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IN-SILICO MODELS FOR CAPTURING THE STATIC AND DYNAMIC
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A Dissertation submitted in partial fulfillment of the requirements for the degree of
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Director: Dissertation Dr. Preetam Ghosh,
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Understanding the role of structural patterns within complex networks is essen-

tial to establish the governing principles of such networks. Social networks, biological

networks, technological networks etc. can be considered as complex networks where

information processing and transport plays a central role. Complexity in these net-

works can be due to abstraction, scale, functionality and structure. Depending on

the abstraction each of these can be categorized further.

Gene regulatory networks are one such category of biological networks. Gene

regulatory networks (GRNs) are assumed to be robust under internal and external

perturbations. Network motifs such as feed-forward loop motif and bifan motif are

believed to play a central role functionally in retaining GRN behavior under lossy

conditions. While the role of static characteristics like average shortest path, density,

degree centrality among other topological features is well documented by the research

community, the structural role of motifs and their dynamic characteristics are not
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well understood. Wireless sensor networks in the last decade were intensively studied

using network simulators. Can we use in-silico experiments to understand biological

network topologies better? Does the structure of these motifs have any role to play

in ensuring robust information transport in such networks? How do their static and

dynamic roles differ?

To understand these questions, we use in-silico network models to capture the

dynamic characteristics of complex network topologies. Developing these models in-

volve network mapping, sink selection strategies and identifying metrics to capture

robust system behavior. Further, I studied the dynamic aspect of network charac-

teristics using variation in network information flow under perturbations defined by

lossy conditions and channel capacity. We use machine learning techniques to iden-

tify significant features that contribute to robust network performance. Our work

demonstrates that although the structural role of feed-forward loop motif in signal

transduction within GRNs is minimal, these motifs stand out under heavy perturba-

tions.

xiv



CHAPTER 1

INTRODUCTION

1.1 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) gather information from the deployed envi-

ronment, which is processed and communicated to nearby nodes using a minimum

of hardware: transmitters, receivers, a controller, and low-storage memory units.

Large-scale WSNs are useful in military applications to monitor enemy targets, in

disaster management to deliver critical environmental information, and in agricul-

tural climate-monitoring applications. Despite these capabilities, they do not operate

completely free of problems. Significant issues include transmission inconsistencies,

channel noise, frequent hardware maintenance, reprogramming difficulties, and node

failures. These issues increase the financial and energetic costs associated with more

widespread implementation of such networks; reducing these costs requires break-

throughs in automated maintenance and repair, more efficient energy storage and

use, and a focus on reducing error and mitigating sensor and packet damage. There

are several parallels between genetic and sensor networks that motivate our discus-

sions. Through a process termed transcription, genes process stimuli in the form

of varying transcription factor levelsproteins responsible for activating/deactivating

genesby producing mRNA molecules directly from the nucleotide sequence of the

given gene locus. These transcription products may serve as the activating factors

for other genes; so, genes “communicate” with one another by processing incoming

signals (varying transcription factor levels) into output signals (the mRNA) used as

input for the activation/deactivation of other genes. The network mapping com-
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munication between genes in living tissues is termed the gene regulatory network.

Similarly, wireless sensor networks (herein WSNs) are nets of communicating sensor

motes, whereby hardware is responsible for processing incoming signals (the packets)

into out-going messages (packet forwarding). Since living cells are able to adapt to

disruptions to genetic “signals” due, in part, to the evolved network topology, we

hypothesize that a deployed sensor network architecture based on GRN topologies

will adopt similarly “robust” signal-transmission properties.

Studies have shown that the current Homo Sapiens have an estimated 250,000

years of evolution. However, the exact functioning of a Human body eludes us till

date. Human body is an intricate system of complex mechanisms that continues to

interest scientists including biologists, computational and medical researchers. To

address this, an ambitious project called The Human Genome Project (HGP) was

announced by the US Department of Energy in 1985. Its mission was to identify all

the genes in the human genome. HGP was completed in the year 2003 [9]. However,

the genome of every human being is unique and the data is still being refined to

date [38]. Intensive research in structural genomics and their functional significance

followed the completion of HGP creating the new field of Systems Biology, wherein

the goal is to study the behavior and dynamics of complex biological systems.

Human body is made up of trillions of cells [47]. Each cell is comprised of genes

in which information is encoded. The function of a cell varies depending on the level

of gene expression that is regulated by a set of transcription factors. Such interacting

genes and transcription factors can be represented as a Gene Regulatory Network

(GRN). GRNs have been extensively explored by researchers as it is believed that

they hold the key to unravel the mystery behind the working of a human body.

Although a major portion of gene-gene interactions is still unknown for higher order

organisms, the scientific community has recently focused on simulating the dynamics
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of GRNs from lower order organisms. In such simulations, it is essential to consider the

topological characteristics of GRNs that contribute to their robustness in information

transport.

The GRN topologies considered in different parts of the work are that of Es-

cherichia coli and the baker’s yeast Sachharomyces Cerevisiae. A brief introduction

to both the organisms of interest is presented in the following section.

1.2 Why E. coli and Yeast?

The bacterium Escherichia coli and the baker’s yeast Sachharomyces cerevisiae

have been widely studied by the biological research community. The genomes of both

the organisms are mapped completely. Hereafter, Escherichia coli is referred as E.

coli and the baker’s yeast Sachharomyces cerevisiae as Yeast. Both these organisms

are considered to be model organisms.

Following their genomic study, extensive studies were carried out by researchers

to understand the transcriptional regulatory interactions between transcription fac-

tors and genes. These regulatory interactions can be represented as a network of

nodes and edges where transcription factors and genes are the nodes and interactions

among them are represented by the edges. The transcriptional regulatory network

(TRN) of E. coli consists of 1565 nodes and 3758 unique edges. RegulonDB main-

tains the regulatory interactions within E. coli network [55]. Multiple studies have

been carried out to understand the structural characteristics of this network [60, 31].

This network is scale-free in nature, and sparse. Scale-free property of a network is

applicable when a large number of nodes have small degree (edges) and few nodes are

enriched with large number of edges.

The following chapters are organized as follows. Chapter 2 briefly presents my

research contributions. Chapter 3 introduces the concepts on robustness and the dif-
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ferent contexts it is used before defining our metric for robustness. Chapter 4 defines

several network characteristics derived from network motifs to capture robustness of

a biological system. Chapter 5 presents the study on the role of vertex-shared motifs

in network robustness. Chapter 6 demonstrates the structural role of feed-forward

loop motif in signal transduction. Chapters 7 and 8 present the concluding comments

and future work of this research.
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CHAPTER 2

CONTRIBUTIONS

Biological networks offer a great opportunity to understand the governing principles

of all the species and simultaneously, nature. These networks can be observed at

different levels namely transcriptional regulatory networks, protein interaction net-

works, intracellular interaction networks among others. Transcriptional regulatory

networks provide a good abstraction of a biological system by including the impact

of transcriptional proteins on gene expression. Multiple reasons are suggested for

this including the abundant presence of transcriptional motifs with functional and

structural significance.

Wireless sensor networks (WSNs) are widely deployed now to sense environment

in different areas including industrial monitoring, agriculture and civilian surveillance.

WSNs, once touted to swarm the world are not without problems. They are plagued

with signal disruptions and node failures.

The structural significance of substructures within biological networks are be-

lieved to have the advantage of evolutionary mechanisms which occur naturally. This

dissertation motivates the need for designing engineered networks after reporting the

studies carried out to identify robust network topologies and features responsible

for the robustness. The outcome of this research will be identifying special features

derived from transcriptional motifs which can then be used to design engineered net-

works. The main objectives of this research are outlined

1. Test the “robust” property of biological network topologies.

2. Map the gene regulatory network of interest to a wireless sensor network. Use
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traditional network simulation platform to measure “robustness” of networks.

3. Studied and identified the structural patterns in the transcriptional regulatory

networks of E. coli and Yeast.

4. Identify in-silico models to capture characteristics responsible for network ro-

bustness using motif-dependent features.
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CHAPTER 3

ROBUSTNESS

With the rise of data on several fronts such as finance, social networks, biological

networks etc in the recent decade, large number of studies were carried out to under-

stand the consumption of this data. Studying this information using graph theoretic

concepts emerged as an excellent approach. Here, essentially the underlying system

is considered by a graph G where entities such as genes, users in social networks, of-

ficials in government, professionals in organizations are considered to be vertices (V )

and the associations among them are represented as edges (E). The term robustness

has been defined differently in different contexts. Biological robustness as defined

in a breakthrough work by Hiroaki Kitano is “a property that allows a system to

maintain its functions against internal and external perturbations” [32]. Robustness

of microRNAs has also been studied in the biochemical networks, specifically their

role in regulating certain hub nodes in interconnected modules under external and

internal perturbations [50]. Nodes that have several connections to other nodes in

a network are considered to be “hub” nodes. Modularity in biological networks has

been shown to be critical to retain certain biological functionalities. Recent research

has explored the principles behind the evolution of modules [14]. Several topological

metrics were proposed and explored thoroughly to understand the structural pat-

terns and redundancies in these networks. These metrics include centrality measures

such as degree centrality, network centrality, eigenvector centrality, betweenness cen-

trality and closeness centrality. Other metrics include average shortest path, network

density, communicability, diameter. In a biological context, all these topological char-
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acteristics are considered to be measures of how robust a system is. The next section

introduces several metrics used in prior research to capture system robustness.

3.1 Metrics and definitions

Shortest paths between a pair of nodes captures the number of hops required to

transmit information. Captured across the entire network, the average shortest path

(ASP) measures the information transmission efficiency. If a given network has lower

average shortest path, the network is small enough to send information using short

paths. Shortest ASP is a defining feature of small world networks as introduced in

[65]. For two vertices V 1 and V 2 in the network with V vertices, Equation 4.3 defines

ASP as follows:

ASP =
1

|V | (|V | − 1)

∑
V1,V2∈V

min {d (V1, V2)}. (3.1)

Betweenness centrality (BC) defines the number of shortest paths passing through

a specific node relative to all the shortest paths in the network. This captures the

relative importance of a particular node compared to other nodes. This metric is

often used to identify influential users in social network analysis. Given that σV1V2 is

the number of shortest paths between V1 and V2, Equation 3.2 defines BC of vertex

Vi as follows:

BCVi =
∑
V1 6=V2

σV1V2(Vi)

σV1V2
(3.2)

Clustering coefficient (CC) is a measure of the ability to which nodes can in

a network show a propensity to form clusters [48]. Communicability is a measure

of capturing information transmission between two nodes and is used to identify

communities within a network. For two nodes V1, V2, it is defined as the weighted
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sum of all walks from V1 to V2 in which more weight is given to the shortest walks

than the longer walks [11].

communicability(V1, V2) =
∞∑
i=0

ci(A
i)V1V2 (3.3)

where Ai is the i− th entry for V1 and V2 in the corresponding adjacency matrix

A of the network.

While these characteristics capture the topology of the respective networks, they

do not capture dynamic aspects of biological networks. In addition to defining metrics

such as network density/degree centrality, we also introduce several new metrics in

Chapter 4 derived from feed-forward loop motif which is noted to play a crucial role

in biological network robustness.

3.1.1 Robustness after attacks

Several studies have looked at the deterioration of complex networks by creating

“attack” scenarios via deleting a set of nodes and edges and observing topological

parameters such as the ones defined above. For instance, researchers in [6] identify the

most influential edge set, delete them and observe the change in natural connectivity.

The average eigenvalue of a network (Equation 3.4) is defined as natural connectivity

[6].

natural connectivity = ln(
1

V

∑
Vi∈V

eλVi ) (3.4)

Another study proposes using random walks in multi-layered networks and ob-

serves the variation in coverage (“average fraction of distinct vertices visited at least

once in a time < t” [10]) under random failures. Research by [45] defines robust-

ness as the number of remaining nodes after a cascading failure. As our interest is
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in observing the dynamics of biological networks, we take a different approach by

“simulating” a biological system.

3.2 Biological Networks

Various networks like social and information networks, genetic networks, eco-

nomic networks can be considered as complex networks. The complexity in complex

networks could be due to different reasons: scale, abstraction, functionality and struc-

ture. The scale of data in social networks brings great complexity to understand social

dynamics of current society. Determining this will give insight on news and media

consumption, face, contagion processes and virality. It has applications to the fields

of artificial intelligence, machine learning, journalism, visual interface among oth-

ers. Economic networks contain information regarding the money flow among global

economies or banks; money flow among entities such as politicians, corporate interests;

money and power flow among illegal entities. This is useful in understanding global

debt, fraud detection and potentially illegal trade. Each of the problems mentioned

above requires context, domain expertise, right data and computational algorithms to

efficiently solve the problem. Our focus of interest are biological networks, specifically

gene regulatory networks (GRNs).

3.3 Quantifying robustness in biological networks using NS-2

Our contribution lies at the realm of GRNs and in-silico experiments. We propose

a framework to quantify biological robustness using NS-2, a network simulator. NS-2

has been primarily used to simulate different computer networks including Wireless

Sensor Networks (WSNs). Information in this chapter is categorized as follows. Sec-

tion 3.4 presents a discussion on the state of computational modelling of biological

systems. Section 3.5 presents similarities and differences between GRNs and WSNs
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thereby enabling a way to map a GRN to a WSN for simulation. Section 3.6 details

the simulation setup including the parameters used and the assumptions. Section

3.6 also explains the network generation procedure and the sink selection strategies

necessary for a network to be simulated. A case study is presented in Section 3.7 to

identify the suitable model organism, between the bacterium Escherichia coli (abbre-

viated E. coli) and the baker’s yeast Saccharomyces cerevisiae, for mapping purposes.

Finally, future research directions are presented in Section 3.8.

3.4 Computational modelling

Ordinary differential equations (ODE) based computational models of biological

systems, termed reaction rate equations or mass action kinetics, has received much

attention [56]. Here, a homogeneous biological system is represented as a group of

biochemical reactions and its dynamics are explored in the continuous-deterministic

realm. However, ODE-based models are limited to study the underlying stochastic

present in many biological processes such as gene expression and protein synthesis

[15]. The limitations of ODE-based models for biological systems are detailed in [56].

[17] describes the advantages of using discrete event simulators for modeling bi-

ological systems. A fundamental challenge in computational systems biology [33] is

the simplification of the biological system complexity without losing the ensemble

dynamic behavior. In the system engineering view of complex processes [66], the

key notion is to abstract the complexity of the system as a set of discrete time and

space variables (random variables), which capture the behavior of the system in time.

The entire system is a collection of functional blocks or modules, which are driven

by a set of events, where an event defines a large number of micro level state transi-

tions between a set of state variables accomplished within the event execution time.

The underlying assumption driving this abstraction is the segregation of the com-
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plete state space into such disjoint sets of independent events which can be executed

simultaneously without any interaction. The application of this technique in large

complex communication networks has demonstrated the accuracy of the approach for

the first and higher order dynamics of the system within the limits of input data and

state partitioning algorithms [67]. For example, discrete event based system modeling

has been effectively applied for designing routers, the key components responsible for

routing traffic through the Internet. Discrete event based simulation techniques have

also been used in a wide variety of manufacturing processes and studying the system

dynamics of complex industrial processes.

Researchers have also tried to adapt existing simulation platforms to model

molecular communication. NanoNS is one such [18] simulation framework to model

molecular communications. The framework is built over NS-2 software and uses a

diffusive molecular communication channel. Researchers in [18] present an exten-

sive review of communication models in nanoscale networks and out of three possible

molecular communications, namely diffusive, motor-based and gap junction-based,

their work is focused on diffusive-based molecular communication. As an extension

of this work, researchers presented a case to build models for a variety of molec-

ular communication channels, intra-body molecular nanonetworks and the network

of such intra-body nanonetworks in [39]. This work comprehensively showcases the

significance of modelling nanonetworks. Efforts are currently underway to simulate

wireless nano sensor networks using NS-3 software (next version of NS-2 ) [52]. In

this work, wireless nano sensor networks are modelled using electromagnetic commu-

nication instead of molecular communication as mentioned above. As it is evident

by now, the challenges in achieving a simulation framework for communications in

molecular networks are multifold [44]. Our core goal here is to identify ground rules

for GRN-based robustness–the ability of a biological state to persist despite compo-
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nent errors–by setting up a generic NS-2 simulation platform, rather than developing

more detailed molecular communication channels.

Network simulator, NS-2 [22], is a discrete event simulator widely used for study-

ing wireless networks. NS-2 has been used by researchers to model communication

in wireless networks and embedded devices. This simulator continues to evolve with

the active support of the research community. Taking a step forward, we have used

NS-2 as an in-silico platform for quantifying the robustness of biological networks.

Specifically, since the primary objective of a wireless sensor network is information

transport to specific sink nodes, and because they operate under similar noisy and

error prone conditions as biological networks, we define robustness of biological net-

works as the ability for each node in the network to deliver packets with minimal

packet loss. Before envisioning a model for any time-varying functional biological

system, it is important to illustrate the preliminary model for the biological system

in NS-2. While exclusive simulators to model a molecular network are not present

currently, existing simulators can be adjusted to model the desired network. It should

be noted that this might not be the perfect approach, but the opportunity to explore

the qualitative and quantitative dynamics of molecular networks is not lost. Scenarios

are presented below whenever applicable to demonstrate the use of NS-2 to quantify

biological robustness.

3.5 Mapping GRNs to WSNs

Transmission inconsistencies frequently plague WSNs where they suffer from sig-

nal disruptions due to sensor failure or from the absence of routing protocols that are

sufficiently insensitive to local as well as global network conditions. In a WSN, nodes

sense, process and communicate information with each other. Structurally, a GRN

can be related to a WSN where every gene or transcription factor is a sensor. Signal
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transmission within a GRN can be considered as packet transmission in a WSN. The

fundamental assumptions in modelling a bio-inspired WSN are [26]:

1. GRN node structure is preserved in WSN.

2. Interactions among nodes in WSN are based on the existing connections in the

GRN.

The physical signaling structure of sensors within the WSN must be adapted to

reflect the communication between genes in the GRN. If gene G1 up-regulates G2,

then the equivalent interaction in the WSN is that sensor S1 sends a packet to S2

according to specific probability distribution defined by gene-gene interactions. For

homogeneous sensor nodes, each up-regulation edge in a GRN is replaced by a bi-

directional edge; if we allow sensor S1 to send a packet to S2, then S2 should also

be able to send a packet to S1. For heterogeneous sensor nodes, however, it is not

necessary that both S1 and S2 possess the same transmission radii, giving a directed

edge from S1 to S2 and not vice versa.

We recognize that WSNs conceptually operate under noisy and/or adverse con-

ditions similar to the stochastic cellular environment encountered by GRNs. We

hypothesize that if it is possible to exploit the simulation platform used for WSNs,

namely NS-2, to assess the signal transmission robustness in GRNs, then any ob-

served robust qualities can be explained by fundamental biological processes, such

as transcription. The process where signals from nearby neighbors in the form of

transcription factors stimulate/inhibit other genes by generating mRNA molecules is

transcription. Thus, GRN nodes communicate with one another by sending signals

(transcription factors), which are in return processed into output signals (mRNAs).

This process is similar to WSNs where sensors receive packets from its neighbors with

packet forwarding instructions to other destination nodes. As a result, any node in a
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network (GRN or WSN) can affect the decision of other nodes and hence the overall

network performance.

Here, we considered the transcriptional regulatory network (TRN) of the bac-

terium E. coli to generate the sample GRN graphs. Such TRNs bear the actual

topology of the GRNs with any gene-gene and gene to transcription factor edges

deleted. Thus, in such TRNs, a single transcription factor can regulate other tran-

scription factors and genes, while genes do not directly regulate other nodes. Note

that our earlier work on WSNs derived from GRN topologies actually considered the

TRNs from E. coli which were shown to achieve high packet transmission efficiency

[26]; hence such TRNs exhibit the desired biological robustness measures that we

seek to model here. The transcription factor molecules having half-lives T1/2 = ln 2/k

[3], where k represents the decay rate constant, are subject to degradation if held

at the transcriptional regulation queue. Similarly in the case of WSNs, packets are

forwarded from source nodes to sink nodes using multiple hops and can be dropped at

intermediate nodes if they exceed the queue length. Hence, genes can be considered

as sink nodes and transcription factors as the source nodes. On that account, we

describe our measure of robustness in WSNs that adopt the GRN topologies as the

ability for each node in the network to deliver information to their local sinks with

minimal packet loss.

3.6 NS-2 simulation setup

Consider a biological network topology derived from a well studied organism, E.

coli. Sub-networks that are extracted from E. coli comprise of interactions among

genes. Let us call this extracted network a Gene Regulatory Network (GRN). Such

GRNs comprise two classes of nodes: transcription factors and genes. A transcrip-

tion factor either up-regulates or down-regulates one (or more) gene. The packet
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transmission rates are assumed to be identical in NS-2, for all the non-sink nodes;

however, in a real biological setting, such rates are directly proportional to the rate

constants associated with every edge in the network along with the concentration of

the molecules associated with a node. This however creates a roadblock for existing

biological network simulators as each of these rate constants need to be experimentally

validated which is not currently feasible for the different sample networks generated

in this work. The simulation also assumes all packets transmitted to be identical in

type and size which correspond to similar signaling molecules affecting the different

nodes in the GRN in the context of biological robustness.

Queue limit in NS-2 is useful to limit the number of packets that can be queued

at a node. Queue limit in the corresponding GRN represents the half-life of each

signal sent from one node to another node. Although this is another approximation

in the simulation set-up, it is impossible to characterize all such signaling molecules

accurately in the different extracted GRNs. In summary, our proposed NS-2 set-up

makes broad assumptions for the pertinent details of biological network signaling but

we feel that this is indeed necessary for studying the qualitative dynamics of many

sample GRNs wherein such details are not known at length.

Traditionally, robustness of biological networks has been measured by its static

graph theoretic characteristics such as network diameter, average shortest path [46],

network efficiency [36] amongst others. A network with negligible change in its di-

ameter is considered to be robust when it loses node(s) after an attack. Similarly,

negligible change in average shortest path and network efficiency under network per-

turbations related to temporal fluctuations in the node and/or link availability is

attributed to robust networks. Packet receival rate is the ratio of the number of

packets received in the network to the number of packets sent. Higher the packet

receival rate of a GRN, higher its robustness. Randomly generated WSNs and GRN-
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derived networks are compared with respect to the packet receival rate. This section

discusses the methods used for random network generation to be used as a wireless

sensor network. In addition, approaches used to identify the sink node in the net-

work are detailed. A new algorithm for biological network generation is presented in

Section 3.6.2.1.

3.6.1 Network generation

A script written in the Python programming language [54] is used to generate

networks modelled as WSNs. Here, two different nodes within the network are chosen

at random, and a link is established between them with probability p 1. Networks

with 100, 150, 200, 250 and 300 nodes were generated for demonstration purposes

as representing “medium” sized sensor networks. 25 networks of each size (100, 150,

200, 250 and 300 nodes) are considered to illustrate the sink node selection approach.

Networks of a certain size are spread over an area with specific node transmission

range. For example, 25 different networks of size 150 nodes are spread over 3·6×105m2

(with x=600m and y=600m ) with a node transmission range of 85 meters. Node

range for a network has been assigned based on the work by [19]. Similarly, networks

of size 200 are spread over area of 4.9×105m2 (with x=700m and y=700m) with a node

transmission range of 90 meters and networks of size 250 are spread over 8.1× 105m2

(with x=900m and y=900m) with a node transmission range of 90 meters. Networks

of size 300 are spread over an area of 106m2 (with x=1000m and y=1000m) with a

node transmission range of 110 meters. Few assumptions are made for simplicity.

The directionality of the links between the nodes is ignored. Self-edges 2, edges with

1p(K) is the probability to find a node of degree K in a network that follows the
power law distribution p(K) ∼ K−γ.

2In a biological context, self-edges for a gene refers to auto-regulation of expression.

17



No Loss 0.03 Loss 0.05 Loss 0.2 Loss
85

90

95

100

105

Different Sink Node Approaches with Loss Model

P
er

ce
nt

ag
e 

of
 P

ac
ke

ts
 R

ec
ei

ve
d

MB
FHD

SHD,THD
PBN1

PBN2

MB
FHD

SHD,THD
PBN1

PBN2

MB
FHD

SHD,THD
PBN1

PBN2

MB
FHD

SHD,THD
PBN1

PBN2

Fig. 1.: Sink node selection and respective packet receival rates for different loss

models - GRN of 20 nodes [30]

same source and destination nodes, are removed from the network. Nodes in model

organisms such as E. coli and S. cerevisiae self, up- or down-, regulate themselves.

However, we ignore self-edges in this case of WSN simulation. In order to compare

similar entities, only networks with same number of nodes and edges are considered

for comparison. All 25 networks of the same size have exact number of edges. Each

network generated using this approach is considered to be a Random Wireless Sensor

Network (RWSN).

3.6.2 Sink selection strategy

Sink node selection strategy is critical for optimal GRN performance. In [28], we

listed three sink selection strategies: (a) Highest Degree (HD), (b) Highest Coverage

(HC) and (c) Motif-based (MB) and identified HD strategy as the best approach to

provide higher robustness for NS-2 based simulation of GRNs. Nodes with highest

degree are selected as a sink node in the HD strategy. Node involved in any three-node

motif is selected as a sink node in the HC strategy. Figure 1 shows the comparison of

sink selection strategies for a GRN-derived of twenty nodes [26]. In this figure, FHD

stands for the node with First Highest Degree, SHD stands for the node with Second

Highest Degree, THD stands for the node with Third Highest Degree and PBN stands
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for node identified with Probabilistic Boolean Network. A PBN is a formalism where

set of functions define the expression value of genes in the network. The node with the

highest expression is selected as sink node. For detailed information on sink selection

strategies including PBN, refer to [26]. Intuitively, using FHD node as a sink makes

sense since the node is regulated, in a biological context, by several other regulators

and are critical for important biological functionalities. Such nodes also act as hubs

in a network.

Three-node motifs have been earlier identified as the building blocks of robust

GRNs [43] from a purely topological perspective, and the feed-forward loops, wherein

two genes regulate each other and they both regulate a third, were reported to have

the most significant impact on GRN robustness. Hence, we also considered nodes

involved most in a feed-forward loop (FFL) motif as a sink node in the MB strategy.

We considered FFL motifs as they have been identified to play an important role in

establishing robustness [34] apart from ensuring important biological functions such

as generating signal pulses, and speeding up or delaying response times in target genes

[40].

In [26], we compared several GRN-derived networks with randomly generated

networks (network sizes 100, 150, 200, 250 and 300) and showed that GRN-derived

networks improve the transmission reliability in our NS-2 based simulation setting.

The procedure for generating random networks is described in Section 3.6.1. Figures 2

and 3 present a comparison for best, mean and worst performing RWSNs and GRN of

network sizes 100 and 300 respectively. For this experiment, a total of 25 RWSNs are

considered and three cases are presented. Comparisons are also made for large-scale

predicted GRNs (network size 1500, 1750, 2000, 2250 and 2500). The performance of

GRN vs RWSNs in large scale networks (network size 1500 and 2500) is presented in

Figures 4 and 5. The graphs for network sizes 1750, 2000 and 2250 are not reported
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Fig. 2.: Comparison of best, mean and worst (out of 25 networks) performing RWSNs

to GRN - Network size 100 [26]

since they follow similar trend as networks of size 1500 and 2500. This might be

possible due to the presence of higher number of FFLs in GRN-derived networks as

compared to randomly generated networks. The abundance of FFL motifs in random

networks and networks derived from new algorithm 3 is presented in Table 1. The

counts reported in the table are averaged, and approximated to nearest decimal,

across ten different networks of a particular type.

3.6.2.1 New network generation algorithm

Here we discuss the network generation from our work in [41]. For brevity, the

Scale-free Directed Network Generator is referred to as SDNG). The algorithm can be

utilized to expand existing networks as well as generating directed networks emulating

the different distributions of E. coli, namely in-degree, out-degree, cumulative degree

3Algorithm proposed by [41] is explained in Section 3.6.2.1.
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Table 1.: Feedforward Loop Motif Count in RWSNs and new algorithm networks [26]

Network

Size

FFL Count

in RWSN

FFL Count in

New algorithm

networks

1500 3972 8429

2000 4125 8524

2500 6742 8591
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and the participation of genes in feed-forward loops. The algorithm is similar to the

Barabási-Albert (BA) model which uses the preferential attachment mechanism [2]

for growing scale-free (SF) networks. Networks are grown resembling the phenomena

known as the ’rich get richer and the poor get poorer’, however the BA model was

originally employed for undirected networks. The duplication-divergence (DD) model

suggested by [64] considers the growth of directed biological networks. The suggested

model which was later extended in [8] was predicated by the fact that proteins/genes

evolve through copying themselves followed by their subsequent infrequent mutation.

In addition to using the cumulative distribution as the sole measure for resembling the

original networks, few of the DD grown networks retained a power-law distribution.

To illustrate the dynamics of SDNG, we consider denoting candidate nodes for

preferential attachments in an existing network of size n with subscript i, wherein Ki

and Ri label the out- and in-degrees respectively. The probability for a candidate node

to be connected to a node foreign to the existing network with an edge directed from

the candidate node to the foreign node is given by A(Ki, Ri). The probability that a

link is drawn from the foreign node to the candidate node is given by B(Ki, Ri). Each

probability is normalized against all nodes of the existing network to form attachment

kernels [35], and their formulas are listed in Table 2.

For this particular work, we considered the power-law attachment kernel for

calculating the edge probabilities. Starting with a fully connected eight node network,

a candidate node is picked at random with equi-probability. Next, a random number

d is selected with equi-probablity from the interval d ∈ (0, 1). An edge is drawn

from the candidate node to the foreign node if d ≤ A(Ki, Ri). This process is then

repeat for an edge drawn out of the foreign node to the candidate node, provided the

probability satisfies d ≤ B(Ki, Ri). The above steps are then reiterated mi− 1 times,

wherein mi is an another number selected at random from an exponential probability
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Table 2.: Attachment kernels

Functional

Type

Attachment Kernels

A(Ki, Ri) B(Ki, Ri)

Linear Ki∑n
i=1Ki

Ri∑n
i=1Ri

Power-law
K0.8

i∑n
i=1K

0.8
i

R0.8
i∑n

i=1R
0.8
i

Sigmoid Ki∑n
i=1(Ki+Ri)

Ri∑n
i=1(Ki+Ri)

distribution ρ(mi) = (f
1

1−m0 −1)f−mi/(1−m0). The decay of this distribution resembles

the degree distribution of E. coli. Here, we considered values of f = 1
4

and m0 = 2.

3.6.3 SVM Validation

While the network evaluations presented in Figures 2 and 3 establish the signif-

icance of GRN-derived networks, only one sink operates in those networks which is

not the case in functional GRNs. To address this, we used multiple sink nodes to

model GRN communication. An Support Vector Machine (SVM) model, built using

LibSVM [7], is then used to investigate the relative efficiency of packet receival rates

based on topological metrics such as network density, genes coverage, transcription

factor network density, motif abundance and genes percentage, defined below.

For this, GRNs of varying sizes, 100<n<500 were used, where n is the num-

ber of nodes in the GRN. Transmission is considered from source nodes (similar to

transcription factors) to sink nodes (similar to gene nodes). 410 out of the 490 net-

works are used to train the learning model and remaining networks are used to test
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the model. The directionality of the links between the nodes is considered. The

topological metrics used in the learning model are briefly described below.

3.6.3.1 Network density (ND)

ND is a ratio of the number of edges present in the network to the total number

of edges possible in the network.

3.6.3.2 Genes coverage (GC)

GC is the summation of the ratios of in-degree of each sink node to the ratio of

source nodes having a path to that particular sink node.

3.6.3.3 Transcription factor network density (TND)

TND is the ratio of the number of edges that transcription factor nodes partici-

pate to the total number of edges in the network.

3.6.3.4 Motif abundance

Motif abundance is the ratio of abundances of FFL (RFFL) and bifan (RBF )

motifs that relate to the number of nodes.

3.6.3.5 Genes percentage (GP)

GP is the ratio of number of gene nodes to the total number of nodes in the

network.

3.6.4 Contributions of topological metrics to GRN robustness

These topological metrics are then used to construct the SVM learning model.

Cross validation is used in the training stage; test data is then used to predict the
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Fig. 6.: (a) Relative importance of the feature weights, (b) Relative importance of

feature directions

robustness of the networks. The relative importance of the features used in the model

in the decreasing order is as follows: ND, RBF , GP, TND, GC and RFFL. Figure 6(a)

shows the weight wi of features divided by the maximum weight (wND): |wi/wND|.

Figure 6(b) shows same ratio but the directions of the weights are considered. It

should be noted that a GRN is more communicative when it is sparse implying low

ND and high RBF as shown in Figure 6(b).

3.7 Case study: Comparison of derived networks from E. coli and Yeast

We have demonstrated the performance of NS-2 as a platform to quantify robust-

ness in biological networks. In order to exploit the principles of a biological network,

it is crucial to evaluate the model organisms. For this purpose, we compare networks

derived from two well studied model organisms, E. coli and S. cerevisiae, of sizes

consisting 100, 200, 300, 400 and 500 nodes using GeneNetWeaver software [57]. One

hundred networks of each size are generated and NS-2 simulations are performed on

each of these networks. As comparing the average performance of all networks may
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not distinguish the performance of the derived networks properly, we compared the

best perfoming, average performing and least performing networks. The direction-

ality of the links between the nodes is ignored. The simulation parameters are as

follows:

1. Bandwidth = 1Mb

2. Delay = 1.0ms

3. Queue limit = 5

4. Packet size = 900 bytes

Figure 7 shows the best performing derived networks from E. coli and S. cere-

visiae for network sizes: 100, 200, 300, 400, and 500 (nodes) w.r.t. 20%, 35% and 50%

loss. While the performance of S. cerevisiae derived networks is consistently higher

for 500 node network under 20% and 35% and 50% loss, E. coli derived networks per-

form better, in almost all cases except for 200 network size at 20% loss, for networks

of size 100, 200, 300 and 400.

Figure 8 shows the mean performing derived networks from E. coli and S. cere-

visiae for network sizes: 100, 200, 300, 400, and 500 (nodes) w.r.t 20%, 35% and 50%

loss. It can be clearly observed from the figure that the performance of E. coli derived

network is better at 20% and 35% loss and S. cerevisiae derived network performs

better for higher loss percentage (50%). The difference in performance is ∼ 0.51 at

20% loss (E, coli), ∼ 0.38 at 35% loss (E. coli), ∼ 0.359 for 50% loss (Yeast). It ap-

pears that S. cerevisiae derived network performs better than E. coli derived network

at higher loss percentage.

Similarly, Figure 9 shows the worst performing E. coli and S. cerevisiae derived

networks for network sizes: 100, 200, 300, 400, and 500 (nodes) w.r.t 20%, 35% and
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50% loss. It can also be noticed here that S. cerevisiae derived network performs

better than E. coli derived network only for higher network size (500 nodes) and the

latter performs better than the former for other network sizes (100, 200, 300 and 400

nodes).

Figure 10 shows the comparison of packet receival rates for networks of size 100

(nodes). The difference in the packet receival rates of the best performing E. coli and

S. cerevisiae derived networks suggests that E. coli -derived network performs better

than yeast-derived network. Figure 11 shows the comparison of packet receival rates

for networks of size 500 (nodes).

To arrive at any decisive conclusion on a better model organism for WSN map-

ping, extensive simulations need to be performed to check if this trend holds for

higher network sizes (1000 or 1500 or 2000 node network etc.). Since S. cerevisiae

performs marginally better at a high loss rate, sparse WSNs in real-world applications

− where communication is essential even at high loss, for instance, during rescue op-

erations after natural disasters − can be modelled using the structural principles of

yeast-derived GRN.

Our simulation setup using NS-2 is generic and can be applied to any GRN (e.g:

E. coli, S. cerevisiae), and thus provides a common platform to assess dynamic robust-

ness of biological networks. This also allows to sample several extracted and predicted

GRN topologies and measure their signal transmission dynamics thereby identifying

specific topological and control properties in these networks that impact their robust-

ness. Such a platform will hence allow one to compare the robustness of the GRN

topologies of different organisms, design, validate, test and explore different GRN

prediction algorithms besides also serving the greater complex networks community

by applying such design rules of robust biological networks to create fault-tolerant

and efficient engineered systems.
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3.8 Challenges and Future directions

NS-2 is a discrete event simulator built for exploring wired networks and then

extended to study wireless networks. It is not exclusively built for communication in

molecular networks. Creating an environment for simulating molecular networks is

extremely challenging. In a biological network, transmission of signals from one node

(transcription factor) to another (gene/transcription factor) occurs at a rate that has

not been determined yet. Active effort by researchers is focused on estimating such

rate constants. Determining the rate constants is critical for modelling the dynamic

behavior of a biological system. While our work is preliminary, it allows us to quali-

tatively and quantitatively simulate biological networks (specifically GRNs) without

any knowledge of the underlying rate constants. This will help in establishing the

reasons behind the inherent robustness of GRNs as well as motivate the design of

efficient WSNs, wherein routing algorithms that intuitively embed biological struc-

tural properties in WSNs need to be developed. This can be realized using repeating

structural patterns in biological networks termed as motifs.

Work is currently underway to identify features derived from feed-forward loop

motifs. Following this, A WSN can be categorized into several pockets of such patterns

and routing can be introduced from different nodes to the sink to achieve higher

packet transmission efficiency. Adaptive routing mechanisms can be imagined to

improve WSN efficiency. Bandwidth limitations on edges and nodes in a regulatory

network need to be studied before bandwidth based studies can be carried out in

WSNs. Much needs to be realized in this field before a true bio-inspired WSN is

modeled that adheres to structural and dynamic behavior of a biological system.
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(a) 20% loss

(b) 35% loss

(c) 50% loss

Fig. 7.: Comparison of best performing networks derived from E. coli and Yeast -

20%, 35% and 50% loss 30



(a) 20% loss

(b) 35% loss

(c) 50% loss

Fig. 8.: Comparison of mean performing networks derived from E. coli and Yeast -

20%, 35% and 50% loss
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(a) 20% loss

(b) 35% loss

(c) 50% loss

Fig. 9.: Comparison of worst performing networks derived from E. coli and Yeast -

20%, 35% and 50% loss
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Fig. 10.: Comparison of 100 node networks derived from E.coli and Yeast respectively

- 20%, 35%, 50% loss

Fig. 11.: Comparison of 500 node networks derived from E.coli and Yeast respectively

- 20%, 35%, 50% loss
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CHAPTER 4

STRUCTURAL REDUNDANCY OF TRANSCRIPTIONAL MOTIFS

4.1 Introduction

Many functional aspects of transcriptional networks appear to be preserved de-

spite the presence of noise or other disruptions. For example, some bacteria have

been shown to survive despite extensive ‘rewiring’ of their transcriptional network

topologies [23]. In some cases, such a robustness to function can be attributed to the

network structure alone, owing to its power-law degree distribution [1]. In other cases,

the abundance of highly repetitive subnetworks, termed transcriptional motifs [60],

have been correlated with an ability of the system to persist in a dynamically stable

state [53]. One interesting example of a transcriptional motif is the feed-forward loop–

a small, three-node subnetwork wherein the top-level protein regulates the expression

of a gene via two paths, which appears to be more abundant in some transcriptional

networks than found in randomized versions [60]. Indeed, feed-forward loops have

received much attention, due in part to their information-processing ability. For ex-

ample, they have been reported to speed-up or slow-down response times without any

feedback loop [40].

This ability to remain useful despite experiencing significant disruptions to com-

munication seems to be a generic property of biology [34], and finding general proper-

ties or ‘laws’ that can be used to engineer this feature into man-made systems remains

a ‘holy grail’ of systems architecture and control theory [37]. We make headway to-

ward this goal by using machine learning techniques to interrogate the relationship

between topological and dynamical properties of transcriptional networks, but viewed
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from the angle of the application; in this case, a scalable wireless networking system.

Here, nodes with communication capacity may continually enter or leave the system,

which has parallels in molecular biology: proteins and other signaling biomolecules

are continually made and destroyed, leading to uncertainty in the channel capacity

of a signaling pathway. Our approach to this problem is to combining discrete event

simulation and support vector machine learning techniques to identify important sys-

tem features that contribute to the information flow across such networks. Discrete

event simulation can capture dynamic behavior of the system by modeling informa-

tion transmission as a set of independent events under custom perturbations using

channel noise and congestion-based information loss; machine learning techniques can

be used to identify underlying patterns in the data.

The NS-2 framework simulates information flow across wireless man-made sys-

tems in terms of packet transport, and we employ it here to quantify a type of dynam-

ical network robustness by measuring the packet receipt rates at various destination

nodes in the model networks. Packet receipt rate is determined as the ratio of number

of packets successfully received at sink/destination nodes to the number of packets

sent by the source node(s). While biological systems do not strictly communicate

using information packets, they do employ signal transduction pathways that can be

thought of a series of activation steps or ‘checks,’ which succeed upon passing a con-

centration threshold. This analogy can be taken further, given that biology is often

redundant, in the sense that many pathways may be activated to achieve a single

goal, reminiscent of flooding. We have described such similarities in detail before [16,

28, 27].

The results reported here build upon our previous work to explore properties

crucial for robustness in transcriptional networks to design specialized wireless sensor

network topologies [16, 28, 27], and quantifying performance of such networks using
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the NS-2 simulation framework [30].

4.2 Methods

4.2.1 Model transcriptional networks

The GeneNetWeaver software package [57] is used here to extract subnetworks

from transcriptional network datasets for the bacterium Escherichia coli and the com-

mon baker’s yeast Saccharomyces cerevisiae. One hundred networks of five different

network sizes n = 100, 200, 300, 400, and 500, as represented by the number of nodes

n. For simplicity, we will refer to networks derived from S. cerevisiae as ‘Yeast’ net-

works, whereas the bacterial networks will be referred to as E. coli networks. For

our purposes, we map the transcription factors as nodes, and transcriptional network

edges represent are understood to denote interactions between participating nodes;

thus, we ignored the regulatory interaction of each link. As a result, we may apply

the concepts of graph theory [4] to the resulting networks.

4.2.2 Simulation setup

Network simulator (NS-2) software [42] is used here to simulate packet trans-

missions in the mapped network. Nodes corresponding to genes that code for tran-

scription factors in the genetic network are taken as the source nodes, whereas nodes

corresponding to nonregulating genes are considered to be the sink nodes. While

source nodes can send and forward packets, sink nodes may only receive packets

without forwarding them onto others.

A queue limit of five packets is arbitrarily set for each participating node in the

network simulation; we adopt a flooding type protocol, wherein each node may send

ten packets each to its outgoing edges. Thus, non-sink nodes with outgoing edges
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networks
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forward packets until the simulation ends.

To account for noise, three different loss scenarios are considered, in which up to

20%, 35% and 50% of packets can be “lost” in transit. This affects the packet receipt

rate, which is determined to be the ratio of number of packets received at all sinks

to the number of packets transmitted by source nodes, which, for convenience, we

represent as a percentage of the total sent packets: (packet receipt rate)×100. This

dynamical system is perturbed by fluctuating the loss level. Since the simulation

setup considers channel fluctuation and congestion-based perturbations, we consider

a network more “robust” than the another comparable network, when it exhibits

a higher level of packet receipt. The distributions of network packet receipt rates

are presented in the Figure 13. The distributions for network sizes 400 and 500 are

presented in Appendix (8).

4.2.3 Motif structural redundancy and packet receipt

What is the the impact of structural redundancy, contributed by transcriptional

motifs, on the information flow (packet transmission) through a complex network?

In the context of the NS-2 framework, packets are successfully transmitted if those

sent from a source node reach the sink (destination) node(s). That feed-forward loop

transcriptional motifs (e.g. Fig. 14 (b)(1)) are hierarchical, and attenuate signal

properties, such as response-time acceleration or delays [40], without any feedback

loop, begs the question of whether they influence information transport at the more

extensive network level. To examine this, we first tracked and identified all paths

(node-hops) traveled by successfully received packets. We then used this history

to identify all feed-forward loops that possess a nonempty intersection with these

successful paths.
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(a) n = 100 nodes.
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(b) n = 200 nodes.
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(c) n = 300 nodes.

Fig. 13.: Packet receipt rates (PRTs) for sampled transcriptional subnetworks of the

bacterium Escherichia coli and Saccharomyces cerevisiae (labeled ‘Yeast’).
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4.3 Support Vector Machine Modeling

Machine learning (ML) techniques can be used to discover and identify underlying

patterns present in a given dataset. Currently, ML techniques are widely used for

different purposes, such as to identify email spam, predicting election results, Internet

search suggestions, targeted advertising, to name just a few. Among an army of

techniques, support vector machine (SVM) is a supervised ML technique used for

classification of data [20]. Our goal here is to first identify, and then to determine,

which topological features of transcriptional networks best capture the behavior of a

test network.

An SVM model identifies a classifier (boundary that separates data) which best

classifies the given data. While linear classifier suits well in few instances, other

instances may require non-linear separation boundaries. The implementation of such

linear or non-linear boundaries in an SVM model is achieved using kernel functions.

This classifier is often referred to as a hyperplane that separates instances belonging

to different classes. The possible kernel functions include: linear, polynomial, radial

basis function (RBF) and sigmoid. An SVM model predicts the target value of the

test data given the features of test data.

An illustration of SVM dataset is shown in Figure 14(a). In SVM modeling, a

dataset contains set of instances, and each instance is a combination of labels and

features. The term ‘label’ is attributed to an output which describes a feature, which

is a property of the dataset used. In addition, each feature is assigned a unique ID. For

example, we employed ten datasets, which constitute five sampled subnetworks each

from the transcriptional datasets for Escherichia coli and Saccharomyces cerevisiae.

Each of these five datasets corresponds to a particular network size, as measured by

the number of nodes, i.e. n = 100, 200, 300, 400, or 500. One hundred networks were
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sampled from the source datasets for each size, and each such sampled subnetwork is

an example of an ‘instance’.

We used the Python programming language [63] and scikit-learn package [scikit-learn]

to identify features and build SVM classification models. scikit-learn utilizes the

popular ML libraries libsvm and liblinear. We follow the data preprocessing and

model selection steps as prescribed by [21]. We perform data scaling after feature de-

termination (Section 4.3.5) then perform grid search (Section 4.3.4) to identify best

parameters to classify data. Our goal is two-fold: a) to build a classification model b)

rank features. The proposed classification model will be used in the future to predict

new data. Feature ranking is performed using analysis of variance F-test which does

not use model created by SVM.

4.3.1 Assigning labels for SVM

As shown in Figure 24, packet receipt rates are calculated from each network

using NS-2 from each network instance, and then a k-means clustering algorithm

is employed to generate appropriate labels. k-means algorithm is applied to packet

receipt rates (PRRs) as noted in Figure 14. The k-means algorithm partitions a

number of points into clusters by first randomly assigning a center for each cluster;

then, uses the ‘distance’ of each point to all cluster centers to determine which cluster

to assign any given point. This process is iterated until the clusters are defined so

as their ‘centers’ no longer change. Our two resultant vectors now are the label

vector Y (100 rows ×1 column) and the corresponding feature vector X (100 rows

×16 columns). Each row in label vector Y corresponds to each row in feature vector

X (Fig. 14(a)). The vectors X and Y together are termed as the dataset since it

contains labels and features for a particular network size at a specific perturbation

level.
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4.3.2 Data pruning

A one-size-fits-all SVM model may not fully explain patterns within our datasets,

such as statistical outliers of packet receipt from the NS-2 simulations, which become

evident when clusters are identified using k-means clustering technique; because sta-

tistical outliers represent rare, large fluctuations, they may erroneously end up defin-

ing their own cluster. To avoid this problem, the dataset can be pruned by removing

the labels and their corresponding data instances from the feature instances. Of

course the best approach is to gather a maximum number of points to describe one

network size, and this will be considered in future work. Consider the label vector Y

with four clusters (IDs: 0, 1, 2, 3) to be {1 : 37, 0 : 34, 3 : 28, 2 : 1}. Only one point

belongs to cluster ID 2 and hence that point is discarded along with the corresponding

feature instance vector. Now, the training and testing is performed on Y which is 99

rows ×1 column and X which is 99 rows ×16 columns. In this work, data was not

pruned.

4.3.3 Training and testing

Nevertheless, the pruned data is used as training and testing sets for the machine

learning models. Each dataset is split into 75% training and 25% testing sets. In

order to avoid overfitting the data, 5-fold cross validation is used to randomize the

75/25 split into training/testing datasets. In a 5-fold cross validation test, the split is

performed five different times; labels are stored in a vector, and corresponding feature

instances are stored in another, different vector. Continuing the example stated in

the Section 4.3.2, now the training set contains {1 : 27, 0 : 26, 3 : 21} and the testing

set contains {1 : 10, 0 : 8, 3 : 7}.
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Table 3.: Grid search parameters identified using the cross validation method de-

scribed in the text (20% perturbation).

Network size(s) Kernel C Gamma (γ) Degree

Yeast: 100, 500 RBF 100, 1 0.1, 2 -

Yeast: 200, 300, 400 Polynomial 1, 1000, 10 1, 1, 1 2, 1, 1

E. coli : 100, 200, 300, 400, 500 RBF 10, 10, 100, 1, 100 1, 0.1, 0.1, 2, 1 -

4.3.4 Parameter selection

A grid search is performed to identify the ‘best’ parameter set in which to build

an SVM model. Grid search uses k-fold cross validation and builds a classifier for

each set of parameters. Each classifier is then tested using the F1 score, which

can be understood as a weighted average of precision and recall [49]. The set of

parameters used are shown in Table 3. C is the regularization constant and γ is

a kernel hyperparameter 1 used in non-linear kernel functions. Large C overfits the

data (high cost for misclassification). Large γ in polynomial kernel ensures a smoother

decision boundary.

4.3.5 Features

A machine learning technique uses underlying properties of the data to describe

relationships between data instances, and these properties are referred to as features.

For each instance of data, features are mapped to corresponding labels, which we

describe below. Given a network of nodes and edges, G(V,E), wherein V is the set

1Due to limited space the parameters are described here. 1, 10, 100, 1000 are used
as C values for Linear, RBF, Polynomial kernels. The set of values 0.0001, 0.001,
0.01, 0.1, 1 and 2 are used as γ for RBF kernel. A γ value of 1 is used for polynomial
kernel. 1, 2, 3, 4, 5 are used as degree values (applicable only to Polynomial kernel).
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Fig. 14.: Illustration of (a) SVM Dataset for each network size, at specific perturbation

level and (b)(1) FFL, (b)(2) bifan motifs respectively

of supporting vertices, and E is the set of edges linking those vertices. We define the

following SVM features:

In what follows, features defined based on the network topology are given in

sections 4.3.5.1 to 4.3.5.11, whereas features defined in terms of NS-2 simulation

traces are given by sections 4.3.5.12 to 4.3.5.13. These latter features are referred to

hereon as ‘path-based features.’

In total, sixteen features are studied. All features/metrics are normalized to the

interval [−1, 1] to remove any artificial bias towards high-valued features. This can

be carried out according to the following equation:

Fjs = 2×
(

Fj − Fmin
Fmax − Fmin

)
− 1, (4.1)

wherein F is the set of features, Fjs is the scaled jth feature value, Fj is the jth

feature value, Fmax and Fmin are maximum and minimum values in F .
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4.3.5.1 Network density

Network density (ND) is a measures of the number of edges in the network,

|E|, against all possible edges, |V | (|V | − 1). Thus, it can be given by the following

equation:

ND =
|E|

|V | (|V | − 1)
. (4.2)

4.3.5.2 Average shortest path

The average shortest path (ASP) of a network is the shortest of all path-lengths,

min {d (V1, V2)}, measured between any two network nodes V1 and V2. This metric

captures the ability of two nodes to communicate information between them. For

example, two adjacent nodes can be expected to communicate more frequently than

two far-separated nodes in a noisy environment. We may compute this quantity

according to the equation:

ASP =
∑

V1,V2∈V

min {d (V1, V2)}
|V | (|V | − 1)

. (4.3)

4.3.5.3 Degree centrality

Degree centrality of a node is defined as the number of edges incident to the

node. Thus, it provides a measure reception to others within a network. In order to

identify the impact of genes, which are regulated by transcription factor proteins in a

transcriptional network, the collective average degree centrality of genes (ADCG) is

considered as a feature, along with average degree centrality of the network (ADC).

The degree centrality of a node can be determined as follows:

ndc =
deg(n)

|V | − 1
(4.4)

wherein ndc is the degree centrality of node n and deg(n) is the degree of node n.
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4.3.5.4 Transcription factor percentage

Transcription factor percentage (TFP) provides a measure of the fraction of

networked nodes that serve as transcription factors which regulate genes. This can

be calculated as follows:

TFP =
|VTF |
|V |

, (4.5)

wherein |VTF | is the number of sum-total of transcription factor nodes within the

network.

4.3.5.5 Genes percentage

In complement to TFP metric, Eq. 4.5, we define the genes percentage (GP)

as the fraction of networked that can be identified as genes. This quantity can be

calculated with the equation:

GP =
|VG|
|V |

, (4.6)

wherein, |VG| is the number of gene nodes.

4.3.5.6 Source to sink edge percentage

Larger networks are more likely to support links that directly connect source to

sinks within the network, facilitating information flow. Thus, we propose a metric

that quantifies this property: the source to sink edge percentage (SSEP), which we

define as the fraction of direct edges, |ESS|, from source nodes to sink nodes compared

to the total number of edges in the network:

SSEP =
|ESS|
|E|

. (4.7)
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4.3.5.7 FFL abundance

Feed-forwad loop abundance (FFLD) is the ratio of total edges in the network

that intersect with edges from at least one feed-forward loop to the total edges in the

network. Thus, it can be calculated with the equation:

FFLD =
|EFFL|
|E|

, (4.8)

where EFFL is the number of edges that participate in feed-forward loop transcrip-

tional motifs.

4.3.5.8 FFLDED

Figure 14(b)(1) illustrates a feed-forward loop transcriptional motif, which is

hierarchical, but composed of two regulatory paths. The first is a ‘direct’ linkage from

nodes A to C, whereas an ‘indirect’ path accounts for regulation of node C through a

node B waypoint. Here, the feed-forward loop direct-edge density (FFLDED) is the

ratio of feed-forward loop direct edges, |EFFLDE|, to the total edges in the network,

and may be calculated using the equation:

FFLDED =
|EFFLDE|
|E|

. (4.9)

Note that the FFLDED may be > 1, because several feed-forward loops may utilize

the same direct-edge linkage.

4.3.5.9 FFLSSPD

The feed-forward loop source to sink edge density (FFLSSPD), is the fraction of

direct source-sink edges that are also part of a feed-forward loop to the total number

of source-to-sink edges in the network. This metric decouples the influence of feed-
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forward loops from all other source-to-sink edges in the network.

4.3.5.10 FFLDEP

The FFLDED metric above (Eq. 4.9, accounts for the fraction of direct-edge feed-

forward loop links present within the network topology. However, a single linkage may

potentially appear more than once if it is ‘shared’ among two or more feed-forward

loops. We define a separate measure that ignores multiple copies of any single link,

which can be calculated as follows:

FFLDEP =
|EFFLDE|
|E|

, (4.10)

wherein |EFFLDE| is the number of unique direct-edges in for feed-forward loop tran-

scriptional motifs embedded within the network.

4.3.5.11 FFLIDEP

Indirect FFL edge percentage (FFLIDEP) is the ratio of the number of unique

feed-forward loop indirect edges to the total number of sequential, two-step paths

in the network. Thus, it is similar to the FFLDED metric above (Eq. 4.10), but

measured against the indirect edge of the feed-forward loop. This can be calculated

with the equation:

FFLIDEP =
|EFFLIDE|
|ETEP |

, (4.11)

wherein |EFFLIDE| is the number of indirect edges (two-step paths) in feed-forward

loop motifs, and |ETEP | is the total number of sequential two-edge paths present in

the network proper.
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4.3.5.12 Direct-edge trace participation

Each NS-2 simulation results in a set of ‘traces’ that map packet-transport histo-

ries for packets sent and received successfully from source to sink nodes. In a similar

concept to that of Eq. 4.9, but accounting for packet trace history, we measure the

ratio of the number of unique feed-forward loop direct edges that participate in suc-

cessful packet paths to the number of unique FFL direct edges, termed FFLDSPATH.

Another related feature can be defined similarly to FFLDSPATH: if we allow for

duplication of feed-forward loop direct-edges, then we term this count FFLDOSPATH.

That is, this metric allows for feed-forward loop direct edges to participate multiple

times in successful packet delivery.

4.3.5.13 Indirect-edge trace participation

Finally, we measure the ratio of the number of unique active FFL indirect edges

that participate in successful packet trace histories to the number of unique feed-

forward loop indirect edges. This metric is termed FFLIDSPATH.

Similar to above, we allow for the multiple counting of a single feed-forward loop

indirect path in the contribution to successful packet trace history. This metric is

termed FFLIDOSPATH. That is, feed-forward loop indirect edges can be leveraged

more than once to successfully deliver a packet.

4.3.6 Feature ranking

The identified features are ranked using the analysis of variance (ANOVA) F-

value metric. This metric compares the inter-class variance to intra-class variance

[scikit-learn]. A higher F-value denotes higher significance of a feature. F-value

captures feature significance individually but mutual feature dependence cannot be
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determined. We intend to use different metrics in the future work.

4.4 Results

4.4.1 Packet receipt rates using transcriptional network topologies

Figure 13 illustrates the distribution of packet receipt rates (PRTs) for repre-

sentative subnetworks sampled from Escherichia coli and Saccharomyces cerevisiae,

across three different loss models (20%, 35% and 50%). Outliers in the dataset are

points that do not occur in the range of top and bottom whiskers and are identified

by +.

Generally, all simulated packet-transport scenarios exhibited packet receipt rates

that decreased, on average, with an increase in the loss model. This trend persisted

across subnetworks sampled from both E. coli and S. cerevisiae (i.e. ‘Yeast’ net-

works), of all sizes, but the smaller subnetworks (n = 100) exhibited the most vari-

ability. That larger networks were less efficient should be expected: the number of

possible paths between two nodes increases as the network increases. Because pack-

ets may ‘disappear’ during any given hop between nodes, the increase in total edges

should correlate with a subsequent decrease in received packets, independent of the

global network topology.

4.4.2 Feature ranking in transcriptional networks

Perturbation in a transcriptional network can either be external or internal. In

the view of NS-2 simulation framework, channel noise and congestion based packet

drops account for internal perturbations. As mentioned above, fluctuation in packet

loss (%) is considered as a perturbation/stressor to the information flow. This channel

loss stressor is used using the SVM models to explore the significance of transcriptional
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motifs on structural redundancy and packet receipt rates.

4.4.2.1 Top-ranking features

Fifteen different SVM models, one for each pair of network size and perturba-

tion level, are used to select features/metrics for one specific type of transcriptional

network. Let us examine the feature selection in E. coli networks for one of the fif-

teen SVM model instances. For each network size, the top five features are selected,

according to the criterion that each the most ‘influential’ features should occur at

least three times in the top five features as scored across different network sizes.

For Escherichia coli networks, this top-ranking set is given by the features: TFP,

FFLIDOSPATH, ASP, FFLIDEP, ADCG, FFLD (Fig. 15a). Similarly, features so

identified from the Saccharomyces cerevisiae networks are: FFLIDEP, TFP, FFLD,

GP, FFLIDOSPATH (Fig. 15b). All influential features identified from the SVM

models in terms of packet receipt rates relate to the feed-forward loop subnetworks.

4.4.2.2 Feature stability at different perturbation levels

As a preliminary experiment, we tested the prevalence of transcriptional net-

work features at different noise perturbation levels. Here, our intention is observe

if structural or dynamic features prevail in feature significance. The result of this

on E. coli networks is shown in Figure 15a2 and on Yeast networks is shown in Fig-

ure 15b. FFLIDEP ranks consistently higher in most cases (except at network size

100) than other features. Similarly, FFLD and GP rank in the top two or three at

different network sizes. An interesting observation is that three (FFLIDEP, FFLD,

FFLIDOSPATH) out of five top ranked features are related to FFL motifs.

2For the figure to be legible, X and Y labels are displayed only once. This is done
for Figures 15a - 18.
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4.4.2.3 Feature ranking variation across different network sizes

We now observe if the relative importance of features varied across different net-

work sizes. From Figure 16a, it can be seen in E. coli networks that TFP ranks con-

sistently stable in most cases in 35% and 50% perturbation levels (except at network

size 300). FFLIDOSPATH, FFLD and FFLIDEP rank higher in some instances. Fig-

ure 16b shows the relative importance of features in Yeast networks. Here, FFLIDEP

is relatively stable across different network sizes compared to other features. FFLD

along with GP seems to be stable at certain instances but not conclusively over-

all. A combination of conventional metrics such as GP and motif-derived features

can be used to engineer special networks which can ensure stability across different

perturbation levels.

4.4.2.4 Comparison of FFL based features

Identifying features that are significant to network robustness will be substantial

to design specially engineered networks that are functionally robust and can withstand

perturbations. The results from the above two studies give us an opportunity to

observe variation of FFL based features only instead of the top five identified features.

A general trend can be observed from Figure 17 that FFL-based features have higher

significance (based on normalized ANOVA F-value) from network sizes 300 and above.

Second inference from Figure 17 is that FFLIDEP is ranked first among the six

FFL based features in certain instances (100, 200, 300 and one instance in 400, 500

network sizes each). Figure 18 shows the ranking for Yeast networks. FFLIDEP

ranks the highest for all network sizes and at all perturbation levels. Correlation

between FFLDSPATH and FFLDOSPATH (derived from FFLDSPATH) is not always

proportional suggesting that there is more to FFL participation and the number of
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successful FFL direct path contribution. The position of FFL might also be critical for

prevalence of certain features. FFLDEP, FFLIDEP and FFLIDOSPATH consistently

rank as the top three features at different perturbation levels. This directly reveals

the importance of the percentage of FFL direct edges present in the network and the

number of times those edges were used in successful packet transmissions.

4.5 Discussion and conclusions

A key aspect before identifying and ranking features is mapping packet receipt

rates to labels using k-means clustering algorithm. Choosing the optimal cluster

size is crucial for creating labels. If one single point is equidistant from all different

clusters, it will eventually remain in its own cluster. This problem can be addressed

by gathering as many instances as possible for a given network size. Training to

testing data set split ratio is critical for creating a classification model. Selecting

a high training set percentage will overfit the data. Another challenging aspect is

the data loss due to pruning (as explained in Section 4.3.2). Feature ranking can

potentially be influenced by inappropriate data pruning. Using sufficient number of

data instances can address this problem.

The design of future engineered systems may be inspired by naturally occurring

robust systems, and a knowledge of features that exploit structural properties of

transcriptional motifs are beneficial to these design efforts, especially if they vary

depending on the network size. Wireless sensor networks are just one application

for such systems, wherein developing adaptive routing mechanisms for information

transport is crucial for efficient communication performance.

We studied transcriptional networks of the model bacterium Escherichia coli and

the common baker’s yeast Saccharomyces cerevisiae to identify system-defining fea-

tures based on topological considerations of the these networks, but also based on
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dynamical properties of information flow across them. To this effect we used the

NS-2 based discrete event simulation framework, and support vector machine learn-

ing methods from the field of machine learning, to recognize and identify underlying

patterns in these transcriptional subnetworks. We discovered that feed-forward loop

based metrics consistently outperformed traditional metrics such as network density,

average shortest path, and degree centrality based measures. Whether other tran-

scriptional motifs contribute to improved function remains a focus of future work in

this area. Nevertheless, it remains to be seen how far topological considerations alone

can be pushed to improve information-flow properties in engineered networks, because

biology employs many other mechanisms that feed off of the regulating topology, such

as protein conformation states, association or dissociation events (e.g. dimerization),

complexation states, or post-transcriptional and post-translational modification of

protein activity, such as the phosphorylation state.

4.6 Biorobust

In order to share our work with the research community, we created BioRobust.

BioRobust is an online framework to quantify biological network robustness. This is

complementary to the approaches presented primarily in Chapter 4.

Several technologies were used in the process to create BioRobust. Django and

Python are used to power the web framework. Bootstrap3 library developed for

Django ([68]) is used for user interface. The site is hosted on a Unix server and can

be accessed at http://bnet.egr.vcu.edu:8000/.

Users can submit their choice of files for robustness analysis. The pipeline of the

analysis process is showcased in Figure 19 below.

The user is requested for their email address using which a directory is created

and the submitted file is uploaded along with the parameters selected. In order to
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avoid naming conflicts user email address is combined with a random number for

directory creation. Users can, along with the network file, mention direction of the

network and category of the network as shown in Figure 20.

A Unix script checks for user submitted files every fifteen minutes and triggers

the process pipeline upon observing the newly created directory. Network simulations

to determine network robustness are then executed followed by examining the trace

files generated by the simulations. These trace files indicate us the paths taken by

packets during information transmission among the participating nodes. Currently,

the software supports modules (subgraphs) extracted from the transcriptional regu-

latory networks of E. coli and baker’s yeast. Machine learning models are currently

trained for the network sizes 100, 200, 300, 400, and 500. Here, the number of nodes in

the network represent the network size. Results determined using the networks that

belong to a different category (than E.coli or Yeast) are not applicable for research

insights as the models developed do not depend on the underlying network category.

Once the file(s) are submitted and the analysis is complete, users are notified when

the results are available for viewing (Figure 21).

BioRobust also presents the data used for analyzing biological networks. The

models trained for predicting the network robustness are developed using random

forest regression strategy. To this end, a total of hundred runs of models were executed

to negate the fluctuations due to randomness in the random forest algorithm. As

network size increases, the time taken to analyze the submitted network increases

proportionally. Support can be extended to other types of networks depending upon

user interests.
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Fig. 15.: Variation of top 5 features in each Escherichia coli network (panel (a)) and

Saccharomyces cerevisiae (panel (b)) networks, at losses 20% and 50% (Sizes = 100,

200, 300, 400, 500).
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Fig. 16.: Variation in normalized ANOVA F-values for the top 5 features in each Es-

cherichia coli network (panel (a)) and Saccharomyces cerevisiae (panel (b)) networks,

at losses 20% and 50% (Sizes = 100, 200, 300, 400, 500).
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Fig. 17.: Variation of FFL participating direct and indirect edge-based features at

20%, 35% and 50% loss each for different E. coli networks (Sizes = 100, 200, 300, 400,

500).
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Fig. 18.: Variation of FFL participating direct and indirect edge-based features at

20%, 35% and 50% loss each for different Yeast networks (Sizes = 100, 200, 300, 400,

500).
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Fig. 19.: BioRobust flowchart

Fig. 20.: BioRobust prototype - Select network for analysis
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Fig. 21.: BioRobust prototype - User notification of results (Email blurred).

Fig. 22.: BioRobust prototype - Robustness analysis of the uploaded network across

different perturbation levels.
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Fig. 23.: BioRobust prototype - Feature importance of the uploaded network across

different perturbation levels.
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CHAPTER 5

ABUNDANCE OF CONNECTED MOTIFS IN TRANSCRIPTIONAL

NETWORKS

5.1 Introduction

Motifs are often attributed to be one of the reasons for robust biological sys-

tems. A repetitive structure that occurs with a higher statistical significance in real

networks than in random networks is termed to be a motif. In the past, researchers

have identified feed-forward loop (FFL) motif to be an important motif in terms of

abundance [43]. Further, functional significance such as response time speed-up and

slow down has been attributed to FFL motif [40]. FFL structure is intriguing not only

for its role in biological functionality but structurally as well Figure 24(b). It offers

two ways of regulating the gene node (C) via two different transcription factor (A,

B) nodes. In communication scenario, this becomes crucial when there is a network

failure but information still needs to be transmitted. It is likely that the presence of

higher FFL motifs will lead to better information transmission. In this work, we take

a step further to study the connectivity between FFL motifs.

For the first time, this work aims to study the importance of the abundance of

connected motifs. We use discrete event simulations and machine learning techniques

to create a model, train and learn the feature data and predict robust behavior of

biological network topologies. Discrete event simulations assist in modeling dynamic

behavior of network interactions (information flow among the nodes in a network) un-

der controlled conditions such as channel noise and congestion-based information loss.

We assume that features in a biological network can be ranked. Does higher abun-
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dance of a connected motif pattern mean a robust network? Which of the considered

network features contribute to robustness? Which machine learning model can accu-

rately predict the robust behavior of biological network topologies? We explore these

questions in the following sections. Answering these questions will reveal insights to

the working of robust biological network topologies leading us to engineer special-

ized networks which are resilient under heavy perturbations. Section 5.2 presents the

methodology followed in this work. The definition of robustness varies from context

to context. The metrics studied by researchers are predominantly static in nature

[6, 51] as they do not consider the dynamic information flow within the network. [6]

provides an in-depth review of existing metrics to measure robustness. None of the

metrics consider features based on motifs or even connected motifs. Robustness, in

our work, is measured in the aspect of successful information transmission as modeled

by a discrete event network simulator. To this effect, we define network robustness as

the ratio between the total number of packets received at the sink nodes to the total

number of packets sent from the source nodes. We term this metric as packet receival

rate. Packet receival rate is a dynamic metric as it models the network behavior at

different perturbed conditions. This experiment setup has been detailed in our prior

work and can be noticed in [24].

5.2 Methodology

The methodology followed in this work is illustrated in Figure 24. Subnetworks

extracted (Section 5.2.2) from E. coli transcriptional regulatory network are passed

to network simulator platform NS-2 (Section 5.2.3) to generate packet receipt rates

and feature values are determined using Python programming language [63]. As a

standard practice, features are scaled between 0 and 1. Section 5.2.4 describes Data

processing followed in this experiment is described in Section 5.3.1. After processing
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the data in the correct format (as mentioned in the Step 1 in Figure 24) random

forest regression machine learning technique is applied for feature ranking, and output

prediction. Mean square error metric is used to determine the optimal number of

estimators (a key measurement used to estimate random forests) number (described

in Section 5.3.2). Before feature ranking is actually performed, we perform feature

selection which is a process to reduce feature set (from a thirty eight feature set).

Features are ranked using feature importances (a technique used to determine feature

significance in regression trees). Section 5.3.2 details the parameters used for creating

random forests regression models followed by the performance of vertex-shared motif

features.

5.2.1 Contributions

The major contributions of this work are as follows:

1. Define vertex-shared motifs which are potentially responsible for biological func-

tionalities.

2. Using random forests regression to select important biological network charac-

teristics.

5.2.2 Transcriptional subnetworks

Escherichia Coli and Saccharomyces cerevisiae are considered to be model or-

ganisms in the biological networks research community. For this work, we extract

transcriptional subnetworks from Escherichia Coli to understand biological network

characteristics and motif interactions from a structural perspective. To this effect,

subnetworks of different sizes are considered: 100, 200, 300, 400, and 500 (size rep-

resents the number of nodes in a network). For each size, 1000 transcriptional sub-
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networks are extracted using GeneNetWeaver software [57]. During subnetwork ex-

traction, GeneNetWeaver retains critical biological characteristics such as modular-

ity. Specifically, these modules are responsible for distinct biological functionalities.

Direction of the edges within these networks is retained as it captures regulation in-

formation of genes by transcription factors. Networks that are disconnected are not

considered for further analysis. Self-edges (node with edges directed towards itself)

in each network are discarded and the remaining network is reconstructed. This step

pruned the dataset to 947, 943, 957, 932, and 941 networks for 100, 200, 300, 400, and

500 1 network sizes respectively. This dataset is then used to explore network dynam-

ics in two ways: a) model interactions using NS-2 (Section 5.2.3) and b) determine

structural features from a static and dynamic perspective (Section 5.2.4 and Section

5.2.5). We study the significance of these features using machine learning techniques,

specifically using regression modeling. This helps us identify the variation in feature

importance from one network size to the other and under several lossy conditions.

5.2.3 Modeling network dynamics using NS-2

Network simulator platform, NS-2, allows researchers to explore the network

characteristics. Previously, we mapped the problem of information flow in a bio-

logical network to that in a wireless sensor network [16, 29, 27]. This setup helps

us understand the characteristics of biological networks uniquely using a framework

used for wireless sensor networks. Following which, we established NS-2 as a robust-

ness framework for biological networks. In a NS-2 network simulation, information

is transmitted across the network via nodes and edges. Each node sends information

in terms of packets across its outgoing edges and these packets are collected at sink

1871 networks were used for 500 network size at 10% loss. 941 networks were used
for all other loss scenarios for 500 network size.
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nodes. Transcription factors (also considered as source nodes here) and genes (also

considered as sink nodes here) are both represented as nodes and the interactions

among them are represented via edges. Packet transmission in each network is stud-

ied at various loss models: 10%, 20%, 35%, 50%, 60%, 75% and 90%. Packet receipt

rate in the network is measured as the percentage of the number of packets received

at sink nodes to the number of packets sent by all source nodes. Networks with higher

packet receipt rate are considered to be more robust. Packet receipt rates of the net-

works range in between 0 (least robust) and 100 (most robust). Source nodes are

considered to transmit or forward information (through packets) and sink nodes only

receive the information. This situation is similar to a transcription network where

gene is regulated (receiving information) by transcription factor(s).

5.2.4 Structural features

In order to understand the features contributing to higher network robustness,

we studied several network characteristics. While some of these characteristics such

as average shortest path, network density, and betweenness centrality have been ex-

plored by researchers under the context of robust networks, our definition of what

robust is places emphasis on the study of network dynamics. In our earlier work,

we identified fifteen different network features and ranked them using unsupervised

learning techniques [25], [24]. These features include static characteristics such as

average shortest path, network density, degree centrality and dynamic characteristics

such as patterns derived from FFL-based direct and indirect paths 2. These dynamic

characteristics are derived after looking at the information flow using NS-2 simulation

2Consider an FFL ABC where C is regulated directly by A and indirectly by A
via B. Here, the edge A−C is considered to be a direct FFL edge and edge A−B−C
is considered indirect FFL edge
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platform. This helps us identify the paths that were heavily used to transmit infor-

mation and if these paths are related to FFL motifs. Some of the features use specific

terminology from information communication theory (such as packet transmission).

The order of the features studied in this work is as follows: 1) network density, 2)

average shortest path, 3) average degree centrality of the network, 4) transcription

factors percentage, 5) genes percentage, 6) percentage of source to sink edges, 7)

abundance of direct FFL motif edges, 8) abundance of indirect FFL motif edges, 9)

percentage of FFL direct edges that contribute to successful packet transmission, 10)

percentage of FFL indirect edges that contribute to successful packet transmission,

11, 12) number of direct and indirect FFL edges compared to the total successful

(that contribute to successful packet transmission) direct and indirect edge paths in

the network, 13) percentage of total edges in the network that participate in FFLs,

14) percentage of total edges that are actually FFL direct edges, 15) percentage of

FFL direct edges that are source to sink edges. While our earlier work focused on

identifying the impact of FFL, this work is focused on determining the impact of two

FFLs that are connected. To this effect, we defined twenty three different connected

FFL features that capture the abundance of connected FFL structures which are de-

scribed in the following section. In total, we study thirty eight features to model the

regression predictor. Hereafter, we refer to the connected feed-forward loop motifs as

vertex-shared motifs.

5.2.5 Vertex-shared motif connectivity

It has been argued that interactions among modules are responsible for specific

functionality in biological networks [12]. This is a deviation from another standpoint

which states that the abundance of some structural patterns contributes to network

robustness. While it is imaginable for both views to be correct, here we explore the
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structural role of specific modules in network robustness. Modules are essentially

connected motifs at work. Here, we explore the vertex-shared feed-forward loop mo-

tifs for their structural role in attaining biological network robustness. In order to

understand the significance of connected motifs, we first identified all possible ways

two feed-forward loop motifs could be connected. Following the identification, we

determined the abundance of each pattern in the above mentioned transcriptional

networks. The motif patterns can be divided into three categories first of which is

bow-tie where one vertex is shared between two FFLs, second being rhombus where

two vertexes are shared between two FFLs and third category being bi-triangle where

all three vertexes are shared by two FFLs. All these patterns along with their re-

spective abundance values are tabulated in Tables 4 and 5. Out of eighteen possible

rhombus patterned motifs, there are six instances (RH-1/RH-8, RH-3/RH-14, RH-

4/RH-11, RH-6/RH-17, RH-9/RH-13, RH-12/RH-16) where two patterns are found

to be structurally isomorphic. All the isomorphic structures are shown in Table 6.

5.3 Random forest regression

Machine learning techniques prove quite useful in identifying significant features

among a list of several features. Different strategies are employed for this task of

significant feature identification. To perform machine learning tasks, we use the

widely recognized scikit [49] module in Python. The aggregation of features defined in

Section 5.2.4 and Section 5.2.5 combine to a total of thirty eight features. Abundance

of connected motifs does not always contribute to robust network behavior. Data for

connected motif abundance for different network sizes is suppressed here due to space

considerations but provided in Section ??. The test for the correlation of feature

abundance with robustness is performed in Section 5.3.4.
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5.3.1 Data

Data is constructed similar to the procedure followed in our earlier work [24].

Each network is represented as a combination of feature values, feature ids and out-

put labels. The output labels are determined using NS-2. In total, thirty eight

features are studied in this experiment. These include the twenty three vertex-shared

motif features introduced earlier apart from the fifteen features presented in [24]. As

suggested in [21], we scale each feature between 0 and 1 for all the samples considered

to create a model. Each network is represented as a combination of output labels and

thirty eight network characteristics. This combination is known as a feature instance,

in machine learning terminology. The results from NS-2 are used as output labels

and the corresponding features are calculated using networkX [58] module in Python

programming language. In our previous work [25, 24], we considered the problem of

ranking features to be an unsupervised one and used ANOVA 3 F-value to determine

the significant features. But here, we consider the problem to be a supervised one

and retained the output labels (range between 0 and 100) as floating points. In order

to use classification techniques, one would have to group the output labels into bins

which would mask the real data. Regression techniques are best suited for contin-

uous data as output labels to predict new data. In order to avoid points that are

equidistant from all the clusters (as noted in [24]), we increased the sample size for

each network size from 100 to 1000 networks. By treating the problem as supervised

instead of unsupervised one, we further take advantage of the output labels from NS-

2. Further, we introduce feature selection here an improvement from our earlier work

where the entire feature set was used to rank features. Before creating regression

model, data is split into training and testing data in 75:25 ratio. Data split step is

3analysis of variance
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a common practice in machine learning tasks to ‘train’ the model on training data

during which the model ‘learns’ the data and testing is performed on the test data.

The accuracy of regression models presented in Figure 26 is based on testing of model

created on the test data of all the 38 feature set.

5.3.2 Regression modeling

Firstly, network characteristics that are understood to capture the network ro-

bustness are defined. In our experiment, we have considered two scenarios, first one

with a total of thirty eight features are considered in order to capture the network

dynamics, and in second case twenty three features formed by the connected feed-

forward loop motifs. However, before calculating an estimator that can be used to

predict the performance of new network data, features need to be pruned. Some

features might be correlated with each other and some might display higher variance

than the rest. We considered different feature selection methods to achieve the need

of feature pruning. Randomized PCA was considered but ignored since it does not

exploit the output label data to minimize feature space. LDA was also considered be-

fore being discarded. To this effect, feature selection step is performed using random

forests with regression. Linear regression models such as Lasso and ElasticNet were

considered before we discarded them for poor performance as measured by the coeffi-

cient of determination 4. Recursive feature elimination techniques (with and without

cross validation) were considered as well but were abandoned due to poor coefficient

of determination values. These approaches involve removing one feature at a time

and determining model performance on the remaining feature set at each step. The

feature that impacts the model the best (i.e., model performance suffers upon that

4Coefficient of determination values were close to 0, far from being optimal.
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feature removal) is retained for future use. Random forests are used to solve classi-

fication and regression problems. The functioning of random forests is described in

detail in [5]. Random forests is an ensemble machine learning technique which uses

several trees (estimators) to predict the outcome of test data. A tree is constructed

from sample data selected from the training data. At each terminal node of the tree,

m features are selected out of the total features and a best feature is identified for

the tree to be split at. The tree is then split into child nodes. This is repeated until

the selected sample size from the training data is the least. By using several trees

and averaging the predictions, the variance across the trees is reduced. Mean squared

error (MSE) is used to determine the best number of estimators (number of decision

trees) used in the random forests algorithm. Different number of estimators such as

10 to 100 in steps of 5 are used in creating different random forest models. MSE is

determined for each estimator and the average of the number of estimators is used as

the MSE value for that specific estimators’ number. The variation in MSE is before

and after feature reduction is illustrated in Figure 25 (a) for one single case of network

size 400 nodes at 90% loss and can be noticed that before feature reduction MSE is

lowest when the number of estimators used in the random forest estimator is 70, and

for after feature reduction MSE is lowest when the number of estimator is 50. The

estimator for which MSE is the least is selected for calculating feature importances.

In Figure 25 (b) for feed-forward loop connected motifs model for network size 400

nodes at 90% loss, we can notice that before feature reduction MSE is lowest when

the number of estimators used in the random forest estimator is 95, and for after

feature reduction MSE is lowest when the number of estimator is 25. Detailed ex-

planation for the feature importances is left out due to space considerations [5]. At

every run, feature importances, coefficient of determination and corresponding mean

squared error change due to the randomization in the algorithm. To negate this, we
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Fig. 25.: Mean square errors (MSE) at different estimators for 400 network size at

90% loss. Measured for the model with 38 features. Errorbars capture the variation

of MSE across hundred test runs. Note that the Y-axis does not start at 0. Lower

MSE is better.

execute the entire process for hundred runs and take the average of the respective

values.

Our experiments reveal that the importance of features depends heavily on net-

work size and loss it entails over time. Average of feature importances is used as a

heuristic to select subset of thirty eight features. All the features with feature im-

portance values greater than and equal to the average feature importance value are

selected to model the final regressor for prediction.
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5.3.3 Feature reduction

Coefficient of determination (COD) is used as a metric to measure a model’s

performance. For each of the thirty five random forest models, COD is determined

before and after feature reduction. Each random forest regression model uses X

number of estimators as shown in Figure 25. Feature importance of all the features is

determined by averaging the total reduction in node impurity 5 across X estimators.

We then create a random regressor to predict outcomes based on the model with

reduced feature set which is tested using test data set.

COD measures the performance of predicted values by the model when compared

to the real values. Good regressors will have a COD value close to 1 and the bad

ones will have a COD close to 0. As evident from Figure 26, performing feature

selection to reduce the feature set as explained in Section 5.3.2 does not improve the

model accuracy. The majority of the models with all 38 features perform better than

the models with a reduced feature set. The figure illustrating COD performance for

models with 23 vertex-shared motif features is omitted as it follows similar trend.

Figure 27(a) presents the number of features selected by the feature selection

process from all thirty eight features. It can be observed that the maximum number

of features selected as important are 16 for the network size 200 at 50% loss and the

least number of features that are selected as important are 3 for network 400 at loss

90%. At high loss (90%), few features (≤ 6) are responsible for network robustness.

Figure 27(b) shows important features selected from vertex-shared motifs for all

network sizes at different loss scenarios. The number of significant features varies

between 3 and 9. At high loss (90%), few features (≤ 5) are responsible for network

robustness.

5as used in scikit-learn toolkit
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5.3.4 Feature value correlation with robustness

In order to test the hypothesis if high feature values directly correlate with high

robustness, we perform the following tasks. These tasks are executed at a network

level. That is, significant features are identified for all models at different loss types

for a given network size.

1. First, we identify the top five features using random forest regression (feature

importance as a metric).

2. We then calculate the number of times each of the features occurs in the top

five ranks at different loss scenarios.

3. Further, we determine the mean of each feature for a given model and identify

the top five features with highest mean.

4. We then compare these features with the features obtained in second step.

As a result, we found no correlation (direct or inverse) between feature value

and its importance. Among the models with all 38 features, gene percentage, direct

FFL edge abundance, FFL indirect edges that participate in successful packet trans-

mission to sink nodes, and the occurrences of direct edges in feed-forward loop motif

(IDs 6, 8, 11, 12 respectively in Figure 28) are strong indicators of robustness. Apart

from these features, network density, average shortest path, average degree centrality,

and percentage of transcription factors (IDs 0, 1, 2, 3) also correlate to robustness

relatively well. It is important to note that certain features make their impact dis-

tinctively in specific network sizes or at specific loss scenarios. This can be attributed

to the fact that these specific features might be expressed more during the network

extraction step (Section 5.2.2). The distribution of feature importances (with feature
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IDs mentioned earlier) determined using random forest regression is shown in Figure

29. Each feature contains of hundred test runs to normalize the variations in feature

importances due to randomization in regression algorithm. Outliers in the dataset are

points that do not occur in the range of top and bottom whiskers and are identified

by +.

5.4 Vertex-shared motifs

The importance of features as determined in Section 5.3.2 is charted in Figure

28. Heat maps are generated for all the networks at losses 10%, 20%, 35%, 50%,

60%, 75%, and 90%. Figure 28(a) represents one such case at 60% for model created

with all 38 features. At one glance, it can be observed that features with IDs 1 to 13

and 28 stand out in all the networks. These features are average shortest path, source

to sink edge percentage, abundance of indirect FFL paths, percentage of direct FFL

edges, percentage of indirect FFL edges, abundance of direct FFL edge occurrences,

and abundance of indirect FFL path occurrences respectively 6. RH-7 (from Table 5)

ranks as a significant feature in all network sizes and other connected motifs such as

BW-4, RH-2 and BT-2 only stand out once.

Extending the hypothesis test described in Section 5.3.4 to models with only

vertex-shared motifs (23 features), we found no correlation between feature value and

its importance. Here, BW-1, BW-2, BW-4 and RH-7 (Refer to Table 4 and Table 5)

are the strongly expressed features with robustness in all network sizes at different

loss models. The results indicate that controlling the presence of these features can

significantly impact biological network robustness. These features can also assist in

creating superior bio-inspired networks where signal transduction is influenced by

6These features are described in our earlier work [24]
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Fig. 26.: Coefficient of determination (COD) for regressors - different network sizes

for 38 features model. Each data point represents an average value across 100 runs.

Higher COD is better [61].

selective features such as the ones derived from FFL motif and the network itself can

be adaptive by activating different regions at different periods of time to conserve

energy.

Figure 28(b) represents heat map of model created with twenty three features of

feed-foreard loop connected motifs at loss 60%. This heatmap shows that Feature IDs

BW-1, BW-2, BW-4, BW-6 (in two instances), RH-13 and BT-2 mark their presence

in all the networks, but RH-7 ranks out as very important feature in all networks.
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5.5 Discussion

There is no one model that fits all data. We will extend the experiments to

larger sized networks for E. coli transcriptional networks until maximum possible

size is reached (i.e. number of nodes in E. coli) to explore if the trends in feature sig-

nificance holds true. Further, we intend to extend the experiments to Saccharomyces

cerevisiae. Our earlier experiments [24] revealed that feature significance varies from

one model organism to the other and across network size and perturbation condi-

tions. The higher ranking of FFL-derived features (IDs 7, 11, 12 in Figure 28) reveals

the significance of motif derived features across different network sizes. Topological

features such as network density, average shortest path remain important across all

network sizes and under different loss conditions. The significance of vertex-shared

motifs is relevant at high loss making them useful for constructing robust smart net-
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Fig. 27.: (a) Selected features (out of total 38) for every model at a given network size

and loss model as described in Section 5.3.2. (b) Selected features (out of 23) feed-

forward loop connected motifs. Each data point represents an average value across

100 runs. Criteria: select features that have higher than average feature importance

using random forest regression [61].
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Fig. 28.: (a) Feature significance in all the networks at 60% loss for model with all

38 features. (b) Feature significance of connected feed-forward loop motifs in all the

networks at loss 60%. The darker the color the higher the feature significance. Addi-

tionally, numbers are included to indicate feature rank. Each data point represents

an average value across 100 runs. Higher the feature importance, better is the feature

[61].
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works capable of surviving lossy conditions. New research has indicated the evolution

of bow-tie motif under distinct conditions such as a limitation on number of edges

in a network [13] and its potential role in maintaining biological network robustness

[62].

This is an interesting proposition for designing engineered systems that exploit

the principles seemingly intrinsic to the design of biological network topologies. The

implications of specialized engineered systems cannot be ignored in the areas of dis-

aster relief coordination.
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Fig. 29.: Feature importances as determined by random forest regression for models

with 38 features and 23 features respectively for network size 100 at 75% loss. While

the feature source to sink edge percentage is termed as SSEP, the percentage of FFL

direct edges is termed FFLDEP. The features 10, 11 as explained in Section 5.2.4 are

FFLIDSPATH and FFLDOSPATH. Refer to Table 4 and Table 5 for definitions of

BW-1, BW-2, BW-4, and RH-7. Higher feature importance is better.
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Table 4.: Abundance of bow-tie and bi-triangle motifs in E. coli transcriptional net-

work [61].

Pattern ID Symbol Abundance

BW-1 139827

BW-2 110505

BW-3 730

BW-4 24032

BW-5 1412

BW-6 1393

BT-1 17

BT-2 439

BT-3 4

BT-4 140

BT-5 3
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Table 5.: Abundance of rhombus motifs in E. coli transcriptional network [61].

Name Symbol Abundance

RH-1 623

RH-2 553

RH-3 788

RH-4 93

RH-5 7

RH-6 9

RH-7 69299

RH-8 516

RH-9 58364

RH-10 200

RH-11 656

RH-12 30
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Table 6.: Isomorphic rhombus motifs in E. coli transcriptional network [61].

Name Symbol

RH-1/RH-8

I

KJ

D

A

CB KKJ

I

L

#8#1

RH-3/RH-14

I

KJ

D

A

CB KKJ

I

L

#14#3

RH-4/RH-11

I

KJ

D

A

CB KKJ

I

L

#11#4

RH-6/RH-17

I

KJ

D

A

CB KKJ

I

L

#17#6

RH-9/RH-13

I

KJ

D

A

CB KKJ

I

L

#13#9

RH-12/RH-16

I

KJ

D

A

CB KKJ

I

L

#16#12
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CHAPTER 6

ROLE OF FFLS IN SIGNAL TRANSDUCTION

Following the relatively insignificant contribution of vertex-shared motifs to network

robustness, we reduced the number of features to 15 and studied them further. We

followed the similar procedure explained in Chapter 5 to estimate network character-

istics that contribute to robustness using random forest regression. Table 7 presents

the mean and standard deviation values for the 1000 samples used for 100 network

size. Additonally, Tables 8, 9, 10, 11 in Chapter 8 show similar statistics for network

sizes 200, 300, 400 and 500. Figures 30, 31, 32, 33, 34 plot the feature importance

of all the features. Each of the feature value mentioned in the heat map cell is an

average across 100 runs. Figures 35 and 36 illustrate the distribution of feature im-

portances across 100 runs for 500 network size at two perturbation levels (20% and

50%). Illustrations for feature importance distribution for other network sizes and at

different perturbation levels are provided in the 8. Figure 38 shows the coefficient of

determination distribution of the machine learning models before feature reduction

as explained in earlier chapter. Chapter Appendix also illustrates another similar

distribution plot for coefficient of determination before feature reduction.

It can be noticed from all the figures that the feature FFLIDEP emerges as a

strong feature at higher loss. Features like Density, TFP and GP can be observed to

be more important than others in multiple instances. We can recollect that FFLIDEP

feature is the percentage of indirect FFL edges that are present in the network com-

pared to the total edges. Our primary hypothesis is to test if the reduction in feature

importance of FFLDEP at higher loss leads to higher importance of FFLIDEP. We
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explicitly observe this in Figure 37 below. We realized that our hypothesis is true for

all network sizes except 100. Following this, we intended to study the entire E. coli

regulatory network for these patterns and introduced a new way to understand FFL

distribution as described below.
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Fig. 30.: Feature importance - 100 network size. SSEP feature stands out with

increase in noise. Each of the feature value mentioned in the heat map cell is an

average across 100 runs.
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Figure 39 is used as a reference to explain the following concepts. In order

to perform this, we look at FFLs that follow, what we term, shortest path switch.

Shortest path switch is defined as follows: shortest path from node A to node C is
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Fig. 31.: Feature importance - 200 network size. While network density and average

degree centrality (ADC) stand out upto loss 35%; SSEP, FFLIDEP features stand

out with increase in noise. Each of the feature value mentioned in the heat map cell

is an average across 100 runs.
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always via the direct edge. However, under heavy noise the direct edge of FFL will

potentially be destroyed making the information flow from node A to node C occur

via the indirect path (via node B). Here we identify all FFLs that switch the shortest
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Fig. 32.: Feature importance - 300 network size. The percentage of transcription

factor and gene nodes are important at higher noise. FFLIDEP feature stands out

with increase in noise. Each of the feature value mentioned in the heat map cell is an

average across 100 runs.
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path from direct to indirect FFL edge.
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Fig. 33.: Feature importance - 400 network size. FFLIDEP feature stands out with

increase in noise. Each of the feature value mentioned in the heat map cell is an

average across 100 runs.
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6.1 Signal transduction

We group FFLs into two categories: canonical and embedded. FFLs with no

additional edges among the nodes are considered to be canonical. FFLs with addi-
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Fig. 34.: Feature importance - 500 network size. FFLIDEP along with other FFL-

derived features stand out with increase in noise. Each of the feature value mentioned

in the heat map cell is an average across 100 runs.
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tional edges among the nodes are considered to be embedded. This is illustrated in

Figure 39. Further, we group each of these FFL categories into peripheral and non-

peripheral FFLs. Peripheral FFLs are FFLs in which the node being transcribed has

no out degree. Non-peripheral FFLs are FFLs in which the nodes being transcribed

have non-zero out degree.
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Our interest to study FFLDEP and FFLIDEP in particular is due to the fact that

these two motif-derived features effectively capture the FFL path switch from direct

to indirect for information transmission. Our idea to identify FFLs that are central

to the E. coli transcriptional regulatory network led to the study of distribution of

peripheral and non-peripheral categories of canonical and embedded FFLs. First,
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Fig. 36.: Distribution of scaled feature importance values - 500 network size at 50%

perturbation level. Each feature is measured across 100 runs.
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we identified all canonical and embedded FFLs. A majority of FFLs (64.5% and

80.5% respectively) switched paths on edge deletion in canonical and embedded FFLs.

Figure 40 presents the detailed distribution of the physical location of FFLs within

E.coli network. This reveals that only a small number of FFLs (6 canonical non-

peripheral and 26 embedded non-peripheral FFLs) participate in signal transmissions

within this network. Effectively, only the gene nodes in these filtered FFLs have

outgoing edges enabling them to participate in signal transmission. Controlling the
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Fig. 37.: Relative feature importance of FFLDEP vs FFLIDEP - all network sizes at

different perturbation levels. Each data point is an average of 100 runs.
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nodes in these filtered FFLs can establish critical patterns prevalent in the regulatory

network.

Fig. 39.: Categorization of peripheral and non-peripheral FFLs into canonical and

embedded FFLs. An FFL is peripheral if the out degree of gene node (sink) is zero

and is non-peripheral otherwise.
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Type of FFL # of FFLs (% of corresponding FFLs) # of FFLs with path switch (%)

Canonical 956 (51.4%) 617 (64.5%)

Embedded 904 (48.6%) 728 (80.5%)

Canonical non-peripheral 24 (2.5%) 6 (25%)

Embedded non-peripheral 76 (8.4%) 26 (34%)

Canonical peripheral 932 (97.5%) 611 (65.5%)

Embedded peripheral 828 (91.6%) 702 (84.78%)

Fig. 40.: Distribution of peripheral and non-peripheral FFLs into canonical and em-

bedded FFLs in E. coli transcriptional regulatory network.
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Table 7.: Mean and standard deviation (STD) of features - 100 network size at under

different perturbation levels.
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CHAPTER 7

CONCLUSION

Understanding the governing principles of biological networks is considered to be the

holy grail of systems biology. We extensively studied the structural patterns in the

transcriptional regulatory network of model organism Escherichia Coli. To this effect,

I proposed and developed in-silico models to capture robustness for biological net-

works by extending the concepts conventionally defined for wireless sensor networks.

After establishing the simulation framework, I extensively studied the features re-

sponsible for network robustness. To achieve this, I used machine learning techniques

such as support vector machines, random forest regression modeling. We then looked

at the contribution of vertex-shared motifs towards biological robustness. Our results

indicated that barring couple of attack scenarios, vertex-shared motif structures do

not contribute to network robustness. Our experiments revealed that the features

derived from feed-forward loop motifs contributed strongly to network robustness.

We also observed the strong contribution of well studied topological characteristics

namely network density, average shortest path. We also studied the distribution

of feed-forward loop motifs within the regulatory network which revealed that only

small number of such motifs participate in signal transmissions within the network.

This work paves the way to create special engineered networks which can possess

these highly expressed features abundantly ensuring robust network behavior even in

attack scenarios.
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CHAPTER 8

FUTURE WORK

My work introduced a framework to quantify dynamic biological robustness using

strategies from event driven network simulation, machine learning regression and

classification, graph transformation and structural biological principles such as motifs.

This is different from conventional attempts to capture system robustness in terms

of only topological parameters such as network density and shortest path.

Biological system modeling is fragmented depending on the contextual prob-

lem. Currently there are software to model few aspects of biological information

transmission such as brain and other organ-specific simulations. There are software

such as Cytoscape [59] to visually explore biological interaction networks and iden-

tify function-specific modules and entities. While the contribution of Cytoscape-like

software to understand biological structural topology is immense, we are far from

developing a true simulator that can replicate biological systems. Considering gene

regulatory networks as an example, the major obstacles to design a true model that

replicates biological interactions is the number of unknown constraints within gene

regulation. While network simulators such as NS-2 are not designed for studying

biological interactions, they are a viable option until other models become available.

Building on this research, engineered networks can be created that are robust

under lossy conditions. Algorithms that create these engineered systems must in-

clude the features identified as important in prior research. Researchers have pro-

posed methods in the past to develop complex systems ensuring specific topological

aspects-for instance, retaining overall degree distribution while growing networks in
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Barabasi-Albert preferential attachment model [2]. Such models can be studied and

improved complex network models that include feed-forward loop motif derived can

be developed ensuring robust system behavior. Robust networks can also be engi-

neered using the features our research identified as significant by machine learning

techniques. These features include average network shortest path and feed forward

loop motif. Each such structure contains two edge disjoint paths for a transcription

factor node to regulate a gene node (in the context of a Gene regulatory network). In

translation to the node context, the transcription factor node can send information

to the gene node via two paths. This structure becomes prominent at high pertur-

bation levels. Most canonical FFLs exhibit only a single shortest path to their sink

that passes through FFL direct edge; under noise when this direct edge becomes un-

available, information transport switches to the indirect FFL path which alternately

suggest that the shortest path to sink for this FFL has increased by 1-hop. While

this work only explores the structural contribution of feed-forward loop motif, other

motifs (bifan, for instance) are also shown to be promising in their contribution to bi-

ological network robustness. Recent research has highlighted the evolution of bow-tie

motifs after identifying their role in biological signalling and in information process-

ing [13]. Bow-tie motifs have a similar design to that of an hour glass. One central

node has several incoming and outgoing edges. After processing the information from

the incoming edges, it sends necessary information to outgoing edges. These mo-

tifs can introduce interesting dimension by adding new kind of nodes in bio-inspired

network topologies. Combining the predictive power of machine learning algorithms

with the time-series gene-transcription factor interaction data can throw new light on

the time-dependent regulation complexities in regulatory networks.
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(a) n = 400 nodes.
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(b) n = 500 nodes.

Fig. 41.: Packet receipt rates (PRTs) for sampled transcriptional subnetworks of the

bacterium Escherichia coli and Saccharomyces cerevisiae (labeled ‘Yeast’).
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Fig. 42.: Distribution of scaled feature importance values - 100 network size at dif-

ferent perturbation levels. Each feature is measured across 100 runs.
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Fig. 43.: Distribution of scaled feature importance values - 200 network size at dif-

ferent perturbation levels. Each feature is measured across 100 runs.
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Fig. 44.: Distribution of scaled feature importance values - 300 network size at dif-

ferent perturbation levels. Each feature is measured across 100 runs.
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Fig. 45.: Distribution of scaled feature importance values - 400 network size at dif-

ferent perturbation levels. Each feature is measured across 100 runs.
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Fig. 46.: Distribution of scaled feature importance values - 500 network size at dif-

ferent perturbation levels. Each feature is measured across 100 runs.
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Fig. 47.: Distribution of coefficient of determination before feature reduction - all

network sizes at different perturbation levels. Each feature is measured across 100

runs.
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Table 8.: Mean and standard deviation (STD) of features - 200 network size at under

different perturbation levels.
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Table 9.: Mean and standard deviation (STD) of features - 300 network size at under

different perturbation levels.
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Table 10.: Mean and standard deviation (STD) of features - 400 network size at under

different perturbation levels.
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Table 11.: Mean and standard deviation (STD) of features - 500 network size at under

different perturbation levels.
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