 

(a) The number of essential genes shared between those predicted and the experimentally identified 

essential and non-essential gene data. (b) The comparison of the number of essential genes between the 

predicted essential genes, experimentally identified essential genes and experimentally determined non-

essential genes for strain W83 is shown. The blue circle represents the number of predicted genes 

correlated with experimental data, orange the number of predicted essential genes correlated with non-

essential from experimental data and gray the number of predicted essential genes not accounted for in 

experimental data. Approximately 81% of genes predicted to be essential (173 of 212) matched the 

experimental essential data set, and only a small fraction (7 of 212) of genes predicted to be essential 

were shown to be non-essential. 
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Comparison of P. gingivalis and S. sanguinis essential genes. We next compared the essential 

gene data predicted for P. gingivalis strain W83 to the experimental data of S. sanguinis strain 

SK36. As the healthy oral cavity is composed of roughly 80% streptococcus species [179], we 

theorized that selecting orthologous essential genes in P. gingivalis that were absent or not 

essential within S. sanguinis would present us with potential antimicrobial targets selective 

within the oral cavity for periodontal pathogens. We identified 68 essential genes that were 

selective for P. gingivalis (Table 2). It was clear during our analysis that differences were mostly 

a result of alternative pathways or genes apart of complexes that we predicted to be essential to 

the overall function. A clear example is in regards to cell wall composition. Gram-negative 

bacteria possess an outer membrane composed of lipoposaccharide and lipoproteins with a high 

lipid content. Gram-positive bacteria express lipoteichoic acid on the cell membrane and is 

composed of a high peptidoglycan content. This gave us a different set of essential genes for cell 

envelope maintenance. Another key difference lay in terpenoid biosynthesis. S. sanguinis uses 

the mevalonic acid pathway, producing terpenoids via the HMG-CoA reductase pathway. 

However, P. gingivalis uses the alternate MEP/DOXP or non-mevalonate pathway.  

Identification and assessment of meso-diaminopimelate as a target. To assess the value of 

our model in drug discovery, we wanted to examine the list of P. gingivalis-selective essential 

genes for future therapeutic targets. Sequences for each gene was first searched against the 

human genome to eliminate genes with significant human homology. No genes within our list 

had a homologous sequence compared to the human genome. Based on what we know of 

bacterial metabolism, the lysine biosynthesis pathway presented an attractive option for 

pathogen-selective targeting. Lysine is a required amino acid for bacteria and especially  
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Table 2. Predicted P. gingivalis-selective essential genes. 

Functional 

category 
KEGG Pathway 

KEGG 

KO# 
GeneID Name Protein ID 

Cell envelope 

Peptidoglycan 

biosynthesis 

K03340 PG0806 - 
Gfo/Idh/MocA family 

oxidoreductase 

K01921 PG0729 Ddl 
D-alanyl-alanine 

synthetase A 

K01929 PG1106 murF 
D-Ala-D-Ala adding 

enzyme 

K01000 PG0577 mraY 

phospho-N-

acetylmuramoyl-

pentapeptide-transferase 

K02563 PG0580 murG 
N-acetylglucosaminyl 

transferase 

K05366 PG0794 pbp1a 
penicillin-binding 

protein 1A 

K03587 PG0575 - 
penicillin-binding 

protein 2 

K00215 PG2002 dapB 
dihydrodipicolinate 

reductase 

K00928 PG2189 lysC aspartate kinase 

K00133 PG0571 asd 
aspartate-semialdehyde 

dehydrogenase 

K01714 PG2052 dapA 
dihydrodipicolinate 

synthase 

Terpenoid backbone 

biosynthesis 

(MEP/DOXP pathway) 

K01662 PG2217 dxs 
1-deoxy-D-xylulose-5-

phosphate synthase 

K00099 PG1364 dxr 

1-deoxy-D-xylulose 5-

phosphate 

reductoisomerase 

K00991 PG1434 ispD 

2-C-methyl-D-erythritol 

4-phosphate 

cytidylyltransferase 

K00919 PG0935 ispE 

4-diphosphocytidyl-2-C-

methyl-D-erythritol 

kinase 

K01770 PG0028 ispF 

2-C-methyl-D-erythritol 

2,4-cyclodiphosphate 

synthase 

K03526 PG0952 ispG 

4-hydroxy-3-methylbut-

2-en-1-yl diphosphate 

synthase 

K03527 PG0604 ispH 

4-hydroxy-3-methylbut-

2-enyl diphosphate 

reductase 

Terpenoid backbone 

biosynthesis 
K00806 PG0190 uppS 

undecaprenyl 

pyrophosphate 

synthetase 

Polysaccharide 

transporter 
- PG0117 - 

polysaccharide transport 

protein 

Lipopolysaccharide 

biosynthesis 
K00677 PG0070 lpxA 

UDP-N-

acetylglucosamine 

acyltransferase 
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K02372 PG0071 lpxC 

bifunctional UDP-3-O-

[3-hydroxymyristoyl] N-

acetylglucosamine 

deacetylase/(3R)-

hydroxymyristoyl-ACP 

dehydratase 

K02536 PG0072 lpxD 

UDP-3-O-[3-

hydroxymyristoyl] 

glucosamine N-

acyltransferase 

K00912 PG0638 lpxK 
tetraacyldisaccharide 4'-

kinase 

K02527 PG1565 - 

3-deoxy-D-manno-

octulosonic-acid 

transferase 

K02517 PG2222 - acyltransferase 

Glycerophospholipid 

metabolism/glycerolipi

d metabolism 

K00057 PG1369 gpsA 
glycerol-3-phosphate 

dehydrogenase 

K00980 PG2068 tagD 
glycerol-3-phosphate 

cytidylyltransferase 

Energy 

production 

Glycolysis / 

Gluconeogenesis 

K01835 PG2010 pgm phophomannomutase 

K04041 PG0793 fbp 
fructose-1,6-

bisphosphatase 

K15634 PG1513 - 

phosphoribosyltransferas

e/phosphoglycerate 

mutase 

K01006 PG1017 ppdk 
pyruvate phosphate 

dikinase 

K01610 PG1676 pckA 
phosphoenolpyruvate 

carboxykinase 

Pentose phosphate 

pathway 
K01619 PG1996 deoC 

deoxyribose-phosphate 

aldolase 

Nicotinate and 

nicotinamide 

metabolism 

K00763 PG0057 pncB 

nicotinate 

phosphoribosyltransferas

e 

K01950 PG0531 nadE NAD synthetase 

Genetic 

information 

processing 

Pyrimidine metabolism 
K00384 PG1134 trxB thioredoxin reductase 

K00945 PG0603 cmk cytidylate kinase 

Purine 

metabolism/Pyrimidine 

metabolism 

K00525 PG1129 nrd ribonucleotide reductase 

Folate biosynthesis K01633 PG2091 folB 
dihydroneopterin 

aldolase 

DNA replication 

(DNA polymerase III) 

K02342 PG1852 - 

exonuclease (DNA 

polymerase III subunit 

epsilon) 

K02342 PG0223 - 

exonuclease (DNA 

polymerase III subunit 

epsilon) 

Ribosome K02919 PG1915 rpmJ 
50S ribosomal protein 

L36 



50 
 

K02916 PG0990 rpmI 
50S ribosomal protein 

L35 

K02895 PG1927 rplX 
50S ribosomal protein 

L24 

K02897 PG0167 rplY 
50S ribosomal protein 

L25 

K02876 PG1919 rplO 
50S ribosomal protein 

L15 

K02907 PG1920 rpmD 
50S ribosomal protein 

L30 

K02888 PG0314 rplU 
50S ribosomal protein 

L21 

K02904 PG1930 rpmC 
50S ribosomal protein 

L29 

K02952 PG1914 rpsM 
30S ribosomal protein 

S13 

K02956 PG1758 rpsO 
30S ribosomal protein 

S15 

K02996 PG0376 rpsI 
30S ribosomal protein 

S9 

Aminoacyl-tRNA 

biosynthesis (tRNA 

synthetase) 

K01886 PG1951 glnS 
glutaminyl-tRNA 

synthetase 

K01893 PG1121 asnC 
asparaginyl-tRNA 

synthetase 

K01876 PG0153 aspS 
aspartyl-tRNA 

synthetase 

(tRNA processing) 

K04075 PG2046 - 

hypothetical protein: 

tRNA(Ile)-lysidine 

synthase 

K00566 PG0268 mnmA 
tRNA-specific 2-

thiouridylase MnmA 

Translation factors 

(Elongation factors) 
K02519 PG0255 infB 

translation initiation 

factor IF-2 

Protein export K12257 PG1762 secDF 

bifunctional preprotein 

translocase subunit 

SecD/SecF 

Chaperones and 

folding catalysts 

(Protein folding) 

K00970 PG0801 - poly (A) polymerase 

GTP-binding proteins K03595 PG2142 era GTP-binding protein Era 

Chromosome 

partitioning proteins 

(cell division) 

K03590 PG0583 ftsA 
cell division protein 

FtsA 

K03798 PG0047 ftsH 
cell division protein 

FtsH 

K03589 PG0582 ftsQ 
cell division protein 

FtsQ 

K03569 PG1396 mreB 
rod shape determining 

protein MreB 

K03570 PG1395 mreC 
rod shape determining 

protein MreC 

Cofactors Riboflavin metabolism K11753 PG0957 ribF 
riboflavin biosynthesis 

protein RibF 
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interesting is the dual role the pathway plays in lysine and peptidoglycan biosynthesis, making 

evident its potential for antimicrobial therapy. However, what makes lysine biosynthesis suitable 

for species-selective targeting is the presence of pathway variants (Fig. 6). The pathway is 

composed of four different branches, differing by the substrate intermediates at the branch point 

of L-2, 3, 4, 5-tetrahydrodipicolinate’s (THDP) conversion to meso-diaminopimelate (m-DAP). 

The succinylase branch utilizes succinyl-CoA to generate succinylated intermediates; similarly, 

the acetylase branch utilizes acetyl-CoA to produce acetylated intermediates. These two variants 

are used by the majority of Gram-negative and Gram-positive bacteria. The aminotransferase 

branch, used by plants and methanococci, involves a single step amine transfer to produce the 

precursor of m-DAP, LL-DAP [180]. However, for P. gingivalis, m-DAP [181-185] is directly 

produced by meso-diaminopimelate dehydrogenase (m-Ddh; PG0806; GenBank ID: 

AAQ65966.1) in a single step [181-185]. This led us to focus on m-Ddh as a potential target to 

pursue. To further narrow selectivity, microbes from the Human Oral Microbiome Database 

(HOMD) with an annotated m-Ddh were collected and aligned against m-Ddh in P. gingivalis. 

Out of 315 sequenced genomes, 69 contained an ortholog to m-Ddh. Interestingly, these 69 

species mostly included known pathogens such as Prevotella sp., Tannerella sp. and Veillonella 

species. This indicated the target could be useful across multiple pathogens contributing to 

periodontal diseases. 

An important component in antimicrobial therapy is the ability to target critical biological 

processes required for bacterial cell survival. Historically, these targets have focused on key 

biological functions such as DNA replication, protein translation and cell wall biosynthesis 

[186]. While m-Ddh is involved in protein and cell wall biosynthesis and we predicted the gene 

to be essential, prior to the beginning of our study we did not know whether this was  
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Figure 6. Variant pathways of lysine and meso-diaminopimelate biosynthesis. 

Genes involved in the enzymatic reactions are omitted for general overview with the exception of the 

dehydrogenase pathway. Figure adapted from Born et. al. 
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experimentally true. To verify m-Ddh was essential in P. gingivalis strain W83, we knocked out 

the gene by transforming cells with a recombinant PCR product carrying an erythromycin 

resistance cassette (ErmR) allowing for allelic replacement mutagenesis within the genome. 

Through this method, the antibiotic resistance cassette replaces the target gene and, if essential, 

results in non-viable cells following transformation. The disruption of the PG0806 gene with the 

ErmR cassette resulted in no colony formation following electroporation and recovery in 

selective media (Fig. 7a). This result was repeated independently; suggesting that deletion of 

PG0806 is lethal to P. gingivalis and therefore essential. To show that the lack of colony 

formation was in response to the essentiality of the gene and not problems with the 

transformation, we simultaneously carried out allelic replacement mutagenesis for a non-

essential hypothetical membrane protein (GenBank ID: AAQ65282.1). For this control we were 

able to obtain substantial colony formation (Fig. 7b). 

Another component for a potential target is “druggability” or the chance a small-molecule 

will bind and have a significant effect on the protein’s activity [187]. Druggability can be 

assessed in several methods, e.g., proof-of-concept in similar proteins, conserved or targetable 

sequence motifs and structural analysis [188]. m-Ddh enzymes from several organisms 

referenced in UniprotKB/Swiss-Prot with known or binding sites predicted by similarity were 

aligned (Fig. 8). P. gingivalis has approximately 30% sequence identity to C. glutamicum, L. 

sphaericus, C. thermocellum and U. thermosphaericus and 70% sequence identity to B. fragilis. 

When analyzing the sequences of m-Ddh we found that the binding pocket for m-DAP was 

highly conserved. Druggable proteins have been shown to consist of a higher ratio of non-polar 

to polar amino acid residues (m-Ddh; 59.1% vs 40.9%) and a lower isoelectric point 
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Figure 7. Allelic replacement mutagenesis for predicted essential gene target, m-Ddh. 

(a) Predicted essential gene PG0806 was transformed and plated on selective media resulting in no colony 

formation compared to (b) a non-essential gene control, validating the prediction that m-Ddh was 

essential.  
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(m-Ddh: 5.39 vs 7.44 in non-targets). Analysis showed that m-Ddh contains an oxidoreductase 

domain, a favored targeted enzyme class [189] and which has been previously determine with 

high confidence to be “druggable” by the Druggable Cavity Directory. Structural analysis by 

SYBYL revealed a solvent inaccessible binding cavity with residues corresponding to the m-

DAP sequence alignment and the conserved motifs (Fig. 9). This binding cavity consists of a 

relatively deep and hydrophobic region which should consist of hydrophobic amino acid residues 

such as methionine, tryptophan and phenylalanine (Fig. 9). In addition, m-Ddh from C. 

glutamicum has been co-crystallized in a complex with the endogenous substrate [190]. 

Therefore, m-Ddh structure appears to be “druggable”, making it a suitable target for drug 

discovery.   

 

Discussion 

We aimed to present a quick and efficient manner to identify putative essential genes in bacterial 

species lacking genome-wide experimental data. This would be of great benefit, especially 

during drug discovery for emerging and re-emerging pathogens. Essential genes present novel 

targets for overcoming antibiotic resistance and developing new antimicrobial drug therapies. 

Genome-wide experimental efforts can be expensive and time-consuming, which has resulted in 

an increase in predictive methodologies. We established a framework for a novel approach 

derived from previous studies in a Gram-positive bacterium S. sanguinis [139]. We showed that 

essential genes can be linked to pathways related to three basic biological categories allowing for 

the prediction of essential genes based on gene function and annotation, subverting the need for 

orthologous genes comparison.  
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Figure 8. Sequence analysis of m-Ddh. 

(a) Sequence alignment of m-Ddh from other bacterial organisms. The multiple sequence alignment 

analyses were performed using the T-Coffee multiple alignment. Alignment figure was generated in 

ESpript 3.0 The putative binding sites of Corynebacterium glutamicum (Cg), Lysinibacillus sphaericus 

(Ls), Bacteroides fragilis (Bf), Clostridium thermocellum (Ct) and Ureibacillus thermosphaericus (Ut) 

cited in the sequence annotations in UniProtKB/Swiss-Prot and P. gingivalis (Pg) predicted based on 

homology are indicated by astericks. The oxidoreductase domain for P. gingivalis is indicated by arrows 

below sequence. Secondary structure for P. gingivalis is annotated above the sequence. Relative 

percentage of characterized amino acid residues are shown below. (b) Secondary structure alignment of 

m-Ddh’s putative binding site from P. gingivalis (green), C. glutamicum (cyan) and U. thermosphaericus 

(purple). Key residues are labeled, side chains are displayed as sticks and colored corresponding to atom 

type. Hydrogens were omitted for clarity. 
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Figure 9. 3D structural analysis of m-Ddh from P. gingivalis. 

Ribbon based structure of m-Ddh with the m-DAP binding domain. m-DAP binding cavity is displayed by 

wireframe surface and zoomed in view of cavity with corresponding a.a. residues labeled. Cavity colored 

by hydrophobicity (red = hydrophobic) is shown below.  
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In this study, we assessed the efficacy of our novel approach. By applying our gene 

annotation prediction model to the Gram-negative periodontal pathogen, P. gingivalis, and 

utilizing experimental data from a genome-wide transposon mutagenesis study performed in 

strain W83 of P. gingivalis, we showed that: 1) our assessment of essential pathways and 

knowledge of key genes within those pathways is accurate; 2) our model can easily be applied to 

a variety of bacterial species; 3) our prediction model may identify a core set of essential genes 

and provide important genomic data to refine our prediction model through the comparison of 

experimental data; 4) the benefit of having a bioinformatics/predictive approach together with an 

experimental approach; and 5) by applying our prediction model, we can accurately select a 

potential antimicrobial drug target.    

From 1909 protein encoding genes annotated in KEGG, we predicted 212 essential genes. 

These genes fit within the three assigned biological categories (maintenance of the cell envelope, 

energy production and processing of genetic information) reaffirming the backbone of our model 

of essential genes. Having the advantage of recent experimental data by Klein et al., we 

compared the two studies. The initial mutagenesis study was done in strain ATCC 33277 where 

463 essential genes were identified. However, a new transposon mutagenesis study was carried 

out in strain W83 for the direct comparison of essential genes. In this experimental study, 759 

putative essential genes were identified and a comparison resulted in roughly an 81% match to 

our model. It is important to note that the experimental data for strain W83 was not as 

comprehensive as the study from strain ATCC 33277, which is why not all the genes within the 

genome are accounted for. We also focused on what was determined to be putatively non-

essential, to determine if we had false-positive predictions. From the study, 680 genes were 

determined to be non-essential. Our model was also accurate in not predicting non-essential 
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genes as essential. Only 7 genes were predicted from our model, but the majority (3 out of 5) had 

isozymes or paralogs that were determined to be essential.  

Several limitations of our essential gene prediction model should be noted. First, our 

model does not identify hypothetical proteins as essential. Although hypothetical proteins may 

present a subset of undiscovered gene targets, it is unlikely that all of these genes would encode 

functions essential to the cell. During our experimental screen of S. sanguinis, out of 218 

essential genes, only three were annotated as hypothetical. We also found that three of the 

hypothetical proteins shown to be essential during the transposon mutagenesis should not be 

expressed under the experimental conditions [191]. Genes not expressed may lead to false 

positives in transposon or allelic replacement mutagenesis studies. Second, genes whose 

functions are incorrectly annotated or incomplete will decrease the accuracy of our prediction. 

This would lead to genes falsely predicted to be essential or missed during our analysis 

completely. Organisms whose genome annotation is incomplete would also result in missed 

prediction during our analysis. For example, the KEGG genome annotation of P. gingivalis W83 

is missing key enzymes in glycolysis for the conversion of PEP to pyruvate and pyruvate to 

acetyl-CoA. Another issue would be isozymes and/or paralogs. As our model is essentially 

predicting single gene knockouts, it would be difficult to determine whether one or both genes 

would be essential without experimental screening. Essential genes are predicted based on their 

biological function in regards to essential pathways. Ubiquitous genes or genes whose function is 

not linked to a specific pathway may be difficult to predict or may be missed. This is especially 

true for genes involved in genetic information processing. Many of these genes are involved in a 

variety of processes not defined to a specific biological functions. Lastly, genes can rarely be 

classified as absolutely essential or non-essential as the definition greatly depends on the 
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specified set of conditions [192]. Gene inactivation may result in a slow growth phenotype or a 

cell with decreased fitness that will die over time. For instance, deletion of the pyrophosphatase 

ppa gene in E.coli is viable for several hours until cellular pyrophosphates become too high, 

stopping cell growth [193]. Our model also assumed P. gingivalis cells were grown during in 

vitro conditions with rich media. Certain genes corresponding to the formation of vitamins and 

co-factors were noted as non-essential as they would be provided to the cell by the medium. 

Changes in these conditions, such as cells grown with minimal media, would therefore require 

additional pre-cursor essential genes.  

A considerable benefit to this essential gene prediction model is the ability to quickly 

identify a set of potential drug targets. Due to the ease of our prediction, this method can be used 

to compare data across different genomes. By understanding crucial biochemical pathways and 

products, we could use model to identify species-selective essential genes as drug targets such as 

with our comparison between S. sanguinis and P. gingivalis. By comparing alternative pathways 

or differences in essential components (e.g., LTA versus LPS), we can identify specified 

essential genes. Information garnered from the comparison of experimental data can provide 

insight for our predictive model such as strain-specific essential genes. We aimed to support this 

hypothesis by selecting m-Ddh as a species-selective target for P. gingivalis. When selecting a 

drug target, it must not only be essential for the survival of the pathogen or disease virulence, it 

must possess certain sequence and structural features and three, have assayable activity. As a 

potential drug target, we were able to show through allelic replacement mutagenesis that m-Ddh 

is an essential enzyme. Previous studies comparing sequence and structural data between targets 

and non-targets showed druggable proteins are more likely to be of certain enzyme classes, 

contain more non-polar amino acids and have a lower isoelectric point, indicating molecules 
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more acidic in nature [189]. Based on these factors, m-Ddh is a “druggable” enzyme with a 

sequence and structural motif that has the ability to be targeted by small-molecules.  

In conclusion, we have developed an accurate method to quickly predict a core set of 

essential genes through the analysis of gene function. While currently our data may not be 

comprehensive, our results demonstrate that this method can accurately be applied to organisms 

lacking experimental data. As genomic data and gene annotation becomes more complete our 

prediction model will also, and we anticipate more biological functions of hypothetical genes 

will be discovered with the advances of genome research. Further experimental data can also 

narrow the function of those experimental essential hypothetical genes down to the three basic 

biological categories that will increase discovery of gene functions. Additionally, more extensive 

studies can refine our prediction of key differences in essential genes between organisms. For 

example, many genes involved in fatty acid biosynthesis are essential for Bacillus subtilis and 

Escherichia coli, but the pathway is incomplete in Mycobacterium genitalium, indicating the 

product can be provided or is not essential [157]. This will ultimately facilitate our knowledge of 

essential genes. Overall, our study verifies the validity of our previous findings and by applying 

this to P. gingivalis we were able to identify m-Ddh as an essential and “druggable” target for the 

treatment of periodontal disease. 
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Chapter Two  

Combinational Computer-based Drug Discovery to Identify Small-

Molecule Inhibitors against meso-diaminopimelate dehydrogenase 
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Background 

Historically, antimicrobial drug discovery involved high-throughput screening of thousands of 

compounds for inhibitory activity, followed by secondary assays to identify the mechanism of 

action [97, 194]. Unfortunately, this was time consuming and costly, requiring on average 15 

years and $800 million [96, 195]. Coupled with a low success rate, this investment prompted a 

decline in antibiotic research by pharmaceutical companies, leading to a lack of new and 

effective drugs entering the market [126, 194]. However, with resistance and re-emerging 

pathogens on the rise, new approaches in drug development are critical for the future of 

antibiotics.  

Recent advances in genomics, structural biology and computational chemistry have 

provided alternative strategies to traditional methods, giving rise to rational drug design [196]. 

The principle of rational drug discovery involves identifying or designing compounds based on 

the target’s biological features. Consequently, the validation of a potential target is an important 

first step. We have previously demonstrated the understanding of essential gene functions can 

allow for the rapid prediction of essential genes as potential antimicrobial targets [139]. This 

understanding coupled with the knowledge of alternative pathways and differing metabolic 

requirements can be used to identify unique or species-limited gene targets. With a validated 

target, computer-based drug discovery (CBDD) can be a rapid, efficient and inexpensive way to 

identify and obtain a selection of potential antimicrobial compounds.  

The use of a combinational CBDD approach (i.e., pharmacophore model, structure-based 

virtual screening (SBVS) and molecular docking/scoring) has been shown to be advantageous to 

the drug discovery process in many systemic disease studies, increasing their hit and success rate 

[197-199]. Due to the increasing access of essential genes (i.e. the DEG) [163] and protein 
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crystal structure data (i.e. PDB) [200] it has recently begun to be applied to antimicrobial 

research. A previous study in M. tuberculosis strain H37Rv successfully employed a multi-step 

screening strategy, combining modeling, SBVS and docking to identify a potent inhibitor against 

MtCM, a chorismate mutase [201]. Using a pharmacophore model we can generate a virtual 

description of molecular features essential to the desired protein-ligand interaction [202] based 

on observed experimental or in silico interactions [203]. This pharmacophore model can then be 

used for SBVS, which can replace costly and time-consuming experimental HTS assays. For 

SBVS a database with the structural data of millions of compounds is screened against the target 

protein to identify those that fit within the defined features and molecular docking is used to 

calculate and rank the binding mode for the select ligands within a defined region. Docking and 

scoring is a crucial step in CBDD. By defining an ideal pose, docking can aid in minimizing 

false positives prior to experimental studies and later can be integral in structure optimization 

[202]. However, evaluation of the optimal docking pose can vary based on the specific program 

and algorithm. For example, Goldscore uses a force-field method (summation of van der Waals 

and electrostatic interactions) [204] compared to CHEMPLP which utilizes empirical free energy 

scoring (enumeration of various types of interactions) [205]. To minimize the potential bias, 

studies suggest rescoring with different algorithms to determine the optimal binding 

confirmation [202]. As an additional means to evaluate the protein-ligand interaction, the free 

energy for optimal binding position can be predicted. HINT (Hydropathic INTeractions), 

developed by Kellogg and Abraham [206], is an empirical force field based on experimental 

measurements of the small molecule partition coefficient, Log Po/w. Since Log Po/w is 

thermodynamically related to free energy, the HINT score corresponds to the free energy of 
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intermolecular binding interactions. The combination of these approaches can provide a 

promising start for a novel antimicrobial drug discovery project.  

We aimed to use periodontal disease and the keystone pathogen, P. gingivalis as an 

exploratory model for pathogen-specific drug targeting. We identified m-Ddh from P. gingivalis 

as a species-selective, essential and druggable target. The m-Ddh crystal structure from P. 

gingivalis (PDB ID: 3BIO) [207] was determined as part of the Protein Structure Initiative in 

2007 [207, 208] allowing us to apply a combinational CBDD strategy to identify small-molecule 

inhibitors. In this study, we generated a pharmacophore model based on the natural substrate and 

previous m-Ddh inhibitor studies from B. subtilus and C. glutamicum [209]. We go on to adopt a 

HTS virtual screening method utilizing the ZINC drug-like database of commercially available 

chemicals to identify small-molecule inhibitors. Finally, we docked and scored the HTS results 

to identify a subset of high-ranking compounds as the initial steps in developing a novel strategy 

for antibiotic drug discovery.   

 

Materials and Methods 

Molecular modeling. 

Protein structure. The structure of meso-diaminopimelate dehydrogenase (oxidoreductase, 

Gfo/Idh/MocA family member) from P. gingivalis strain W83, was crystallized as part of the 

National Institute of Health-National Institute of General Medical Sciences (NIH-NIGMS) 

sponsored Protein Structure Initiative (http://www. nigms.nih.gov/Initiatives/PSI/) [210, 211] 

and was solved at a resolution of 1.80 Å. The crystal structure data was downloaded from the 

Protein Data Bank (PDB ID: 3BIO) [207] and applied in our study. The binding site was 

identified by sequence homology to the ortholog in C. glutamicum, whose crystal structure was 
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previously determined in a complex with the substrate, meso-diaminopimelate (m-DAP), in the 

binding pocket (PDB ID: 2DAP) [190]. Using Sybyl X.1 (Tripos, St. Louis, MO), the protein 

was prepared for virtual screening and docking studies by extracting water molecules and co-

crystallized ligands and deleting one of the two monomers. The pKa values of the amino acid 

residues within the binding pocket were predicted and the appropriate ionization states were 

assigned in SYBYL for a pH 10.5 based on the conditions of the in vitro enzymatic experimental 

assay. Appropriate atom types were assigned, hydrogens were added and the protein was 

minimized with Sybyl’s Tripos force field.  

Structure-based virtual screening. Virtual screening was performed with the UNITY module 

within the Sybyl-X molecular modeling program Unity uses a directed tweak algorithm [212] to 

simulate molecular flexibility while screening small molecules. The binding pocket of m-Ddh 

was used as the target site, by constructing a variety of queries based on the pocket’s properties. 

Over 9 million small molecules were screened in silico from ZINC [213] drug-like databases 

(http://www.zinc.docking.org).  

Molecular docking. Docking and two-step scoring was used to evaluate the results of virtual 

screening. By visually inspecting and filtering the UNITY hits, we selected the top 132 small-

molecule compounds for further computational analysis. We used GOLD (Genetic Optimization 

Ligand Docking) docking program v5.2) [204], targeting the binding site of in m-Ddh. A sphere 

with radius of 12 Å from Arg183 was set as the docking region. This allowed for the inclusion of 

all residues expected to be within the binding site. The protein model was prepared for docking 

as described above. Conformational flexibility was allowed for the small molecules. We allowed 

for 50 GA (Genetic Algorithms) runs with a distance of 1 Å between clusters. The 132 

compounds selected from our virtual screening hits were docked by GOLD, ranked by Goldscore 

http://www.zinc.docking.org/
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and then re-ranked by the CHEMPLP as implemented in GOLD. All docked compounds were 

then scored in a second pass by HINT (Hydropathic INTeractions) [214]. The binding mode 

corresponding to the highest-ranking HINT score for each compound was chosen as the best and 

most likely conformation for that compound. From these 132 compounds, the top 30% of the 

best-scored, structurally diverse compounds as ranked by HINT were re-docked and minimized 

with 10,000 iterations within the m-Ddh binding site. Finally, out of forty top scored small 

molecules, 11 compounds were commercially available and were purchased for assay. All 

images were generated in Pymol (http://www.pymol.org).   

Cloning, expression and purification of m-Ddh. The amino acid sequence of m-Ddh from P. 

gingivalis was codon-optimized for expression in E. coli cells, synthesized and cloned into a 

pUC57 vector by GenScript (Piscataway, NJ). To introduce the 6×-HIS tag to the C-terminal end 

of the gene, the plasmid was digested at NdeI and NotI restriction sites. The digested fragments 

were loaded onto a 1% agarose gel and purified using MinElute® Gel Extraction kit (Qiagen, 

Valencia, CA). The purified DNA insert was ligated into a NdeI- and NotI-digested pET-21a (+) 

vector (Merck Millipore, Billerica, MA) by T4 DNA ligase (New England Biolabs, Ipswich, 

MA), yielding the expression plasmid pET-Ddh. The plasmids containing the DNA construct 

were isolated using QIAprep® Spin Miniprep plasmid (Qiagen, Valencia, CA) and sequenced at 

VCU Nucleic Acids Research Facilities (Richmond, VA).  

The pET-Ddh plasmid was introduced into E. coli BL21 (DE3) pLysS (BioLine, 

Taunton, MA) and grown overnight in auto-inducing media ZYP5052 containing 100 µg/ml 

ampicillin at 37 ˚C. For purification, cells were disrupted by Emulsiflex C3 high pressure 

emulsifier (Avestin, Ottawa, Canada). Soluble protein was collected and separated from cell 

debris by centrifugation (20, 000 × g for 20 mins at 4 ˚C). The resulting supernatant was loaded 

http://www.pymol.org/
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onto a NTA-Ni2+ affinity column (Qiagen) pre-equilibrated with running buffer (25 mM Tris, 

300 mM NaCl, 10 mM imidazole, pH 8.0). Unbound protein was washed off with wash buffer 

(25 mM Tris, 300 mM NaCl, 10 mM imidazole, pH 8.0) and chelated protein was eluted off with 

elution buffer (25 mM Tris, 300 mM NaCl, 100 mM imidazole, pH 8.0). Protein concentration 

was calculated based off of absorbance at 280 nm. 

Molecular mass analysis of purified m-Ddh. The enzyme was examined by 12.5% sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) stained with Coomassie Blue 

G-250 (Bio-Rad, Hercules, CA). Samples were boiled in 2X Laemmli buffer (4% SDS, 10% β-

mercaptoethanol, 20% glycerol, 0.125M Tris-HCl, 0.004% bromophenol blue).  

 The molecular weight of the native enzyme was determined by gel filtration 

chromatography. Gel filtration was carried out using an Äkta Pure Protein Purification System 

(GE Healthcare, USA) with a 1 ml injection loop. The column was calibrated using Gel filtration 

protein standards of molecular weights ranging from 12,000 – 200,000 Da: standards 1, β-

amylase (200 kDa) and cytochrome c (12.4 kDa); standards 2, alcohol dehydrogenase (150 kDa) 

and carbonic anhydrase (29 kDa); standards 3, albumin (66 kDa). 500 l of a 3.2 mg/ml purified 

protein was run through a Superdex 75 10/300 GL column (GE Healthcare, USA) at an elution 

rate of .5 ml/min with a 25 mM Tris-HCl, 300 mM NaCl, 100 mM imidazole buffer (pH 7.5) 

elution buffer. Fractions of 1ml volume were collected.  Fractions were then analysed by 

spectrophotometry. Protein size was calculated by standard curve of molecular mass vs. Ve 

(elution volume)/Vo (void volume) for each protein standard. 

m-Ddh kinetic assay. The enzymatic activity for m-Ddh was determined by observing the 

standard oxidative deamination reaction of the substrate meso-diaminopimelate [215]. The 

reaction contained 400 µM of meso-diaminopimelate (Sigma-Aldrich, St. Louis, MO), 180 µM 
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NADP+ (Sigma-Aldrich, St. Louis, MO), 200 mM glycine-KCl-KOH buffer (pH 10.5), and the 

enzyme in a final volume of 1 ml. The reaction was initiated with the addition of NADP+. The 

reaction velocity was calculated from the increase in absorbance at 340 nm, 

spectrophotometrically monitored at 25 ˚C, where one unit of enzyme was defined as the amount 

of enzyme catalyzing the formation of 1 mmol of NADPH per min. 

Determination of kinetic parameters. Initial velocity measurements for m-DAP and NADP+ 

were determined at 25 ˚C in a similar reaction for the standard oxidative deamination reaction 

assay. The reaction contained 200 mM glycine-KCl-KOH buffer (pH 10.5) with m-DAP as the 

variable substrate with concentrations between 0.001 mM and 1 mM and NADP+ held constant 

at a saturating concentration of 0.5 mM or NADP+ as the variable substrate with concentrations 

between 0.01 mM to 1 mM and m-DAP held constant at 0.5 mM. Km and Vmax values were 

determined through non-linear fitting. All assays were performed in triplicates and non-linear 

fitting Michaelis-Menten data were calculated from Graphpad Prism v5.04 (Graphpad, San 

Diego, CA).  

Mutagenesis of m-Ddh. For site directed mutagenesis, pET-Ddh plasmid was used as a template 

for single residue site-directed mutagenesis of m-Ddh (R183Y, R183K, D124E and D124A). The 

phosphorylated primer set for each mutant was as follows. Forward R183Y: 5’- ACG GGT GTG 

CAT CGT TAT ATG GTC TAT GTG GAA-3’ and Reverse R183Y: 5’- TTC CAC ATA GAC 

CAT ATA ACG ATG CAC ACC CGT-3’; Forward R183K: 5’- ACG GGT GTG CAT CGT 

AAA ATG GTC TAT GTG GAA -3’ and Reverse R183K 5’- TTC CAC ATA GAC CAT TTT 

ACG ATG CAC ACC CGT-3’; Forward D124E: 5’- C GCA TCA GGC TGG GAA CCG GGT 

AGT GAT TCC-3’ and Reverse D124E: 5’- GGA ATC ACT ACC CGG TTC CCA GCC TGA 

TGC G -3’; Forward D124A: 5’- ATC AGG CTG GGC GCC GGG TAG TG -3’ and Reverse 
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D124A 5’- GCG ATA ACC GCA GCT GCA -3’. All PCR reactions were performed with an 

initial denature of 98 ˚C for 30 sec, 25 cycles of 98 ˚C for 10 sec, 56 ˚C for 30 sec, 72 ˚C for 2 

min 45 sec and a final extension of 72 ˚C for 7 min. PCR products were digested with 1 U of 

DpnI (New England Biolabs, Ipswich, MA) at 37 °C for 1 h and inactivated for 20 min at 80 °C. 

The plasmids containing the mutation were sequenced at VCU Nucleic Acids Research Facilities 

(Richmond, VA). The final product was used to transform into E. coli DH5α T1 competent cells. 

Phusion High-Fidelity Taq DNA polymerase (New England Biolabs, Ipswich, MA) was used in 

all reactions. Mutants were transformed, expressed and purified as previously described for WT. 

 

Results 

In silico analysis of m-Ddh structure and function. The enzyme catalyzes the NADP+ 

dependent oxidative deamination of m-DAP (Fig. 10). The reaction is reversible and the 

biologically favored reaction involves the NADPH dependent conversion of L-2,3,4,5-THDP to 

m-DAP by reductive animation. During this reaction L-2,3,4,5-THDP first has a spontaneous 

ring opening to produce L-α-amino--ketopimelate. L-α-amino--ketopimelate catalyzed by m-

Ddh generates an imine intermediate before yielding m-DAP. Crystal structure data suggests the 

protein is similar to previously studied m-Ddhs [182, 216-218]. It is a homodimer and sequence 

analysis indicates it consists of three main domains: a NADP+-binding domain which 

corresponds to the conserved GXGXXG sequence found within the N-terminal βαβ-protein fold 

[219], a dimerization domain and an oxidoreductase domain (Fig. 11). Studies in C. glutamicum 

and B. sphearicus show that m-Ddh has a strict specificity for the D-amino acid center of m-DAP 

being placed near the NADP(H) domain [220-222].  
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Figure 10. Schematic for the m-Ddh catalyzed biochemical reaction. 
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 To assess the binding model of the natural substrate within the protein pocket we docked 

m-DAP (Fig. 12). The protein was prepared as described in “Materials and Methods” and we 

used GOLD docking program v5.2, selecting the 9 a.a. residues previously predicted to be the 

binding site as the area of the docking region. m-DAP binds within a deep groove situated so that 

the two carboxylate groups face the protein side allowing for hydrogen bond interactions 

(Arg183, Thr173, Met154 and Gly155). The two amine groups face away from the protein 

allowing for potential solvent interactions. The positioning places the D-amino acid center near 

the NADP+ binding site to allow for the hydrogen exchange and the enzymatic reaction to occur. 

This binding mode corresponded to what has been observed in crystal data studies [190, 220].  

In vitro analysis of m-Ddh structure and function. To first confirm the structural and 

functional in silico analysis of m-Ddh, we synthesized the gene and expressed it in E. coli. The 

gene sequence encoding for P. gingivalis m-Ddh was codon-optimized and cloned into a T7 

pET-21a (+) expression vector carrying a C-terminal 6x HIS tag. The protein was isolated 

following the expression and purification described in “Materials and Methods”. The protein is 

301 a.a. residues with a calculated molecular weight of 32 kDa, corresponding to the migration 

of the monomeric structure on SDS-PAGE (Appendix, Supp. Fig. 2a). The crystallized structure 

of m-Ddh from P. gingivalis indicated that the enzyme exists as a homodimer, the native 

molecular weight was determined by gel filtration chromatography where two prominent peaks 

eluted similarly to standard 3 (Appendix, Supp. Fig. 2b) at a calculated size of 66 kDa, 

demonstrating that the active enzyme exists as a dimer. 
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Figure 11. Structural domains of m-Ddh from P. gingivalis.  

Dimer (top) and monomer (bottom) structure of m-Ddh from P. gingivalis. Structure consists of three 

main domains which are highlighted by different colors. The substrate or oxidoreductase domain 

(yellow), the dimerization domain (green) and the NAD(P) domain (blue). The NADP domain found in 

the N-terminal sequence of m-Ddh corresponds to the conserved GXGXXG sequence within a 

structural motif. 3D structure of m-Ddh was generated in Pymol (http://www.pymol.org). m-DAP docked 

within the binding pocket is shown in pink.  

http://www.pymol.org/
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Figure 12. Molecular docking analysis of m-DAP binding model.  

GOLD was used to dock the natural substrate, m-DAP into the predicted binding pocket of m-Ddh. The 

optimal binding model determined by HINT score is displayed above (pink). Binding position of m-DAP 

from previous crystal data studies (PDB ID: 2DAP) is overlaid with predicted docking model (yellow) to 

show similar binding. NADP+ docked in its binding pocket is shown below to display the positioning for 

the hydrogen exchange and the enzymatic reaction. Key residues for intermolecular interactions are 

labeled, displayed as ball and sticks and colored corresponding to atom type. Hydrogens were omitted for 

clarity. Potential hydrogen bonding interactions between m-Ddh and a.a. residues are shown by yellow 

dashed lines.  
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 We next examined the Michaelis kinetics to evaluate the activity of the enzyme and 

determine the kinetic parameters for the oxidative deamination of m-DAP. This reaction is 

spectrophotometrically observable at 340 nm. This allowed for the development of a standard 

screening assay, monitoring the reduction of NADP+ to NADPH. Analysis of the initial velocity 

showed typical Michaelis-Menten kinetics (Fig. 13). The apparent Km and Vmax for m-DAP was 

determined to be 370 M and 130 nmol sec-1 and 60 M and 92 nmol sec-1 for NADP+ (Fig. 13) 

respectively. 

 Docking studies indicated that the carboxylate groups were essential for the binding 

through hydrogen bonding interaction. To verify this we selected Arg183 to mutate with a 

favored residue substitution or an un-favored substitution (Table 3; Fig. 14a). An Arg mutation 

to an un-favored substitution (R183Y) resulted in a significant decrease in substrate affinity (35-

fold increase in the apparent Km) compared to WT but retained similar catalytic efficiency. This 

was in contrast to the favored Arg substitution (R183K) which maintained similar Km and 

Kcat/Km values as the WT. Comparison of these two mutants with the WT docking showed a loss 

in a favorable hydrogen bonding between R183 and m-DAP during the Y183 mutation which led 

to a decrease in the calculated HINT interaction. Mutant R183K had a similar pose as WT, 

reflected by a strong HINT interaction between the carboxylate group of m-DAP and the amine 

group from K183. Asp124 is positioned within the protein for both NADP+ and m-DAP 

interaction. A favored mutation (D124E) resulted in a slight increase in substrate affinity (2.7-

fold decrease in the apparent Km) and an increase in catalytic efficiency. In contrast, the D124A 

mutation had a dramatic change in both the apparent Km and the catalytic efficiency resulting in 

almost no measurable activity (Table 3; Fig. 14b). Docking showed similar potential hydrogen  
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Figure 13. Kinetic analysis of purified m-Ddh from P. gingivalis strain W83. 

Characterization of kinetic properties of m-Ddh. Oxidative deamination reactions were 

performed in the presence of increasing concentrations of (a) m-DAP as the variable substrate 

with NADP+ fixed at a saturating concentration or (b) NADP+ as the variable substrate and m-

DAP held constant. Km and Vmax values were determined through non-linear fitting.  
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Table 3. Kinetic analysis of m-Ddh mutants. 
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Figure 14. Site-directed mutagenesis of binding pocket. 

GOLD was used to dock the natural substrate, m-DAP into m-Ddh with single a.a. substitutions of the 

predicted binding pocket. The optimal binding model is displayed above. (a) Arg183 mutated to R183Y 

left and R183K right with m-DAP docked. (b) Asp124 mutated to D124E left and D124A right with m-

DAP docked. Key residues for intermolecular interactions are displayed as ball and sticks and colored 

corresponding to atom type. Mutated residues are labeled in red. The optimal m-DAP docked for WT m-

Ddh is shown in pink to highlight changes in binding confirmation. Changes in potential hydrogen 

bonding interactions that would affect activity is displayed as a dashed yellow lines. Hydrogens were 

omitted for clarity. 
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bonding for the D124E mutant, however there was a more favorable acid-base interaction 

compared to WT. Conversely, D124A showed a slightly unfavorable base-base interaction 

between the carboxylate group of m-DAP and the backbone of Asp.  

Generation of pharmacophore model.  To identify a binding model for inhibition, we searched 

the literature for known inhibitors. Unsaturated analogues of m-DAP, containing a planar α-

carbon and lacking the active D-amino acid amine center of m-DAP have been shown to be 

strong inhibitors of m-Ddh isolated from Bacillus sphaericus and C. glutamicum [209]. It was 

assumed the analogue inhibitors bind in manner opposite to that of the substrate; thus, the non-

reactive L-amino acid center is positioned near the C-4 position of the co-substrate NADP+. This 

would prevent the oxidation reaction and hydride exchange that normally would occur between 

the substrate and co-substrate. We obtained two of these previously reported compounds; testing 

in vitro showed dose-dependent inhibition against m-DAP from P. gingivalis. 

 The X-ray crystal structure was modeled and the unsaturated analogue inhibitors 

(Compounds 1 – 3) as well as the m-DAP substrate were docked into the m-Ddh binding pocket 

to identify the features that should be important for inhibitor interactions (Fig. 15a). The docking 

model which best fit the expected in vitro interaction and displayed high docking scores was 

used to generate a pharmacophore model. Based on the best ranking interaction, the 

pharmacophore model focused on four features that were shared between the inhibitors and 

substrate: 1) a hydrophobic region complementary to amino acid residues Trp123 and Phe148; 2) 

a ligand donor atom complementary to residues Asp94 and Asp124; 3) a negative (acceptor) 

center complementary to the side chain of residue Ser153 and the backbone of residues Met154 

and Gly155; and 4) a negative (acceptor) center complementary to the side chains of residues 
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Figure 15. Generation of pharmacophore model. 

(a) Structure of m-DAP and inhibitor analogs that were previously shown to be active against m-Ddh in 

C. glutamicum and B. sphaericus. (b) Compounds docked into m-Ddh binding site and conserved 

interactions were identified. (c) Pharmacophore model with selected core features for inhibitor 

identification during virtual screen. The model focused on four features: first, a hydrophobic region 

complementary to amino acid residues Trp123 and Phe148 (green), second, a ligand donor atom 

complementary to residues Asp94 and Asp124 (purple), third, a negative center complementary to the 

side chain of residue Ser153 and the backbone of residues Met154 and Gly155 (red) and fourth, a 

negative center complementary to the side chain of residues Arg183 and Thr173 (red). The interaction 

was also restricted for an area 12Å in distance for Arg183. Key residues are labeled, displayed as ball and 

sticks and colored corresponding to atom type. Hydrogens were omitted for clarity.   
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Arg183 and Thr173. The interaction was also restricted to a sphere of radius 12 Å centered 

around Arg183. This was because from our docking model Arg183 was seen to form hydrogen 

bonds with the carboxylate groups of the substrate analogues and site-directed mutagenesis 

decreased the substrate-protein binding affinity by 32-fold.   

High-throughput virtual screening for identification of small-molecule inhibitors. The 

pharmacophore model shown in Figure 15b was used in a high-throughput virtual screen of the 

ZINC 3D database to identify small-molecule inhibitors that would fit the query constructed 

from the pharmacophore. ZINC (Zinc Is Not Commercial) is a publicly available listing of 

molecules that are reportedly available for purchase, organized in a manner appropriate for 

virtual screening studies. In simple terms, a compound was classified as a hit if it fit all of the 

features defined as mandatory in the model. The screening of more than 9 million compounds 

within the ZINC database resulted in more than several hundred hits. Since the goal of virtual 

screening is to identify unique compounds and scaffolds that have the potential to be developed 

into active inhibitors, a filter was applied to remove compounds within the hit list too structurally 

similar to one another. The resulting list was then filtered for drug likeness (i.e., with algorithms 

based on Lipinski’s Rule of Five [188]) to remove compounds and scaffolds that were unlikely 

to have reasonable physiochemical properties.   

Molecular docking and scoring of small-molecule inhibitors. Compounds passing through 

these filters were then docked to the binding site of m-Ddh with GOLD (Genetic Optimization of 

Ligand Docking) program to predict their binding affinities and to assess the modeled 

compound-protein interactions. Prediction of the best fit binding model of each compound, again 

within 12 Å of Arg183, was determined and scored by Goldscore. The models with top docking 

scores were re-docked to the binding site with the same docking parameters and rescored by 
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CHEMPLP. A filter based on binding pose was applied and compounds that interacted 

favorably, mostly via hydrogen bond, with the key residue Arg183 were identified. This filter 

yielded 132 hits, which were then scored by the HINT force field. The binding mode 

corresponding to the highest HINT score for each compound was then re-docked and minimized 

within the m-Ddh binding site. From these 132 compounds, the top 30% of the best HINT-

scored, structurally diverse compounds were set-aside as the 48 final hits. Finally, samples of the  

commercially available compounds in this group were purchased for future screening assays. 

The HINT scores and compound structures of each of these 11 compounds (4 – 14) are shown in 

Table 4. 

In silico analysis of binding confirmations. The optimal binding pose for the six top ranking 

compounds determined by HINT score are shown in Figure 16. The protein-inhibitor interaction 

involved potential hydrogen bonding interactions with the backbone for Met154, Ser153 and 

Gly155. The majority of the compounds possessed aromatic structures forming favorable 

hydrophobic interactions with Phe148 or Trp123. The sulfonamide functional group on 

compound 4, 5 and 6 show potential hydrogen bonds with Arg183 and Thr173. Due to distance 

few compounds show potential hydrogen bonding with the Asp functional group. The exception 

was compound 10 which lost hydrogen bonding between Arg183 and Thr173 to gain favorable 

hydrogen bonding interactions with Asp93. Overall, these compounds maintained the desired 

interaction determined through the pharmacophore model. 

 

  



93 
 

Table 4. 2D structures and scoring of top-ranking compounds 

 Structure HINT 

Compound 4 

 

3112 

Compound 5 

 

3014 

Compound 6 

 

2876 

Compound 7 

 

2095 

Compound 8 

 

4379 
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Compound 9 

 

2569 

Compound 10 

 

4274 

Compound 11 

 

2344 

Compound 12 

 

1989 

Compound 13 

 

4190 

Compound 14 

 

1692 
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Figure 16. Optimal binding mode for top-ranking compounds. 

Optimal binding model for the top-ranking compounds determined through HINT are shown above (see 

Table 4). Key residues are displayed as ball and sticks and colored corresponding to atom type. Residues 

labeled in the bottom middle figure correspond to all figures. Hydrogens were omitted for clarity. 
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Discussion 

Novel therapeutics have not kept paced with the need to overcome antibiotic resistance and fight 

new and re-emerging pathogens. Traditional methods principally relied on empirical screening, 

screening large numbers of compounds for whole-cell activity, flushing out the mechanism of 

action and verifying the feasibility of the target later. This resulted in a costly and time-

consuming endeavor that was especially discouraging for small startups and academia which 

lack the resources of larger pharmaceutical companies. In addition, as the ‘golden era’ of 

antibiotic discovery waned, this approach proved ineffective. However, steady advances in 

computational chemistry, protein chemistry and genomics have resulted in successful drug 

discovery through CBDD for systemic diseases such as cancer [202]. Utilizing a combination of 

CBDD techniques, a better understanding of a target can be gained, the properties essential for 

the activity or inhibition assessed and a diverse set of inhibitors identified.  

 In this study, we aimed to present a rationalized approach to antibiotic drug discovery. 

We employed a combinational CBDD approach which incorporated pharmacophore models, 

SBVS and molecular docking. Ultimately screening more than 9 million small-molecule 

compounds to identify potential inhibitors against P. gingivalis and utilize a novel approach in 

antimicrobial drug discovery. By applying this method to the Gram-negative periodontal 

pathogen, P. gingivalis, we showed that: 1) we can accurately assess the structure/function of our 

target through computer-based molecular modeling; 2) we can identify key molecular features 

for inhibitor screening; and 3) utilizing several CBDD techniques in parallel can lead to a rapid 

selection of inhibitors. 

The crystal structure data of m-Ddh was used to first examine the structure and related 

function of the enzyme. The enzyme is an active homodimer that binds m-DAP and NADP+ 
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within close proximity at the N-terminus of the protein. It has been shown to have strict 

specificity for the substrate which must bind in a certain orientation. This would allow for 

specific hydrogen bonding interactions with the carboxylate groups of m-DAP. It also positions 

the catalytically active amine group near the NADP+ moiety. As m-Ddh from P. gingivalis has 

not been characterized in vitro, we expressed and purified the protein from E. coli. Gel filtration 

analysis confirmed the assumed tertiary confirmation consistent with other characterized m-

Ddhs. Previous studies of m-Ddh and its role in lysine biosynthesis have focused on the enzyme 

from Corynebacterium [190], Bacillus [184], and Ureibacillus [217]. However, prior to our 

study there was no enzymatic data on m-Ddh in P. gingivialis available. Therefore, we 

determined the kinetic properties through the assessment of the enzyme assay. Analysis of the 

kinetic data showed a Km value of 370 M with a Vmax of 130.1 nmol sec-1 for the substrate m-

DAP and a Km of 60 M with a Vmax of 91.95 nmol sec-1 for NADP+. We next used site-directed 

mutagenesis to further evaluate the in silico interaction. The side chain of Arg183 was shown to 

form hydrogen bonds within the active site. Mutation of Arg183 to Tyr was still catalytically 

active but showed a large decrease in substrate binding compared to the WT. This may indicate 

the replacement of Arg to the aromatic structure of Tyr may prohibit m-DAP access into the full 

length of the active site but still allows for the enzymatic reaction near the D-amino center. D124 

is found within the overlap between the substrate and co-substrate binding sites. Asp residues 

within active sites are known to form stabilizing hydrogen bonds through salt bridges [223]. The 

Ala substitution left the enzyme almost inactive. However a Glu substitution, which is similar to 

Asp in structure and function, slightly increased the binding and efficiency. This could indicate 

D124 may play an essential role in m-Ddh protein stabilization.  
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By analyzing the binding model of substrate analogue inhibitors we were able to define a 

pharmacophore model with consistent features between three inhibitors and the substrate. Our 

four key features mainly focused on the potential hydrogen bonding interactions. First identified 

was a hydrophobic region from the aromatic residues Trp123 and Phe148. This interaction would 

allow for another ring within that region and lead to potential hydrophobic stacking interactions.  

The second feature, a ligand donor atom complementary to residues Asp94 and Asp124 would 

allow for hydrogen bonding between the carbonyl oxygen groups. The third feature is a negative 

(acceptor) center complementary to the side chain of residue Ser153 and the backbone of 

residues Met154 and Gly155. The backbone of these residues would allow for potential 

hydrogen bonding with the ligand acting as a hydrogen acceptor. The last feature was a negative 

(acceptor) center complementary to the side chains of residues Arg183 and Thr173. This feature 

is similar to feature three but involves the side chains for potential bonding. This characterization 

allowed for the application of a rational HTS strategy utilizing the ZINC compound database. 

Compounds identified were then subjected to docking analysis through GOLD and two distinct 

scoring approaches. This resulted in more than 100 compounds. Finally a subset of the 

commercially available compounds which were computationally determined to be the best fit 

were selected for future in vitro analysis.  

In conclusion, we have successfully applied a CBDD method to identify a select group of 

structurally diverse small-molecule compounds against m-Ddh. While currently this data is 

preliminary, our results demonstrate that this multifactorial method can accurately be applied to 

antimicrobial drug discovery and due to the feasibility, can be used across a variety of infectious 

pathogens. In addition, the rational selection and preliminary in silico screening should lead to a 

higher success rate than traditional trial and error experimental screening. This study may also 
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present a better understanding of our validated target. Through computational modeling we can 

further study the structure of the protein. This is important, as molecular features correspond to 

the activity of the protein and by understanding these features a compound can then be selected 

or designed to interact against these features. Ultimately, this may result in a more in-depth 

pharmacophore model, improved HTS drug screening or structural optimization of active 

inhibitors. Overall, our study presents the rationale for this approach and by applying this to P. 

gingivalis we were able to identify potential inhibitors for the treatment of periodontal disease. 

Coupled with further experimental data we can verify our computational analysis and this should 

aid in the progression of an antimicrobial drug discovery model. 
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Chapter Three  

In vitro Characterization of Small-Molecule Inhibitors against meso-

diaminopimelate dehydrogenase 
 

 
Victoria N. Stone and Ping Xu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Victoria N. Stone performed the experiments, the analysis of data and the preparation of the 

following manuscript. Dr. Ping Xu acted as an advisor.  

  



102 
 

Background 

Undoubtedly, CBDD is an exceptional way to identify a set of inhibitors against a specific target. 

The rational assessment of potential interactions allows for the selection of small molecules with 

a higher probability of binding, thereby increasing the efficiency of HTS [202]. However, their 

activity is based on computational algorithms and is therefore theoretical. It does not provide 

information on the potency, pharmacokinetics or cytotoxicity. Before inhibitors identified in this 

manner can progress into potential antimicrobials, it is necessary to evaluate the defined activity 

through an in vitro screening phase. Primarily, this consists of two general biochemical 

methodologies: target-based to assess protein-inhibitor interaction and cell-based to screen for 

whole-cell growth effects [224].   

 Target-based screening assays are used to verify the inhibitor binds the identified target 

and has a significant effect on its activity. First, it is important the target can be isolated, 

characterized and a suitable assay can to be developed that is simple and cost-effective while 

being sensitive enough to detect changes in activity [122]. This is to ensure that the assay is able 

to screen a large amount of small molecules and the results are reproducible. With our target, m-

Ddh, purified and enzymatically characterized, we determined a standard enzymatic assay for 

screening. The reduction of the co-factor NADP+ to NADPH is monitored at 340 nm by 

spectrophotometric analysis and the rate of that reaction determined. Inhibition can then be 

defined by the corresponding changes in the enzymatic rate. This screening strategy is similar to 

the HTS performed by GSK for the identification of inhibitors against two enoyl-ACP reductase 

enzymes, FabI and FabK [126]. By monitoring the consumption of NAD(P)H, an inhibitor 

displaying slight in vitro activity was identified and later optimized for whole-cell activity [225, 

226]. Observed target inhibition is used to relate potential pharmacodynamics and 
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pharmacokinetics of the inhibitor by constructing a dose-response curve. This is used to observe 

the effect that different concentrations have on the enzyme activity, generating the concentration 

at which half the enzyme activity is inhibited (IC50) [227]. The IC50 allows for the assumption 

that the inhibition is directly correlated to the inhibitor (non-toxic). Further target-based assays 

during this stage lead into target-related mechanism of action studies, such as defining the 

inhibition pattern and binding affinity. Additionally, this data provides the relative inhibitor 

activity and combined with structural analysis outlines the initial SAR studies [228]. Ultimately, 

this can be used to understand which parts of the ligand can be altered to improve activity or the 

pharmacodynamics.  

One of the most essential properties of an antibiotic is the ability to cross the membrane 

and exert a biological effect on the cell. However, inhibitors that show activity against a target 

may not possess the optimal structural properties for whole cell activity. Whole-cell based assays 

are used to determine whether a small molecule possess antimicrobial properties. MICs, defined 

as the lowest concentration that inhibits cell growth, are typically used as a cell-based method to 

relate inhibition to activity. However, it is important to connect whole-cell activity with a target’s 

inhibition or in other words verify the MoA [229]. This can involve the alteration of the intended 

target such as over- or underexpression of the target [230], transcriptional analysis of inhibitor 

treated cells [231] and phenotypic profiling of associated changes in the cell [232]. This can be 

supported with secondary screenings across multiple species. If screening against a species that 

lacks the target of interest results in significantly higher MICs, it can be assumed that the small 

molecule has a specified MoA. This has been successfully applied in drug studies involving 

FabI/FabL [233], which used over-expresssion and knockout mutants to discover a novel enoyl-

ACP reductase functional protein sensitive to triclosan. 
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 Drug discovery is a multi-step approach. Computational methods can rationally select 

small-molecules, reducing associated cost and time investments of HTS empirical screening. 

However, in vitro experimental screening cannot be eliminated from the process because it is 

necessary to identify lead inhibitors for drug development. We previously identified more than 

100 small molecules through a CBDD method and purchased 11 of the commercially available, 

top-ranking compounds for further analysis. In this study, we aimed to determine the in vitro 

activity of the small molecules proposed to target m-Ddh in P. gingivalis. Applying a two-step 

biochemical screening approach, we used our standard enzymatic assay to evaluate target-

inhibitor interaction followed by whole-cell based assays for the assessment of their 

antimicrobial activity. Using biochemical screening as a complement to computational 

approaches provides a comprehensive framework for the initial steps of a drug development 

approach.  

 

Materials and Methods 

Bacterial Strains, plasmids and growth conditions. P. gingivalis strain W83, Prevotella 

intermedia strain 17 and S. sanguinis strain SK36 were all cultured anaerobically (10% CO2, 

10% H2, and 80% N2) at 37 °C in tryptic soy broth (TSB) (Becton Dickinson, Franklin Lakes, 

NJ) supplemented with 1 µg/ml menadione and 5 µg/ml hemin.  

Compounds. The selected small molecules were purchased from Vitas-M Laboratory, Ltd. 

(Moscow, Russia), Molport (Riga, Latvia) and/or eMolecules (La Jolla, CA, USA), which 

reported purities over 90%, analyzed by NMR and/or LC- MS. All compounds were re-

suspended in DMSO (Sigma–Aldrich, St. Louis, MO, USA) prior to use.  
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Inhibitor screening and determination of IC50 values. A range of concentrations (0 - 3 mM) of 

each small molecule inhibitor were added to the standard reaction and the percent of m-Ddh 

enzymatic inhibition was measured by the kinetic assay previously described. Percent inhibition 

was determined by the formula: 
( 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑛𝑜 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 )–(𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟) 

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑛𝑜 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟
×  100. The 

concentration of each inhibitor which caused 50% enzymatic inhibition (IC50) was calculated 

using PRISM v6.04 software (Graphpad, San Diego, CA) from three independent experiments. 

Determination of antimicrobial properties. Minimal Inhibitory Concentration (MIC) assays 

were performed using a broth microdilution method [234]. P. gingivalis or P. intermedia cells 

were grown overnight and the following day diluted 1/10 into fresh medium. S. sanguinis cells 

were grown overnight and the following day diluted 1/100 into fresh medium. Cells were 

allowed to grow to mid-log phase (OD600 ≈ 0.5). Inhibitors were serially diluted in 96-well 

microtiter plates (Jet Biofil, Genesee Scientific, San Diego, CA) and an aliquot of the cell 

suspension was added to each well with the inhibitor sample for a final cell count of 1×105 

CFU/ml. Plates were incubated either overnight (S. sanguinis) or five days (P. gingivalis and P. 

intermedia) at 37 ˚C in anaerobic conditions. The MIC was defined as the lowest concentration 

of inhibitor that visually reduced cell growth relative to the controls. 

Minimal bactericidal concentrations (MBC) were determined by plating bacteria from 

wells of the MIC assay that showed no visible growth. Samples were plated on tryptic soy agar 

plates supplemented with 5% sheep blood (Becton, Dickinson, Franklin Lakes, NJ) and 

incubated at 37 ˚C in anaerobic conditions for 7 days. MBC was defined as the lowest 

concentration of inhibitor that resulted in no colony formation/growth.  
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Time-kill assay. P. gingivalis cells were grown overnight and the following day diluted 1/10 

into fresh medium. Cells were allowed to grow to mid-log phase (OD600 ≈ 0.5) then diluted to a 

final cell suspension of 1×105 CFU/ml. Inhibitors were added at a concentration of 5× the MIC 

determined from the 96-well broth microdilution assay. Samples were taken at different time 

intervals (0, 0.25, 0.5, 1, 2, 3, 4, 6 and 24 h) and plated on tryptic soy agar plates supplemented 

with 5% sheep blood (Becton, Dickinson, Franklin Lakes, NJ) using an automated Eddy Jet 

spiral plater (Neutec Group, Farmingdale, NY). Plates were incubated at 37 ˚C in anaerobic 

conditions for 7 days.   

SEM analysis of inhibitors exposed P. gingivalis cells. Untreated or treated P. gingivalis cells 

were deposited onto a 0.1 µm disposable Millipore filter to remove medium, and samples were 

fixed using 2% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.4) for 30 min, followed 

by 1% osmium tetroxide in 0.1 M sodium cacodylate buffer (pH 7.4). Samples embedded in the 

filters were then dehydrated in ethanol followed by hexamethyldisilazane (HMDS) and allowed 

to air dry. The filters were sectioned and mounted onto stubs and coated with gold for three 

minutes (EMS – 550 Automated Sputter Coater, Electron Microscopy Sciences, Hatfield, PA). 

Micrographs were taken at 30,000× total magnification using a Zeiss EVO 50 XVP scanning 

electron microscope (Carl Zeiss, Peabody, MA). 

Analysis of inhibition mechanisms. Kinetic studies were carried out using the standard kinetic 

assay for the oxidative deamination of m-DAP. Reactions were performed in the absence or 

presence of inhibitors (0 - 0.4 mM) with varying concentrations of the substrate m-DAP or co-

substrate NADP+. The mode of inhibition and Ki was determined from non-linear regression 

using PRISM v6.04 software (Graphpad, San Diego, CA) from three independent experiments. 
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The mode of inhibition was graphically visualized with Lineweaver-Burk or Hanes-Woolf plots 

according to Cleland kinetics [235].  

 

Results 

Evaluation of enzymatic inhibition against m-Ddh. The initial screens for the compounds 4 - 

14 were performed by individually adding each one to the assay solution. To identify inhibitors 

with moderate to low activity, the preliminary screening was run at a concentration of 3 mM. 

Enzymatic activity was measured by the standard assay described in “Materials and Methods” 

and the % inhibition was calculated in comparison to the untreated enzymatic rate. This resulted 

in four compounds (4, 5, 6 and 7) that displayed at least 90% inhibition of enzymatic activity. 

The other compounds screened displayed 20% or less. These four compounds were then re-

screened with a minimum of six concentrations to determine the IC50 value (Table 5). The IC50 

values ranged between 100 M and 1 mM.   

 It is known that small molecules identified through large structural databases with high 

IC50 values can be non-specific aggregators, sequestering the enzyme to its surface preventing 

activity and causing partial denaturation [236, 237]. Aggregation-based inhibition can be 

reversed through the addition of non-ionic detergents such as Triton X-100. Therefore to assess 

the selectivity of our enzyme inhibitor, we re-assayed the dose-dependence with the addition of 

0.01% Triton X-100, which had no effect on the normal enzymatic activity of m-Ddh. The IC50 

values for 4, 5 and 6 showed no significant difference in activity (Table 5).  
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Table 5. Analysis of m-Ddh enzymatic inhibition with active compounds. 
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Evaluation of cellular inhibition against m-Ddh. To determine if the small-molecule inhibitors 

displayed antimicrobial activity, we assessed the minimum inhibitory concentration (MIC) using 

a standard broth microdilution assay. Compounds 4, 5 and 6 were tested for their ability to 

visually inhibit growth of P. gingivalis cells and Erm was used as a control. Compounds 4 and 5 

showed moderate antimicrobial activity with MICs of 250 M and 167 M, respectively (Table 

6). With an MIC over 2 mM, compound 6 was determined not to be appropriate for whole-cell 

growth inhibition. Testing of the minimum bactericidal concentration (MBC) following the MIC 

assay, showed only slight differences between the MBC and MIC value (ratio of less than 4:1) 

for compound 4 and 5. Compound 6 was not screened for bactericidal activity as the 

concentration higher than the MIC would have been affected by the solvent concentration. 

As a preliminary screen to link growth inhibition to our specific target, we first screened 

the compounds against P. intermedia, another Gram-negative oral pathogen that also possesses 

the target and S. sanguinis, a Gram-positive oral colonizer that does not. Comparison of the data 

did indicate select growth inhibition. P. intermedia showed increased sensitivity to compound 4 

but decreased sensitivity to 5. However, 4 and 5 had the greatest differences between S. 

sanguinis and P. gingivalis growth inhibition. Compound 4 showed 7× MIC of P. gingivalis and 

5 was more than double. Compound 6 didn’t show significant levels of inhibition similar to P. 

gingivalis and P. intermedia (Table 6). Previous studies show that supplementation of m-DAP 

into to the media of mutants lacking one or more of the enzyme within the m-DAP/lysine 

biosynthesis pathway can allow for growth and recovery [180, 183, 238]. Thus, to further link 

growth inhibition with m-Ddh inhibition, we re-assessed the MICs with the addition of the 

target’s essential product m-DAP. This had no effect on the growth inhibition for 5 or 6 in P. 

gingivalis, P. intermedia or S. sanguinis. However, compound 4 showed a slight increase in 
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  Table 6. Analysis of whole-cell inhibition with active inhibitors 



111 
 

sensitivity when 25 M of m-DAP was added to the assay for P. gingivalis and P. intermedia 

(Table 6).  

As MICs are static measurements, we wanted to next observe the kinetic effects the three 

active inhibitors had on the growth of P. gingivalis. Cells were exposed to the compounds and 

total viable cells were measured at different time intervals. At 5× MIC, compound 4 reduced the 

viable P. gingivalis cell count by 2 log10 CFU /ml within 6 h of exposure.  However, 5 rapidly 

reduced the cell count upon treatment. After 2 h of exposure there was a 5 log10 CFU/ml 

reduction, resulting in no viable cell count (Fig. 17). Cells exposed to 6 at the higher 

concentration treatments were affected by the DMSO solvent and could not be assessed.  

Phenotypic profiling linking target inhibition to growth effects were assessed by changes 

in the cellular morphology. P. gingivalis cells exposed to either compound 4 or 5 were examined 

by scanning electron micrograph (SEM). Compound 6 was left out of the analysis due to the high 

MIC concentration. Treated P. gingivalis showed an alteration of the cellular structure compared 

to the untreated cells (Fig. 18). Cells were visibly misshapen.   

SAR evaluation of compound 4 core scaffold. From our target-based screening assay, 

compound 4 displayed the most potent activity. Therefore, commercially available analogues 

with 70% -90% structural similarities identified through the ZINC database were purchased and 

screened for a preliminary evaluation of the core scaffold SAR. The structures and activities are 

listed in Table 7. The analogues differ at two substitution sites at both ends of the structure with 

IC50 ranging from 127 – 238 M. Removing the methoxy group from the R1 phenyl group of the  
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Figure 17. Time-kill analysis of compound treated P. gingivalis. 

P. gingivalis cells were treated with 5x the previously determined MIC for either Compound 4 (triangle) 

or Compound 5 (square) and bacterial cell counts were assessed at 0, 0.25, 0.5, 1, 2, 3, 4, 6 and 24 hours. 

The mean plus the standard deviation is shown for each time point from a minimum of n=3 independent 

experiments. For cell counts equal to 0 CFU/mL, 1 was used for the log transformation.  
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Figure 18. SEM analysis of compound treated P. gingivalis cells. 

(a) Untreated cells. (b) Compound 4 treated cells at 5x the previously determined MIC concentration. (c) 

Compound 5 treated cells at 5x the previously determined MIC concentration. 
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Table 7. SAR of compound 4 analogues. 
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original structure and replacing it with a methyl group resulted in the most potent inhibitor 

screened with a slight decrease in the IC50 (compound 4a, IC50 =127 M). This may be due to a 

decrease in size preventing a steric hinderance. However, adding electron withdrawing 3- or 4- 

carboxyl or electron donating 3-hydroxyl groups on the core R2 phenyl moiety, didn’t exhibit 

any significant effect on the activity. This was observed from the structures of compound 4a-4d 

suggesting that substitutions are tolerated around the ring within the binding site of these 

compounds. However, the addition of methyl groups to the 3- and 4- position on the R1 phenyl 

moiety for 4e resulted in an increase in the IC50 (IC50 = 238 M). Comparison with between 

compound 4a and 4e suggest that an additional moiety to the 3-position of the phenyl ring is less 

tolerable to the intermolecular interaction.  

Evaluation of inhibition mechanism. Based on our pharmacophore model and docking studies, 

our three active inhibitors share a similar binding pattern within the active site, competing with 

m-DAP. The intermolecular interactions are depicted in Figure 19. Hydrogen bond interactions 

are represented by dashed lines. The interactions are shown to follow the proposed 

pharmacophore models in that hydrogen bonding interactions between the sulfonamides are 

occurring with Arg183 and Thr173. Hydrophobic stacking interactions occur between the 

aromatic rings of the inhibitors and residues Phe148 and potential Trp123 of the active site. 

There may also be potential hydrogen bonding between the ligands’ carboxylic groups and 

residues Gly155 and Met154. In addition, for our model, the carboxylate groups form hydrogen 

bonds with the backbone amide of Ser153 and Met154. Compound 4 makes an additional 

hydrogen- bonding interaction with Tyr207 and - stacking interaction with Phe148, which 
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Figure 19. 3D analysis of binding model for active inhibitors. 

Optimal binding model for Compound 4 (a), Compound 5 (b) and Compound 6 (c) are shown above. Key 

residues are displayed as ball and sticks and colored corresponding to atom type. Residues labeled in the 

bottom middle figure correspond to all figures. Hydrogens were omitted for clarity. Potential hydrogen 

bonding interactions between m-Ddh residues and inhibitors are shown by yellow dashed lines.  
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Figure 20. Inhibition mechanism of active compounds in regards to substrate, m-DAP and co-

substrate, NADP+. 

(a) Compound 4 (b) Compound 5 and (c) Compound 6 inhibition mechanisms against m-DAP. (d) 

Compound 4 (e) Compound 5 and (f) Compound 6 inhibition mechanisms against NADP+. 
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may be one of the many reasons for its better activity. To verify this interaction, the method of 

inhibition was kinetically determined. The substrate m-DAP was varied over several 

concentrations of each inhibitor. The inhibition pattern for all three compounds was revealed to 

be non-competitive, as there was no change in the Km and a decrease in Vmax compared to the 

activity in the absence of the inhibitor (Fig. 20a-c). Due to structural similarities between the 

compound scaffolds and the co-substrate and the proximity of the two binding sites, we next 

examined the possibility that one of more of the inhibitors may be binding in the NADP+ binding 

site. This inhibition study showed an uncompetitive inhibition pattern as there was an increase in 

the Km and a decrease in Vmax compared to the enzymatic rate in the absence of the inhibitor 

(Fig. 20d-f).  

 

Discussion 

In this study, we evaluated the activity of compounds identified through a CBDD method. A 

two-step screening strategy was employed to assay m-Ddh specific inhibition and P. gingivalis 

growth inhibition. From 11 compounds purchased and screened in vitro, three showed target-

specific inhibition with IC50 values ranging from 100-300 M. Several other compounds showed 

slight activity in the higher millimolar range. The most potent compounds (4, 5 and 6) showed 

limited structural similarity. The core structure of compound 4 and 6 were both sulfonyl amino 

quinoxaline derivatives while 5 was a sulfonyl amino naphthalene derivative. However, all three 

possessed similar functional groups and were predicted to share basic pharmacophoric features. 

The three compounds possessed a sulfonamide core attached to large aromatic structures with 

carboxylate functional groups. The importance of the sulfonamide has literature precedence in 

the search for antimicrobials targeting lysine biosynthesis. Compounds structurally similar to our 
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hits that possessed sulfonamides and sulfones were identified as fairly good inhibitors of 

dihydrodipicolinate reductase, another enzyme in the lysine biosynthesis pathway [239, 240]. 

Based on docking studies, the sulfonamide groups were predicted to favorably interact with 

Arg183 and Thr173 forming hydrogen bonds, while the aromatic moieties would create 

hydrophobic interactions. From docking studies it appears the distance of the carboxylic groups 

may not allow for hydrogen bonds with residues at the other end of the binding pocket. However, 

based on other studies, m-Ddh exists in an open and closed conformation [218]. This would 

bring the residues surrounding the compounds within the distance necessary to form stronger 

hydrogen bonds. It should be noted that previous studies have reported more potent inhibitors 

against m-Ddh [209, 239, 241]. However, these compounds are typically small analogous 

structures, derived from the substrate m-DAP that possess few ‘drug-like’ features, making 

optimization difficult [239], and suggesting little hope for selectivity. Our compounds allow for 

the development of more active compounds, similar to the in silico screening against thymidylate 

synthase, an enzyme is essential for DNA replication, by DesJarlais et al. [242]. The initial 

computational study yielded several compounds with activity in the high micromolar range, but 

following further analysis and optimization resulted in an increase in potency as well as 

verification of the binding mode.  

In the pursuit of a preliminary SAR analysis, 5 analogues of the most active inhibitor 

(compound 4) scaffolds were screened. Through a small substitution, we identified one 

compound (4a) that showed a slight increase in activity and one compound with a decrease in 

activity (4e). Based on our predicted knowledge of the compound binding, comparison of the 

intermolecular interaction of 4a and 4e indicate, while the binding model appears similar, 

experimentally it appears the additional functional groups around the phenyl ring closer to 
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Trp123 and Phe148 within the binding pocket are not favored. On the other end, additional 

groups to the phenyl ring near Thr173 and Gly155 are tolerated. Screening of an analogue with a 

3-methyl addition at the R1 substitution and 3-carboxyl at the R2 substitution would allow for the 

direct comparison to 4a. This would allow us to determine if the methyl group in the para- 

position increases the potency and if the additional methyl group decreases potency. The addition 

of a hydroxyl group or a carboxylate in the 3- or 4-position showed no significant difference in 

activity. As this is a preliminary SAR study, screening analogues with increased structural 

diversity or fragment-based screening based on the deconstruction of the core scaffold will 

provide a more comprehensive analysis of the essential interactions.   

 Previous initial-velocity data [216] in m-Ddh show that the reaction proceeds through a 

sequential ordered ternary-binary mechanism with NADP+ binding first, followed by the 

substrate m-DAP. The product is then released, followed by NADPH. Our studies into the 

mechanism of inhibition show the inhibitory compounds to be non-competitive with respect to 

m-DAP, but uncompetitive with respect to NADP+. In concordance with the binding order, this 

would indicate that the compounds bind to either the Enzyme-NADP+ complex or the Enzyme-

NADPH complex, thus potentially preventing a necessary conformational change and/or 

reducing the affinity of m-DAP for the protein. This type of mechanism of inhibition could be 

beneficial for future therapeutics. Treatment with an optimized inhibitor competing with m-DAP, 

would result in the accumulation of the substrate within the cytosol or a regulation mechanism in 

order to meet the need of the cell. An increase in the localized substrate would then need to be 

balanced by high concentrations of the inhibitor. A non-competitive inhibitor, however would 

not be affected by the increased concentration of substrate compared to a competitive inhibitor, 

making it more effective at lower concentrations.   
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 One of the most difficult aspects of target-based drug discovery is identifying compounds 

that show effective whole-cell activity while maintaining the key pharmacokinetics. While the 

compounds identified showed potential against m-Ddh, they exhibited only slight antimicrobial 

activity in P. gingivalis. Nevertheless, the potential for antimicrobial activity should not be 

ignored as analogous structures and optimization of the scaffold could improve whole cell 

inhibition. Several reasons could contribute to the low observed MIC values. For one, bacterial 

inhibitors must be able to penetrate the cell membrane while maintaining enough soluble and 

free fractions to inhibit the target at sufficient concentrations. The compound also must avoid 

being expelled from the cell through efflux pumps. Another reason could be due to the 

sulfonamide group present on compounds 4, 5 and 6. Sulfonamides are well known 

antimicrobials that target folate biosynthesis, and bacterial cells may show a degree of drug 

resistance [239]. There is also the potential for non-specific inhibition or off-target interactions. 

This would result in what appears to be a variation in activity between whole-cell and target 

inhibition. This was observed for compound 5 which displayed a lower MIC than IC50. While a 

detailed structure-activity relationship for the antimicrobial properties cannot yet be determined 

from these studies, it may be speculated that the more favorable whole-cell activity seen in 

Compound 5 compared to compound 4 and 6 is due to lipophilicity. The relatively low lipophilic 

nature of compound 6 (cLogP = 1.70) compared to 5 (cLogP = 3.68) may have decreased 

permeability through the cellular membrane of P. gingivalis. While compound 4 displayed the 

more potent target-based screening, the high lipophilic nature (cLogP =5.26) may have had a 

significant effect on the solubility, reducing the efficacy during cell-based screening [243].  

However, we were able to show differential activity indicating specificity. Testing in P. 

gingivalis and P. intermedia, both of which possess the target, m-Dh showed a greater degree of 
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growth inhibition compared to S. sanguinis, which lacks the target. Compounds tested for S. 

sanguinis showed almost no antimicrobial activity (compound 4 and 6) or MICs more than 

double that of those seen in P. gingivalis (compound 5). Supplementing m-DAP into the growth 

media as a substrate competitor to the compounds did not correlate to an increase in MICs. 

While previous studies show that supplementation of m-DAP for E. coli and M. smegatis mutants 

restores growth in DAP auxotrophs [180, 238], it is not known whether P. gingivalis can 

specifically uptake and utilize m-DAP for its benefit. In addition if the compounds act in a non-

competitive or irreversible manner, addition of m-DAP would not necessarily compensate for the 

inhibitor activity. Analysis of the kinetic growth inhibition indicated the activity of these 

compounds are time and dose dependent, with higher concentrations and longer exposure times 

leading to an increased loss of cell viability. Compound 5 completely eliminated P. gingivalis 

cell viability after two hours of exposure at 5x the MIC concentration, while Compound 4 

maintained a low cell count after six hours of treatment. This is also consistent with the MBC 

being less than 4x the MIC as antimicrobials with MBC in close range of the MIC are typically 

classified as bactericidal.  

  In conclusion, we demonstrate the rationale for applying a focused biochemical 

screening with CBDD to identify inhibitors. Our results show that by utilizing a target screen we 

can select compounds which actively inhibit m-Ddh from P. gingivalis, identify the inhibition 

mechanisms and assess the SAR. Coupled with whole-cell screen we can identify compounds 

with antimicrobial properties and link the MoA. While the activities of these first generation 

compounds are somewhat weak, continued studies into the intermolecular binding interaction 

could help to discern which features are key, allowing for the improvement of novel inhibitors.  
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Conclusion 

The goal of this project was to introduce the beginnings of a model for antimicrobial drug 

discovery using the periodontal pathogen, P. gingivalis. Accordingly, we have successfully 

presented a thorough strategy. By understanding the three main biological functions for bacterial 

survival, we were able to create a network of pathways connected to the synthesis of essential 

metabolic components. As we demonstrated, this allowed for the accurate prediction of essential 

genes as potential antibacterial targets. Additionally, we believe this protocol allows for the 

comparison of alternative pathways and gene sets for species-selective targeting. Following the 

selection of a target, rational computer-based drug discovery (CBDD) was applied for the rapid 

and cost-effective identification of small-molecule compounds. We continued with our model to 

show that analysis of the protein structure and intermolecular interactions allowed for the 

utilization of a high-throughput virtual screen to select compounds with a higher probability of 

demonstrating target inhibition. Finally, by developing a simple and effective screening strategy 

to assess target and cell growth inhibition, we established that we could determine the in vitro 

activity of selected small-molecule compounds. Through this screening, not only are compounds 

with activity verified, but the mechanism of inhibition is determined and SAR studies can be 

started.  

The significance of our study should also be noted for our chosen model. First, we 

identified m-Ddh, an essential enzyme for P. gingivalis, as a potential pathogen-specific target 

within the oral cavity. The dual role of m-Ddh in protein and cell wall biosynthesis makes it an 

exceptional drug target, as it would inhibit two essential biological processes. Additionally, m-

Ddh is present within several other pathogenic colonizers, including P. intermedia, T. denticola 

and T. forsythia, while absent in the majority of early oral colonizers. Since m-Ddh is a unique 
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target found within a limited number of species, we theorize this would allow us to potentially 

develop novel narrow-spectrum therapy for the treatment of periodontal disease by specifically 

targeting key pathogens yet preserving the healthy microbiome. Second, to the best of our 

knowledge, this is the first computationally motivated target-based drug discovery for this 

periodontal pathogen. CBBD is a successful strategy, especially in systemic diseases [202]. By 

applying CBBD we were able to identify over 100 small molecule compounds with the potential 

of target-specific inhibition. Screening of the top-ranked, commercially available compounds, 

resulted in a 36% hit rate. Demonstrating that a CBDD can be applied to this bacterium, we hope 

this will drive new focus into drug therapies for oral diseases utilizing a rational approach. Last, 

P. gingivalis and periodontal disease can be used as the starting model for rational species 

selective drug discovery. As the human body is colonized by billions of microbial cells, it is 

highly unlikely a bacterial infection, especially a biofilm, would be isolated into a single species. 

Therefore, careful consideration of the effect therapeutic treatment has on the microbiome should 

be taken, bringing into play the justification for targeted therapies. We theorized periodontal 

disease and P. gingivalis would be a beneficial model as the oral microbiome is one of the most 

diverse sites on the body and P. gingivalis is widely recognized as one of the major contributors 

to periodontitis [32, 34, 70, 86, 244]. P. gingivalis can easily be cultured in the lab within a 

reasonable amount of time, allowing for in vitro testing. Additionally, periodontal disease has 

been extensively studied for years yielding suitable models for the disease, both in vitro and in 

vivo [245-247].  

Some challenges encountered during this study should be addressed as they may add in 

the future improvement of the process.  For one, it is important to verify that the target is 

essential in vivo and in vitro. Essential gene studies are usually preformed under laboratory, 
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nutrient-rich conditions. This does not always correspond to in vivo conditions where nutrients 

may be provided by the host or alternate pathways induced through stress factors. This is 

especially important for broad-spectrum targeting across multiple species. If possible, ex vivo 

models can be established that more closely mimic in vivo growth conditions and gene 

essentiality can be observed in various nutrient conditions. Subsequently, rational drug discovery 

assays must be designed to verify target inhibition during cell-based screening. The use of WT 

and mutant bacteria strains that overexpress and underexpress the target will not only identify 

compounds with antibacterial properties but select for those with target-specific inhibition. 

Alternatively, inducible antisense RNA could be used to control the expression level of the target 

and sensitivity to different inhibitor concentrations can be gauged. The compound database 

screened also needs careful consideration. Through studies by Lipinski et al., it was observed 

that these inhibitors generally follow certain traits (no more than 500 Da in size, five or fewer 

hydrogen bond donors, no more than 10 hydrogen bond acceptors and a logPo/w no greater than 

five), known as Lipinski’s rule of five [187, 188]. However, antimicrobials do not always follow 

this rule [97, 126]. Analysis of clinically approved antibiotics show that they are structurally 

more complex and larger in size. They also possess more hydrogen donors and acceptors and are 

more hydrophilic [97, 126]. Increased structural diversity in established chemical libraries or the 

construction of dedicated databases with compounds possessing antimicrobial properties would 

be beneficial. There has also been a resurgence in the search for natural compounds, similar to 

those identified during the ‘golden era’ of antibiotic research [97, 248]. Combining these 

compounds with a CBDD approach and other technical advances may bring new interest and 

success in this field of research.   
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 We anticipate several directions for future studies. We first intend to continue the 

evaluation of the MoA to link whole-cell activity to target inhibition. By placing m-Ddh under an 

inducible promoter we can regulate the expression and screen compounds for changes in whole-

cell growth inhibition. A more focused SAR study is also underway through the 

deconstruction/reconstruction of the three active compound inhibitors. The scaffold of the three 

active compounds will be systematically broken down into core functional groups. The basic 

structure of these compounds will then be re-evaluated through in silico and in vitro screening to 

assess the differences in activity and potency. The compound will then be reconstructed to 

include only the essential functional groups. Following an increase in target-based inhibition, the 

structure can be further optimized for increased whole-cell activity. We also plan to further 

evaluate the protein-compound binding. Select mutants will be made near the binding pocket of 

m-Ddh that do not have a significant impact on the catalytic efficiency. Compounds will then be 

re-screened against the mutants and inhibition will be measured to determine if the mutant 

affected compound binding compared to WT. We also screened a relatively small number of 

compounds from the results of our SBVS. Therefore, we plan to have a second round of 

screening from the remaining hits to increase our pool of active compound inhibitors.  

To conclude, we suggest that this method is an interdisciplinary approach whose 

application has the potential to extend beyond what has been shown here. Employing a 

combination of microbiologists, medicinal chemists and bioinformaticians we believe with time 

this approach can flourish. Using their knowledge in the necessary fields and taking the 

backbone of this project, we hope this can be applied to increasing deadly pathogens, such as M. 

tuberculosis, as an alternative method in antibacterial research.   
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Appendix 

 

  

Supplemental Table 1. Predicted putative essential genes in P. gingivalis strain W83. 

Functional 

category 
Pathway KEGG Pathway 

KEGG 

KO# 
GeneID Name Protein ID  

Cell envelope 

(cell 

membrane) 

Peptidoglycan 

biosynthesis 

Peptidoglycan 

biosynthesis 

K00075 PG1342 murB 

UDP-N-

acetylenolpyruvoylgluc

osamine reductase 

E 

K01924 PG0581 murC 

UDP-N-

acetylmuramate--L-

alanine ligase 

E 

K01925 PG0578 murD 

UDP-N-

acetylmuramoyl-L-

alanyl-D-glutamate 

synthetase 

E 

K01928 PG0576 murE 
Mur ligase family 

protein 
E 

K03340 PG0806 - 
Gfo/Idh/MocA family 

oxidoreductase 
E 

K01921 PG0729 ddl 
D-alanyl-alanine 

synthetase A 
E 

K01929 PG1106 murF 
D-Ala-D-Ala adding 

enzyme 
E 

K01000 PG0577 mraY 

phospho-N-

acetylmuramoyl-

pentapeptide-

transferase 

E 

K02563 PG0580 murG 
N-acetylglucosaminyl 

transferase 
E 

K05366 PG0794 pbp1a 
penicillin-binding 

protein 1A 
UA 

K03587 PG0575 - 
penicillin-binding 

protein 2 
E 

K00215 PG2002 dapB 
dihydrodipicolinate 

reductase 
E 

K00928 PG2189 lysC aspartate kinase E 

K00133 PG0571 asd 
aspartate-semialdehyde 

dehydrogenase 
E 

K01714 PG2052 dapA 
dihydrodipicolinate 

synthase 
E 

D-Glutamine and 

D-glutamate 

metabolism 

K01776 PG0705 murI glutamate racemase E 

D-Alanine 

metabolism 

K01775

K01929 
PG1097 alr 

putative bifunctional 

UDP-N-

acetylmuramoyl-

tripeptide:D-alanyl-D-

UA 
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alanine ligase/alanine 

racemase 

Terpenoid backbone 

biosynthesis 

(MEP/DOXP 

pathway) 

K01662 PG2217 dxs 
1-deoxy-D-xylulose-5-

phosphate synthase 
E 

K00099 PG1364 dxr 

1-deoxy-D-xylulose 5-

phosphate 

reductoisomerase 

E 

K00991 PG1434 ispD 

2-C-methyl-D-

erythritol 4-phosphate 

cytidylyltransferase 

E 

K00919 PG0935 ispE 

4-diphosphocytidyl-2-

C-methyl-D-erythritol 

kinase 

E 

K01770 PG0028 ispF 

2-C-methyl-D-

erythritol 2,4-

cyclodiphosphate 

synthase 

E 

K03526 PG0952 ispG 

4-hydroxy-3-

methylbut-2-en-1-yl 

diphosphate synthase 

E 

K03527 PG0604 ispH 

4-hydroxy-3-

methylbut-2-enyl 

diphosphate reductase 

UA 

Terpenoid backbone 

biosynthesis 
K00806 PG0190 uppS 

undecaprenyl 

pyrophosphate 

synthetase 

E 

 
Polysaccharide 

transporter 
- PG0117 - 

polysaccharide 

transport protein 
E 

Lipopolysaccha

ride 

biosynthesis 

Lipopolysaccharide 

biosynthesis 

K00677 PG0070 lpxA 

UDP-N-

acetylglucosamine 

acyltransferase 

E 

K02372 PG0071 lpxC 

bifunctional UDP-3-O-

[3-hydroxymyristoyl] 

N-acetylglucosamine 

deacetylase/(3R)-

hydroxymyristoyl-ACP 

dehydratase 

E 

K02536 PG0072 lpxD 

UDP-3-O-[3-

hydroxymyristoyl] 

glucosamine N-

acyltransferase 

E 

K00912 PG0638 lpxK 
tetraacyldisaccharide 

4'-kinase 
E 

K02527 PG1565 - 

3-deoxy-D-manno-

octulosonic-acid 

transferase 

E 

K02517 PG2222  acyltransferase E 

Fatty acid 

biosynthesis 

Pantothenate and 

CoA biosynthesis 

K00954 PG0369 coaD 
phosphopantetheine 

adenylyltransferase 
E 

K00859 PG0483 coaE dephospho-CoA kinase E 
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Biotin metabolism K03524 PG1601 birA 
biotin--acetyl-CoA-

carboxylase ligase 
E 

Fatty acid 

biosynthesis 

K02078 PG1765 acpP acyl carrier protein E 

K00648 PG2141 fabH 
3-oxoacyl-(acyl carrier 

protein) synthase III 
E 

K00645 PG0138 fabD 
malonyl-CoA:ACP 

transacylase, 
E 

K09458 PG1764 - 
3-oxoacyl-(acyl carrier 

protein) synthase II 
E 

K00059 PG1239 fabG 

3-ketoacyl-(acyl-

carrier-protein) 

reductase 

UA 

K02371 PG1416 fabK 

enoyl-acyl carrier 

protein(ACP) 

reductase, 

UA 

Glycerophosph

olipid / 

glycerolipid 

metabolism 

Glycolysis / 

Gluconeogenesis 
K01803 PG0623 tpiA 

triosephosphate 

isomerase 
E 

Glycerophospholipi

d 

metabolism/glycero

lipid metabolism 

K00057 PG1369 gpsA 
glycerol-3-phosphate 

dehydrogenase 
E 

K00980 PG2068 tagD 
glycerol-3-phosphate 

cytidylyltransferase 
E 

K00655 PG1249 plsC 

1-acyl-sn-glycerol-3-

phosphate 

acyltransferase, 

UA 

Glycerophospholipi

d metabolism 
K00981 PG0046 cdsA 

phosphatidate 

cytidylyltransferase, 
E 

Energy 

production 
Glycolysis 

Glycolysis / 

Gluconeogenesis 

K01810 PG1368 pgi 
glucose-6-phosphate 

isomerase 
E 

K01835 PG2010 pgm phophomannomutase UA 

K04041 PG0793 fbp 
fructose-1,6-

bisphosphatase 
E 

K01624 PG1755 fba 
fructose-bisphosphate 

aldolase 
E 

K00134 PG2124 gapA 

glyceraldehyde 3-

phosphate 

dehydrogenase 

E 

K00927 PG1677 pgk 
phosphoglycerate 

kinase 
E 

K01834 PG0130 gpmA 

2,3-

bisphosphoglycerate-

dependent 

phosphoglycerate 

mutase 

E 

K15634 PG1513 - 

phosphoribosyltransfera

se/phosphoglycerate 

mutase 

E 

K01689 PG1824 eno 
phosphopyruvate 

hydratase 
UA 

K01006 PG1017 ppdk 
pyruvate phosphate 

dikinase 
NE 
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K01610 PG1676 pckA 
phosphoenolpyruvate 

carboxykinase 
NE 

Pentose 

phosphate 

pathway 

Pentose phosphate 

pathway 

K00948 PG2097 prsA 
ribose-phosphate 

pyrophosphokinase 
E 

K01619 PG1996 deoC 
deoxyribose-phosphate 

aldolase 
UA 

NAD+/NADP+ 

biosynthesis 

Nicotinate and 

nicotinamide 

metabolism 

K00763 PG0057 pncB 

nicotinate 

phosphoribosyltransfera

se 

E 

K01950 PG0531 nadE NAD synthetase E 

K00858 PG0629 ppnK 

inorganic 

polyphosphate/ATP-

NAD kinase 

E 

Genetic 

Information 

inheritance 

Nucleotide 

biosynthesis 

Purine metabolism 
K00942 PG0512 gmk guanylate kinase E 

K00939 PG0791 adk adenylate kinase E 

Pyrimidine 

metabolism 

K09903 PG1902 pyrH uridylate kinase E 

K00384 PG1134 trxB thioredoxin reductase UA 

K00560 PG2060 thyA thymidylate synthase E 

K00945 PG0603 cmk cytidylate kinase E 

Purine 

metabolism/Pyrimid

ine metabolism 

K00525 PG1129 nrd 
ribonucleotide 

reductase 
NE 

Folate biosynthesis 

K01495 PG0625 folE GTP cyclohydrolase I E 

K00950 PG1541 folK 

2-amino-4-hydroxy-6-

hydroxymethyldihydro

pteridine 

pyrophosphokinase 

UA 

K01633 PG2091 folB 
dihydroneopterin 

aldolase 
E 

K00796 PG1589 folP 
dihydropteroate 

synthase 
E 

K01930 PG0463 folC 
dihydrofolate 

synthetase 
UA 

K00287 PG2061 folA dihydrofolate reductase E 

DNA repliction 

DNA replication 

(DNA polymerase 

III) 

K02343 PG1418 dnaX 
DNA polymerase III 

subunits gamma and tau 
E 

K02341 PG0932 - 
DNA polymerase III 

subunit delta' 
UA 

K02340 PG0949 - 
DNA polymerase III 

subunit delta 
E 

K02342 PG1852 - 

exonuclease (DNA 

polymerase III subunit 

epsilon) 

E 

K02342 PG0223 - 

exonuclease (DNA 

polymerase III subunit 

epsilon) 

NE 

K02337 PG0035 dnaE 
DNA polymerase III 

DnaE 
UA 

K02338 PG1853 dnaN 
DNA polymerase III 

subunit beta 
E 
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K02314 PG1242 dnaB 
replicative DNA 

helicase 
E 

K02316 PG1814 dnaG DNA primase E 

K03111 PG0271 ssb 
single-strand DNA-

binding protein 
E 

K01972 PG1253 ligA 
NAD-dependent DNA 

ligase LigA 
E 

K02335 PG1794 polA DNA polymerase I E 

DNA replication 

proteins (Initiation 

and re-initiation) 

K02313 PG0001 dnaA 

chromosomal 

replication initiation 

protein 

E 

K03530 PG0121 hup-1 
DNA-binding protein 

HU, 
UA 

K03530 PG1258 hup-2 
DNA-binding protein 

HU 
E 

DNA replication 

proteins (DNA 

topoisomerase) 

K02470 PG1702 gyrB DNA gyrase subunit B E 

K02469 PG1386 gyrA DNA gyrase subunit A E 

K03168 PG0754 topA DNA topoisomerase I E 

K02622 PG0368 parE 
DNA topoisomerase IV 

subunit B 
E 

K02621 PG1622 parC 
DNA topoisomerase IV 

subunit A 
E 

Homologous 

recombination 

(Holliday junction) 

K03551 PG0488 ruvB 
Holliday junction DNA 

helicase B 
E 

K07447 PG2202 - 
Holliday junction 

resolvase-like protein 
UA 

Transcription RNA polymerase 

K03043 PG0394 rpoB 

DNA-directed RNA 

polymerase subunit 

beta 

UA 

K03046 PG0395 rpoC 

DNA-directed RNA 

polymerase subunit 

beta' 

E 

K03086 PG0594 rpoD 
RNA polymerase sigma 

factor RpoD 
UA 

K03040 PG1911 rpoA 

DNA-directed RNA 

polymerase subunit 

alpha 

E 

Protein 

biosynthesis 
Ribosome 

K02863 PG0391 rplA 
50S ribosomal protein 

L1 
E 

K02886 PG1935 rplB 
50S ribosomal protein 

L2 
E 

K02906 PG1938 rplC 
50S ribosomal protein 

L3 
E 

K02926 PG1937 rplD 
50S ribosomal protein 

L4 
E 

K02931 PG1926 rplE 
50S ribosomal protein 

L5 
E 

K02933 PG1923 rplF 
50S ribosomal protein 

L6 
E 

K02935 PG0393 rplL 
50S ribosomal protein 

L7/L12 
E 

K02864 PG0392 rplJ 
50S ribosomal protein 

L10 
E 
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K02867 PG0390 rplK 
50S ribosomal protein 

L11 
E 

K02871 PG0375 rplM 
50S ribosomal protein 

L13 
E 

K02874 PG1928 rplN 
50S ribosomal protein 

L14 
E 

K02878 PG1931 rplP 
50S ribosomal protein 

L16 
E 

K02879 PG1910 rplQ 
50S ribosomal protein 

L17 
UA 

K02881 PG1922 rplR 
50S ribosomal protein 

L18 
E 

K02884 PG0037 rplS 
50S ribosomal protein 

L19 
UA 

K02887 PG0989 rplT 
50S ribosomal protein 

L20 
E 

K02890 PG1933 rplV 
50S ribosomal protein 

L22 
E 

K02892 PG1936 rplW 
50S ribosomal protein 

L23 
E 

K02899 PG0315 rpmA 
50S ribosomal protein 

L27 
E 

K02914 PG0656 rpmH 
50S ribosomal protein 

L34 
UA 

K02919 PG1915 rpmJ 
50S ribosomal protein 

L36 
E 

K02916 PG0990 rpmI 
50S ribosomal protein 

L35 
E 

K02895 PG1927 rplX 
50S ribosomal protein 

L24 
E 

K02897 PG0167 rplY 
50S ribosomal protein 

L25 
E 

K02876 PG1919 rplO 
50S ribosomal protein 

L15 
E 

K02907 PG1920 rpmD 
50S ribosomal protein 

L30 
E 

K02888 PG0314 rplU 
50S ribosomal protein 

L21 
E 

K02904 PG1930 rpmC 
50S ribosomal protein 

L29 
E 

K02945 PG1297 rpsA 
30S ribosomal protein 

S1 
UA 

K02967 PG0377 rpsB 
30S ribosomal protein 

S2 
E 

K02982 PG1932 rpsC 
30S ribosomal protein 

S3 
E 

K02986 PG1912 rpsD 
30S ribosomal protein 

S4 
E 

K02988 PG1921 rpsE 
30S ribosomal protein 

S5 
E 

K02990 PG0595 rpsF 
30S ribosomal protein 

S6 
E 

K02992 PG1941 rpsG 
30S ribosomal protein 

S7 
E 
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K02994 PG1924 rpsH 
30S ribosomal protein 

S8 
E 

K02946 PG1939 rpsJ 
30S ribosomal protein 

S10 
E 

K02948 PG1913 rpsK 
30S ribosomal protein 

S11 
E 

K02950 PG1942 rpsL 
30S ribosomal protein 

S12 
E 

K02954 PG1925 rpsN 
30S ribosomal protein 

S14 
E 

K02959 PG2117 rpsP 
30S ribosomal protein 

S16 
E 

K02961 PG1929 rpsQ 
30S ribosomal protein 

S17 
E 

K02963 PG0596 rpsR 
30S ribosomal protein 

S18 
E 

K02965 PG1934 rpsS 
30S ribosomal protein 

S19 
E 

K02952 PG1914 rpsM 
30S ribosomal protein 

S13 
E 

K02956 PG1758 rpsO 
30S ribosomal protein 

S15 
E 

K02996 PG0376 rpsI 
30S ribosomal protein 

S9 
E 

Aminoacyl-tRNA 

biosynthesis (tRNA 

synthetase) 

K01875 PG0316 serS seryl-tRNA synthetase E 

K01874 PG0170 metG 
methionyl-tRNA 

synthetase 
UA 

K04567 PG1370 lysS lysyl-tRNA synthetase E 

K01885 PG1566 gltX 
glutamyl-tRNA 

synthetase 
E 

K01886 PG1951 glnS 
glutaminyl-tRNA 

synthetase 
E 

K01883 PG1878 cysS 
cysteinyl-tRNA 

synthetase 
E 

K01887 PG0267 argS 
arginyl-tRNA 

synthetase 
E 

K01867 PG2085 trpS 
tryptophanyl-tRNA 

synthetase II 
E 

K01889 PG1771 pheS 

phenylalanyl-tRNA 

synthetase subunit 

alpha 

E 

K01890 PG0099 pheT 
phenylalanyl-tRNA 

synthetase subunit beta 
E 

K01870 PG1596 ileS 
isoleucyl-tRNA 

synthetase 
E 

K01881 PG0962 proS prolyl-tRNA synthetase E 

K01880 PG2165 glyS glycyl-tRNA synthetase E 

K01872 PG1246 alaS alanyl-tRNA synthetase E 

K01892 PG2062 hisS 
histidyl-tRNA 

synthetase 
E 

K01873 PG1132 valS valyl-tRNA synthetase UA 

K01868 PG0992 thrS 
threonyl-tRNA 

synthetase 
E 
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K01866 PG0263 tyrS 
tyrosyl-tRNA 

synthetase 
UA 

K01869 PG0796 leuS leucyl-tRNA synthetase E 

K01893 PG1121 asnC 
asparaginyl-tRNA 

synthetase 
UA 

K01876 PG0153 aspS 
aspartyl-tRNA 

synthetase 
E 

K00604 PG2023 fmt 
methionyl-tRNA 

formyltransferase 
E 

(tRNA processing) 

K01056 PG0166 pth 
peptidyl-tRNA 

hydrolase 
E 

K04075 PG2046 - 

hypothetical protein: 

tRNA(Ile)-lysidine 

synthase 

UA 

K00554 PG2035 trmD 
tRNA (guanine-N(1)-)-

methyltransferase 
E 

K00784 PG0739 elaC ribonuclease Z NE 

K03536 PG0201 rnpA 
ribonuclease P protein 

component, 
E 

K00566 PG0268 mnmA 
tRNA-specific 2-

thiouridylase MnmA 
E 

Translation factors 

(Initiation factor) 

K02518 PG1916 infA 
translation initiation 

factor IF-1 
E 

K02519 PG0255 infB 
translation initiation 

factor IF-2 
E 

K02520 PG0991 infC 
translation initiation 

factor IF-3 
E 

Translation factors 

(Elongation factors) 

K02358 PG0387 tuf elongation factor Tu E 

K02357 PG0378 tsf elongation factor Ts E 

K02355 PG1940 fusA elongation factor G E 

K02355 PG0933 fusA elongation factor G NE 

Translation factors 

(Release factors) 
K02835 PG0074 prfA 

peptide chain release 

factor 1 
E 

Translation factors 

(Recycling factors) 
K02838 PG1901 frr 

ribosome recycling 

factor 
NE 

Protein export 

K03070 PG0514 secA 
preprotein translocase 

subunit SecA 
E 

K12257 PG1762 secDF 

bifunctional preprotein 

translocase subunit 

SecD/SecF 

E 

K03106 PG1115 ffh 

SRP54, signal 

recognition particle 

GTPase protein, 

E 

K03076 PG1918 secY 
preprotein translocase 

subunit SecY 
E 

K03110 PG0151 ftsY 

SRPR, signal 

recognition particle-

docking protein, 

E 

Chaperones and 

folding catalysts 

(Protein folding) 

K04077 PG0520 groEL chaperonin GroEL E 

K04078 PG0521 groES co-chaperonin GroES E 

K03686 PG1776 dnaJ chaperone protein dnaJ, E 
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K04043 PG1208 dnaK 
molecular chaperone 

DnaK 
UA 

K00970 PG0801 - poly (A) polymerase UA 

(Protein maturation) 
K01265 PG1917 map 

methionine 

aminopeptidase 
E 

K01462 PG2201 def peptide deformylase E 

GTP-binding 

proteins 

GTP-binding 

proteins 

K03595 PG2142 era 
GTP-binding protein 

Era 
E 

K03979 PG0790 obgE GTPase ObgE E 

K03978 PG0346 engB GTPase EngB E 

K03977 PG2143 engA 
GTP-binding protein 

EngA 
E 

Cell division 

Chromosome 

partitioning proteins 

(cell division) 

K09811 PG1536 ftsX 
cell division protein 

FtsX, 
E 

K09812 PG2190 ftsE 
cell division protein 

FtsE, 
E 

K03588 PG0579 ftsW 
cell division protein 

FtsW, 
UA 

K03531 PG0584 ftsZ 
cell division protein 

FtsZ 
E 

K03590 PG0583 ftsA 
cell division protein 

FtsA 
E 

K03798 PG0047 ftsH 
cell division protein 

FtsH 
E 

K03589 PG0582 ftsQ 
cell division protein 

FtsQ 
UA 

K03569 PG1396 mreB 
rod shape determining 

protein MreB 
E 

K03570 PG1395 mreC 
rod shape determining 

protein MreC 
E 

Cofactors 

FMN/FAD 

biosynthesis 

Riboflavin 

metabolism 
K11753 PG0957 ribF 

riboflavin biosynthesis 

protein RibF 
UA 

SAM 

biosynthesis 

Cysteine and 

methionine 

metabolism 

K00789 PG1896 metK 
S-adenosylmethionine 

synthetase 
E 

E = Experimentally Essential 

NE = Experimentally Non-essential 

UA = Unaccounted in experimental data 
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Supplemental Figure 1. Example of transposon insertion for P. gingivalis strain W83. 

Top panel represents the transposon insertion pattern for an essential gene PG1959, rpmG 50S ribosomal 

protein L33. Bottom panel represents a transposon insertion pattern for a non-essential gene PG0392, rplL 

50S ribosomal protein L10. Highlighted blue bars depict the indicated gene sequence. Red arrows represent 

location and orientation of a single insertion. Each gene shows insertions for two technical repeats. Courtesy 

of Dr. Brian A. Klein. 
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Supplemental Figure 2. SDS PAGE and gel filtration analysis of purified m-Ddh from P. gingivalis. 

Samples were loaded on a 12.5% polyacrylamide SDS-PAGE gel and bands were detected by Coomassie G-

250 stain. (M) represents the protein standards marker (Bio-Rad) and (1-4) represent collected elution 

fractions during purification. Arrow points to the expected size of m-Ddh at approximately 32 kDa. A 

representative gel filtration chromatograph of purified m-Ddh in elution buffer ran on Superdex 75 column. 

The native molecular mass followed with the expected peak at approximately 66 kDa similar to the protein 

standard albumin. Standard 1 included cytochrome c and β-amylase, Standards 2 included carbonic 

anhydrase and alcohol dehydrogenase and Standards 3 included albumin.  
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