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 Iron oxide nanoparticles are highly researched for their use in biomedical applications 

such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible 

nanoparticle properties make them highly advantageous in nanomedicine. The magnetic 

properties of iron oxide nanoparticles make them promising candidates for magnetic fluid 

hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia 



 

 
 

requires synthetic, surface functionalization, stability, and biological investigations. This 

research focused on the following three areas: optimizing synthesis conditions for maximum 

radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface 

functionalization method for specific or broad biological stability, and in vitro and in vivo testing 

of surface functionalized iron oxide nanoparticles in delivering effective hyperthermia or 

radiotherapy.   

The benzyl alcohol modified seed growth method of synthesizing iron oxide 

nanoparticles using iron acetylacetonate as an iron precursor was investigated to identify 

significant nanoparticle properties that effect radiofrequency induced magnetic hyperthermia. 

Investigation of this synthesis under atmospheric conditions revealed a combination of thermal 

decomposition and oxidation-reduction mechanisms that can produce nanoparticles with larger 

crystallite sizes and decreased size distributions.  

Nanoparticles were easily surface functionalized with (3-Glycidyloxypropyl)

trimethoxysilane (GLYMO) without the need for organic-aqueous phase transfer methods. The 

epoxy ring on GLYMO facilitated post-modifications via a base catalyzed epoxy ring opening to 

obtain nanoparticles with different terminal groups. Glycine, serine, γ-aminobutryic acid (ABA), 

(S)-(-)-4-amino-2-hydroxybutyric acid (SAHBA), ethylenediamine, and tetraethylenepentamine 

were successful in modifying GLYMO coated-iron oxide nanoparticles to provide colloidal and 

varying biological stability while also allowing for further conjugation of chemotherapeutics or 

radiotherapeutics. The colloidal stability of cationic and anionic nanoparticles in several 

biologically relevant media was studied to address claims of increased cellular uptake for 

cationic nanoparticles.  



 

 
 

The surface functionalized iron oxide nanoparticles were investigated to determine 

effects on cellular uptake and viability. In vitro tests were used to confirm the ability of iron 

oxide nanoparticles to provide effective hyperthermia treatment. S-2-(4-Aminobenzyl)-1,4,7,10-

tetraazacyclododecane tetraacetic acid (DOTA) was coupled to SAHBA and carboxymethylated 

polyvinyl alcohol surface functionalized iron oxide nanoparticles and radiolabeled with 
177

Lu. 

The capability of radiolabeled iron oxide nanoparticles for delivering radiation therapy to a 

U87MG murine orthotopic xenograft model of glioblastoma was initially investigated.
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Chapter 1: Introduction and Background 

 

 

 

1.1 Radiofrequency Induced Hyperthermia: Treatment of Cancer 

 

The hyperthermia treatment of cancer with magnetic particles was first introduced by 

Gilchrist in 1957.4 Hyperthermia can be subcategorized into three temperature ranges: mild 

hyperthermia, moderate hyperthermia, and thermoablation. Each of these has varying degrees of 

effects and can interact with different therapies.5,6 Increasing the body temperature above 37°C to 

non-lethal ranges of 39-42°C is referred to as mild hyperthermia and can increase drug perfusion 

and oxygenation which can sensitize cells to radiotherapy or chemotherapy.6-8 When the 

temperature is increased to moderate hyperthermia temperatures, 41-46°C, the heat stress will 

stimulates degradation of proteins, interferes with essential cell processes, and causes programed 

cell death or apoptosis.9-11 Further increase of temperature above 45°C is termed 

thermoablation.9,11-14 At these extreme temperatures cells will begin to die as a direct result of the 

temperature increase causing carbonization, coagulation and necrosis.9,11-14 In terms of heat 

sensitivity there has been no reported evidence of a difference between normal and cancerous 

tissue.15,16 However, due to the vasculature of cancerous tumors there are regions of low pH and 

hypoxia that sensitize tumors to hyperthermia at temperatures between 40-44°C.15 These levels 

of hyperthermia can be achieved utilizing magnetic particles in an external radiofrequency (RF) 
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alternating current (AC) magnetic field. Heating is produced by eddy currents, hysteretic heating, 

and dielectric losses, but the material characteristics and properties such as conductivity, size, 

and magnetic properties determine the extent of heating for a given magnetic field strength and 

frequency.4,5,17-20 Dielectric loss can damage tissue when high magnetic field strengths and 

frequencies are applied.4 To maximize the amount of hysteretic heating of the particles and limit 

unwanted damage to normal tissues it has been suggested that the frequency be kept below 100 

MHz as they have the required RF penetration with minimal RF absorption and are used in 

magnetic resonance imaging (MRI).21 The magnetic field strength and frequency product (Hxf) 

of 5×10
9
 

𝐴

𝑚𝑠
 is considered the maximum threshold for safe heating of a human torso for 1 hour.22 

Above this threshold nonspecific and potentially detrimental eddy current heating can occur.22 In 

the treatment of smaller tissues of a healthy patient and depending on the location of the tumor 

the H×f product can be surpassed in some cases.22 Therefore, the goal of magnetic hyperthermia 

with particles has focused on maximizing achievable heating rates while minimizing the 

magnetic field strengths and/or frequencies required.22 The RF coil used within this research was 

designed so that small solution volumes in microcentrifuge tubes or similar containers could be 

easily heated. Reports have indicated that there is a linear relationship between increased heating 

and H×f values, however these higher H×f values require the time of heating to be reduced to 

limit possible detrimental side effects or patient discomfort.23The RF heating values reported in 

this work were conducted under 1.01x10
10

 
𝐴

𝑚𝑠
 H×f values. This was deemed to be acceptable for 

in vitro and small animal in vivo studies.24 Additionally, the heating times used were well below 

one hour.  
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1.2 Néel and Brownian Relaxation Mechanisms  

Since Gilchrist’s research there has been a significant change in magnetic particle based 

hyperthermia. Multi-domain particles have been replaced by the use of superparamagnetic 

nanomaterials. Nanoparticles small size lends them a tremendous advantage in navigating the 

complexities of biological systems. Superparamagnetic nanoparticles are beneficial because of 

their greater efficiency of absorbing the applied radiofrequency to generate heat.5 The ability to 

generate more heat with lower required power reduces the nonspecific heating of normal tissue 

that may occur with prolonged treatment times. 

Néel and Brownian relaxation mechanisms are responsible for producing heat in 

superparamagnetic nanoparticles exposed to a RF alternating current (AC) magnetic field. When 

an AC magnetic field is applied, the superparamagnetic nanoparticles will adjust the magnetic 

moment orientation to match the direction of the applied field. This reorientation results from 

either rapid alteration of magnetic moment directions within the crystal lattice (Néel mechanism) 

(Figure 1.1 A) or by the nanoparticle physically rotating to align the internal magnetic moments 

with the external magnetic field (Brownian mechanism) (Figure 1.1 B).9,25,26 The Néel 

mechanism is also referred to as internal heating; as heat is first generated by internal friction 

between the crystal lattice and the rotating magnetic spins and is then lost as thermal energy to 

the surrounding medium.25,26 More specifically, the Néel mechanism produces heat when the AC 

magnetic field provides a sufficient amount of energy for the dipole to overcome an energy 

barrier and alter directions.25,27 The volume of the nanoparticle and the magnetocrystalline 

anisotropy are determining factors of the energy barrier.25,27 Equation 1a shows the relationship 

between the magnetocrystalline anisotropy constant (K), volume of the core particle (Vc), and the 
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energy barrier (EA). The Brownian mechanism generates and releases mechanical heat generated 

from friction  

 

Figure 1.1. Illustration of (A) Néel and (B) Brownian mechanisms in response to an alternating 

current magnetic field. The dashed arrow represents either the internal magnetic spins (A) or the 

entire nanoparticle (B) rotating in response to a 180° magnetic field direction change.  

 

between the rotating nanoparticle and solution.25,26 The amount of friction is dependent upon the 

viscosity of the solution.25,26 Heat is generated simultaneously by both mechanisms at all relevant 

superparamagnetic nanoparticle sizes.17,18,25,28-31  Depending on the crystallite size of the 

nanoparticle one mechanism will have a faster relaxation time and is thus the dominate source of 

heating.17,18,25,28-31 The effective relaxation time (1/τ) (Equation 1b) is used to describe the 

combination of heating mechanisms. Néel heating is dominant at smaller nanoparticle sizes. For 

example, this heating mechanism dominates below 15-16 nanometers (nm) for iron oxide (FeOx) 

nanoparticles. In the equation for Néel relaxation time (τN)28 (Equation 1c) it can be seen that 
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below 8 nm crystallite diameters the Néel relaxation time is dictated by the pre-exponential term 

(τ𝑜E𝐴) and at crystallite diameters between 8 and 15-16 nm the relaxation time is dictated by the 

exponential term (
E𝐴

𝑘𝐵T
).17,27,29,32,33 Above 15-16 nm crystallite diameters the Brownian relaxation 

time (τB)28,34 (Equation 1d)  is much faster than Néel relaxation time and becomes 

dominant.17,29,32,33 The Brownian relaxation time depends on the medium viscosity (η), 

hydrodynamic volume of the particle (Vh), and inversely on temperature (T) and Boltzmann 

constant (kB). 

𝐸𝐴 = KV𝑐      (1a) 

1

τ
=  

1

τ𝑁
 + 

1

τ𝐵
      (1b) 

τ𝑁 = τ𝑜E𝐴exp (
E𝐴

𝑘𝐵T
)     (1c) 

τ𝐵 =
3ηVℎ

𝑘𝐵T
      (1d) 

From Equations 1a-d it becomes apparent that the heating mechanisms are determined by 

nanoparticle size, crystal structure, polydispersity, shape, and magnetocrystalline anisotropy.25,26 

When a large size distribution is used (large polydispersity) heat will be generated by a varying 

degree of combined heating mechanisms and is typically unfavorable.25 

 The ability to quantifiable measure and compare the effectiveness of hyperthermia 

between nanoparticles is important. In 1993 Jordan et al. attempted this through the use of 

determining what they termed the specific absorption rate (SAR).17 However, SAR values are 

often misunderstood or improperly determined and lead to improperly reporting the efficiency of 

magnetic nanoparticles.23 The SAR equation (Equation 2a) has since been expanded to 

normalize SAR values depending on the magnetic field strength and frequency of the coil 
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used.23,35 The new equation is referred to as effective SAR (Equation 2b) or intrinsic loss of 

power (ILP) (Equation 2c).23,35,36 

 

𝑆𝐴𝑅 =
𝑐

𝑚𝑛𝑝
(

Δ𝑇

Δ𝑡
)      (2a) 

      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝐴𝑅 =
𝑐𝐻2𝑂𝑚𝐻2𝑂+𝑐𝑛𝑝𝑚𝑛𝑝

𝑚𝑛𝑝
(

Δ𝑇

Δ𝑡
) (

1

𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑
2 ×𝑓

)     (2b) 

 𝐼𝐿𝑃 =
𝑆𝐴𝑅

𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑
2 ×𝑓

      (2c) 

In Equations 2a-c, specific heat capacity of water and nanoparticles are denoted 𝑐𝐻2𝑂 and 𝑐𝑛𝑝 

with units of  (
W×s

g×K
), mass of total nanoparticles and water are denoted mnp and  𝑚𝐻2𝑂, initial 

linear increase in temperature per unit time is denoted (
Δ𝑇

Δ𝑡
) in units of (

K

s
), magnetic field 

strength is H in units of (
A

m
), and AC magnetic field frequency (f) in units of kHz.29,31 From 

Equations 1 and 2 it has been determined that to maximize energy absorption and thus produce 

the most efficient heating, the crystallite size and monodispersity must be controlled.20,37  

 Additional benefits of switching to nanoparticles include more uniform heating, 

decreased invasiveness, and reduced chances of causing adverse damage to surrounding normal 

tissue.5 The superparamagnetism of these small nanoparticles are additionally useful as they lose 

their magnetism when the external magnetic field is removed.38 This is essential in biological 

applications as magnetic aggregation of stable nanoparticles are less likely to occur which 

prolongs the blood circulation time.38 The advent of nanomedicine has allowed for numerous 

new targeting strategies specifically for cancer cells to provide confined local heating while 

limiting invasiveness.5,9,20,39,40 The extraordinary advantages of nanoparticle hyperthermia are 

responsible for the vast amount of recent literature and research being conducted on magnetic 
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hyperthermia treatment of cancer. Several issues that must be addressed for successful clinical 

implementation of magnetic nanoparticle hyperthermia include increasing ILP values, biological 

stability, blood circulation, and cellular uptake while minimizing immunogenicity and 

toxicity.22,24,25,41 Maximizing ILP values is essential to lower the required amount of nanoparticles 

for effective heating. However, there is evidence that hyperthermia without detectable 

temperature increases can provide sufficient treatment of cancer.25,42,43  This gives evidence to 

suggest that SAR and ILP values are often misleading and may not always indicate the best 

magnetic hyperthermia.25 Biocompatible nanomaterials with biologically suitable surface 

modifications may offer the best chance of addressing the current challenges of transitioning 

more nanoparticle hyperthermia into clinical trials. 

   

1.3 Iron Oxide Nanoparticles for Magnetic Hyperthermia: Ideal 

Properties and Challenges to Overcome 

Nanomaterials have remained an important research area in nanomedicine. 

Biocompatible nanomaterials make excellent nanomedicine therapeutics, such as magnetic fluid 

hyperthermia. For example, FeOx is a biocompatible material with RF induction heating 

potential that allow for its application in magnetic fluid hyperthermia (MFH).
25,38,41,44

 FeOx 

nanoparticles can be cleared from the body by opsonization or through degradation via the 

body’s metabolism forming iron ions that are then used by erythrocytes to form hemoglobin.
45,46

 

Biocompatible FeOx nanoparticles can furthermore act as a theranositc agent
47-50

 by providing 

therapy via magnetic fluid hyperthermia
41,51,52

 and diagnosis in the form of magnetic resonance 

imaging.
51,53

 FeOx nanoparticles are one of the only US FDA approved nanoparticles for their 

use as MRI contrast agents
54

 of the liver and as iron supplements
55-57

. In Germany, aminosilane 
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functionalized superparamagnetic FeOx nanoparticles are already being investigated for 

glioblastoma and prostate cancer treatment with MFH at the clinical level.
39,52,58

 

MFH research using FeOx nanoparticles has revealed that the optimal crystallite size is 

15-16 nm with minimal size distribution.
29,59

 Within this size range Néel relaxation is still 

dominant, but has a fast Brownian relaxation time as well which results in the best theoretical 

superparamagnetic heating.
13

 Crystallite sizes above 16 nm that have dominant Brownian heating 

usually have less effective heat generation.
13

 Hyperthermia is not a new medical procedure and 

can be delivered via thermoseeds, water bath, microwave, infrared or ultrasound radiation.
25,60

 

However, nanoparticle delivered MFH offers the ability to less invasively deliver effective MFH 

to smaller cancerous regions.
25,60

 Nanoparticles offer a unique solution to the problem that some 

conventional drugs have with regards to being ineffective due to poor solubility or 

bioavailability.
61

 Due to their small size nanoparticles can in some cases cross biological 

membrane barriers such as mucus membranes or the absorptive epithelium in the small 

intestine.
62,63

 Additionally, surface modifiable nanoparticle can be used as a nanoplatform or a 

nanocarrier to deliver a surface conjugated drug or drugs to the target of interest by either passive 

or active uptake.
64,65

 Active uptake can be facilitated by surface functionalized targeting ligands 

that can direct nanoparticles to overexpressed targets in cancerous tissues.
63,66

 An additional 

benefit of FeOx nanoparticles is that they are inherently biodegradable. This means that once the 

drug has been delivered the nanoparticles can be easy cleared from the body or metabolized. 

Also, due to the size range of superparamagnetic nanoparticles they can be passively uptaken by 

cancerous tissue through the enhanced permeation and retention (EPR) effect.
25,67

 

Research on nanomaterials for biological applications continues to suffer from a lack of 

broad stability and/or ease of surface functionalization, which impedes the advancement of many 
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synthesized nanoparticles into actual nanomedical applications.  Moreover, the definition of 

stability is often misused or misleading when claiming a “stable” nanomaterial surface 

functionalization. True stability is very complex and can be defined in regards to colloidal, 

chemical, physical, pharmaceutical, and/or biological stability.
68

 For efficient magnetic 

hyperthermia stability should be defined as a combination of the above listed stability terms. The 

colloidal stability can most simply be defined as having higher repulsive forces than attractive 

forces with respect to solid nanoparticles dispersed in an aqueous medium (colloid). The 

pharmaceutical stability refers to how long the solution is physically and chemically stable, and 

can effectively deliver a pharmaceutical dose. Chemical and physical stability refers to the 

protection against factors such as temperature, pH, humidity, etc. that may alter the nanoparticle 

composition or render the nanoparticle inert. With respect to biological stability this refers to 

overcoming attractive forces that may arise from immersion into different biological 

environments where counter ions, proteins, pH, and other molecules vary.  

An alarming number of studies on nanoparticles rely on the assumption that a surface 

coating will provide the required colloidal stability to properly investigate certain parameters of 

interest. It should be noted that nanoparticles displaying colloidal stability upon synthesis or after 

surface functionalization may aggregate and precipitate in when introduced to different 

biologically relevant medium or biological environments. This can drastically alter or affect the 

results of biological testing and investigations. Therefore, it is vital to understand what 

constitutes a stable nanoparticle solution, the biological and chemical challenges of surface 

functionalizing nanoparticles for stability, and ideal biological and chemical properties of surface 

functionalized nanoparticles for nanomedical applications. These topics will be covered in the 

following subsections. 
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1.3.1 Colloidal Stability 

 Nanoparticles small size lends them a tremendous advantage in navigating the 

complexities of biological systems. However, nanoparticles exhibit a greater propensity to 

aggregate in aqueous solutions, than their bulk counterparts, due to surface properties, 

interactions between nanoparticles, and size.69 Aggregation must be addressed to achieve 

colloidal stability in buffered or saline based medium which is paramount to permit sterile 

filtration (or other sterilization methods; for example sterile buffer exchange) before use with in 

vitro studies or in vivo administration.  Additionally, without proper colloidal stability in 

biologically relevant medium the nanoparticles may aggregate or interact unfavorably when 

administered in vitro or in vivo.66,70 Colloidal stability in buffered solutions is also necessary for 

reactions involving conjugation to biological targets, such as proteins and antibodies, and for 

other reactions such as radiolabeling and chelation. Nanoparticles that do not possess intrinsic 

colloidal stability cannot be used effectively in biomedical applications, but colloidal stability 

can be provided by functionalizing the surface with hydrophilic ligands.70-72 

 Nanoparticle surface functionalization is most often used to overcome nanoparticles 

greater tendency to aggregate. The small size of nanoparticles and Brownian motion offers a 

simple explanation for nanoparticles propensity to aggregate.69 In Equations 3a and 3b we can 

see the relationship between particle size (dp) and extent of three dimensional Brownian motion 

displacement (Δx).69 Where Db is Einstein’s Brownian diffusion coefficient, Δt is change in time, 

T is temperature, kB is Boltzmann’s constant, and μ is the solution viscosity. 

   𝛥𝑥 = √6𝐷𝑏𝛥𝑡     (3a) 

 𝐷𝑏 =
𝑘𝐵𝑇

3𝜋𝜇𝑑𝑝
      (3b) 
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Equation 3b clearly shows that as particle size decreases the displacement due to Brownian 

motion increases. This results in a greater chance for aggregation between nanoparticles due to 

Van der Waal attraction forces.69 More precisely, there usually exists a relatively strong 

attraction between solid phase nanoparticles that are dispersed in an aqueous phase.69,73 This 

attractive force can result in aggregation.69,74 While the size of nanoparticles offers a simple 

explanation for greater aggregation probability, factors such as surface charge and chemistry can 

also influence aggregation tendency, further complicating obtaining colloidal stability. 

Therefore, the surface modification must sufficiently increase van der Waal repulsion to prevent 

aggregation and achieve colloidal stability.72,73 Surface ligands can provide nanoparticles with 

steric, electrostatic, or electrosteric stability.72,75 These types of stability are shown in Figure 1.2.  

 

Figure 1.2. A) Electrostatic, B) steric, or C) electrosteric colloidal stabilization of nanoparticles 

provided by surface charge properties, surface ligands, or charged surface ligands respectively. 

 

Electrostatic stability prevents aggregation due to charged nanoparticle surfaces that repel 

neighboring nanoparticles with greater force as they approach.73 An electrostatic double layer, 

shown in Figure 1.3, forms due to counter ions in solution being attracted to the charged surface 
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forming the ‘diffuse layer’ and repelling nanoparticles with the same ‘surface layer’.76 The 

surface and diffuse layers are also termed Stern and Guoy layers respectively. Addition of 

surface ligands to the nanoparticle can also provide steric stability. Steric repulsion is provided 

by the steric hindrance of the ligands and is determined by how dense and compressed the 

ligands can pack as the nanoparticles approach.73 Surface ligands with charged functional groups 

utilize both steric and electrostatic stabilization to prevent aggregation and are often referred to 

as electrosteric stabilization.73 

 

 

Figure 1.3. Scheme of the electrostatic double layer of small positively charged solid particle in 

an ionic liquids. The double layer is comprised of the positively charged (blue circle with + 

inside) surface layer and the surrounding negatively charged (red circle with – inside) layer 

(Stern layer). This is encompassed by a diffuse layer of equal positive and negative charges 

(Guoy layer). 
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The stabilization distance provided by the electrostatic double layer is typically between 1-100 

nm for colloids and is compacted as the concentration of ionic electrolytes increases.74,76 The 

formed layer of counter ions has a certain thickness (1/κ) or is inversely proportional to the 

Debye Hückel parameter (κ) which is dependent upon concentration of ions and the interaction 

between charged surfaces and ions.74,76 Therefore, factors such as concentration of counter ions, 

and nanoparticle surface charges as well as the size of nanoparticles can play a crucial role in 

colloidal stability.73 This offers a simple explanation for the nanoparticle instability upon transfer 

from water to biological medium such as PBS that contain higher ion concentrations. A model 

that is most commonly used to describe the repulsive force generated due to the electrostatic 

interactions is the Derjaguin, Landua, Verwey, and Overbeek (DLVO) model.69,77-80 In this model 

several simplifications are used, mainly the co-ions, counter ions, and nanoparticle surface 

charges are represented as spheres that interact through short range potentials and Coulomb 

interactions.73,80 The change of energy as charged nanoparticles approach each other is 

quantitated within the DLVO model and relates to the extent of stability.73,80 The double layer 

thickness is used to calculate the amount of Coulomb repulsion between approaching 

nanoparticles.73,80 The DLVO theory can be simply stated as the total interparticle potential 

(ΨTOT) which is the combination of overlapping electrostatic double layers providing repulsive 

forces (ΨR) and  van der Waal attractive forces (ΨA), shown in Equation 4a.73,80 The simplified 

equations for van der Waal attractive forces and repulsive forces are shown in Equations 4 b 

and c. The equation for attractive forces is simplified by assuming particles are of identical 

radius (a) and that the radius of particles is much greater than the distance between particles, 

center-to-center (r).73,80 Likewise the equation for repulsive forces can be simplified by assuming 

the radius of particles and zeta potential (ζ)  are identical.73 The Hamacker constant (AH) 
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describes the forces between two particles in solution and the interaction between the surface of 

the nanoparticle and solution medium.73  

  Ψ𝑇𝑂𝑇 = Ψ𝐴 + Ψ𝑅      (4a) 

  Ψ𝐴 = −
𝐴𝐻𝑎

12𝑟
            (4b) 

  Ψ𝑅 = 2πεaζ2ln (1 + 𝑒−𝜅𝑎)            (4c) 

It should be noted that the attractive force decreases drastically as the distance between 

nanoparticles increases (1/r
2
) and that the attractive force exists over larger distances compared 

to the repulsive forces.74,80 This can be represented by graphing r/a vs. interparticle potentials 

(Figure 1.4) where a positive potential represents repulsive forces and a negative potential 

represents an attractive force.  

 

Figure 1.4. Graph illustrating interparticle potentials for stable dispersions (solid line), 

flocculated dispersions (dotted line), and aggregated dispersions (dashed line). 
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For stable dispersions (Figure 1.4 solid line) the particles repel nanoparticles effectively at all 

distances.74 Particles that are starting to flocculate or are starting to aggregate (Figure 1.4 dotted 

line) have greater attractive forces at certain distances (r/a) which is termed the equilibrium 

separation distance.74 Unstable particles (Figure 1.4 dashed line)  that do not have sufficient 

repulsive forces will have very large attractive forces as they approach and will irreversibly 

aggregate and precipitate.74 This exemplifies why nanoparticles can be dispersed in solutions, but 

may require stabilization by means such as surface modifications to attain colloidal stability.75 

Dynamic light scattering (DLS) is a useful characterization tool that can determine the zeta 

potential of the nanoparticles and assess the stability of the nanoparticles in solution. 

 There are numerous different strategies for functionalizing the surface of FeOx 

nanoparticles to provide colloidal stability. Such strategies include modifying the surface with 

hydrophilic biomolecules, small molecules, dendrimers, surfactants, or polymers.71 In addition to 

the electrostatic forces provided by the surface ligands, the stability is also due to an osmotic and 

elastic involvement.61,81-85 When two nanoparticles with a surface coating approach each other the 

increase in concentration of surface ligands will cause water to enter the volume and force the 

nanoparticles apart to restore osmotic equilibrium.81-84 Additionally, when the nanoparticles are 

in a confined area the surface ligands will have an reduction in conformational entropy which 

will ultimately repel the particles to increase entropy.81-84 Once colloidal stability is achieved, it 

should be assessed in multiple biologically relevant media since colloidal stability in water or 

phosphate buffered saline (PBS) may not translate to stability when introduced to the biological 

environment of interest. 
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 Effective use of nanoparticles for treatment of cancer requires colloidal stability. 

However, there are several additional factors that need to be addressed when choosing and 

designing a surface functionalization strategy. These challenges can be subcategorized into 

biological and chemical challenges of modifying the surface of nanoparticles. 

 

1.3.2 Biological Challenges for Surface Functionalization 

  FeOx nanoparticles without post-modifications are generally not stable in biological 

conditions. Additionally, nanoparticles can exhibit low probability of reaching the desired target, 

non-specific interactions with proteins that can cause aggregation, adsorption of opsonins leading 

to phagocytosis and subsequent clearance from the body, and toxicity issues.61,63 To prolong the 

circulation time and enhance passive uptake the optimal surface functionalized nanoparticle size 

should be between 30-100 nm.61,86 Below this size range the nanoparticles are susceptible to 

leakage into the blood capillaries and above this size they become more likely to be opsonized 

and cleared by macrophages.61,86,87 The ideal surface ligand should therefore provide colloidal 

stability in biological media  while maintaining a small size to increase circulation time and 

enhance cellular uptake probability. It is also advantageous in radiofrequency magnetic 

hyperthermia to choose a surface functionalization that can be easily conjugate additional 

therapeutics, diagnostics, and targeting ligands to aid in delivery, treatment, and/or diagnosis. 

The biological concerns and requirements are addressed in further detail below.  

 Opsonization is the process by which opsonin tags a foreign object for phagocytosis and 

clearance from the body.46 A potential way to overcome the challenge of avoiding opsonization 

is to use a surface functionalization technique using polymers.46 Utilizing these biomolecules 

could prevent opsonization by mimicking biology to create ‘stealth’ like properties for the 
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nanoparticle.61,81,88 Stealth property of some nanoparticles refers to a surface coating that 

increases the circulation time allowing for a greater chance of passive targeting by reduce protein 

adsorption and recognition by opsonin.61,81,88 This is especially important in cancer treatment 

since some tumors are known to have leaky vasculature, as a result of reduced lymphatic 

drainage and increased angiogenesis, which improves the accumulation of nanoparticles in these 

regions.61,63  The intercellular junctions of normal tissue is typically less than 10 nm reducing the 

potential for nanoparticles to accumulate.61 In comparison it has been reported that tumor 

intercellular spaces can range from 0.5-2.5 μm.89,89,90 The passive uptake resulting from both 

leaky vasculature and increased intercellular spaces is termed the enhanced permeation and 

retention (EPR) effect. Nanoparticles in the size range of about 20-150 nm can take advantage of 

the EPR effect most efficiently.63 

 While passive targeting via the EPR effect increases the accumulation of nanoparticles in 

tumors as compared to normal tissue it should not be exclusively relied upon. For this reason the 

ability for further conjugation of targeting moieties, therapeutics, and/or diagnostic agents is 

highly advantageous for medical applications. Addition of targeting moieties such as ligands, 

proteins, or antibodies facilitates active accumulation of nanoparticles by targeting 

overexpressed receptors on tumor cells.63,66,91,92 One popular way of conjugating targeting 

moieties is to use 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) coupling to form an 

amide bond between a carboxyl group and a primary amine.93 This method is beneficial as 

amines and carboxyl groups aid in providing aqueous stability and are typically found on surface 

functionalizations used for biological stability.93 Additionally, targeting biomolecules typically 

contain a primary amine and/or carboxyl group. 
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 Another significant biological challenge that nanomaterials face is accurate assessment of 

stability. Nanoparticles’ colloidal stability must be assessed not only in water and PBS, but also 

in biologically relevant medium before conducting any in vitro experiments, such as uptake or 

toxicity. This is important as colloidal instability due to the introduction of nanoparticles into cell 

medium can drastically alter results.66,94 When the nanoparticles are introduced to cell culture 

medium, blood, cerebral spinal fluid, or other medium, aggregation can result. This can be 

caused by differences in pH, ion concentrations, or presence of interacting or adsorbing proteins. 

Instability due to aggregation reduces the circulation time and prevents the nanoparticles from 

reaching or remaining at the region of interest.66 Aggregation can also decrease cellular uptake 

and internalization, or drastically reduce the effectiveness of targeting.61,66 In some cases 

adsorption can lead to recognition by the immune system leading to clearance from the body. It 

is therefore very important that the biological stability of the surface functionalized FeOx 

nanoparticles be investigated in several relevant media such as complete tissue culture medium, 

cerebral spinal fluid, and human serum. For the treatment of glioblastoma multiform (GBM) it is 

important to modify the surface for stability in cerebral spinal fluid. This can be tested by using 

artificial cerebral spinal fluid (CSF). Additionally, the use of convection enhanced delivery 

(CED) reduces the need for active targeting as the nanoparticles are directly administered at the 

tumor site. The use of CED also reduces the issue of nanoparticles crossing the blood brain 

barrier.  

 Toxicity is another biological obstacle that must be kept in mind when modifying the 

surface of the nanoparticles.63 It has been suggested that cationic surface functionalizations can 

improve the cellular uptake, however there is some evidence that suggests potential toxicity due 

to surface functionalizations containing positive amine groups.63,95,96 The charge of the surface 
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modification is thought to not only affect cellular uptake of nanoparticles, but also where the 

nanoparticles localize within the cell.95,96 Cellular toxicity can be significantly affected by where 

a nanoparticle localizes.95,96 Therefore the possible tradeoff between potential toxicity and 

potential increased cellular uptake must be considered for specific applications. 

 In conclusion factors such as charge, size, chemical composition, and toxicity must all be 

considered when designing a nanoparticle surface for biological stability and targeting of 

cancerous cells. Further understanding of factors that influence biological stability and the ability 

to produce stable nanoparticle solutions in a broad range of medium is paramount in progressing 

nanomedical agents into the clinic. Ideally, surface functionalized nanoparticles will provide 

protection against clearance and aggregation as they interact with different biological 

environments, exhibit low toxicity, and offer potential for further conjugation of targeting 

ligands and/or additional therapeutic or diagnostic agents.  

  

1.3.3 Chemical Challenges for Surface Functionalization 

 When choosing a surface functionalization strategy the chemical challenges of 

functionalizing the surface must also be considered and addressed. The nanoparticles surface 

chemistry can pose several challenges to surface modification. Such chemical issues to be 

avoided include use of toxic chemicals, difficult surface functionalization methods, and large 

surface functionalizations that cannot be sterile filtered.  Other challenges include washing and 

isolating the surface functionalized nanoparticles, and retaining colloidal stability when 

conjugating additional targeting ligands or drugs. 

 Washing and isolating the stable surface functionalized nanoparticles is vital to remove 

unreacted ligands, chemicals, and partially or incomplete surface functionalized nanoparticles. 
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This becomes extremely necessary if toxic chemicals are used or toxic byproducts are present 

during surface functionalization. Additionally it is important to be able to buffer exchange the 

nanoparticles directly into different biologically relevant medium without the need to completely 

dry the nanoparticles. Often when surface functionalized nanoparticles are dried to a powder the 

surface chemistry is altered or even removed resulting in colloidal instability upon resuspension. 

 Difficult surface functionalizations are frequently required to obtain colloidal stability in 

water or PBS. The nanoparticles that usually require these difficult methods are synthesized by 

organic methods which result in only organic media stability. For these nanoparticles a phase 

transfer process is generally required to transition the nanoparticle from organic stability to 

aqueous stability. Facilitating this transition requires a mixture of organic and aqueous phases 

with a surface functionalization or stabilizer. The two phases are allowed to separate and then the 

nanoparticles in the aqueous phase are extracted. Additional steps must then be taken to ensure 

complete removal of these organic chemicals. If the chemical, polymer, or molecule used to 

modify the surface is soluble in the organic phase then removal of the chemical, polymer, or 

molecule is easily done by washing with the organic phase. Synthetic approaches with facile 

surface functionalization methods without the need for potentially toxic organic chemicals are 

highly sought after.  

   

1.4 Methods of Synthesizing Iron Oxides 

 There is a plethora of synthetic methods reported in the literature including mechanical 

alloying or ball milling
97-99

, electron beam lithography
100

, laser pyrolysis
101-105

, electrospray
106

, 

and gas-phase deposition
107

.
51

 It is desirable to avoid these synthetic methods for FeOx 

nanoparticles used in hyperthermia because these methods are often complex and/or do not have 
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sufficient nanoscale size control. Synthetic methods that produce more applicable nanoparticles 

for hyperthermia include aqueous co-precipitation
108-113

, sol-gel
114

, hydrothermal reaction
115

, 

flow injection synthesis
116

, microemulsion
117

, chemical vapor deposition (CVD)
118,119

, 

glycol
53,120-122

, thermal decomposition(83-86), and sonochemical syntheses
123

.
27,124,125

  Co-

precipitation of iron salts is mentioned in spite of its sufficient lack of size distribution control 

because it produces nanoparticles that have some degree of water stability without post-

modification steps.
27,126

  

 Thermal decomposition synthesis of FeOx nanoparticles are worthy of particular 

emphasis. This method is extremely versatile and the size and morphology can be controlled.
27

 

Synthesis parameters of time, reactant concentration, ratios of reactants, temperature, intrinsic 

solvent or iron precursor properties, and seed growth techniques can be utilized to obtain 

morphology and size control.
27,127

 Utilizing non-polar solvents is beneficial to obtain highly 

crystalline FeOx nanoparticles with tunable size, narrow size distribution and facile scale-up 

potential. To produce 15 nm crystallite sizes, with non-polar solvents, the nanoparticles must be 

synthesized with seed growth steps that require multiple solvents, capping agents, and/or 

intermediate wash steps.
128,129

 However, the downside of non-polar solvent use is that they 

require difficult or complex phase transfer steps to obtain aqueous dispersions and stability. It is 

crucial that a biologically stable colloidal solution of nanoparticle be easily obtain by post-

synthetic methods such as surface functionalization. The importance of biological stability and 

conjugation potential of targeting ligands provided by surface functionalization is critical for 

FeOx nanoparticles for use in MFH or nanomedical applications especially where targeting to 

tumor cells is required.
39,40,130
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1.5 Benzyl Alcohol Synthesis of Metal Oxides  

 Benzyl alcohol, a polar solvent, provides the benefits of non-polar solvent synthetic 

methods of control of size, high crystallinity, narrow size distribution, and potential facile scale-

up with the added benefit of being more easily surface functionalized for the required biological 

stability post synthesis.
131

 Size control has been achieved for crystalline titania nanoparticles 

synthesized with benzyl alcohol from titanium tetrachloride by modifying the reaction 

temperature and precursor concentrations.
132

 Scale-up was demonstrated in recent reports of 

benzyl alcohol synthesis with vanadium and tungsten chlorides to produce gram quantities.
133

 

Thermal decomposition of iron (III) acetylacetonate (Fe(acac)3) in benzyl alcohol has several 

benefits. Benzyl alcohol is simultaneously acting as a solvent, capping agent, and reducing agent 

to synthesize FeOx nanoparticles. Furthermore, when the reaction is carried out under the 

presence of air the reduction of Fe(acac)3 is increased due to increased oxidation of benzyl 

alcohol to benzaldehyde.
94

 The oil of plants naturally contain benzyl alcohol.
134

 Commercial 

applications have been found for benzyl alcohol in products such as cosmetics products
135

, 

injectable drug preservative
134

, and as fragrance and flavor additives
135-137

.  

 Over 35 metal oxides have been synthesized using benzyl alcohol and metal precursor 

salts such as alkoxides, acetates, acetylacetonates, and halides.
138-143

 Literature reports relatively 

few benzyl alcohol synthesis studies of FeOx nanoparticles especially using Fe(acac)3 as a metal 

precursor.
138,139

 FeOx has been synthesized in a microwave mediated benzyl alcohol synthesis 

with the metal precursor Fe(acac)3 which had the benefits of producing highly crystalline 

nanoparticles very rapidly (5 minutes), but only 5 nm crystallite sizes were obtainable.
139

 A more 

complicated benzyl alcohol synthesis with Fe(acac)3 was recently done using an autoclave 

method and requiring a glovebox, and heating in a furnace for two days to obtain 15-25 nm 
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crystallite sizes.
143

 A simple, well controlled and understood benzyl alcohol reaction that 

produces 15-16 nm crystallite sizes is highly desirable. Therefore, a simple benzyl alcohol 

synthesis under nitrogen and atmospheric conditions was used to gain mechanistic insight into 

the benzyl alcohol Fe(acac)3 synthesis of FeOx nanoparticles. Initial studies will be used to 

acquire enhanced control over crystallite size and size distribution that is vital for increasing the 

effectiveness in radiofrequency hyperthermia. 

 

1.6 Surface Functionalization of nanoparticles for Biological 

Applications 

 The initial stability of FeOx nanoparticles depends on whether they were synthesized by 

an aqueous or organic method. Aqueous synthesis such as co-precipitation typically results in 

some degree of aqueous stability. Organic synthesis such as thermal decomposition of Fe(acac)3 

results in stability in organic solvents and requires difficult phase transitions to modify the 

surface for aqueous stability.144 However, organic synthesis is favored for producing FeOx 

nanoparticles where precise control of size and size distribution is required. FeOx nanoparticles 

synthesized by the benzyl alcohol modified seed growth synthesis have the advantages of 

organic synthesis of tunable size and size distribution and can be easily surface functionalized for 

aqueous stability without complicated phase transfer processes.94 There is an ever increasing 

demand for surface functionalizations that provide true biologically relevant colloidal stability 

despite the numerous reported methods in literature.124 Typical surface functionalizations have 

terminal amine and/or carboxyl groups to provide stability and have the added benefit of further 

conjugation of targeting ligands, chelates, or radiolabels.94,124,145 Some examples of commonly 

used surface functionalizations for biological stability include use of polymers or organosilanes. 



 

24 
 

1.6.1 Carboxymethylated Polyvinyl Alcohol Surface Functionalization 

 Polyvinyl alcohol can be carboxymethylated to form carboxymethylated polyvinyl 

alcohol (CMPVA) a biodegradable, cheap, and hydrophilic biopolymer.130 The carboxyl groups 

of CMPVA interact strongly with the surface of FeOx.131 The carboxyl groups that do not 

interact with the surface provide the colloidal and biological stability as well as sites for further 

conjugation of targeting ligands, therapeutic and/or diagnostic agents. One possible disadvantage 

of using CMPVA is that the length of the polymer increases the possibility of bridging and/or 

multiple nanoparticles adsorbing the same polymer which will ultimately lead to clusters of 

stable nanoparticles or instability. Large stable clusters of nanoparticles are undesirable as this 

can potentially affect the cellular uptake, blood circulation time, and increase the chance of 

becoming opsonized. 

 

1.6.2 Organosilane Surface Functionalization 

 Organosilanes offer the advantage of protecting the surface of FeOx from undesirable 

reactions and are often used to provide stability based on the terminal functional group of the 

organosilane.146-148  Two of the more commonly used organosilanes for FeOx surface 

functionalization include (3-Aminopropyl)trimethoxy silane (APTS) and (3-

aminominopropyl)triethoxysilane (APTES). These organosilanes offer an efficient and easy 

method to modifying the surface of FeOx nanoparticles through a silanization reaction resulting 

in a Fe-O-Si bond and a silica shell around each nanoparticle.124,149 The resulting modified 

surface contains terminal amine groups giving the nanoparticles a positive zeta potential at 

neutral pH.146 More specifically the charge of the nanoparticles offers stabilization through an 

electrostatic double layer and steric hindrance of the organosilane.73-76 The number of silica shells 
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that form in addition to how quickly and effectively the silanization occurs depends on several 

factors such as time, pH, temperature, hydrolysis rate, concentration and type of catalyst 

used.124,149,150 There is a plethora of reported methods for APTS or APTES surface 

functionalization of FeOx nanoparticles, however few have sufficiently been optimized or 

characterized to properly show biologically relevant stability or extent of silanization.149 

Additionally, the methods employed will need to be modified or optimized depending on the 

FeOx nanoparticle synthesis used. 

 Another organosilane of particular interest is (3-Glycidyloxypropyl)trimethoxysilane 

(GLYMO) which contains a terminal three membered epoxy ring that can be used to easily alter 

the chemistry at the surface. The epoxide ring initially prevents aqueous stability after 

silanization, but also hinders the possibility of creating additional silane shells, and bridging or 

coating of multiple nanoparticles. Through the use of acid or base-catalyzed epoxy ring opening 

reactions aqueous stability can be achieved by coupling different biomolecules containing an 

amine group or strong nucleophile.151 When selecting an appropriate biomolecule it is 

advantageous to select one with only one reactive site to prevent possible bridging or cross 

linking between nanoparticles. This bridging would result in larger hydrodynamic diameters, 

wider size distributions, and ultimately aggregation and precipitation. Overall, modifying the 

surface of FeOx nanoparticles with GLYMO grants the ability to conjugate a wide array of 

biomolecules providing and even tuning the colloidal stability for specific biological 

environments.  
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1.7 Project Overview 

 Herein, the research into FeOx nanoparticles for radiofrequency induced magnetic 

hyperthermia treatment of cancer is split into three main objectives. The first objective was to 

design and optimize the benzyl alcohol synthesis of FeOx nanoparticles with ideal properties for 

hyperthermia applications. The second objective was to devise and tailor a simple surface 

functionalization strategy suitable for biological applications with further conjugation potential. 

The third objective was to conduct biological tests to determine the nanoparticles efficacy in for 

biological applications including RF hyperthermia and brachytherapy delivery.  

 Chapter 1 introduced the relevant and essential background information to understand 

radiofrequency induced magnetic hyperthermia. More specifically this chapter discussed the 

plethora of FeOx nanoparticle synthesis and surface functionalization strategies that are suitable 

for RF hyperthermia applications. The challenges and ideal properties of surface 

functionalization for translation to biological applications are also discussed. 

 In Chapter 2 the different FeOx nanoparticles are introduced. The numerous applications 

for FeOx nanoparticles and the different crystal structures are briefly reviewed with focus on the 

inverse spinel crystal structure of magnetite and maghemite ordinarily used in magnetic RF 

hyperthermia. 

 In Chapter 3 the results and discussion from the investigation into synthetic parameters of 

the benzyl alcohol synthesis are presented. Emphasis is placed on altering the reaction 

environment, concentration, and temperature to optimize the resulting FeOx nanoparticle 

properties. LaMer growth and Ostwald ripening principles are used to speculate on the observed 

effects of reaction parameters on nanoparticle properties. For further optimization and control of 

nanoparticle properties a modified seed growth method is investigated. The complex interactions 
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between reaction parameters and nanoparticle properties, as well as between nanoparticle 

properties and RF heating are analyzed using JMP effect screening models. 

 Chapter 4 presents the ease of surface functionalization for FeOx nanoparticles 

synthesized by the benzyl alcohol method. The surface functionalization with CMPVA, APTS, 

APTES, and GLYMO are discussed with emphasis on the stability properties in different 

biologically relevant media. The GLYMO modification with different amino acid and 

nucleophiles is investigated to obtain a method that allows for tailoring of stability properties. 

Additionally, the CMPVA-FeOx and SAHBA-FeOx nanoparticles are further functionalized 

with a DOTA chelate and radiolabeled with 
177

Lu to confirm their use as a nanoplatform. 

Chapter 5 presents biological testing of surface functionalized FeOx nanoparticles. In 

vitro cellular uptake, proliferation, and hyperthermia test results are presented and discussed. An 

initial in vivo survival study using a murine orthotopic xenograft model of glioblastoma 

multiforme is used to investigate the efficacy of CMPVA-FeOx and SAHBA-FeOx nanoparticles 

to deliver brachytherapy. 

Chapter 6 concludes the dissertation with a brief summary of important findings. The 

combination of investigating synthetic methods, surface functionalization strategies, and 

biological testing in this project will be extremely beneficial to gain knowledge applicable to 

magnetic hyperthermia applications, nanotechnology, and nanomedicine. The work herein will 

be beneficial and intriguing to experts in areas of material synthesis, surface coating technology, 

medicine, physics, radiology, molecular biology, and other disciplines.   
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Chapter 2: Iron Oxide Nanoparticles 

 

 

 

2.1 Iron Oxides in Nanotechnology 

 Nanotechnology, especially FeOx nanoparticles, can be utilized in countless ways. FeOx 

nanoparticles are useful materials in biosensors,
152-156

 high density information data storage,
157-

160
 catalysts,

124,157,161-163
 magnetic sensors,

164-167
 and permanent magnets.

159,160,168,169
 FeOx 

nanoparticles with specific surface functionalizations have proven very useful in biosensing 

applications using diagnostic magnetic resonance (DMR) technology to detect cells and 

biomolecules such as DNA, pathogens, mRNA, proteins, drugs, and tumors.
156

 Understanding 

and manipulation of magnetocrystalline anisotropy of FeOx has given rise to innovative ways to 

magnetically store information data.
158

 The high surface area to volume ratio property of 

nanoparticles has led to a significant interest in utilizing FeOx nanoparticles for catalysts and 

magnetic sensors.
161

 Additionally, catalysts and magnetic sensors benefit from nanoparticles 

stability, selectivity, and increased efficiency as compared to bulk sized materials.
161

 The 

magnetic properties of FeOx nanoparticles are often sought after because they can be 

magnetically extracted and recycled after use as catalysts, biosensors, or in other 

applications.
156,161

 Significant amounts of research time have been invested into creating 

permanent magnets and finding new applications for them. Permanent magnet materials combine 
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the ideal properties of a soft magnet’s large coercivity property and a hard magnet’s large 

magnetization saturation property by exchange coupling.
160

 FeOx nanoparticles are extremely 

advantageous in biotechnology and nanomedicine as they can be used in both theranostics and 

diagnostics. Diagnostically they are used as magnetic resonance imaging contrast agents due to 

their strong T2-weighted and T2* image improvement.
28,170,171

 FeOx nanoparticles continue to be 

rigorously investigated to find new and better applications and improve their efficacy in 

applications such as magnetic hyperthermia where their superparamagnetic behavior, size, 

biocompatibility, and inherent imaging capabilities are utilized.
29,44,170,172-174

 

 

2.2 Iron Oxide Crystal Structures 

 Iron oxides in nature typically consist of iron (II) and/or iron (III) cations and certain 

oxygen containing anions.
125,175,176

 Iron oxides can be referred to as oxides, hydroxides, or oxide-

hydroxides depending on if the crystal structure contains O
2-

 and/or OH
-
 anions. The term iron 

oxide is often used as an encompassing term of the many different iron oxides, hydroxides, or 

oxide-hydroxides.
125

 Stoichiometry and crystal structures differences have been used to identify 

the sixteen known pure phase iron oxides.
1,125,175

 Table 2.1 lists the known iron oxides and are 

subcategorized into iron oxides, iron hydroxides, and iron oxide-hydroxides.
1
 In the following 

sections hematite, wüstite, maghemite, and magnetite crystal structures are briefly introduced. 
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Table 2.1. The mineral name and formula for the sixteen known pure phase iron oxides 

subcategorized into iron oxide, iron hydroxide and iron oxide-hydroxide. Reproduced from 
1
. 

Iron Oxide 

Mineral Name Formula 

Wüstite FeO 

Magnetite Fe3O4 

Hematite α-Fe2O3 

β-Maghemite β-Fe2O3 

Maghemite γ-Fe2O3 
ε-maghemite ε-Fe2O3 

High pressure iron oxide Fe4O5 

Iron Hydroxide 

Mineral Name Formula 

Iron(II) hydroxide Fe(OH)2 

Bernalite (Iron(III) hydroxide) Fe(OH)3 

Iron Oxide-Hydroxide 

Mineral Name Formula 

Goethite α-FeOOH 

Akaganéite β-FeOOH 

Lepidocrocite γ-FeOOH 

Feroxyhyte δ-FeOOH 

High Pressure FeOOH FeOOH 
Ferrihydrite Fe5HO8•4H2O approx. 
Schwertmannite Fe16O16(OH)y(SO4)z•nH2O 

Green Rusts Fex
3+

Fey
2+

(OH)3x+2y-z(A
-
)z ; A

-
=Cl

- 
,1/2SO4

2-
,CO3

2- 

 

2.2.1 Magnetite Crystal Structure 

 Magnetite is the preferred crystal structure for magnetic fluid hyperthermia. 

The inverse spinel structure of magnetite is depicted in Figure 2.1
2
.
1,28,157,175,177,178

 The inverse 

spinel crystal structure consists of 32 oxygen atoms close packed in a face centered cubic (FCC) 

orientation with iron ions located within 16 of the 32 octahedral holes and 8 of the 64 tetrahedral 

holes.
28,177
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in  

Figure 2.1. Diagram showing the side view and top view of wüstite (a), magnetite (b), and 

hematite(c). Two top views are shown for magnetite and hematite to visualize the different layers 

of the crystal structure. From 
2 

 

The magnetite inverse spinel crystal structure contains eight Fe
2+

 and eight Fe
3+

 ions the 

octahedral vacancies, and eight Fe
3+

 ions in the tetrahedral vacancies.
28,175,177

 The magnetite 

inverse spinel formula is therefore Fe3O4 or Fe
3+

(Fe
2+

Fe
3+

)O4.
28,175,177

 The octahedral and 

tetrahedral holes make up the sublattices within the oxygen FCC lattice. The ferrimagnetism 

intrinsic to magnetite results from the coupling between the iron ions.
175,177

 More specifically, we 
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can see that from Hund’s rule that Fe
2+

 and Fe
3+

 have magnetic moments of 4 and 5 Bohr 

magnetons (μB) respectively.
177

 Magnetite has a  calculated μB=4.07 per formula unit which is 

much closer to the 4 μB of Fe
2+

.
177,178

 This can be explained due to the antiferromagnetic 

arrangement of the Fe
3+

 in the octahedral and tetrahedral vacancies leaving the Fe
2+

 ions as the 

significant contributor to the magnetization.
177,178

 In summary, the ferrimagnetic property is a 

result of the difference in Bohr magnetons of each iron ion, the arrangement between the two 

sublattices, and the unequal Fe
2+

 and Fe
3+

 amounts. The properties of magnetite, maghemite, 

Wüstite, and hematite are summarized in Table 2.2.
1
 

  

Table 2.2. Properties of magnetite, maghemite, hematite and wüstite. Reproduced from 
1
. 

Mineral Name Magnetite Maghemite Hematite Wüstite 

 
Cubic Cubic or 

tetragonal 

Rhombohedral 

hexagonal 

Cubic 

Cell Dimensions 

(nm) 

a= 0.8396 a= 0.83474 a= 0.50356 

c= 1.37489 

a= 0.4302-0.4275 

Formula units, per 

unit cell, Z 

8 8 6 4 

Density (g/cm
3
) 5.18 4.87 5.26 5.9-5.99 

Octahedral 

occupancy 

- - 2/3 - 

Color Black Reddish-brown Red Black 

Hardness 5.5 5 6.5 5 

Magnetism 
Ferrimagnetic Ferrimagnetic Weekly ferromagnetic 

or antiferromagnetic 

Antiferromagnetic 

Currie (Néel) 

Temperature (K) 

850 820-986 956 203-211
1) 

Melting point (°C) 1583-1597  1350 1377 

Boiling point (°C) 2623   2512 

1) Néel Temperature 
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2.2.2 Maghemite Crystal Structure 

 Maghemite also displays an inverse spinel crystal structure and is more 

thermodynamically favored than magnetite.
1,2,157,179,180

 The properties of maghemite are 

summarized in Table 2.2.
1
 It is important to note that maghemite is a ferrimagnet and has a 

reddish-brown color. This color helps to first distinguish it from magnetite as the two inverse 

spinel structures cannot be differentiated by powder XRD. The metastable maghemite, γ-Fe2O3, 

cubic unit cell can be stoichemetrically written as (Fe
3+

)8[Fe
3+

5/61/6]16O32 where  indicates a 

cation vacancy and the tetrahedral and octahedral positions are indicated by () and [] 

respectively.
1,175,179,180

 Maghemite can be obtained from heating magnetite in organic compounds 

which causes the Fe
2+

 cations to become oxidized and result in some cation vacancies.
175,180,181

 

At high temperatures, around 400°C depending on crystallinity and size the crystal structure of 

maghemite can be converted to the more thermodynamically favored hematite crystal 

structure.
1,180

 

 

2.2.3 Hematite Crystal Structure 

 The red colored ferromagnetic iron oxide, hematite (α-Fe2O3), is nature’s most abundant 

iron oxide.
1,157,180,181

 Figure 2.1 depicts hematite’s crystal structure which is similar to 

rhombohedral corundum.
1,2

 Properties of hematite are summarized in Table 2.2.
1
 It has a 

rhombohedrally centered hexagonal close packed crystal structure with  two-thirds of the 

octahedral sites filled with Fe
3+

 ions.
1,157,180

 Hematite’s weak ferromagnetic state is due to the 

magnetic spins being canted about 5° at temperatures between the Morin Temperature (TM) and 

the Néel Temperature (TN).
180

 The ferromagnetism of hematite transitions to antiferromagnetism 

below TM=260 K, and to paramagnetism above TN=950 K.
180

 Hematite is the most 
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thermodynamically favored structure of all the iron oxides and so under the correct conditions 

magnetite, maghemite, etc. will all undergo oxidation and/or rearrangement to hematite.
180,181

 

 

2.2.4 Wüstite Crystal Structure 

 Wüstite has a similar crystal structure to that of sodium chloride (NaCl) where the Fe
2+

 

ions exist in octahedral sites of the oxygen anions closed packed FCC lattice.
1
 The crystal 

structure is shown in Figure 2.1 and the summarized properties are listed in Table 2.2.
1
 

Interestingly this crystal structure is only formed at temperatures exceeding 843K and the 

stoichiometric formula is Fe1-xO because of 5-15% oxidation of Fe
2+

 ions to Fe
3+

 ions.
175,182

 The 

amount of oxidation is dependent upon the temperature and partial pressure of oxygen.
175,182

 

Below 843K this crystal structure will disproportionate to more thermodynamically favored 

states of Fe metal and Fe3O4.
1
 

  

2.3 Magnetic Properties of Iron Oxide 

The magnetic, biodegradable and biocompatible properties of magnetite (Fe3O4) and 

maghemite (γ-Fe2O3) make them the most desirable FeOx nanoparticles for magnetic 

hyperthermia.
9,25,28,183

 Bulk FeOx particles are comprised of multi-domain particles, but as the 

size is decreased into the nanometer region the FeOx nanoparticles will behave as single-domain 

particles and eventually superparamagnets. For example it has been estimated that below 166 nm 

diameter the particles will behave as single-domain particles.
160

 Likewise, magnetite has a 

theoretical multi-domain to single-domain transition at approximately 80-100 nm.
184,185

 Further 

reduction in diameter below approximately 20-30 nm the nanoparticles will start to display 

superparamagnetism depending on the crystal structure.
184

 Multi-domain particles will not be 



 

35 
 

discussed in detail as these are above the desirable size range for efficient magnetic 

hyperthermia. 

Superparamagnetism is an interesting phenomenon that arises in certain magnetic 

materials when the size is sufficiently small. The non-interacting magnetic moments of 

superparamagnets will respond to thermal fluctuations when the thermal energy (KBT) is greater 

than the anisotropic energy.
124,159,169

 When the thermal energy exceeds the anisotropic energy the 

individual magnetic moments will alter directions in response to thermal fluctuations.
169

 The 

nanoparticles magnetic spin direction will eventually reach an equilibrium comparable to thermal 

equilibrium.
169

 It should be noted that the size limit of superparamagnetism depends on the 

material of interest and is termed the superparamagnetic limit.
28,124

 Superparamagnets exhibit 

very large saturation magnetization and susceptibility values as a result of considering the 

nanoparticles total magnetic moments (as high as 10
4
-10

5
 Bohr magnetons) instead of the 

individual magnetic moment of a single atom.
28,169

 A representative hysteresis loop for a 

superparamagnet is shown in Figure 2.2. The negligible coercivity and magnetic remanence can 

be seen in the hysteresis curve in Figure 2.2. Coercivity refers to force required in terms of 

magnetic field strength required to return the magnetization to zero.
28,124,169

 Magnetic remanence 

defines the residual magnetism that remains after the magnetic field is removed.
28,124,169

 These 

properties make FeOx superparamagnets ideal candidates for use in biological applications such 

as magnetic hyperthermia as they will not exhibit magnetization after removal of the externally 

applied magnetic field. Additionally, when the radiofrequency alternating current magnetic field 

is applied the nanoparticles will rapidly respond to changes in the applied external magnetic 

field. The negligible remnant magnetization is important to mention as this reduces the 

probability of aggregation due to room temperature magnetism between nanoparticles.
28,124

 It 
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would be advantageous to use metallic nanoparticles instead of oxide nanoparticles because of 

their higher magnetization values, however they are generally toxic and not applicable in medical 

applications.
124

 

 

 

Figure 2.2. Representative hysteresis loop for single domain ferromagnetic (a) and 

superparamagnetic (b) crystals plotted as magnetization (M) versus magnetic field (H). MS, Mr, 

and Hc correspond to magnetization saturation, remnant magnetization, and coercive field 

respectively. From 168 

 

Single-domain particles in the nanorange, outside of the superparamagnetic size range, 

are also useful in biomedical applications. Single-domain particles do not have domain walls and 

therefore exhibit large magnetic coercivities. 
124,159,169

 Also, these single-domain particles have a 

net magnetic spin direction.
124,159,169

 The lack of domain walls is due to the unfavorable 

magnetostatic energy at such small volumes.
159

 External magnetostatic energy is allowed rather 

than creating energetically unfavorable domain walls.
124

 Therefore, when the size of the particle 

increases it will eventually become energetically favorable to create multiple walls resulting in 

multi-domain particles.
124,159

 At these larger sizes several factors determine the size and shape of 
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the domains; these include anisotropy, energy of exchange and magnetostatic interactions.
159

 It is 

worth mentioning that the coercivity can be increased with differing shape anisotropy of single-

domain particles.
124   
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Chapter 3: Benzyl Alcohol Synthesis of Iron Oxide 

Nanoparticles 

 

 

 

3.1 Experimental Section  

 3.1.1 Reagents, Materials, and Equipment 

All chemicals and materials were used as received.  Tetramethylammonium hydroxide 

(TMAOH) solution (Alfa Aesar, 25% w/w aq.), iron (III) acetylacetonate (Fe(acac)3) (Acros 

Organics, 99+%), benzyl alcohol (Alfa Aesar, 99%), copper TEM grids (Ted Pella Inc., 200 

mesh Formvar carbon type B), Fe inductively coupled plasma (ICP) standard (Alfa Aesar, Iron, 

plasma standard solution, Specpure®, Fe 1000 µg/mL), hydrochloric acid solution (HCl) 

(Electron Microscopy Sciences, 2%), potassium ferrocyanide aqueous solution (Prussian Blue) 

(Electron Microscopy Sciences, 2%), two-neck 100 mL round bottom flask (Chemglass), coil 

style reflux condenser (Chemglass), and acetone (Fisher Scientific, ACS grade) 

 

 3.1.2 Modified Seed Growth of Iron Oxide Nanoparticles 

 Synthesis of FeOx nanoparticles in benzyl alcohol was conducted under nitrogen flow or 

open to air in a two-neck 100 mL round bottom flask (Chemglass) equipped with a coil style 

reflux condenser (Chemglass). The volume of benzyl alcohol (Alfa Aesar, 99%) for all reactions 
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was 20 mL. Iron (III) acetylacetonate (Fe(acac)3) (1, 2, 3, 4, or 6 g) (Acros Organics, 99+%) was 

dissolved in benzyl alcohol with vigorous magnetic stirring and then immediately heated to 

reflux or a set temperature. In the nitrogen syntheses, nitrogen was initially bubbled in the benzyl 

alcohol and Fe(acac)3 for 30 minutes prior to heating. After the solution color changed from a 

dark red to black, the reaction was carried out for 2 or 24 hours. At the end of the reaction, the 

round bottom flask was removed from heat and stirred for 15 minutes while cooling. Acetone 

(Fisher Scientific, ACS grade) was then used to precipitate and wash the FeOx nanoparticles 

with magnetic extraction. This wash step was repeated 3-5 times with intermittent and brief 

sonication (Cole Parmer, Ultrasonic Cleaner 8892) between wash steps. The nanoparticles were 

then dried down to a powder with nitrogen flow. 

 The modified seed growth procedures followed the procedure as stated above, but after 

the 24 hour reaction an additional amount of Fe(acac)3 (1, 2, 3, 4, or 6 g) was added as a dry 

powder directly to the hot reaction. Reaction was then carried out for an additional 24 hours 

before removal from heat. The nanoparticles were then precipitated, washed, magnetically 

extracted, and dried as stated above. 

 The heating mantle (Thermoscientific, electrothermal heating mantle) used in initial 

studies was replaced with a silicone oil bath (Alfa Aesar) with the temperature controlled by a 

magnetic stirring hot plate (VWR, VMS-C7) equipped with a temperature control unit (VWR, 

VT-5 S40) to better and more precisely control the temperature. The maximum heating ramp rate 

was used for either the heating mantle or silicon oil bath and hotplate setup. The temperature and 

color of the solution was observed and documented every 60 seconds in the initial heating to 

reflux or set temperature. This was important to determine important temperature thresholds such 

as when high levels of nanoparticles were forming indicated by a solution color change to black. 
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3.2 Characterization Techniques 

 3.2.1 X-ray Diffraction (XRD) 

 Determining the crystal structure of a material by x-ray diffraction (XRD) 

characterization is advantageous as it is a non-destructive technique.1,186-189  XRD utilizes x-rays 

that will interact with the sample and form a diffraction pattern that is used in determining the 

bulk crystalline structure.188,189 More specifically, electromagnetic radiation in the form of x-rays 

are used to analyze the arrangement of the atoms within a crystal. Typically the wavelength (λ) 

of the x-rays is approximately 0.1 nm as this wavelength is similar to the crystal’s interatomic 

distance resulting in elastically scattered x-rays.1,188-190 The constructive and destructive 

interference of scattered x-rays produces a diffraction pattern that is unique to different crystal 

structures of crystalline materials.1,188,189 The atoms in a crystalline material are consistently 

arranged resulting in the incident x-rays elastically scattering at specific angles and interatomic 

lattice distances which causes constructive interference in specific directions.1,188 Bragg’s law 

(Equation 5) states  the distance between atomic planes of the lattice (dhkl) and the incident 

angle (θ), specific to an incident x-ray wavelength (λ) spaced at integer multiples (n) of the path 

difference where constructive interference of elastically scattered x-rays occur.1,188 

𝑛𝜆 = 2𝑑ℎ𝑘𝑙 sin θ     (5) 

The resultant XRD pattern’s peak positions are used to determine the lattice parameter, size, and 

symmetry.188 Additionally, the peak intensities are useful in determining the organization of 

atoms.188 The database of known crystallography data can be searched to find similar XRD 

patterns and thus verify the crystal structure of a material of interest.188 Powder XRD is very 

useful for the characterization of crystalline nanomaterials. This technique exploits the large 

number of crystals present in a powder and allows the incident x-ray to interact with the material 



 

41 
 

at numerous orientations or angles at the same time.189 A diffractometer investigates all possible 

crystal orientations of the powder by analyzing the resultant diffraction cones of the powder 

sample which are used to determine the diffraction pattern.189 It is important to note that 

magnetite and maghemite crystal structures are indistinguishable by XRD.1 

 The crystallite size of nanoparticles can also be determined by analyzing the XRD line 

broadening with the Scherrer formula (Equation 6).1 The Scherrer formula relates the corrected 

peak width at an angle in the XRD measurement to the crystallite size, but will underestimate the 

smaller crystallite sizes when multiple crystallites are present.1 In other words, the formula is 

biased towards larger crystallite size when the mean crystallite size is determined from the 

coherently scattering domain perpendicular to the hkl plane (MCLhkl).
1 This is due to larger 

crystallites more intensely scattering x-rays. 

𝑀𝐶𝐿ℎ𝑘𝑙 =  
𝐾𝜆

𝑏 cos 𝜃
      (6) 

The formula uses the shape factor (K), full width half maximum (FWHM) of the measured peak 

(b), and wavelength of the x-ray (λ).1 The instrument error is accounted for by subtracting the 

instrument width from the value of b.  

A PANalytical X'Pert Pro Materials Research Diffractometer was used to obtain powder 

XRD patterns. The sample was prepared by drying the material to a powder with nitrogen and 

mild grinding to acquire a fine powder that was then transferred to a low background silicon 

disk. The material was scanned at 20-80° 2θ using a Cu Kα x-ray source.  X’Pert High Score 

Plus software was used to analyze the pattern and calculate the crystallite size based on 

diffraction peak broadening using the Scherrer formula. Several of the peaks in the XRD pattern 

were used to calculate crystallite size and standard deviation. 
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 3.2.2 Dynamic Light Scattering (DLS) 

Characterizing nanoparticles in solution provides useful information about hydrodynamic 

size, size distribution, diffusion coefficients, and surface charge. Dynamic light scattering (DLS) 

is a technique that can be used to rapidly assess these properties of a nanoparticle solution 

without destroying the nanoparticles.191,192 DLS requires a stable colloidal suspension for best 

results. DLS utilizes a monochromatic light source to probe the colloidal suspension and record 

the time variation of the intensity of the light scattered by diffusing nanoparticles throughout a 

solution.191,192 The intensity at two specific time points are correlated by the intensity 

autocorrelation function.192 Since, the colloidal nanoparticles have kinetic energy the diffusion 

coefficient can be measured.191 The intensity of scattered light at certain angles over time is 

related to the diffusion of the nanoparticles throughout the solution.191 Therefore, it is important 

to know the viscosity, refractive index, and temperature of the solution being analyzed to 

effectively characterize nanoparticles using DLS. The hydrodynamic diameter and size 

distribution in terms of polydispersity index (PDI) values are calculated from the measured 

diffusion coefficients.192 In Equation 7, the magnitude of the scattering wave (q) is calculated 

using the range of scattering angles (θDLS), wavelength of the incident light (λ), and refractive 

index of the solution (n).191 

𝑞 = (
4𝜋𝑛

𝜆
) 𝑠𝑖𝑛 (

𝜃𝐷𝐿𝑆

2
)              (7) 

The hydrodynamic radius (RH) is calculated using the Stokes-Einstein equation shown in 

Equation 8 where the following abbreviations are used: T is the solution temperature, KB is 

Boltzmann constant, and η is the medium viscosity.191,192 Thus it can be seen that the 

hydrodynamic radius is directly related to the diffusion coefficient (Df).
191 

𝐷𝑓 =  
𝐾𝐵𝑇

6𝜋𝜂𝑅𝐻
      (8) 
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Next, the size distribution is calculated, in terms of the PDI, using the average decay rate (⟨Γ ⟩) 

and the variance of the decay rate distribution (μ2) (Equation 9).191 

𝑃𝐷𝐼 =
μ2

〈Γ〉2      (9) 

Absolute monodispersity is highly improbable, therefore the correlation function calculated ⟨Γ ⟩ 

and q values can be used to obtain an average hydrodynamic radius (Equation 10).191 Depending 

on the instrument used, a weighted function can be used to calculate the summation of all 

possible decay rates for each nanoparticle to determine a size distribution.192 The size distribution 

determined using a weighted average should be considered “semi-quantitative” representation of 

the size distribution and not an exact size distribution.192 

𝑅𝐻 =  
𝐾𝐵𝑇

6𝜋𝜂〈Γ〉
𝑞2     (10) 

The DLS data can be presented based on the number, volume, or intensity of 

nanoparticles because the data is an average of the nanoparticles in solution. Larger nanoparticles 

more intensely scatter light than smaller nanoparticles causing a bias towards larger 

nanoparticles when the results are presented as intensity. For nanoparticles in solution, it is better 

to analyze the data presented based on number or volume of nanoparticles rather than intensity as 

this is a more indicative of the actual hydrodynamic diameter. Hydrodynamic diameter is also 

useful in determining the surface functionalization thickness on nanoparticles. This is 

accomplished by measuring the nanoparticles before and after surface functionalization and 

subtracting the non-surface functionalized nanoparticles. However, the nanoparticle surface and 

the surface functionalization ligands may interact with water differently and thus skew the 

thickness measurement.  

Zeta potential (ζ) determined by dynamic light scattering is often used to characterize the 

electro-kinetic phenomenon of the stabilization offered by the double layer. This measurement 
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utilizes electrophoresis, the movement of charged particles in response to an external applied 

electric field, to calculate the mobility which is the velocity divided by the field intensity.73 When 

spherical nanoparticles are sufficiently small (where κa is small enough that spherical 

nanoparticles can be considered a point charge) and are measured at low electrolyte 

concentrations and potentials the Hückel-Onsager equation (Equation 11) can be used to relate 

electrophoretic mobility (μE) to zeta potential.73 The value of κa is a dimensionless term that 

represents the thickness of the double layer and nanoparticle radius respectively.73 The viscosity 

(η) of the solution and permittivity (ε) also play key roles in determining the electrophoretic 

mobility. The permittivity is a combination of permittivity of free space (ε0) and relative 

permittivity (εr) and is shown in Equation 12. 

𝜇𝐸 =
𝜀𝜁

6𝜋𝜂
       (11) 

ε = 4πε0ε𝑟      (12) 

For particles too large to use the Hückel equation, a generalized equation (Equation 13) is used 

instead to relate electrophoretic mobility and zeta potential. 

𝜇𝐸 =
𝜀𝜁

6𝜋𝜂
𝑓(𝜅𝑎)      (13) 

A Malvern Zetasizer Nano-ZS (Malvern Instruments, U.K.) was used to analyze the 

hydrodynamic diameter, polydispersity index, and zeta potential of FeOx nanoparticles and 

surface functionalized FeOx nanoparticles at ambient conditions. This instrument uses a He-Ne 

laser (633 nm, max 4 mW) light source. For initial hydrodynamic diameter and PDI 

measurements the FeOx nanoparticles at a concentration of 20 mg/mL were dispersed by 

sonication for 180 minutes in a 0.25% tetramethylammonium hydroxide (TMAOH) solution. 

Next, the solution was incubated at room temperature overnight and then a 1 mL 1:100 dilution 
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with water was made for DLS analysis. These samples were transferred to a low volume 

disposable cuvette and DLS was run 5 times with each run containing 11 measurements. For zeta 

size measurements the surface functionalized nanoparticles were concentration and pH matched 

and then loaded into a folded capillary zeta cell (Malvern Instruments, U.K.) prewashed with 

ethanol and water to remove any contaminants.  

Several concentrations of TMAOH solution were used to disperse the FeOx nanoparticles 

to verify that the hydrodynamic diameter was not significantly altered by the TMAOH 

concentration. Additionally, this is important because different concentrations of TMAOH may 

be required to efficiently disperse different sizes of nanoparticles. FeOx nanoparticles produced 

by a modified seed growth method were dispersed in several TMAOH concentrations and their 

hydrodynamic size and PDI values were measured using DLS, the results are shown in Table 

3.1. 

 

Table 3.1. Initial hydrodynamic diameters and PDI values for various v/v % concentration of 

TMAOH. 

% TMAOH 
Hydrodynamic 

Diameter (nm) 
PDI

a
 

0.0625 25.99 0.38 

0.125 29.96 0.363 

0.25 23.61 0.39 

0.5 26.12 0.41 

a
Polydispersity Index (PDI) determined by DLS. 
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 3.2.3 Vibrating Sample Magnetometry (VSM) 

The magnetic properties of FeOx nanoparticles can be determined from vibrating sample 

magnetometry (VSM) determined hysteresis loop. A hysteresis loop is produced by loading a 

sample of known mass into a magnetometer and measuring the magnetization as the external 

magnetic field applied is increased from zero to a set magnetic field where the magnetization 

reaches a maximum or becomes saturated.1,189 Once the magnetization saturation is reached for 

the positive external magnetic field, the direction of external magnetic field is then reversed to 

reach a “negative” magnetization saturation and reversed a second time to the original “positive” 

magnetic field direction to complete the hysteresis loop.1,189 A representative hysteresis loop for 

superparamagnetic and ferromagnetic materials determined by VSM is displayed in Figure 2.2. 

Several important properties can be discerned from the shape, height, and width of the hysteresis 

loop. These properties include magnetization saturation (Ms), initial magnetic susceptibility (X), 

remnant magnetization (Mr), and coercivity (Hc). The magnetization saturation refers to the 

magnetization where all of the magnetic moments are oriented in the same direction of the 

externally applied magnetic field.1,189 Furthermore, the magnetization will not increase above the 

magnetization saturation when the external magnetic field is increased.1,189 The initial linear 

increase of the magnetization when the external magnetic field is increased from 0 is used to 

calculate the initial magnetic susceptibility. When the external magnetic field (H) is returned to 0 

any remaining magnetization is termed the remnant magnetization.1,189  The coercivity or 

coercive field refers to the magnetic field required to force the magnetization back to 0 or 

demagnetize the material after magnetization.1,189 It is important to note that for FeOx 

nanoparticles the presence of ferrimagnetic magnetite and maghemite will overpower the 

magnetism of other iron oxides detected.1  
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VersaLab 3 Tesla Cryogen-Free Vibrating Sample Magnetometer (Quantum Design) was 

used to probe the iron oxide materials and determine their magnetic properties. VSM sample 

capsule (Quantum Design) were loaded with 5-15 mg of dry FeOx powder and scanned for an 

offset of 35 mm. Next, the moment versus field measurements were recorded at a purged 

pressure of <50 Torr, sweep rate of 150 Oersted/second (Oe/s), and scanned in 5 quadrants from 

0 Oe to 15,000 Oe (Hmax) to -15,000 Oe (Hmin) without automatic centering. The hysteresis 

curve was examined to determine the magnetization saturation and was mass corrected using 

thermogravimetric analysis (TGA) in units of emu/g. 

 

 3.2.4 Thermal Gravimetric Analysis (TGA) 

Thermal gravimetric analysis (TGA) characterization is beneficial in determining the 

weight loss of a material as the temperature is increased.1 This technique can be used to correct 

the mass of impurities within a sample such as water, organic compounds, excess chemicals, 

surface functionalities, etc. in dry FeOx nanoparticles. Sample preparation for TGA involves first 

calibrating the tare weight of the TGA pan with a highly sensitive balance and then loading a 

sample (laden weight) on to the TGA pan and recording the sample weight as the temperature is 

increased at rates of 2-10 °C/min.1 The amount of mass lost is expressed as mass percent loss and 

can be used to correct the mass of sample used in techniques such as VSM where the mass of the 

magnetic material is critical to determine magnetization in terms of emu/g. 

A Q5000 TGA instrument (TA Instruments) was used to perform TGA and mass correct 

samples of FeOx nanoparticles. The platinum TGA pans were loaded with 5-50 mg of dry FeOx 

nanoparticles, under a nitrogen flow rate of 25 mL/min, and the temperature was ramped at 10 

°C/min from room temperature to 150°C and held isothermal for 15 minutes. This was followed 
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by additional temperature increase to 400°C at 10 °C/min and held isothermal for 60 minutes. 

 

 3.2.5 Transmission Electron Microscopy (TEM) 

Direct imaging of nanoparticles with atomic scale resolution can be performed with 

transmission electron microscopy (TEM) which uses a beam of electrons to acquire the 

image.192,193 TEM uses an electron beam gun to produce a beam of electrons that will probe a 

sample.193 The transmitted electron beam is dependent upon the amount of diffraction, the atomic 

number of the material, and phase contrast.193 To enhance the contrast and gain higher resolution 

images the sample stage should have different properties than the sample being analyzed.192,193 

A Zeiss LIBRA® 120 PLUS TEM was used to acquire bright field TEM images of the 

FeOx nanoparticles. Sample preparation was done by drying a drop of dilute FeOx nanoparticles 

(20 mg/mL) in 0.25% TMAOH solution on copper TEM grids (Ted Pella Inc., 200 mesh 

Formvar carbon type B). For CMPVA-FeOx the cleanup, desalting, and centrifuge filters were 

all done as described above prior to TEM sample preparation. Image J software was used to 

analyze the TEM images and calculate the nanoparticle size. 

 

 3.2.6 Radiofrequency Heating 

FeOx nanoparticle heating characteristics were investigated with a 1.2-2.4 kW EasyHeat 

induction heating system with a coil designed at a set point of 200 Ampere (A) to run at 1222 

watt (W) and frequency (f) of 269 kHz to produce an alternating magnetic field with a magnetic 

field strength (H) of 37.4 kA/m at 175.4 A. Other magnetic field strengths were used for small 

time length investigations of heating nanoparticles in cells. Ampere’s law can be used to 

calculate the magnetic field strength (H) (Equation 14) produced by a coil with length (L), and 
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number of turns (N), in a magnetic field (B), current (I) and using the permeability of free 

space(µo.).
194

  

BL =  µoNIo       (14) 

 The magnetic field strength is related to the magnetic field as shown in Equation 15.
189

 

By substituting Equation 14 into Equation 15 we can approximate the magnetic field strength 

produced inside the coil (Equation 16). The coil used in these studies had 8 turns (N=8) and a 

length of 0.0375 m (L=0.0375 m) which corresponds to H= 37.4 kA/m at 175.4 A.  

B =  µoH             (15) 

H =  
N

𝐿
Io           (16) 

 An OpSens fiber optic temperature sensor measured the in situ nanoparticle solution 

temperature when RF AC magnetic fields were applied. SoftSens software was used to record 

temperature every 1.4 seconds. The RF heating of 3 mL of 0.25% TMAOH aqueous FeOx 

nanoparticle (20 mg/mL) solution was used to compare the RF heating rates of samples at 175.4 

A and H=37.4 kA/m over 600 seconds. All solutions were corrected for potential convective 

heating by measuring a control 3 mL sample of water under identical conditions. The initial 

linear increase of temperature per unit time (dT/dt) of the water control (0.549°C/min) was 

subtracted from the initial linear increase of all TMAOH nanoparticle samples tested. 

 The RF heating data collected must be corrected based on iron concentration to more 

accurately compare samples. The iron concentration was determined using a Prussian blue assay. 

A serial dilution of Fe inductively coupled plasma (ICP) standard (Alfa Aesar, Iron, plasma 

standard solution, Specpure®, Fe 1000 µg/mL) was used to build a standard curve as measured 

by UV-Vis absorbance assay (λ=685 nm) using a Nanoquant plate reader (Tecan).  As prepared 

RF heating FeOx TMAOH nanoparticle solutions were diluted 1:100 and 2.14 μL of 70% nitric 
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acid (BDH Chemicals) was added to 30 μL of the diluted sample. This sample was heated at 

90°C  for 1 hour. The dissolved FeOx sample (10 μL) was added to 1 μL of 20% potassium 

ferrocyanide (Prussian blue) aqueous solution (Electron Microscopy Sciences, 20%) and 0.5 μL 

of 20% HCl solution (Electron Microscopy Sciences, 20%). After 15 minutes of incubation at 

room temperature the UV-Vis absorbance was measured at λ=685 nm.  

 

3.3 Results and Discussions 

 3.3.1 Investigation of Synthesis Parameters 

 Magnetic fluid hyperthermia requires a specific crystallite size with minimal size 

distribution to obtain the most efficient nanoparticle heating effect. To improve and optimize the 

benzyl alcohol synthesis of FeOx nanoparticles several reaction parameters were investigated. 

The parameters of interest are concentration, temperature, and addition of extra iron precursor 

(modified seed growth). The reaction concentration was modulated by concentration of iron 

precursor in a constant 20 mL volume of benzyl alcohol. The reaction parameters and 

nanoparticle properties were analyzed using JMP software’s effect screening to ascertain trends 

of reaction parameters upon the resultant nanoparticle properties. 

 A naming system was used to track of the large number of reaction conditions performed. 

The first and second additions of Fe(acac)3 are denoted as “A” and “B” and separated with an 

underscore. The gram amount of Fe(acac)3 added to the 20 mL of benzyl alcohol are listed 

immediately following A and B. The length of time, in hours, the reaction was carried out is 

listed as “-X” for both A and B additions. Temperature is listed in parenthesis for reactions 

where precise control of temperature was investigated. When temperature is not listed the 

reaction was heated to reflux using a heating mantle that was shown to have similar temperatures 
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and rate of reflux. For example a reaction carried out in 20 mL of benzyl alcohol with 2 g of 

Fe(acac)3 added initially and heated at 175°C for 24 hours and followed by an addition of 2 g of 

Fe(acac)3 and heated at 175°C for an additional 24 hours is named A2-24(175)_B2-24(175). For 

reactions that were carried out under nitrogen flow the reaction name begins with a “N2”. A 

reaction of 20 mL of benzyl alcohol with 2g of Fe(acac)3 added initially and reacted at 205°C for 

24 hours is named N2-A2-24(205). 

Characterization of nanoparticles was done using XRD, DLS, VSM corrected by TGA, 

and RF heating measurements to identify their crystallite size, hydrodynamic diameter and PDI 

values, saturation magnetization, and RF heating capabilities for internal comparisons. 

Nanoparticles were first characterized by XRD to verify the nanoparticles are indeed FeOx and 

to calculate the crystallite size. The XRD patterns for FeOx nanoparticles produced by reactions 

N2-A2-24, A2-24, and A2-24_B2-24 are displayed in Figure 3.1. It is not necessary to show all 

of the XRD patterns as they all indicate FeOx. It is important to reiterate that XRD cannot 

distinguish between magnetite and maghemite.  
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Figure 3.1. XRD peaks of samples: N2-A2-24 (blue), A2-24 (red), and A2-24_B2-24 (green). An 

offset of 100 count increments was used to clearly show each reactions pattern. 

 

Next, it is important to examine the hydrodynamic diameter and determine the size distribution 

in terms of PDI values with DLS. These measurements are very useful in determining how the 

reaction conditions affected the resultant nanoparticle. Figure 3.2 and Table 3.2 respectively 

show the DLS determined hydrodynamic diameter and peak data for reaction A4-24(195)_B4-

24(195). Figure 3.2 displays the DLS pattern based on percent intensity and percent volume to 

show that intensity results are biased towards larger sizes. It is important to note that the results 

based on intensity are biased towards larger sized nanoparticles as they will more intensely 

scatter the light. Therefore, the results based on volume were used when reporting the 

hydrodynamic diameter as it more accurately represents the total population of nanoparticles. 
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Figure 3.2. The DLS hydrodynamic size measurements displayed in terms of percent intensity 

(A) and percent volume (B) for reaction A2-24(195)_B2-24(195). The Z-average hydrodynamic 

diameter was equal to 47.75 nm and the PDI was equal to 0.219.  

 

Table 3.2. The DLS determine hydrodynamic size, percent composition, and width of each peak 

for the size distribution by percent intensity and size distribution by percent volume for reaction 

A2-24(195)_B2-24(195). 

Size Distribution by Percent Intensity 

  Hydrodynamic Diameter (nm) % Intensity Width (nm) 

Peak 1 47.08 86.8 14.31 

Peak 2 313.3 13.2 95.5 

Peak 3 0 0 0 

Size Distribution by Percent Volume 

  Hydrodynamic Diameter (nm) % Volume Width (nm) 

Peak 1 37.52 99.3 11.26 

Peak 2 328.1 0.7 109.5 

Peak 3 0 0 0 

 

The magnetic properties of the nanoparticles were next investigated with VSM and weight 

corrected using TGA. The hysteresis curve from VSM and mass percent loss over time from 

A

B
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TGA is shown in Figure 3.3 and Figure 3.4 respectively. The TGA determined weight loss was 

between 94.6% and 85.9% for all samples. The VSM determined MS values were between 48.54 

and 57.69 emu/g for samples synthesized under nitrogen and were between 55.5 and 84.57 

emu/g for samples synthesized under atmospheric conditions. 

 

Figure 3.3. VSM measured hysteresis loop of TGA mass corrected (10.901 mg * 0.945164 = 

10.303 mg) A2-24(195)_B2-24(195) nanoparticles.  
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Figure 3.4. TGA of A2-24(195)_B2-24(195) nanoparticles revealing a final mass percent of 

0.945164 at 400°C. 

 

RF heating measurements were calculated from fiber optic temperature collected data for 

concentration matched TMAOH FeOx nanoparticle solutions. Sample heating curves for 

deionized water, N2-A2-24, A2-24, A2-24_B2-24, and A2-24(195)_B2-24(195) reactions are 

shown in Figure 3.5. Prussian blue assay was used to normalize the concentrations of iron for 

internal comparisons. Altering the synthetic parameters we were able to obtain RF heating 

measurement between 0.01 and 5.55 [°C/min]/mg. 
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Figure 3.5. RF heating curves of water and FeOx samples dispersed in 0.25% TMAOH. Prussian 

Blue assay determined the iron concentrations for deionized water (blue), A2-24 under nitrogen 

(green), A2-24 (red), A2-24_B2-24 (purple), and A2-24(195)_B2-24(195) (black) to be 0, 14.48, 

15.40, 14.00, and 15.36 mg/mL respectively. Temperature was recorded every 1.4 seconds in an 

alternating magnetic field set at 175.4 A for 600 seconds or until reaching approximately 70°C. 

 

 3.3.2 Effect of Reaction Environment 

 Initial benzyl alcohol synthesis reactions were carried out under nitrogen flow. Thermal 

decomposition of Fe(acac)3 or iron carboxylate salts are most commonly reported in literature as 

using nitrogen or argon flow.
51,131,143,144,195-198

 The reaction N2-A2-24 produced nanoparticles 

with 6.5 ± 1.2 nm crystallite sizes based on the Scherrer formula for calculating crystallite sizes 

from line broadening of peaks in the XRD pattern shown in Figure 3.1. Characterization with 

VSM and corrected by TGA revealed the Ms= 53.39 emu/g. DLS revealed a hydrodynamic 
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diameter of 23.23 nm and a PDI of 0.351. This crystallite size is well below the desired 15-16 

nm crystallite of ideal FeOx nanoparticles for RF induced hyperthermia. It should be noted that 

there is not a clear relationship between crystallite and hydrodynamic sizes, but the primary goal 

was to produce nanoparticles with the ideal crystallite size and low size distribution for 

maximum RF heating. Benzyl alcohol can be oxidized to benzaldehyde and further oxidized to 

benzoic acid at temperatures below the thermal decomposition temperatures as seen in glycol 

syntheses of metal and metal oxide nanoparticles.
53,120-122,199

 Based on this information our 

hypothesis was that by running the reaction open to air we could facilitate the production of 

larger crystallite sizes. To investigate formation of nanoparticles at lower temperatures based on 

the added oxidation mechanism, the reactions were monitored every minute while the reaction 

was heated to its final temperature. This revealed that reactions open to air had reflux drips 

starting at approximately 178°C and increasing as the temperature approached 205°C indicating 

the formation of benzaldehyde (boiling point = 178.1°C).
200

 The oxidation of benzyl alcohol to 

benzaldehyde suggests that a reduction of Fe(acac)3 may also be occurring at these temperatures. 

The addition of a second mechanism of formation of monomers and nuclei starting at 

temperatures below thermal decomposition could allow for better separation of nucleation and 

growth phases leading to larger crystallite sizes.
37

 Additionally, the formation of monomers and 

nuclei occurring at the lower temperatures due to an oxidation reduction mechanism occur when 

the temperature ramp rate is still high which would also lead to larger separation of nucleation 

and growth leading to larger crystallite sizes.
37

 Carrying out the reaction open to air (A2-24) 

resulted in FeOx nanoparticles with 8.33 ± 0.393 nm crystallite sizes (Figure 3.1), Ms of 70.839 

emu/g, hydrodynamic diameter of 13.64 and PDI of 0.703. This reaction is crucial as it 

demonstrates the ability to produce larger crystallite sizes and more crystalline nanoparticles by 
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only changing the reaction environment. The PDI value suggests a broad size distribution which 

may be narrowed by altering the other reaction parameters. In an attempt to elucidate why larger 

crystallites were formed the reaction color changes and corresponding temperatures were 

recorded every minute as the temperature was initially increased. The thermal decomposition of 

Fe(acac)3  depends on the solvent it is dissolved in, but is generally reported to occur around 

170-180°C.
201

 As seen in Figure 3.6 the color change from dark red to black indicating 

nanoparticle formation occurred at lower temperatures and earlier in the reaction when the 

reaction was carried out under air (Figure 3.6B). The solution for reaction under nitrogen 

remained dark red until 31 minutes in to the reaction at a temperature of 174.4°C and turned 

completely black at 40 minutes. The solution for reaction open to air, however first started to 

change colors after only 20 minutes at 169.4°C and became completely black after 30 minutes of 

reaction. This corroborates the hypothesis that the presence of oxygen allows for the generation 

of monomers and nuclei at lower temperatures and earlier in the reaction due to a possible 

oxidation reduction mechanism.  
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Figure 3.6. Heating curves for reaction of Fe(acac)3 in Benzyl Alcohol heated to 175°C under 

nitrogen (A), and air (B). Heating curves for reaction containing FeCl2, NaOH, and Benzyl 

Alcohol heated to 150°C under nitrogen flow (C), and air (D). For reactions under nitrogen the 

initial and final color changes are indicated with a gold and black square. Likewise, the color 

changes are indicated with a gold and black diamond for reactions open to air.  

 

To verify that benzyl alcohol is reducing the iron precursor, Fe(acac)3 was replaced with glycol 

reagents, FeCl2 and sodium hydroxide (NaOH).
53,120,122,199

 XRD confirmed that these reactions 

carried out under nitrogen and air still produced FeOx (Figure 3.7) and further indicated that an 

additional mechanism is responsible for the formation of  FeOx nanoparticles in benzyl alcohol 

since thermal decomposition did not occur in the FeCl2, NaOH, and benzyl alcohol reaction.  
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Figure 3.7. XRD peak patterns for benzyl alcohol, FeCl2, and NaOH under nitrogen flow (blue), 

and open to air (red) offset by 5000 intensity counts. NaCl was indicated by peaks at 32.5 and 

46.2 angles. It was determined that the reaction under nitrogen and open to air contained 71% 

and 77% NaCl respectively. 

 

The reaction color and temperatures were also recorded for the FeCl2, NaOH, and benzyl alcohol 

reactions carried out open to air and under nitrogen flow (Figure 3.6C and D). Reaction under 

nitrogen flow first changed colors at 99.3°C and was completely black at 132.7°C, while the 

reaction open to air had an initial color change at 90.8°C and was completely black at 127.7°C. 

This further corroborates the hypothesis that the benzyl alcohol synthesis open to air produces 

larger crystallite sizes by facilitating earlier generation of monomers and nuclei and thus a better 

separation of nucleation and growth. Based on this mechanistic insight, the remaining synthesis 
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reactions were primarily run open to air and reaction parameters were changed to gain larger 

crystallite sizes and smaller size distributions.  

 

 3.3.3 Effect of Reaction Temperature 

 Increasing temperature of the reaction was hypothesized to further increase the crystallite 

size based on recent reports that higher temperatures were required for sustained crystallite 

growth.
121,202

 The heating mantle was replaced with a silicon oil bath to more efficiently control 

the temperature. Additionally, the reflux of the benzyl alcohol solution was shown to start as low 

as 178°C as benzaldehyde was most likely formed. Therefore, using the heating mantle to reach 

reflux temperatures in air was most likely occurring at approximately 178°C and not at the 

boiling point of benzyl alcohol (205°C).
200

 Increasing the temperature to 205°C was 

hypothesized to further increase the crystallite size. Nitrogen reactions with varying reaction 

temperatures were used as comparisons to reactions open to air to further elucidate the reaction 

mechanisms occurring and to better determine other effects such as magnetization saturation 

changes. 

 Nitrogen synthesis reaction temperatures were varied between 150-205°C and the 

resultant nanoparticle properties are shown in Table 3.3. In addition to the reaction changing 

color at later time points and at higher temperatures when compared to reactions open to air, the 

nitrogen reaction did not contain reflux drips at 205°C. The absence of reflux drips suggests that 

the oxidation and reduction of benzyl alcohol and Fe(acac)3 is not occurring when reacted under 

nitrogen flow. Furthermore, this confirms that the primary mechanism of generation of 

monomers and nuclei is due to thermal decomposition. Without reduction of Fe
3+

 to Fe
2+

 the 

magnetite crystal structure is unlikely to form. This is validated by the lower magnetization 
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saturation values of 48.54-57.69 emu/g exhibited by nanoparticles produced under nitrogen flow. 

This result is in accordance with the lower magnetization saturation values of maghemite  as 

compared to magnetite in bulk and nanomaterials.
203

 

  

Table 3.3. Effect of various temperatures in reactions under nitrogen flow on nanoparticle 

properties.  

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 

([
o
C/min]/mg)

b 
Crystallite 

size (nm) 

Hydrodynamic 

Diameter (nm) 
PDI

c
 

N2-A2-24 53.39  6.47 ± 1.17 23.23 0.351 

N2-A2-24(150) 48.54* 0.01 5.65 ± 0.76 13.02 0.372 

N2-A2-24(175) 57.69 0.04 6.06 ± 0.52 11.51 0.306 

N2-A2-24(195) 57.09* 0.02 6.3 ± 0.89   

N2-A2-24(205) 57.56* 0.05 11.3 ± 0.73 38.48 0.152 
a
mass unit indicates grams of FeOx nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.88 percent weight of sample 

 

 

 

For the nitrogen syntheses the crystallite size only changed when the reaction reached 205°C, 

however the magnetization was only 57.56 emu/g suggesting that mainly maghemite was 

present. While larger nanoparticle sizes were obtainable by the nitrogen synthesis the 

nanoparticles most likely consisted of the less magnetic maghemite crystal structure. 

 Higher magnetization saturation values and crystallite sizes were obtainable at lower 

temperatures with the reactions open to air, as seen in Table 3.4. The larger magnetization 

saturation values at lower temperatures strongly suggests the presence of magnetite and offers 

additional evidence that a redox mechanism plays a significant role in the production of FeOx 

nanoparticles. The size distribution as indicated by PDI was much lower for reactions at 205°C. 

The trend of decreasing PDI as temperature increased was also seen for reactions under nitrogen 
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flow; however the larger magnetization saturation values and crystallite sizes make the FeOx 

nanoparticles synthesized open to air much more advantageous. 

 

Table 3.4. Effect of various temperatures in reactions open to air on nanoparticle properties.  

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 

([
o
C/min]/mg)

b 
Crystallite 

size (nm) 

Hydrodynamic 

Diameter (nm) 
PDI

c
 

A2-24 70.839 0.17 8.8 ± 0.61 13.64 0.703 

A2-24(125) - - - - - 

A2-24(150) 55.50 0.06 6.2 13.58 0.589 

A2-24(175) 70.91 0.14 8.9 ±1.39 12.45 0.61 

A2-24(195) 74.32 0.18 8.1 ± 0.59 13.3 0.65 

A2-24(205) 73.36* 2.76 14.1 ± 0.80 24.53 0.275 
a
mass unit indicates grams of FeOx nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.925 percent weight of sample  

 

 

 

It should be noted that reaction A2-24 was most comparable to reactions A2-24(175) and A2-

24(195) confirming that the heating mantle had inefficient control of temperature that may have 

fluctuated between these temperatures. The larger PDI values of these reactions were attributed 

to an overlap between thermal decomposition and redox of benzyl alcohol and Fe(acac)3. 

Comparing the RF heating capabilities of FeOx nanoparticles produced by reactions under 

nitrogen flow or open to air reveals drastically higher heating capabilities. This is attributed to 

the larger crystallite sizes; however the RF heating may be limited by the lower magnetization 

saturation values for nitrogen reactions. More specifically, the reaction open to air with 

MS=70.91 emu/g had an RF heating rate almost three times as high as the largest crystallite FeOx 

achieved with nitrogen reactions. The larger crystallite sizes for reactions open to air is explained 

by the LaMer growth model, where reduction of Fe
3+

 to Fe
2+ 

produces the first nuclei at lower 

temperatures and then the reaction exhibits a large influx of new monomers as the reaction 
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reaches higher temperatures where both thermal decomposition and redox reactions occur. This 

large influx of monomers leads to a burst nucleation even and is quickly depleted to begin 

growth on the nuclei. Since there are two “stages” where monomers and nuclei are formed there 

is also a higher resultant size distribution, but this also leads to larger crystallite sizes. At 205°C 

the temperature ramp rate is very high and passes through the beginning of the redox and thermal 

decomposition mechanisms creating a large number of monomers which in turn causes a quicker 

burst nucleation leading to smaller size distributions. 

 The effect of temperature on nanoparticle characteristics revealed several interesting 

conclusions. Reactions open to air produce larger crystallite sizes at lower temperatures due to 

the added redox mechanisms and lower temperature refluxing due to the formation of 

benzaldehyde. Through modulation of the temperature the added redox mechanism of reactions 

open to air can be taken exploited to more efficiently tune the crystallite size and size distribution 

of nanoparticles. This is possible due to the better separation of nucleation and growth and burst 

nucleation process that occurs in the reactions open to air.  

  

 3.3.4 Effect of Reaction Concentration 

 According to LaMer growth methodology the iron precursor concentration can also be 

modulated to increase the production of monomers and further shorten the burst nucleation event 

leading to larger crystallite sizes. Increasing reactant precursor concentrations has been reported 

to increase the overall particle size.
204

 The LaMer growth model (Figure 3.8) is useful in 

interpreting results of changing reaction parameters. The production of nanoparticles can be split 

into three main sections including generation of monomers, self-nucleation, and growth. In the 

benzyl alcohol reaction the monomers are generated from thermal decomposition and reduction 
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of Fe(acac)3. When the concentration of monomers is sufficiently high, termed the concentration 

minimum for nucleation (Cmin
nu

), self-nucleation will begin. In the self-nucleation phase the 

concentration of monomers will be rapidly depleted and will switch to the growth phase when 

the concentration is decreased below the Cmin
nu

.
3,205

 Theoretically the concentration of monomers 

can approach but never reach the critical limiting supersaturation or the concentration maximum 

of nucleation (Cmax
nu

). This is because as the critical limiting supersaturation is approached the 

rate of nucleation exponentially increases and will overcome even the largest rate of generation 

of monomers.
3,205,206

 The rate of generation of monomers controls the maximum monomer 

concentration that can be reached or how quickly the nucleation step will occur, since the 

nucleation rate increases exponentially until it becomes effectively  

 

Figure 3.8. LaMer growth model scheme, displaying the generation of monomers, self-

nucleation, and growth phases.  Adapted from 
3
.  
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infinite at the critical limiting supersaturation concentration.
3
 The ramification of this is that 

faster generation of monomers will lead to quicker “burst” nucleation events which will decrease 

the size distribution of nuclei leading into the growth phase.
3,205

 The growth phase is controlled 

by either diffusion of monomers to the surface of nuclei or reaction rate of monomers onto the 

surface of nuclei depending on which process is rate limiting.
207

 Growth will continue until the 

monomer concentration is depleted to the solubility concentration of monomers (CS).
3,205

 At this 

point Ostwald ripening will occur where smaller nanoparticles are dissolved to grow on the 

energetically favored larger nanoparticles.
208,209

 If the nanoparticles are monodisperse when 

Ostwald ripening begins more polydisperse nanoparticles will be created. Alternatively if the 

nanoparticles are polydisperse they will become more monodisperse by Ostwald ripening. 

 The effect of reaction concentration was investigated to further increase the crystallite 

size of the FeOx nanoparticles. To investigate this parameter the Fe(acac)3 was increased from 2 

grams to 4 and 6 grams in reactions (A2-24, A4-24 A6-24). However, this resulted in no 

significant change in crystallite size for these reactions (Table 3.5).  

Table 3.5. Effect of various concentrations of Fe(acac)3 on nanoparticle properties.  

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 

([
o
C/min]/mg)

b 
Crystallite 

size (nm) 

Hydrodynamic 

Diameter (nm) 
PDI

c
 

A2-24 70.84 0.17 8.8 ± 0.61 13.64 0.703 

A4-24 68.99 0.13 8.3 14.68 0.2 

A6-24 68.25 0.22 7.9 16.5 0.164 

A2-24(205) 73.36* 2.76 14.1 ± 0.80 24.53 0.275 

A4-24(205) 73.07* 1.86 11.7 ± 0.73 22.85 0.269 

A6-24(205) 69.93* 0.85 8.2 ± 1.56 23.9 0.512 
a
mass unit indicates grams of FeOx nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.925 percent weight of sample 
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Interestingly, the hydrodynamic diameter increased (13.64 nm, 14.68 nm, and 16.5 nm) and the 

size distribution decreased (PDI= 0.703, 0.2, 0.164) when the reactant concentration was 

increased in agreement with the reported LaMer growth model.
3,205,206

 More specifically the 

hydrodynamic size increased due to the growth phase switching from being limited by diffusion 

to limited by reaction. When growth is limited by diffusion the monomers will have sufficient 

time to react in the proper orientation which results in crystalline growth. However, when growth 

is limited by reaction the monomers will not always orient in a way suitable for crystalline 

growth, thus more amorphous growth will occur. With more amorphous growth the nanoparticles 

will have larger nanoparticle sizes and smaller crystallite sizes. At these temperatures the 

increase of concentration increases the generation of monomers resulting in more monodisperse 

nanoparticles.  

 The same set of reactions was also investigated at 205°C to determine if the same trend 

occurred when more precise temperature control was present. The higher temperature greatly 

increases the generation of monomers leading to larger crystallite sizes as seen in the previous 

section. Increased temperatures will also increase the rate of nucleation and the 

diffusion/reaction growth mechanisms. Figure 3.9 depicts the theorized effect of increasing both 

temperature and concentration on the LaMer growth model. It was thought that the combined 

increase in temperature and concentration would result in even faster generation of monomers. 

This is represented by a steeper slope in the generation of monomers phase. Interestingly, 

increased concentration of Fe(acac)3 at 205°C resulted in a decreasing crystallite size (14.1 ± 

0.80 nm to 11.7 ± 0.73 nm to 8.2 ± 1.56 nm) while the hydrodynamic diameter was constant. The 

PDI was only increased when the concentration was increased to 6 g and is consistent with 

growth limited by reaction leading to larger size distributions.
207
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Figure 3.9. Proposed effect of increasing temperature and concentrations of precursor on LaMer 

growth model (blue). The red curve represents the proposed effects of increasing either 

temperature or concentration. The green curve represents the proposed effect of increasing both 

temperature and concentration.  

 

 Based on the results of A6-24(205) an alternative explanation using LaMer growth 

method was rationalized. In this reaction, the generation of monomers may have reached a limit 

where further increases in temperature or precursor concentrations may not increase the rate of 

monomer generation. Instead the nucleation event could possibly be prolonged if the rate of 
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monomer generation has indeed reached a maximum. This theorized effect is shown in Figure 

3.10 (green curve).  

 

Figure 3.10. Proposed effect of increasing temperature and concentrations of precursor on 

LaMer growth model (blue). The red curve represents the proposed effects of increasing both 

temperature and concentration. The green curve represents the proposed effect of increasing both 

temperature and concentration when a maximum generation of monomers has been reached 

resulting in prolonged nucleation.  

 

Prolonging the nucleation event would lead to broader size distributions, more nuclei, and 

smaller particle sizes. More nuclei with a large concentration of monomers would lead to 
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increased amorphous growth due to growth limited by reaction. This theory is in accordance with 

the results observed for A6-24(205) which has approximately the same hydrodynamic size (23.9 

nm), but a much smaller crystallite size (8.2 ± 1.56 nm) and larger size distribution (PDI= 

0.512). 

 Based on these results of increasing concentration of Fe(acac)3 and temperature, the 

optimum starting amount of Fe(acac)3 for achieving the largest crystallite sizes is 2 g. The 

combined increase in reaction temperature and iron precursor for benzyl alcohol synthesis can be 

rationalized by the LaMer growth model where increasing temperature and/or precursor 

concentration increases the rate of monomer generation. The largest crystallite size of 14.1 ± 

0.80 was achieved in reaction A2-24(205). Since a potential limit was reached for rate of 

monomer generation at these conditions a modified seed growth method was used in attempts to 

further increase the crystallite size and decrease size distribution for maximum RF heating 

potential. 

 

 3.3.5 Effect of Parameters: Modified Seed Growth 

 Seed growth methods have been used to further increase the size of nanoparticles, but 

often require cooling or aging steps followed by washing and drying the nanoparticles to produce 

a powder often referred to as “seeds”.
129,210,211

 Next, the seeds are re-dispersed in the solvent 

with additional iron precursor prior to carrying out the reaction. A modified seed growth method 

was developed in attempts to increase the crystallite size and decrease the size distribution to 

produce optimum nanoparticle properties for RF hyperthermia. Instead of following traditional 

seed growth methods the nanoparticle “seeds” are not washed and dried to a powder, but are kept 

at elevated reaction temperatures and additional iron precursor (second addition) is added as a 
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dry powder. This was done to keep the reaction at suitable temperatures for high rates of 

monomer generation that will then nucleate and grow on the seeds. 

 The A2-24 reaction was used as the first half of the modified seed reaction to discern how 

different temperatures and concentrations of second additions affect the resultant nanoparticle 

properties. These reactions are listed in Table 3.6. 

 

Table 3.6. Effect of various temperatures in the modified seed growth on nanoparticle properties. 

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 

([
o
C/min]/mg)

b 
Crystallite 

size (nm) 

Hydrodynamic 

Diameter (nm) 
PDI

c
 

A2-24 

 

70.839 0.170 8.8 ± 0.61 13.64 0.703 

A2-24(175) 70.91 0.14 8.9 ± 1.39 12.45 0.61 

A2-24(195) 74.32 0.18 8.1 ± 0.59 13.3 0.65 

A2-24(205) 73.36 2.76 14.1 ± 0.80 24.53 0.275 

A2-24_B2-24 75.7 2.536 14.4 ± 2.42 28.93 0.148 

A2-24_B2[cool addition]-24 72.488 0.670 9.5 ± 0.71 20.76 0.252 

A2-24(175)_B2-24(175) 77.89 1.004 11.6 ± 1.01 24.53 0.404 

A2-24(185)_B2-24(185) 77.249 1.068 11.2 ± 0.94 23.11 0.395 

A2-24(195)_B2-24(195) 78.202 4.041 14.9 ± 0.74 37.52 0.219 

A2-24(205)_B2-24(205) 77.77 

 

5.55 19.5 ± 1.06 44.63 0.265 

a
mass unit indicates grams of FeOx nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.925 percent weight of sample 

 
 

 The modified seed growth using the heating mantle (A2-24 and A2-24_B2-24) resulted in 

larger crystallite size (8.8 ± 0.61 vs. 14.4 ± 2.42) and drastically reduced PDI values (0.703 vs. 

0.148). Transmission electron microscopy (TEM) was used to directly image the morphology of 

the FeOx nanoparticles (Figure 3.11). 
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Figure 3.11. TEM bright field image A2-24_B2-24 nanoparticles dispersed with TMAOH. 

Image J software determined an average particle diameter of 15.28 ± 2.21 nm.  

 

The “hot” addition of iron precursor at the second addition step provides a burst nucleation event 

producing nuclei that will be dissolved to grow on the thermodynamically favored larger seed 

nanoparticles. This is also in accordance with Ostwald ripening resulting in a decrease in size 
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distribution.
208,209

 Reaction A2-24_B2[cool addition]-24 was used to corroborate the “hot” addition 

effect of lower size distribution by reducing the temperature to 30°C prior to the second addition 

of Fe(acac)3. Indeed, the hot addition facilitates larger crystallite growth (14.4 ± 2.42 vs. 9.5 ± 

0.71 nm) with lower size distribution (PDI= 0.148 vs. 0.252). More specifically, the hot addition 

facilitates a faster generation rate of monomers. 

 Temperature was shown to play a significant role in increasing the crystallite size and 

decreasing polydispersity for reactions without a seed growth step. Temperature was therefore 

investigated to determine the effect in the modified seed growth. Reactions A2-24(175)_B2-

24(175), A2-24(185)_B2-24(185), A2-24(195)_B2-24(195), and A2-24(205)_B2-24(205) were 

carried out and their characteristics are shown in Table 3.6. A2-24(175)_B2-24(175) reaction 

was used as the starting comparison point for temperature investigation. The crystallite size 

changed from 11.6 ± 1.01 nm in reaction A2-24(175)_B2-24(175) to 11.2 ± 0.94 at 185°C, 14.9 

± 0.74 at 195°C and 19.5 ± 1.06 at 205°C. The temperature at 185°C did not change the 

crystallite size which is thought to be explained by insufficient increase in temperature to cause a 

significant change in the nucleation event. The decrease in size distribution for the modified seed 

growth at their respective temperatures was thought to be facilitated by the second addition of 

iron precursor resulting in Ostwald ripening focusing the size distribution. Interestingly, the 

modified seed growth reaction at 205°C had a crystallite size of 19.5 ± 1.06 and the highest RF 

heating value 5.55 [oC/min]/mg even though the RF heating capabilities are theorized to 

exponentially decay above 15-16 nm. The theoretic decrease in RF heating above 15-16 nm is 

for superparamagnetic nanoparticles only, therefore the theoretic RF heating decrease may not be 

seen as the nanoparticles above 15-16 nm are most likely switching to single domain particles. 
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Further analysis of the VSM hysteresis curve for A2-24(205)_B2-24(205) (Figure 3.12) reveals 

some remnant magnetization indicating presence of single domain particles.  

 

 

Figure 3.12. Hysteresis curve for reaction A2-24(205)_B2-24(205). Inset shows the remnant 

magnetization and coercivity is non-zero. 

 

Since the crystallite size determined by XRD is biased towards larger sizes, it is entirely possible 

that the majority number population of nanoparticles have crystallite sizes closer to 15-16 nm. 

Using the specific heat of water cH2O = 4.18 
𝑊𝑠

𝑔𝐾
 as a close approximation of the true specific heat 
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of the nanoparticle solution, the SAR value was calculated to be 1,175.56 
𝑊

𝑔
. The SAR value was 

normalized using the H = 37.4 
𝑘𝐴

𝑚
 and f = 270 kHz of the coil used to calculate the ILP value of 

3.1127 
𝑛𝐻𝑚2

𝑘𝑔
. Commercially available synthetic ferrofluids are reported to have ILP values of 

0.15-3.12 
𝑛𝐻𝑚2

𝑘𝑔
.
23

 

 Next, changes in iron precursor concentration effect in the modified seed growth method 

were investigated. To do this both first and second additions of Fe(acac)3 were increased. It was 

thought that the size distribution could be lowered while maintaining the larger crystallite sizes 

achieved by increasing the temperature. Table 3.7 lists the reactions where concentration and 

temperature were changed for the modified seed growth reactions. 

 

Table 3.7. Effect of various Fe(acac)3 concentrations in the modified seed growth on 

nanoparticle properties. 

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 

([
o
C/min]/mg)

b 
Crystallite 

size (nm) 

Hydrodynamic 

Diameter (nm) 
PDI

c
 

A2-24(195)_B2-24(195) 78.202 4.04 14.9 ± 0.74 37.52 0.219 

A2-24(205)_B2-24(205) 77.77 

 

5.55 19.5 ± 1.06 44.63 0.265 

A4-24(195)_B2-24(195) 75.12* 3.13 14.95 ± 2.03 29.5 0.36 

A4-24(195)_B4-24(195) 76.56* 4.48 13.4 ±1.61 31.94 0.121 

A4-24(205)_B4-24(205) 73.76 2.74 12.4 ± 1.11 26.67 0.146 

A4-24(195)_B6-24(195) 76.09 3.43 15.2 ± 1.50 26.6 0.112 

A4-24(205)_B6-24(205) 84.57 3.14 15.3 ± 2.45 28.2 0.14 

A6-24(195)_B2-24(195) 72.27 2.71 11.4 ± 1.25 43.89 0.305 

A6-24(195)_B4-24(195) 73.29 2.88 12.9 ± 0.92 23.5 0.176 

A6-24(195)_B6-24(195) 75.1* 2.58 14.1 ±0.98 26.19 0.231 
a
mass unit indicates grams of FeOx nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.925 percent weight of sample 
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 Increasing the concentration of the first addition, A4-24(195)_B2-24(195), produced 

nanoparticles with similar crystallite sizes of 14.95 ± 2.03 nm, but with a higher PDI value of 

0.36. This is an important reaction as the RF heating rate was decreased even though the 

crystallite size was very similar. This is most likely due to the larger PDI value. Increasing the 

concentration at the second addition was thought to be crucial to utilize Ostwald ripening to 

minimize the size distribution.
208,209

 When the second addition is lower than the first addition 

there may not be sufficient added monomers to facilitate size distribution focusing and/or retain 

crystalline growth. This can be seen when comparing reactions A4-24(195)_B2-24(195) and A4-

24(195)_B4-24(195). In reaction A4-24(195)_B2-24(195) the second addition of only 2 g 

resulted in more crystalline growth (14.95 ± 2.03 crystallite size and 29.5 nm hydrodynamic 

size) compared to reaction A4-24(195)_B4-24(195) having more amorphous growth (13.4 ±1.61 

crystallite size and 31.94 nm hydrodynamic size). The more amorphous growth is consistent with 

the theory of growth limited by reaction. The lower PDI value of 0.121 for reaction A4-

24(195)_B4-24(195) (compared to 0.36) most likely explains the higher measured RF heating 

rate of 4.48 [oC/min]/mg. Size distribution narrowing by increasing the second addition 

concentration can be explained by having a sufficiently high concentration of monomers where 

both seeds and newly formed nanoparticles will have an equal number of monomers in their 

diffusion layer.
212

 When this happens the smaller nanoparticles will grow at a faster rate and 

“catch up” to the larger seed nanoparticles that are growing; this process reduces the surface 

energy which is energetically favored.
212,213

 This means that when larger nanoparticles are 

produced after the first addition a higher concentration of monomers is required to maintain 

crystal growth and to reduce the size distribution. Even further reduction in size distribution with 

more crystalline growth was observed for reaction A4-24(195)_B6-24(195). Similar trend is seen 
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for reactions A6-24(195)_B4-24(195), and A6-24(195)_B6-24(195) when comparing to reaction 

A6-24(195)_B2-24(195). 

 

 3.3.6 Examination of Radiofrequency Induced Heating Properties 

 All of the benzyl alcohol reactions were compiled into Table 3.8 to assess the effects of 

nanoparticle characteristics and synthetic parameters on RF heating rate. Table 3.8 was sub 

categorized by color with nitrogen reactions listed in blue and reactions open to air in green. This 

color scheme coincides with the colors used in Figure 3.13 A-F to graphically compare the 

nanoparticle characteristics. Several interesting trends can be seen in these comparisons. 

 First, the reactions open to air all had higher Ms values between 70-85 emu/g except for 

reaction A2-24(150), whereas the nitrogen reactions were in the range of 48-58 emu/g, (Figure 

3.13 A,C,E). Thus, the presence of air during the reaction leads to higher magnetization 

saturation values and possibly magnetite instead of maghemite crystal structures. It is important 

to point out the Ms value differences as the RF heating is highest for reactions open to air as seen 

in Figure 3.13 E. 
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Table 3.8. Effect of various Fe(acac)3 concentrations, temperatures, and reaction environment on 

nanoparticle properties. Reactions are grouped by their reaction environment: nitrogen (blue) and 

open to air (green). 

Reaction Magnetization 

(emu/g)
a 

RF Heating 

([
o
C/min]/mg)

b 
Crystallite 

size (nm) 

Hydrodynamic 

Diameter (nm) 
PDI

c
 

N2-A2-24 53.39  6.47 ± 1.17 23.23 0.351 

N2-A2-24(150) 48.54* 0.01 5.65 ± 0.76 13.02 0.372 

N2-A2-24(175) 57.69 0.04 6.06 ± 0.52 11.51 0.306 

N2-A2-24(195) 57.09* 0.02 6.3 ± 0.89   

N2-A2-24(205) 57.56* 0.05 11.3 ± 0.73 38.48 0.152 

A2-24 70.839 0.170 8.8 ±0.61 13.64 0.703 

A2-24(125) - - - - - 

A2-24(150) 55.50 0.06 6.2 13.58 0.589 

A2-24(175) 70.91 0.689 

 

8.9 ±1.39 12.45 0.61 

A2-24(195) 74.322 0.175 8.1 ± 0.59 13.3 0.65 

A4-24 68.99 0.134 8.3 14.68 0.2 

A6-24 68.25 0.219 7.9 16.5 0.164 

A2-24(205) 73.09 2.76 14.1 ± 0.80 24.53 0.275 

A4-24(205) 73.79 1.86 11.7 ± 0.73 22.85 0.269 

A6-24(205) 71.19 0.85 8.2 ± 1.56 23.9 0.512 

A2-24_B2-24 75.7 2.536 14.4 ± 2.42 28.93 0.148 

A2-24_B2[cool addition]-24 72.488 0.670 9.5 ± 0.71 20.76 0.252 

A2-24(175)_B2-24(175) 77.89 1.004 11.6 ± 1.01 24.53 0.404 

A2-24(185)_B2-24(185) 77.249 1.068 11.2 ± 0.94 23.11 0.395 

A2-24(195)_B2-24(195) 78.202 4.041 14.9 ± 0.74 37.52 0.219 

A2-24(205)_B2-24(205) 77.77 5.55 19.5 ± 1.06 44.63 0.265 

A4-24(195)_B2-24(195) 75.12* 3.13 14.95 ± 2.03 29.5 0.36 

A4-24(195)_B4-24(195) 76.56* 4.48 13.4 ±1.61 31.94 0.121 

A4-24(205)_B4-24(205) 73.76 2.74 12.4 ± 1.11 26.67 0.146 

A4-24(195)_B6-24(195) 76.09 3.43 15.2 ± 1.50 26.6 0.112 

A4-24(205)_B6-24(205) 84.57 3.14 15.3 ± 2.45 28.2 0.14 

A6-24(195)_B2-24(195) 72.27 2.71 11.4 ± 1.25 43.89 0.305 

A6-24(195)_B4-24(195) 73.29 2.88 12.9 ± 0.92 23.5 0.176 

A6-24(195)_B6-24(195) 75.1* 2.58 14.1 ±0.98 26.19 0.231 

A2-2_B2-24 76.1 0.211 9.3 ± 0.45 20.07 0.373 

A2-2_B4-24 72.18 0.212 9.8 ± 1.33 17.72 0.304 

A2-2_B6-24 75.56 0.639 10.5 ± 1.02 19.42 0.368 
a
mass unit indicates grams of FeOx nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.925 and 0.88 percent weight of samples in air and under nitrogen 

respectively 
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Figure 3.13. Plots comparing nanoparticle properties with reactions under nitrogen and open to 

air indicated by blue diamonds and green triangles respectively. (A, B) Plots of crystallite size 

versus Ms and RF heating. (C, D) Plots of hydrodynamic diameter versus Ms and RF heating. (E) 

Plot showing Ms versus RF heating. (F) Plot of polydispersity index versus RF heating. 

 

 Next, there is a strong trend between crystallite size and RF heating. This was expected 

based on previously reported literature. Similarly there is a correlation between hydrodynamic 

diameter and RF heating, however it is hard to determine if this is a real trend or just due to the 

hydrodynamic diameter increasing as crystallite size increases. The linear correlation between 

hydrodynamic diameter and crystallite size can be seen in Figure 3.14 B. There potentially exists 
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an optimal crystallite to hydrodynamic size ratio for RF heating based on being able to provide 

maximum heat loss to surrounding solution. Figure 3.14 A indicates no clear correlation 

between crystallite size and size distribution. Therefore, the trend of increasing RF heating as 

size distribution decreases is most likely real. Overall, the effect of crystallite size, hydrodynamic 

diameter, and size distribution appear to have the most impact on RF heating. 

  

 

Figure 3.14. Plots comparing PDI versus crystallite size (A) and hydrodynamic diameter versus 

crystallite size (B) for reactions under nitrogen and open to air indicated by blue diamonds and 

green triangles respectively.  

 

 Based on these initial comparisons JMP software was used to screen the effects and 

determine which nanoparticle properties are significantly affecting RF heating. JMP software 

was also used to further elucidate the reaction parameters that significantly affect nanoparticle 

properties. All of the reactions open to air were used for effect screening. After determining 

which nanoparticle properties significantly affect the RF heating rates, a model was created and 

tested to determine its effectiveness in predicting RF heating based on nanoparticle properties. 

Likewise, models were created to determine nanoparticle properties based on reaction 

parameters. 
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  The effects of crystallite size, hydrodynamic diameter, PDI, magnetization saturation, 

and ratio of crystallite size to hydrodynamic diameter determined by volume (Volume CS/HS) 

on RF heating were analyzed for the seed growth syntheses listed in Table 3.9. The effect 

screening table is shown in Figure 3.9. Analysis of variance determined that crystallite size, PDI, 

and volume CS/HS were all significant (Table 3.11). Crystallite size had the most significant 

effect on RF heating. A model was created using least squares and emphasis on effect leverage 

of the significant nanoparticle properties to estimate the resultant RF heating. The ANOVA had a 

significance of <0.0001 indicating that the 3 nanoparticle properties did have a significant effect 

on the RF heating. The actual predicted fit plot is shown in Figure 3.15 and has an R
2
 value of 

0.95. The parameter estimates (Table 3.12) were used to formulate Equation 17 to predict RF 

heating, where CS and HD are crystallite size and hydrodynamic diameter. Crystallite size, 

volume CS/HS, and PDI had prob>t values of <0.0001, 0.0002, and 0.0002 respectively. 

 

Table 3.9. List of seed growth syntheses and nanoparticle properties used in the effect screening 

and predicted model. 

 

Crystallite 

Size 

Hydrodynamic 

Diameter PDI Ms 

RF 

Heating CS/HS 

Volume 

CS/HS 

A2-24(175)_B2-24(175) 11.4 24.53 0.404 77.89 1.00 0.46 0.1 

A2-24(185)_B2-24(185) 13.2 23.11 0.395 77.249 1.07 0.57 0.19 

A2-24(195)_B2-24(195) 15.2 37.52 0.219 78.202 4.04 0.41 0.07 

A6-24(195)_B2-24(195) 11.8 43.89 0.305 72.27 2.71 0.27 0.02 

A2-24(205)_B2-24(205) 19.4 44.63 0.265 77.77 5.55 0.43 0.08 

A6-24(195)_B4-24(195) 13.7 23.5 0.176 73.29 2.88 0.58 0.2 

A6-24(195)_B6-24(195) 14.9 26.19 0.231 75.10 2.58 0.57 0.18 

A4-24(195)_B2-24(195) 17 29.5 0.36 75.12 3.13 0.58 0.19 

A4-24(195)_B4-24(195) 14.6 31.94 0.121 76.56 4.48 0.46 0.1 

A4-24(195)_B6-24(195) 16.1 26.6 0.112 76.09 3.43 0.61 0.22 

A4-24(205)_B6-24(205) 14.4 28.2 0.14 84.57 4.19 0.51 0.13 

A4-24(205)_B4-24(205) 14.1 26.67 0.146 73.76 2.74 0.53 0.15 

A2-24(205)_B2-24(205) 17.8 43.92 0.19 75.59 5.36 0.41 0.07 



 

82 
 

Table 3.10. Effect screening of crystallite size, hydrodynamic diameter, PDI, magnetization 

saturation, and volume CS/HS on RF heating.  

 

 

 

Figure 3.15. The actual vs predicted RF heating fit of the model of crystallite size, PDI, and 

volume CS/HS on RF heating. 
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Table 3.11. ANOVA results for the predicted model effect of significant nanoparticle properties 

on RF heating.  

Source DF Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Model 3 22.58684 7.52895 62.4514 

Error 9 1.085012 0.12056 
Prob > 

F 

C. Total 12 23.67185 

 

<.0001 

 

Table 3.12. Parameter estimates for the model fit least squares of significant nanoparticle 

properties effecting RF heating. 

Term Estimate 

Std 

Error t Ratio Prob>|t| 

Intercept -0.26799 0.816764 -0.33 0.7503 

Crystallite Size 0.423428 0.04583 9.24 <.0001 

VOLUME CS/HS -9.93554 1.614326 -6.15 0.0002 

PDI -6.01891 1.016722 -5.92 0.0002 

 

RF=-0.26799+(0.423428*CS)+(-9.93554*Volume CS/HS)+(-6.01891*PDI)   (17) 

 

Table 3.13. Predicted and actual RF heating values. 

 RF Heating 

Synthesis Predicted Actual 

A3-24(205)_B3-24(205) 4.025245 3.037383 

A2.5-24(205)_B2.5-24(205) 2.387036 2.481686 

A2-24_B2-24 1.224124 1.092966 

 

 Using the properties of reactions A3-24(205)_B3-24(205), A2.5-24(205)_B2.5-24(205), 

and A2-24_B2-24 the RF heating values were predicted using Equation 17 as shown in Table 

3.13. The predicted RF heating values were in close agreement with measured RF heating values 

for reactions A2.5-24(205)_B2.5-24(205), and A2-24_B2-24. The A3-24(205)_B3-24(205) 
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predicted RF heating values were larger than the actual RF heating values (4.025245 

(oC/min)/mg vs. 3.037383 (oC/min)/mg). It is speculated that the model is a good predictor of 

the actual measured RF heating considering the large amount of compounding measurement 

errors. Further reactions would increase the validity of the model and increase the efficiency in 

predicting RF heating values.  

 Next, the reaction pararmeters of temperature, first addition, and second addition were 

investigated to screen for effects on resulting nanoparticle properties. Only crystallite size, PDI, 

and volume CS/HS were investigated as they were found to be the only significant predictors of 

RF heating. The effect screening was unable to predict crystallite size, PDI, or volume CS/HS 

with an acceptable R
2
 value. The effect screening identified a ‘null term’ indicating that there is 

some additional factor influencing the nanoparticle properties besides temperature, first addition 

amount, and second addition amount. Further investigation is needed to determine this additional 

effect. However, it is speculated that this could be due to the reaction concentration affecting the 

heating rate. Another possible explanation is that there is insufficient data regarding the 

nanoparticle properties at 24 hours after the first addition to accurately determine how the second 

addition affects the final resulting properties. Further analysis using the nanoparticle properties 

after 24 hours of reaction as a starting point for predicting increase in crystallite size could reveal 

the important parameter. 
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Chapter 4: Surface Functionalization of Benzyl Alcohol 

Synthesized Iron Oxide Nanoparticles 

 

 

 

4.1 Experimental Section 

 4.1.1 Reagents, Materials, and Equipment 

All chemicals and materials were used as received.  Water (H2O) (Fisher Scientific, Optima ® 

LC/MS grade), Tetramethylammonium hydroxide (TMAOH) solution (Alfa Aesar, 25% w/w 

aq.), poly (vinyl alcohol) (Polysciences, Inc., MW ~6000, 80 mol% hydrolyzed), bromoacetic 

acid (Alfa Aesar, 98+%), sodium hydroxide (NaOH) (Alfa Aesar, pearl, 97%), 70% ethanol 

(EtOH) (Sigma Aldrich, 200 proof for molecular biology), ethanol (Pharmco-AAPER, 190 proof 

ACS/USP grade), (3-Aminopropyl)trimethoxysilane (APTS) (Alfa Aesar, 97%), (3-

aminominopropyl)triethoxysilane (APTES) (Alfa Aesar, 98%), (3-Glycidyloxypropyl)

trimethoxysilane (GLYMO) (Acros Organics,98%), L-cysteine (Cys) (Alfa Aesar, 98+%), DL-

serine (Ser) (Alfa Aesar, 99%), DL-arginine (Arg) (Alfa Aesar, 98%), DL-lysine 

monohydrochloride (Lys) (Alfa Aesar, 99%), DL-Threonine (Thr) (Alfa Aesar, 99%), glycine 

(Gly) (Alfa Aesar, 99%), L-glutamine (Gln) (Sigma, ≥99%), L-(+)-asparagine (Asn) (Alfa Aesar, 

99%), hydroxylamine HCl, citric acid, anhydrous (BDH, 99.5-100.5%), (S)-(-)-4-Amino-2-
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hydroxybutyric acid (SAHBA) (Aldrich Chemistry, 96%), γ-aminobutryic acid (ABA) (Sigma 

Life Science ≥99%), ethylenediamine (EDA) (Acros Organics, 99+%, extra pure), 

tetraethylenepentamine (TEPA) (Acros Organics, technical grade), hydrochloric acid (HCl) 

(Fischer, Optima
TM

, 32-35%), 0.2 μm filter (PALL Life Sciences, Acrodisc® Syringe Filter 0.2 

μm Supor® Membrane Low Protein Binding), 30k, and 100k molecular weight cutoff (MWCO) 

centrifuge filter (PALL Life Sciences, Macrosep® Advance Device), PD-10 desalting column 

(GE Healthcare, Sephadex® G-25 medium), Fe inductively coupled plasma (ICP) standard (Alfa 

Aesar, Iron, plasma standard solution, Specpure®, Fe 1000 µg/mL), hydrochloric acid solution 

(HCl) (Electron Microscopy Sciences, 20%), potassium ferrocyanide aqueous solution (Prussian 

Blue) (Electron Microscopy Sciences, 20%), S-2-(4-Aminobenzyl)-1,4,7,10-

tetraazacyclododecane tetraacetic acid (DOTA) (Macrocyclics), 
177

LuCl3 (Perkin Elmer), 1-

Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (Thermo Scientific),  N-

hydroxysulfosuccinimide (S-NHS) (Thermo Scientific), β–mercaptoethanol (Sigma Aldrich), 

ammonium hydroxide (Fisher Scientific, Optima grade), 0.25 M ammonium acetate , and 0.1 M 

2-(N-morpholino)ethanesulfonic acid (MES) buffer containing 0.9% NaCl (Optima grade 

NH4OH adjusted pH =6.4). 

 

 4.1.2 Synthesis of Carboxymethylated Polyvinyl Alcohol (CMPVA)  

 Polyvinyl alcohol (PVA) can be reacted with bromoacetic acid and base to synthesize 

carboxymethylated polyvinyl alcohol (CMPVA) as previously reported.
94,130

 First, three different 

solutions were made including: Solution A – 5 g of PVA dissolved in 50 mL of H2O, Solution B 

– 5.324 g of sodium hydroxide (NaOH) dissolved in 25 mL of H2O, and Solution C – 11.575 g of 

bromoacetic acid dissolved in 200 mL of 70% ethanol (EtOH). To Solution C 3.33 g of NaOH 



 

87 
 

was added slowly and stirred to dissolve. Solution A was set on a stirring hot plate and heated to 

50°C with constant stirring prior to slow addition of Solution B. Next, a drop wise addition of 

Solution C, to the mixed Solution A and B was carried out and reacted under a reflux condenser 

for five hours to carboxymethylate the PVA. After carboxymethylation, the pH of the CMPVA 

was measured and adjusted to approximately 6.0 with a 1 M solution of hydrochloric acid. The 

CMPVA was then precipitated out of solution by addition of cold EtOH. The precipitated 

CMPVA in cold EtOH was centrifuged at 3,000×g for 15 minutes (Thermo Scientific, Sorvall 

Legend X1R centrifuge) to remove any unreacted chemicals. This process was repeated 3-6 

times to fully wash the CMPVA. The washed CMPVA was then dried using a vacuum oven set 

at 50°C for one week.  

  

 4.1.3 Surface Functionalization with CMPVA 

 To modify the surface with CMPVA, 40 mg of dry FeOx nanoparticles were sonicated 

for 180 minutes in 2 mL of 0.0625%, 0.125%, 0.25%, or 0.5% w/w aqueous tetramethyl 

ammonium hydroxide (TMAOH) solution. Dispersing the nanoparticles prior to addition of 

surface functionalization ligands is crucial to efficiently surface functionalize individual 

nanoparticles. During the entire surface functionalization procedure the nanoparticles were not 

magnetically stirred to prevent possible aggregation due to magnetic fields causing additional 

interparticle attraction. A 40 mg/mL CMPVA solution was made by dissolving dry CMPVA in 

water with low heating and stirring. Next, 10 mL of the 40 mg/mL CMPVA solution was diluted 

with 9.5 mL of H2O immediately prior to addition of 0.5 mL of the nanoparticle TMAOH 

solution. This solution was sonicated for 180 minutes. The initial dilution of CMPVA was found 

to aid in the nanoparticle surface functionalization. It is thought that surface functionalization is 
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more efficient at lower concentrations of nanoparticles, which reduces the distance between 

nanoparticles during CMPVA surface functionalization. The nanoparticle CMPVA solution was 

allowed to sit for one week. In first attempts at surface functionalization with CMPVA the 

nanoparticle CMPVA solution was allowed to sit for 2 weeks, however the particles initially 

became clear at 1 week. Therefore, 1 week was chosen as the minimal amount of time, since 

nanoparticles in CMPVA were still turbid at 24-48 hours.  

 Next, CMPVA-FeOx nanoparticles were washed using a 30k molecular weight cut-off 

(MWCO) centrifugal filter spun at 4,000×g to remove excess CMPVA and any residual 

TMAOH. This centrifuge process also concentrated the nanoparticle solution. This concentrated 

solution was transferred to a clean vial and sonicated briefly (15 minutes) to aid in proper re-

dispersion. Further clean-up was carried out using a disposable PD-10 desalting column that was 

equilibrated with H2O. This step was used to remove non-functionalized or aggregated 

nanoparticles as well as any remaining TMAOH. The desalting column diluted the sample 

slightly, so an additional 30k centrifuge filter was spun at 4,000×g for one hour. A 0.2 µm sterile 

filter was used in a biosafety laminar flow hood to sterilize the CMPVA-FeOx nanoparticles and 

remove any CMPVA-FeOx clusters larger than 200 nm.  

 

 4.1.4 Surface Functionalization with APTS or APTES  

 Surface functionalization with APTS or APTES was performed by adding 10 mg of dry 

FeOx nanoparticles to a 0.125% TMAOH solution. This was sonicated for 30 minutes to disperse 

the nanoparticles. Prior to addition of APTS or APTES the nanoparticle TMAOH solution was 

diluted with 8 mL of H2O and vortexed briefly (10 seconds). Immediately after dilution, either 

1.78 mL of (3-Aminopropyl)trimethoxysilane (APTS) or 2.38 mL (3-



 

89 
 

aminominopropyl)triethoxysilane (APTES) was added dropwise followed by a quick  10 second 

vortex spin. The surface modification reaction was magnetically stirred at 60°C for one hour. 

The solution pH was adjusted to about 7.4 with 32-35% hydrochloric acid (HCl) solution. 

Magnetic separation for 1 hour was used to pull out partially, incompletely, or aggregated 

surface functionalized nanoparticles. The remaining clear honey colored top solution was 0.2 μm 

filtered to remove any large APTS or APTES nanoparticles as well as any excess reacted APTS 

or APTES that may clog up the centrifuge filter. This solution was then washed 3-5 times with 

H2O in a 30k MWCO centrifuge filter spun at 4,000rpm for 10 minutes in a swing bucket 

centrifuge. In the final wash step the solution was concentrated to 1.5 mL and the pH was 

readjusted to about 7.4.  Sterile filtration with a 0.2 μm filter in a biosafety laminar flow hood 

was used to obtain the final sterile surface functionalized product. 

 

 4.1.5 Surface Functionalization with GLYMO and Base Catalyzed 

Epoxide Ring Opening with Nucleophiles 

 The surface functionalization process with GLYMO started with adding 10 mg of dry 

FeOx nanoparticles to 10 mL of 0.125% TMAOH solution. The nanoparticle TMAOH solution 

was sonicated for 30 minutes to fully disperse the nanoparticles. This solution was then further 

diluted upon addition of 8 mL of H2O prior to addition of 2.25 mL of 3-Glycidyloxypropyl 

trimethoxysilane (GLYMO) (0.0114 mol). It is essential that the GLYMO be added all at once 

rather than dropwise to facilitate efficient surface modification. Following the GLYMO addition, 

the solution was vortexed for 10 seconds and then magnetically stirred and heated at 60°C for 1 

hour. After approximately 15 minutes of reaction the solution changed colors from a clear brown 

solution to a muddy brown solution. This indicated surface modification with GLYMO, as the 
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terminal epoxy groups should render the nanoparticles unstable at the high pH. The three 

membered epoxy ring was opened through a base catalyzed reaction with addition of a 

nucleophile. This reaction could have been acid-catalyzed, but this was not done as low pH could 

start to dissolve the surface of the FeOx nanoparticles. Additional base (1.6 mL of 25% 

TMAOH) was added immediately prior to addition of 1:1 molar ratio of the following 

nucleophiles: glycine (Gly) (0.86 g), DL-serine (Ser) (1.2g), γ-aminobutyric acid (ABA) (1.18 

g), or (S)-(-)-4-amino-2hydroxybutyric acid (SAHBA) (1.36 g), L-cysteine (Cys) (1.38 g), DL-

lysine-monohydrochloride (Lys) (2.08 g), L-glutamine (Gln) (1.67 g), DL-arginine (Arg) (1.86 

g), L-(+)-asparagine (Asn) (1.51 g), DL-Threonine (Thr) (1.36 g), hydroxylamine (0.79 g) or 

citric acid, anhydrous (2.19 g). Ethylenediamine (EDA) (0.763 mL) or tetraethylenepentamine 

(TEPA) (2.18 mL) were also used, but no additional TMAOH base was added as these chemical 

compounds are inherently basic. The reaction was continued at 60°C with magnetic stirring for 1 

hour. At this point the reaction was removed from heat and the pH was adjusted with 32-35% 

HCl to a pH of about 7.4. As a first cleanup step any nanoparticles that were not stable were 

magnetically separated for 1 hour. Only the top clear honey colored stable solution of 

nanoparticles was removed and subjected to a 0.2 μm filter. Next, the particles were washed with 

water 3-5 times in a 30k molecular weight cutoff (MWCO) centrifuge filter spinning at 4,000 

rpm for 10 minutes. The final wash was spun down to approximately 3 mL and the solution was 

then subjected to a disposable PD-10 desalting column equilibrated with water or PBS. As a final 

step the nanoparticles pH was checked and adjusted to 7.4 and then sterilized with a 0.2 μm filter 

in a biosafety laminar flow hood to obtain the final product. 
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4.1.6 EDC Coupling DOTA Chelate and Radiolabeling 

 The SAHBA-FeOx and CMPVA-FeOx nanoparticles were linked to DOTA metal chelate 

by EDC coupling reaction. First, 500 µL of SAHBA-FeOx or CMPVA-FeOx were mixed with 

500 µL of 0.1 M MES buffer (NH4OH adjusted pH=6.4). Next, 100 mg of EDC was dissolved in 

500 µL Ultra H2O and 100 mg of S-NHS was dissolved in 500 µL Ultra H2O. Activation of the 

carboxyl groups was performed by addition of 100 µL of EDC solution. The activated carboxyl 

groups were stabilized by addition of 100 µL of the S-NHS solution. After 10 mins 2 µL of β–

mercaptoethanol was added. In 100 µL of Ultra grade H2O 2 mg of DOTA was dissolved and 

then added to the FeOx in MES buffer to form an amide bond between the terminal amine on the 

DOTA chelate and the activated carboxyl groups of SAHBA-FeOx or CMPVA-FeOx. The 

reaction was allowed to react for 1.5 hours, before quenching with 100 µL of 0.275 M 

hydroxylamine. The resultant DOTA-SAHBA-FeOx or DOTA-CMPVA-FeOx were buffered 

exchange with a PD-10 column equilibrated with ammonium acetate.  

 Radiolabeling with 
177

Lu was performed by adding 40 µL of 
177

LuCl3 (~10 mCi) and 20 

µL of NH4OH to the DOTA-SAHBA-FeOx or DOTA-CMPVA-FeOx in ammonium acetate. 

The maximum beta energy of 
177

Lu is 0.497 MeV (79%), but the average beta energy is 0.13 

MeV. The 
177

Lu also has two gamma energies at 208 keV (11%) and 113 keV (6.4%). The 

chelation of 
177

Lu by DOTA was carried out at 40°C in a silicon oil bath overnight. The silicon 

oil bath was magnetically stirred. An MCX column was used to remove any free 
177

Lu from 

177
Lu-DOTA-SAHBA-FeOx or 

177
Lu-DOTA-CMPVA-FeOx. A PD-10 column was used to 

buffer exchange 
177

Lu-DOTA-SAHBA-FeOx or 
177

Lu-DOTA-CMPVA-FeOx into non-sterile 

DPBS and to remove any free 
177

Lu-DOTA or DOTA chelate. The ‘washed’ 
177

Lu-DOTA-

SAHBA-FeOx or 
177

Lu-DOTA-CMPVA-FeOx were then concentrated using a 3k MWCO 
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centrifuge filter spinning at 4,000 rpm in a swing bucket centrifuge for 10 minutes. The final 

product was obtained by 0.2 µm filtering in a sterile laminar flow hood.  

 

4.2 Characterization Techniques 

 4.2.1 Fourier Transform Infrared (FTIR) Attenuated Total Reflectance 

(ATR) Spectroscopy  

 Fourier transform infrared (FTIR) attenuated total reflectance (ATR) spectroscopy is 

paramount when analyzing the chemistry of colloid surfaces such as surface functionalized FeOx 

nanoparticles.
214

 The ability to analyze the surface functionalization in the aqueous environment 

is advantageous as it prevents the possibility of altering the surface functionalization during 

drying steps or removal from the aqueous environment.
214

 The attenuated total reflectance 

utilizes the properties of an internal reflectance element (IRE) with a high refractive index. These 

properties allow for the interface between the IRE and sample to be probed with infrared 

radiation. When the infrared radiation interacts with the interface an evanescent wave will 

penetrate slightly into the sample and absorb resulting in an absorption spectrum.
214

 The depth of 

penetration (dp) depends on the incident wavelength (λ), refractive index of IRE (n1), refractive 

index of sample (n2), and angle of incidence (θ) (Equation 18).
214

  

 d𝑝 =
𝜆

2𝜋𝑛1√sin2 𝜃−(
𝑛2
𝑛1

)
2
     (18) 

When the infrared light interacts with the surface of the sample, after passing through the IRE, 

the created perpendicular standing wave becomes ‘attenuated’ if the sample absorbs the infrared 

light.
214

 The refractive wave will lose some energy and is termed ‘attenuated total reflectance’.
214
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 FTIR-ATR spectroscopy was performed on a Thermo Scientific Nicolet 6700 equipped 

with a smart iTR for ATR to analyze liquid or dry samples. Single bounce ATR was used to 

examine all samples placed on the diamond crystal. The ATR system used has a penetration 

depth of 2.03 μm at an incident wavelength of 1000 cm
-1

, an incident wavelength angle of 42º, 

and a refractive index of 2.4.    

  

 4.2.2 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) was performed on a Thermo Scientific 

ESCALAB 250 spectrometer using a monochromatic Al Kα X-ray source (1486.6 eV).  External 

and internal flood guns were utilized to account for the organic coatings with charge 

composition. Sample preparation involved pressing nitrogen dried samples onto a strip of indium 

foil and attachment to the sample holder with double-sided adhesive carbon tape. CasaXPS 

software was used to analyze all data. Adventitious carbon at 284.8 eV was used to correct the 

observed binding energies.  

4.2.3 High-Performance Liquid Chromatography (HPLC) 

High-performance liquid chromatography (HPLC) was performed using a Waters isocratic 

HPLC system, equipped with UV-VIS absorbance and radioactivity (Bioscan) detectors to 

determine the radiochemical purity of radiolabeled FeOx nanoparticles eluted from a size 

exclusion-gel permeation chromatography column. The buffer used was 90% 50 mM ammonium 

acetate and 10% methanol. Aqueous samples were loaded before DOTA coupling to FeOx, after 

radiolabeling and MCX column, and after PD-10 column wash steps. 
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4.3 CMPVA Discussion 

 4.3.1 Surface Functionalization and Optimization for Biostability 

 The following naming system was used to keep track of the different types of surface 

functionalizations. The abbreviation of the respective surface functionalization precedes ‘FeOx’ 

and is separated by a hyphen. For example, carboxymethylated polyvinyl alcohol surface 

functionalized FeOx nanoparticles are referred to as ‘CMPVA-FeOx’. Any additional 

modifications to the surface functionalization will precede the surface functionalization 

abbreviation and will also be separated by a hyphen. 

Carboxymethylated polyvinyl alcohol (CMPVA) was used to provide colloidal and 

biological stability as well as providing terminal carboxyl groups for future conjugation. 

Optimization of this process is beneficial to facilitate higher yield, better biological stability, and 

increased biofunctionalization potential. The carboxyl groups on CMPVA polymer interact 

strongly with the surface iron atoms of FeOx nanoparticles and create a hydrophilic surface due 

to terminal carboxyl and hydroxyl groups.
94

 Therefore, it is important to optimize the surface 

functionalization process to ensure that an adequate number of carboxyl groups interact with the 

FeOx surface and a sufficient number of carboxyl groups are oriented outward to provide 

solution stability and sites for further conjugation. Optimization is especially important to 

determine how to effectively surface functionalize differently sized nanoparticles as even small 

changes in nanoparticle size will have drastic differences in surface area to volume ratio for a 

given gram amount of material. Several parameters were investigated to determine how to best 

adjust reaction parameters to functionalize varying nanoparticle sizes.  

 First, the carboxymethylation of polyvinyl alcohol was confirmed by FTIR-ATR 

spectroscopy of CMPVA. The spectrum from FTIR-ATR of CMPVA is shown in Figure 4.1.  
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Figure 4.1. The FTIR spectra shown as % transmittance vs wavenumber is shown with polyvinyl 

alcohol in blue, and carboxymethylated polyvinyl alcohol in red. Peaks at 1640, 1583 and 1417 

indicate the presence of carboxylate anion and the peak at 1089 cm
-1

 indicates the ether group. 

Polyvinyl acetate presence was indicated by peak at 1730 cm
-1

. The disappearance of the 1730 

cm
-1

 peak and appearance of peaks at 1600 and 1417 cm
-1

 are indicative of acetate groups being 

replaced by carboxylate ion groups in CMPVA.  

 

Peaks at 1640 and 1417 cm
-1

 are indicative of asymmetrical C=O stretching mode for 

carboxylate ion and the peak at 1089 cm
-1

 indicates asymmetrical stretching of C-O-C 

respectively.
215

 Typically the surface functionalization of FeOx nanoparticles with CMPVA 

involves a difficult phase transfer process to establish aqueous colloidal stability. The as 

synthesized nanoparticles were stable in organic solutions such as chloroform and were 

transferred to an aqueous 1.5% TMAOH solution by mixing overnight. The dry FeOx 
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nanoparticles produced by the modified seed growth method in benzyl alcohol were uniquely 

able to be dispersed in TMAOH directly and without the use of organic solutions such as 

chloroform. This is one large advantage to using the benzyl alcohol synthesized nanoparticles. 

The previously reported CMPVA surface functionalization methods did not provide long term 

colloidal stability in PBS, tissue culture medium, or other biologically relevant medium. It was 

thought that the previous methods had been optimized for their particular FeOx nanoparticle 

synthesis and certain factors may influence the efficiency of surface modification including pH, 

nanoparticle diameter, base concentration, and number of polymer per nanoparticle. These 

factors were investigated in an attempt to improve surface functionalization efficiency. 

 The concentration of TMAOH used was first investigated as the initial step is to disperse 

the nanoparticles in a TMAOH solution. It is advantageous to have well dispersed nanoparticles 

to properly surface functionalize individual nanoparticles and thus limit the amount of bridging 

or coating of aggregated nanoparticles. Low and high concentrations of base can lead to 

insufficient nanoparticle separation. Several concentrations (0.0625%, 0.125%, 0.25%, and 0.5% 

w/w TMAOH) were used to disperse the nanoparticles (20 mg/mL; 40:1 CMPVA to FeOx mass 

ratio). FeOx nanoparticles in these TMAOH solutions were analyzed with DLS to determine 

differences in hydrodynamic diameter and dispersion of nanoparticles. The hydrodynamic 

diameters were similar (26.42 ± 1.31 nm) as well as the PDI values throughout the different 

TMAOH concentrations as shown in Table 4.1. At each step in the surface functionalization 

procedure and wash steps DLS was performed. This provided an easy way to analyze the initial 

base concentration effect on efficiency of surface functionalization.  
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Table 4.1. Initial hydrodynamic diameters and PDI values for various v/v % concentration of 

TMAOH. 

% TMAOH 
Hydrodynamic 

Diameter (nm) 
PDI

a
 

0.0625 25.99 0.38 

0.125 29.96 0.363 

0.25 23.61 0.39 

0.5 26.12 0.41 

a
Polydispersity Index (PDI) determined by DLS. 

 

The results from the DLS investigation are shown in Figure 4.2. Aliquots were taken from four 

time points throughout the surface functionalization procedure and were labelled steps 1-4. 

Aliquots were taken before 30k MWCO centrifuge filter (step 1), after 30k MWCO centrifuge 

filter (step 2), and first (step 3) and second (step 4) fractions of elution from disposable PD-10 

desalting column. Large hydrodynamic diameters indicate possible bridging between 

nanoparticles and/or functionalizing an aggregation of nanoparticles. Large PDI values indicate 

large size distributions which are indicative of multiple size populations and/or aggregation. As 

can be seen with the 0.0625% TMAOH nanoparticle solution the PDI value was 0.51 and only 

5% of nanoparticles were not above 1000 nm (Figure 4.2 A). This is in accordance with the 

visual observation that the solution became turbid and had visible aggregation and precipitation 

after CMPVA was introduced. It was not surprising that subsequent steps 2-4 also contained 

large hydrodynamic diameters and PDI values.  
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Figure 4.2. DLS hydrodynamic size measurements at 4 steps throughout the surface 

functionalization process with CMPVA based on several TMAOH concentrations. The 

concentrations of TMAOH used were (A) 0.0625% TMAOH, (B) 0.125% TMAOH, (C) 0.25% 

TMAOH, and (D) 0.5%. The four steps when aliquots were taken are listed in order: before and 

after a 30k MWCO centrifuge filter and 1
st
 and 2

nd
 elution fractions from a PD-10 desalting 

column. Small, medium, and large hydrodynamic diameters correspond to inadequately 

functionalized (red), adequately functionalized (blue), or aggregated nanoparticles (green). 

 

To investigate if the pH after addition of CMPVA was sufficient in maintaining dispersion, 

samples of CMPVA only and FeOx nanoparticles containing CMPVA were titrated with 

TMAOH. The pH changes upon addition of 6.25% TMAOH to solutions of CMPVA only and 
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FeOx nanoparticles containing CMPVA are shown in Figure 4.3. Identical reaction 

concentrations of CMPVA and nanoparticles were used when titrating with 6.25% TMAOH. 

 

 

Figure 4.3. Solutions of CMPVA (blue) and FeOx nanoparticles with CMPVA (red) titrated 

with 6.25% TMAOH. Several markers indicate solution pH when TMAOH concentrations used 

in the DLS study were reached. 

 

A pH above 8.5 was deemed necessary to maintain a dispersion of nanoparticles for efficient 

surface functionalization with CMPVA. It was concluded that 0.0625% TMAOH offered a 

sufficiently high pH to initially disperse the nanoparticles, but the nanoparticles quickly 

aggregated due to a pH drop upon addition of CMPVA. As can be seen in Figure 4.3 the pH of 

nanoparticles with CMPVA at 0.0625% drops below 8.5 to a pH of 6.89. Next, the pH changes at 
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the 0.5% TMAOH solution in Figure 4.3 revealed that the 0.5% TMAOH concentration 

provided dispersion for the functionalization with CMPVA (steps 1 and 2 in Figure 4.2 D), 

however after elution from the PD-10 desalting column (steps 3 and 4 in Figure 4.2 D) it is 

apparent that removal of TMAOH by the desalting column resulted in the nanoparticles 

aggregating and crashing out of solution. This instability was further confirmed by a large 

amount of crashed nanoparticles on the PD-10 column and the large percentage by volume 

(>90%) with hydrodynamic diameters exceeding 1000 nm. The crashed nanoparticles on the PD-

10 column were most likely stabilized by TMAOH only since nanoparticles dispersed in 

TMAOH only completely crashed when loaded on to a PD-10 desalting column. All of these 

observations and results leads to the interpretation that the high concentration of TMAOH 

prevented an adequate exchange of TMAOH with CMPVA. A high concentration gradient of 

TMAOH results in retention of more TMAOH than CMPVA resulting in TMAOH molecules 

being more likely to re-interact with the FeOx surface. While the 0.5% TMAOH solution 

resulted in mainly unstable nanoparticles there was a small population of 188.8 and 173.7 nm 

hydrodynamic diameter nanoparticles that were attributed to ‘inadequately functionalized’ 

CMPVA surface functionalized nanoparticles. They were termed this because they displayed 

aggregation and loss of colloidal stability over time. It is thought that the removal of TMAOH 

led to reordering of the CMPVA on FeOx nanoparticles leading to bridging and aggregation. 

This exemplifies the importance of the PD-10 desalting column step to increase the long term 

stability and separate a stable population. While the 0.5% TMAOH solution resulted in surface 

functionalization of a small population of nanoparticles, this concentration did not produce the 

desired long term stability.  
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 The 0.125% and 0.25% TMAOH FeOx nanoparticle solutions resulted in stable CMPVA 

surface functionalized nanoparticles. There were crucial differences that can be seen after elution 

from the PD-10 desalting column (step 3- Figure 4.2 C). It can be seen that 20% of the 

population of the 0.25% TMAOH nanoparticle solution is inadequately functionalized. Similar to 

the 0.5% TMAOH step 3 and 4, the removal of TMAOH from the 0.25% TMAOH nanoparticle 

solution revealed that there was a population that was not fully functionalized and would lead to 

aggregation through bridging and/or reordering of CMPVA polymers. Interestingly, when the 

TMAOH was removed in steps 3 and 4 for the 0.125% TMAOH nanoparticles solution the 

population shifted from a 50:50 population of adequately to inadequately functionalized 

nanoparticles to 100% adequately surface functionalized nanoparticles. Additionally, the PDI 

values for 0.125% and 0.25% TMAOH nanoparticles solutions were 0.169 and 0.163 

respectively indicating small size distributions and minimal aggregation or crashing. Since, 

0.125% TMAOH nanoparticle solution had a larger initial population of adequately CMPVA 

surface functionalized nanoparticles (step 1) it resulted in a higher overall yield. Of the four 

TMAOH concentrations tested the 0.125% was chosen as the best concentration for CMPVA 

surface functionalization. 

 Subsequently, the above conditions were tested on a different size of nanoparticles to 

determine the methods applicability. Reaction A2-24_B2-24 nanoparticles (used in TMAOH 

concentration study) had a crystallite size of 12.8 nm and a hydrodynamic diameter of 28.9 nm. 

Nanoparticles produced by reaction A2-24(195)_B2-24(195) were chosen as they had a 

crystallite size of 15.2 nm and a hydrodynamic diameter of 37.5 nm. First, the same surface 

functionalization conditions and methods as above were tested on the larger nanoparticles (20 

mg/mL CMPVA, 0.125% TMAOH, and same mass ratio of CMPVA to nanoparticles). This 
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method did indeed functionalize the surface with CMPVA; however the final product’s 

hydrodynamic size was 310.97 ± 51 nm which resulted in aggregation and precipitation. 

Additionally, this size is too large to be sterile filtered and is therefore less applicable regardless 

of stability. The large resultant hydrodynamic diameter was thought to be a result of excessive 

CMPVA concentration leading to higher chances of crosslinking or bridging of multiple 

nanoparticles. The same mass amount of smaller nanoparticles contains a greater number of total 

nanoparticles and a larger total surface area which greatly offsets the ratio of CMPVA to 

nanoparticles. An approximate ratio of number of CMPVA molecules to number of FeOx 

nanoparticles or total surface area was calculated. The nanoparticles were treated as spheres as 

TEM confirmed spherical nanoparticle morphology. The surface area and volume of a sphere 

were used to simplify the calculations. The density of magnetite (5.17 g/cm
3
) was used when 

determining the number of nanoparticles in 10 mg of sample by mass. The total number of 

nanoparticles and surface area of one nanoparticle were used to determine the total surface area 

of 10 mg of nanoparticles. The 400 mg of CMPVA, used to functionalize the surface of A2-

24_B2-24 nanoparticles, equates to 66.67 μmoles or 4.015×10
19

 of 6,000 molecular weight 

CMPVA. The surface area, volume and mass of one nanoparticle are shown in Table 4.2 to 

illustrate the large differences of particle properties with small changes in the diameter of 

nanoparticles.  

 

 

 

 



 

103 
 

Table 4.2. Values of nanoparticle properties calculated using crystallite and hydrodynamic 

diameter. 

Crystallite 

diameter (nm) 

Volume 

(m^3) 

SA 

(m^2) SA/V 

Mass of 

1 NP (g) 

12.8 1.10E-24 5.15E-16 0.47 5.68E-18 

15.2 1.84E-24 7.26E-16 0.39 9.51E-18 

Hydrodynamic 

Diameter (nm)         

28.9 1.26E-23 2.62E-15 0.21 6.53E-17 

37.5 2.76E-23 4.42E-15 0.16 1.43E-16 

 

The total number and total surface area of nanoparticles in 10 mg sample are shown in Table 

4.3. These ratios were used to determine the amount of CMPVA to use for the investigation of 

surface functionalizing larger nanoparticles by matching the ratios used in the TMAOH 

optimization for CMPVA surface functionalization. 

 

Table 4.3. Total number and surface area of nanoparticles in 10 mg are shown based on different 

crystallite and hydrodynamic diameters. The ratio of the number of CMPVA molecules to both 

nanoparticles and total surface area are also shown. 

Crystallite 

diameter (nm) 

# of NP in 

10 mg 

SA in 10 mg 

(m^2) 

#of 

CMPVA:NP 

# of 

CMPVA:SA 

12.8 1.76E+15 9.07E-01 2.28E+04 4.43E+19 

15.2 1.05E+15 7.64E-01 3.82E+04 5.26E+19 

Hydrodynamic 

Diameter (nm)         

28.9 1.53E+14 4.02E-01 2.62E+05 1.00E+20 

37.5 7.01E+13 3.09E-01 5.73E+05 1.30E+20 

 

Based on the ratios calculated it was determined that when the crystallite size increased from 

12.8 to 15.2 nm the CMPVA concentration should be 11.9 mg/mL. Likewise, based on 

hydrodynamic diameter increase from 28.9 to 37.5 nm the CMPVA concentration should be 9.15 
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mg/mL. When the CMPVA concentration was adjusted based on surface area it was determined 

that 16.8 mg/mL and 15.4 mg/mL be used respective of calculations using crystallite or 

hydrodynamic diameter. It should be noted that the original article
94

 used slightly different 

crystallite (15 nm instead of 15.2 nm) and hydrodynamic diameter (30 nm instead of 28.9 nm 

and 37 nm instead of 37.5 nm) values which resulted in calculating 12.4 mg/mL and 10.7 mg/mL 

CMPVA concentration based on total number of particles for crystallite and hydrodynamic size 

respectively and 17.1 mg/mL and 16.2 mg/mL based on total surface area for crystallite and 

hydrodynamic size respectively. Since, hydrodynamic diameter is larger than the particle size 

and crystallite size is smaller than the particle size the values were averaged. Optimally 2.28×10
4
 

CMPVA molecules should be used for every one nanoparticle or 4.43×10
19

 CMPVA molecules 

should be used based on the total surface area of 10 mg. Using the same mass amount of A2-

24(195)_B2-24(195) nanoparticles the above averaged values were used to determine if 

calculations based on total number or total surface area is more accurate. Two surface 

functionalization attempts with 11.6 mg/mL and 16.7 mg/mL of CMPVA (values from original 

article that were tested) were used in place of 20 mg/mL CMPVA originally used. Aliquots of 

the two surface functionalizations were taken before and after a 30k MWCO centrifuge filter and 

from 3 elution fractions from a PD-10 desalting column to compare the efficiency (Figure 4.4). 

It was determined that adjusting the CMPVA concentration based on number of nanoparticles 

(11.6 mg/mL of CMPVA) lead to more efficient functionalization of nanoparticles.  
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Figure 4.4. DLS hydrodynamic size measurements based on volume for different CMPVA 

concentrations based on total number of nanoparticles (A) (11.5 mg/mL CMPVA) or surface 

area (B) (16.6 mg/mL) in 10 mg of FeOx nanoparticles at various steps in the clean-up process. 

Depending on the hydrodynamic size the volume population of nanoparticles was labelled as 

either functionalized (blue), partially functionalized (red), or aggregated (green) nanoparticles. 

The four steps when aliquots were taken are listed in order: before and after a 30k MWCO 

centrifuge filter and 1
st
 and 2

nd
 elution fractions from a PD-10 desalting column. 

 

The resultant CMPVA nanoparticles had an average hydrodynamic size of 199.97 ± 34.04 nm 

(50%) and 54.79 ± 24.53 nm (50%) with a PDI of 0.206 (Figure 4.4).  The hydrodynamic size of 

A2-24(195)_B2-24(195) CMPVA nanoparticles is slightly larger than the A2-24_B2-24 

CMPVA nanoparticles, but they were stable in various media. This was expected since A2-

24(195)_B2-24(195) nanoparticles had a larger crystallite and hydrodynamic size before 

CMPVA surface functionalization. The CMPVA surface functionalization based on surface area 
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had a majority of nanoparticles with large hydrodynamic diameters (approaching 1000 nm). This 

suggests that the nanoparticles were aggregating due to a high concentration of CMPVA. 

 CMPVA surface functionalization of A4-24(195)_B6-24(195) nanoparticles for broad 

stability assessment was carried out with some minor modifications to the CMPVA surface 

functionalization method. These modifications were used as they more closely resemble the 

surface modification procedure of APTS, APTES, and GLYMO that were used in the stability 

assessment. The initial dispersion of nanoparticles in TMAOH solution was only sonicated for 

30 minutes prior to addition of CMPVA solution. The time allotted for CMPVA modification of 

the surface was 24 hours instead of 1 week. FTIR-ATR was used to confirm successful surface 

functionalization with CMPVA. Figure 4.5 displays the FTIR-ATR spectra of bare FeOx 

nanoparticles and water. The normalized FTIR-ATR spectra of CMPVA nanoparticles with 

water subtracted out is shown in Figure 4.6. FTIR-ATR was carried out on CMPVA-FeOx in 

solution to discern the functional groups without potentially altering the functional groups which 

may have occurred by drying nanoparticles to a fine powder prior to FTIR characterization. In 

Figure 4.6 the C-H stretching vibrations, asymmetrical C=O stretching mode for dimerized 

saturated carboxylic acids, and asymmetrical stretching of C-O-C are indicated respectively by 

the existence of peaks at 2940, 1716, and 1092 cm
-1

. The 2940 cm
-1 

peak can be attributed to C-

H stretching vibrations of the carbon chain in CMPVA instead of the very strong and broad O-H 

stretching vibrations due to subtraction of water from the spectra.   
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Figure 4.5. FTIR-ATR spectra of A) FeOx nanoparticles and B) water. 
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Figure 4.6. Normalized FTIR-ATR spectra of CMPVA-FeOx aqueous solution with water 

subtracted. 

  

DLS was also used to confirm modification of FeOx nanoparticles with CMPVA (Figure 

4.7). Interestingly, the shorter sonication time used to disperse nanoparticles and shorter 

CMPVA reaction time reduced the resultant hydrodynamic size to 91.6±20.53 (100%) with a 

PDI value of 0.148±0.015.  This is important as this is the upper limit of the “optimal size” of 

nanoparticles to avoid opsoinzation and clearance from the body, and to facilitate more passive 

targeting. Zeta potential further corroborated the presence of CMPVA on FeOx nanoparticles. A 

negative zeta potential indicated carboxylic acid groups at pH=7.4 (Figure 4.8). 

 

Figure 4.7. DLS hydrodynamic diameter by volume percentage for CMPVA-FeOx. 
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Figure 4.8. Zeta potential measurement of CMPVA -FeOx. 

 

4.4 Silane Surface Functionalization of Iron Oxide Nanoparticles 

 FeOx nanoparticles (A4-24(195)_B6-24(195)) were surface functionalized with three 

silane ligands including GLYMO, APTS, and APTES. These silane surface functionalizations 

are used in many applications including corrosion protection,
216-218

 adhesive durability,
219

 

semiconductor coatings,
220-223

 and surface passivation
224

 and are well characterized and 

understood for bulk materials. GLYMO was chosen because the epoxy ring can be easily opened 

with a base catalyzed reaction involving nucleophilic ligands to provide a multitude of surface 

functionalizations with different properties. This epoxy ring opening can be base or acid 

catalyzed allowing for rapid alterations in the surface chemistry such as charge and terminal 

functional groups present. These alterations however will have significant effects on the stability 

in different buffers and medium. Therefore investigate how different ligands affect the stability 

in different aqueous stability will provide a better understanding of how the stability can be 

tailored by choice of ligands. APTS-FeOx and APTES-FeOx were used as comparison surface 

functionalizations in the stability assessment as they are a commonly used in literature to surface 

functionalize nanoparticles for aqueous stability.
225,226

 Hydrolysis and condensation of APTS, 
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APTES, and GLYMO to the surface of FeOx nanoparticle results in a silica-like shell or network 

surrounding the FeOx nanoparticle. However, the inherent solubility and rate of hydrolysis of 

each silane notably affects the resultant surface functionalization efficiency.
150

 The solubility 

difference of APTS and APTES compared to GLYMO determined how the silanes were added to 

the nanoparticle solution. A slow drop-wise addition of APTS and APTES was required for 

efficient surface functionalization. APTS and APTES are most soluble at pH~10 in water. 

Therefore when adding these silanes to the TMAOH nanoparticle solution (high pH), a quick 

addition could lead to a high local concentration of the silanes and a nucleation event preventing 

efficient condensation on the surface of the FeOx nanoparticles. Upon titration to pH 7.4 with 

HCl the terminal amine groups of APTS-FeOx and APTES-FeOx provided sufficient colloidal 

stability and were ready for subsequent wash and purification steps. 

 In contrast, GLYMO is highly soluble at pH=5.3. The complete and rapid addition of 

GLYMO facilitates the generation of an emulsion-like suspension where the GLYMO ligands 

will interact with the FeOx and condense to the surface in the proper orientation. The 

condensation can be visibly seen as the clear brown TMAOH nanoparticle solution changes to a 

“muddy brown” color after 10-15 minutes of reaction. This color change is the result of the 

alteration of solubility of the nanoparticles due to the terminal epoxy groups of the GLYMO 

shifting the nanoparticle stability to lower pH. At this point addition of extra TMAOH base and 

nucleophiles were used to open the epoxy ring to provide aqueous stability. Addition of a 

nucleophile at the high pH resulted in an immediate color change from “muddy brown” to clear 

brown indicating the successful base-catalyzed epoxy ring opening. This color change was not 

always indicative of aqueous stability as the addition of Lys, Arg, Cys, Thr, Asn, Gln, 

hydroxylamine, or citric acid did not result in colloidal stability once the pH was adjusted to 7.4. 
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Only Gly, Ser, EDA, TEPA, ABA or SAHBA proved to provide sufficient colloidal stability at 

pH=7.4. Figure 4.9 is a visual comparison of sufficient colloidal stability provided by Gly and 

Ser at pH=7.4, even in the presence of a rare earth magnet, and the unstable and precipitated 

solutions of Lys, Gln, Arg, and Cys.  

 

 

Figure 4.9. Visual aqueous stability assessment at pH=7.4 in presence of a magnet of several 

nucleophilic ligands used to open the GLYMO epoxy ring. Aqueous stability was indicated by a 

clear brown top solution as seen in Gly-FeOx and Ser-FeOx. From left to right: Lys-FeOx, Gln-

FeOx, Gly-FeOx, Ser-FeOx, Arg-FeOx, and Cys-FeOx.  

 



 

112 
 

The instability in a magnetic field is critical in identifying unstable nanoparticles and is used as 

the first step in the washing and purification process. Bridging and aggregation due to inefficient 

electrostatic repulsion or steric hindrance is the most likely cause of the aggregation seen in 

GLYMO-FeOx nanoparticles modified with Lys, Arg, Cys, Thr, Asn, Gln, hydroxylamine, or 

citric acid. 

The APTS-FeOx, APTES-FeOx, and GLYMO-FeOx nanoparticles were all washed, 

purified, and sterilized after pH titration and magnetic separation of unstable nanoparticles. This 

process was also used for CMPVA nanoparticles used in the stability investigation. The PD-10 

desalting column was not used for additional cleanup of APTS-FeOx or APTES-FeOx 

nanoparticles as these nanoparticles crashed on the column during the elution step. The reasoning 

behind this is that APTS and APTES surface functionalizations require specific counter-ion salts 

for stability and the size exclusion PD-10 column swiftly separates the ions from the much larger 

nanoparticles. The rapid removal of the counter-ions required for stability results in aggregation 

and instability as the nanoparticles move through the PD-10 column. Additional 30k MWCO 

centrifuge filter wash steps were applied in lieu of the PD-10 column to further remove excess 

APTS and APTES and as a buffer exchange step. The sterilization with a 0.2 μm sterile filter in a 

sterile bio-safety laminar flow hood was the last step of the wash, purification, and sterilization 

process. 

Characterization with FTIR, XPS, and DLS was used to confirm the addition of APTS, 

APTES, and GLYMO to the surface of FeOx nanoparticles. The normalized FTIR-ATR spectra 

for APTS-FeOx and APTES-FeOx with water removed are displayed in Figure 4.10. The 

normalized FTIR-ATR spectra for GLYMO-FeOx and further modified with Gly, Ser, EDA, 

TEPA, ABA, and SAHBA with water removed are shown in Figure 4.11-13. When the 



 

113 
 

GLYMO-FeOx terminal epoxy ring is opened and modified with a nucleophile the nanoparticle 

is named without the GLYMO. For example, ‘Ser-FeOx’ refers to the terminal epoxy ring 

opening of GLYMO-FeOx with Ser. The primary identifying peaks of respective surface 

functionalizations are listed in Table 4.4. There are several silane containing peaks 

corresponding to SiO-H, Si-O-Si, and Si-O-H stretches that were present at approximately 1100 

cm-1, 1058 cm-1, and 918 cm-1 respectively.
227-230

 Each of the silanes contained a C-H 

stretching doublet from the propyl group that absorbs at 2930 cm
-1

 and 2860 cm
-1

.
227,228

 The 

terminal amine group of APTS-FeOx and APTES-FeOx nanoparticles had peaks indicative of N-

H stretching vibration, weak asymmetrical NH3
+
 bending, and symmetrical NH3

+ 
bending at 

3420 cm
-1

, 1660-1610 and 1550-1485 cm
-1

 respectively.
215,227,228

 A combined asymmetric NH
3+

 

bending vibration and torsional oscillation was present in APTS-FeOx, APTES-FeOx, EDA-

FeOx, and TEPA-FeOx nanoparticles at peaks of 2222-2000 cm
-1

.
215
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Figure 4.10. FTIR-ATR spectra with normalized percent transmittance for A) APTS-FeOx and 

B) APTES-FeOx with water subtracted. 
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Figure 4.11. FTIR-ATR spectra with normalized percent transmittance for A) Gly-FeOx and B) 

Ser-FeOx with water subtracted. 
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Figure 4.12. FTIR-ATR spectra with normalized percent transmittance for A) EDA-FeOx and 

B) TEPA-FeOx with water subtracted. 

 



 

117 
 

 

 

Figure 4.13. FTIR-ATR spectra with normalized percent transmittance for A) ABA-FeOx and 

B) SAHBA-FeOx with water subtracted. 

 

Epoxy ring opening by respective nucleophiles was confirmed by the absence of the “12 micron 

band” peak at 750-840 cm
-1

 and ring breathing frequency for the epoxide group at 1250 cm
-1

.
215

 

FTIR-ATR spectra comparison of GLYMO-FeOx and SAHBA-FeOx demonstrate the epoxy 

ring opening (Figure 4.14). The epoxy ring peaks are absence in all GLYMO nanoparticle 
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functionalizations after the addition of the nucleophilic ligand (Figure 4.11-13 and Table 4.4). 

In Figure 4.14 it is important to note the appearance of peaks at 1581 and 1416 cm
-1

 

corresponding to the terminal carboxylate anion which indicates that the amine group of SAHBA 

opened the epoxy ring.
215

 

 

Figure 4.14. Normalized FTIR-ATR spectrum of GLYMO-FeOx (blue line) and SAHBA-FeOx 

(red line). Epoxy ring opening with SAHBA is indicated by disappearance of peaks at 1250 and 

740-850 cm
-1

 and appearance of peaks at 1581 and 1416 cm
-1

.  

Table 4.4. List of identifying FTIR-ATR peaks surface functionalized FeOx nanoparticles.  

Peak Description and 

Wavenumber (cm
-1

) 

APTS-

FeOx 

APTES-

FeOx 

EDA-

FeOx 

TEPA-

FeOx 

Gly-

FeOx 

Ser-

FeOx 

ABA-

FeOx 

SAHBA-

FeOx 

N-H stretching 3420 3455 3422 3422 3421 3422 3421 3422 3421 

C-H stretching 

doublet, propyl 

group 

2930 

2860 

2965 

2892 

2930 

2846 

2964 

2898 

2964 

2864 

2916 

2870 

2939 

2858 

2920 

2879 

2941 

2880 

Asymmetric 

NH3
+
 bending 

vibration and 

torsional 

oscillation 

2222-2000 

 

2100 2095 2205 2152     

Carboxylate 

Anion 

1650-1550 

1400 

    1614 

1400 

1616 

1400 

1558 

1405 

1581 

1416 

Epoxy Ring 

Breathing 

Frequency 

1250         

CO2 stretching/ 

C-O stretch 

1320-1000   1201 1201 1201 1201 1201 1201 

SiO-H 1100 1118  1101 1101 1110 1100 1100 1101 

Si-O-Si 1058   1057 1057 1057 1058 1058 1060 

Si-O-H 918 917 917 916 917 911 916 916 917 

12 micron band 840-750         



 

119 
 

XPS was first used to characterize the non-surface functionalized nanoparticles. High-

resolution Fe 3p XPS characterization of A4-24(195)_B6-24(195) nanoparticles (Figure 4.15) 

was used to determine the amount of magnetite and maghemite present. High-resolution Fe 2p 

XPS spectrum is not suitable to distinguish between magnetite and maghemite crystal structures 

due to multiple satellite peaks and broad line widths.
231,232

 The Fe 3p peak was deconvoluted into 

three peaks at 53.119 eV, 55.195 eV, and 56.279 eV. The 53.119 eV peak was attributed to Fe
2+

 

ions.
232

 The 55.195 and 56.279 eV were attributed to Fe
3+

 ions.
231,232

 Pure magnetite will consist 

of a 1:2 Fe
2+

 to Fe
3+

 ratio, but experimentally it was determined to be 0.52.
231,232

 Since the ratio 

of Fe
2+

 to Fe
3+

 was 3:96 it was concluded that the sample contained a mixture of magnetite and 

maghemite as maghemite contains no Fe
2+

 ions. Using the experimentally determined Fe
2+

 to 

Fe
3+

 ratio of 0.52 for pure magnetite it was estimated that the sample with a ratio of 3:96 

contained approximately 8.86% magnetite and 91.14% maghemite.  

 

Figure 4.15. High-resolution Fe 3p XPS spectrum of FeOx nanoparticles without surface 

modification.  
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XPS was also used to further verify surface functionalization and confirm epoxy ring opening. 

Non-surface functionalized FeOx nanoparticles are shown in Figure 4.16.The FeOx 

nanoparticles XPS N 1s and Si 2p spectra (not shown) revealed no peaks were present providing 

confirmation that peaks in these spectra of APTS-FeOx, Gly-FeOx, and Ser-FeOx are due to 

their respective surface functionalization’s.  

 

Figure 4.16. XPS survey spectrum, and high resolution Fe 2p, and O 1s spectra of FeOx 

nanoparticles without surface modification.  

 

Analyzing the XPS survey scan of the APTS-FeOx (Figure 4.17) revealed presence of 

iron, oxygen, carbon, silicon, and nitrogen as expected for successful surface functionalization. 



 

121 
 

Further analysis of the high-resolution Si 2p spectrum revealed the presence of Si-C and Si-O 

bonds from the deconvulted peaks positioned at 102.038 eV, and 104.732 eV.
233

 This confirms 

the presence of the APTS and the successful hydrolysis of the silane. However, to confirm 

successful silanization with the FeOx nanoparticles analysis of the high-resolution O 1s spectrum 

is required. The O 1s peak was deconvulted into four peaks at 529.803 eV, 530.424 eV, 531.573 

eV, and 532.573 eV binding energies. The peaks at 530.424 eV, 531.573 eV are most likely due 

to impurities from benzyl alcohol, benzaldehyde, or even acetylacetonate. The peaks at 529.803 

eV and 532.573 eV correspond to Fe-O and Si-O binding energies.
231,234 

These peaks confirm the 

successful silanization of APTS to FeOx nanoparticles. The high-resolution N 1s spectrum was 

next analyzed to further determine the APTS is modifying the surface as expected. Indeed, the N 

1s doublet peak was deconvulted into three peaks at 399.323 eV, 400.245 eV, and 401.328 eV 

binding energies indicating N-C, -NH2, and –NH3
+
 respectively.

234 
The high-resolution C 1s 

spectrum was used to further confirm that the attachment of the APTS to FeOx is occurring 

through the Si-O-Fe rather than a NHCO bond. A NHCO bond would appear in the C 1s 

spectrum with binding energy of 292 eV.
233

 The only peaks deconvulted from the C 1s spectrum 

were 284.988 eV, 286.197 eV, and 288.291 eV corresponding to C-C/C-H bonds, C-O/C-N, and 

carbon impurities.
233,235
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Figure 4.17. XPS high-resolution Si 2p, N 1s, and O 1s spectra of APTS-FeOx nanoparticles. 

 

Gly-FeOx and Ser-FeOx were investigated with XPS to confirm successful GLYMO 

silanization and attachment to FeOx and successful epoxy ring opening by the amine in Gly and 

Ser. Ser-FeOx had similar silane peaks to APTS as expected and are shown in the high-

resolution Si 2p, N 1s, and O 1s spectra (Figure 4.18). In the high-resolution Si 2p spectrum the 

peak can be deconvulted into 102.484 and 103.1781 eV binding energy peaks corresponding to 

Si-C and Si-O bonds in GLYMO. Next, the O 1s spectrum was analyzed and the main peak 

deconvoluted into four peaks at 529.617, 530.987, 532.067, and 532.651 eV binding energies. 

The 529.617 eV binding energy peak is attributed to the oxygen in Fe3O4.
231

 The 530.987 and 

532.651 eV binding energies are attributed to the carboxylic acid of Ser. The epoxy ring opening 

with Ser through the amine rather than the carboxylic acid is confirmed by absence of a 533.13 

eV binding energy peak.
236

 Analysis of the high-resolution N 1s spectrum revealed three 

deconvulted peaks at binding energies of 399.589 eV, 401.354 eV, and 402.851 eV 
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corresponding to N-C, NH2, and NH2
+
, respectively.

237
 The N 1s spectrum further corroborates 

the amine opening of the epoxide ring as expected. 

 

 

Figure 4.18. XPS high-resolution Si 2p, N 1s, and O 1s spectra of Ser-FeOx nanoparticles. 

 

 

Figure 4.19. XPS high-resolution Si 2p, N 1s, and O 1s spectra of Ser-FeOx nanoparticles. 
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The Gly-FeOx high resolution XPS spectra (Figure 4.19) was in close agreement with 

the Ser-FeOx XPS spectra as expected. The high-resolution Si 2p spectrum revealed Si-O and 

SiO2 peaks at 102.412 and 102.98 eV binding energies from the GLYMO. The high-resolution O 

1s spectrum also revealed a Fe-O bond at 529.591 eV. The Si-O, and carboxylic acid oxygen 

bonds from glycine were observed at 532.42 eV, and 531.148 eV and 532.682 eV 

respectively.
238

 The high-resolution N 1s spectrum further established the amine group opened 

the GLYMO epoxy ring, indicated by 399.589, 401.354, and 402.851 eV binding energy 

corresponding to N-C, NH2, and NH2
+
.
237

 

 DLS is an invaluable characterization technique to determine the properties of the surface 

modified nanoparticles in solution. The efficiency of surface functionalization was assessed by 

hydrodynamic diameter, polydispersity index (PDI), and zeta potential (ζ), listed in Table 4.5. 

The DLS size measurements and zeta potential measurements for each surface functionalization 

are shown in Figures 4.21-23. The hydrodynamic diameter change for each surface 

functionalization as compared to TMAOH nanoparticles depends on the surface 

functionalization. Possible aggregation was revealed in some of the surface functionalizations 

which contained a small volume fraction of larger hydrodynamic diameters. The small 

hydrodynamic diameter of APTS-FeOx (17.83±7.628 (99.9%)) compared to the hydrodynamic 

diameters of APTES-FeOx (92.15±17.77 (71.4%) and 332.5±58.37 (28.6%)) suggests that APTS 

is most likely more stable than APTES. APTES has a 7 fold slower hydrolysis rate than APTS 

which most likely resulted in some incomplete or insufficient surface functionalization; this is 

supported by the second larger hydrodynamic diameter population for APTES. 
150
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Table 4.5. DLS measurements of hydrodynamic diameter, polydispersity index, and Zeta 

potential for surface functionalized FeOx nanoparticles.  

Surface 

Functionalization 

Hydrodynamic 

Diameter (nm) 

Polydispersity Index 

(PDI) 

Zeta Potential (ζ) 

(mV) 

TMAOH-FeOx 26.6±7.795 (100%) 0.112  

APTS-FeOx 17.83±7.628 (99.9%) 0.317 21.5±1.33 

APTES-FeOx 92.15±17.77 (71.4%) 

332.5±58.37 (28.6%) 

0.386 21.1±1.94 

EDA-FeOx 35.56±11.09 (99.9%) 

193.2±41.47 (0.1%) 

0.221 46.4±13.1 

TEPA-FeOx 38.12±9.959 (100%) 0.150 41.2±19.7 

Gly-FeOx 29.13±12.67 (100%) 0.228 -22.4±5.8 

Ser-FeOx 34.63±6.5 (82.3%) 

110.3±32.88 (17.7%) 

0.219 -20.2±11.2 

ABA-FeOx 29.56±5.713 (93) 

114.2±37.97 (7%) 

0.372 -21.8±5.09 

SAHBA-FeOx 25.59±6.269 (99.2%) 

126.7±36.98 (0.8%) 

0.269 -29.2±14 

CMPVA-FeOx 91.6±20.53 (100%) 0.148 -19.2±0.936 

 

 

Figure 4.20. DLS measurements based on volume percent for A) APTS-FeOx and B) APTES-

FeOx. 
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Remarkably, there was a range of hydrodynamic diameters and PDI values for GLYMO 

nanoparticles. While the differences are subtle they are more than likely due to small changes in 

size of the added nucleophile, formation of differing water solvation shell sizes, and/or magnetic 

separation selecting a particular size. Despite the differences in hydrodynamic size and PDI 

values these GLYMO functionalized nanoparticles produced a stable colloid at biologically 

relevant pH.  

 

 
 

 
Figure 4.21. DLS measurements based on volume percent for A) Gly-FeOx and B) Ser-FeOx. 
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Figure 4.22. DLS measurements based on volume percent for A) ABA-FeOx and B) SAHBA-

FeOx. 

  

 

 
Figure 4.23. DLS measurements based on volume percent for A) EDA-FeOx and B) TEPA-

FeOx. 
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DLS was next used to measure the zeta potential which can be useful in predicting cellular 

interactions. The zeta potential measurements are shown in Figures 4.24-27. The presence of 

terminal carboxylate groups in Gly-FeOx, Ser-FeOx, ABA-FeOx, SAHBA-FeOx and CMPVA 

nanoparticles resulted in negative zeta potentials. The negative zeta potentials due to terminal 

carboxyl groups is expected as the amine groups of these molecules are much better nucleophiles 

than alcohol groups or water and will open the epoxy ring much more efficiently.
239

 SAHBA-

FeOx had the most negative zeta potential of -29.2 mV. The chemically similar ligands SAHBA 

and Ser differ in the carbon chain length and position of the alcohol group in relation to the 

carboxylic acid group. This is important as the OH group in SAHBA is closer to the electron 

withdrawing group of the carboxylic acid thus lowering the pKa resulting in a more negative zeta 

potential at pH of 7.4. Large negative or positive zeta potentials have been reported as an 

indicator of colloidal stability, but may not always indicate stability in biologically relevant 

medium that cannot be easily measured using DLS.  
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Figure 4.24. Zeta potential measurement of A) Gly-FeOx and B) Ser-FeOx nanoparticles. 

 

 

 
Figure 4.25. Zeta potential measurement of A) ABA-FeOx and B) SAHBA-FeOx nanoparticles. 
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The APTS-FeOx, APTES-FeOx, EDA-FeOx, and TEPA-FeOx nanoparticles all had positive 

zeta potentials as expected (Figure 4.26 and 4.27). This was due to the terminal protonated 

amine groups at pH of 7.4. The APTS-FeOx and APTES-FeOx nanoparticles were expected to 

have the same final surface functionalization despite different starting ligands. This was further 

corroborated by the similar zeta potentials measured. The EDA-FeOx and TEPA-FeOx 

nanoparticles had zeta potentials twice as large as APTS-FeOx /APTES-FeOx which resulted 

from the larger amount of primary and secondary amines present in EDA-FeOx and TEPA-FeOx 

nanoparticles as compared to APTS-FeOx and APTES-FeOx nanoparticles. Additionally, the pH 

titration to 7.4 for EDA-FeOx and TEPA-FeOx nanoparticles required more HCl than the APTS-

FeOx and APTES-FeOx nanoparticles, further substantiating the zeta potential differences.  

 

 

 
Figure 4.26. Zeta potential measurement of A) APTS-FeOx and B) APTES-FeOx. 
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Figure 4.27. Zeta potential measurement of A) EDA-FeOx and B) TEPA-FeOx. 

 

4.5 Stability Assessment in Different Biologically Relevant Medium 

 The stability assessment of the surface functionalized FeOx nanoparticles is vital in 

predicting how efficiently they can be used in biological applications. By testing the stability in 

several biologically relevant medium a better understanding of biological effects such as cellular 

uptake, biodistribution, and retention can be accomplished. The surface functionalization 

methods were chosen to provide biological stability and allow for further conjugation potential 

via 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) coupling. More specifically, APTS 

and APTES were chosen as they are commonly used surface functionalizations with reported 

aqueous stability provided by terminal amines. The CMPVA surface functionalization was used 

as it was shown to have stability in a wide range of biological media. GLYMO surface 

functionalizations were chosen as they provided a convenient and rapid way to modify the 
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surface with a nucleophile. The benefit of the GLYMO method is that a variety of nucleophiles 

can be used to tailor the stability to specific applications. Several amino acids were used in 

attempts to provide a variety of terminal groups granting a “bio-stealth” like property and EDA 

and TEPA were chosen to produce an amine terminal functionalization that would be a good 

comparison to APTS and APTES functionalizations. While a variety of tested amino acids and 

compounds were unsuccessful in providing stability after magnetic extraction and purification 

steps, Gly-FeOx and Ser-FeOx had very promising initial stabilities. Thus, ABA and SAHBA 

were chosen as they are chemically and structurally similar to Gly and Ser respectively. In a 

recent study increasing chain length of multidentate block copolymers were shown to positively 

affect the stability of FeOx nanoparticles in PBS.
240

 ABA contains a slightly longer carbon chain 

than glycine. SAHBA differs from Ser as it contains a slightly longer carbon chain and the 

alcohol group is closer in proximity to the carboxylic acid group. With the alcohol closer to the 

carboxylic acid it is thought that stability would be improved by increasing the electrostatic 

repulsion between nanoparticles by producing a more negative zeta potential. 

 Water, 1x PBS, 0.5x PBS, 0.9% NaCl, CSF, CM, and HS were used to determine the 

stability and investigate potential causes of instability of the different surface functionalizations. 

Visual assessment of the surface functionalized FeOx nanoparticles at various time points were 

used in place of DLS measurements as not all solutions can be easily measured using DLS 

techniques. Visual assessment was broken into three categories: clear solution, cloudy solution, 

and precipitated/crashed solution representing stability, partial stability, and complete instability 

respectively. The stability was monitored at several time points from initial dispersion to 2 weeks 

in test medium. Table 4.6 summarizes the times at which each surface functionalized 

nanoparticle first showed signs of instability (cloudy or precipitation). Upon initial inspection all 
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surface functionalized nanoparticles were stable in all media except EDA-FeOx and TEPA-

FeOx. Both of these became cloudy in cell medium and HS immediately.  

 

Table 4.6. List of first signs of instability of various surface functionalized FeOx nanoparticles; 

indicated by a cloudy or precipitated solution.  

 H2O 1x PBS 0.5x PBS 0.9% 

NaCl 

CSF CM HS 

APTS-FeOx  2 hours 2 hours  2 hours 48 hours  

APTES-FeOx  2 hours 2 hours 2 hours 2 hours 24 hours 24 hours 

EDA-FeOx      2 hours 24 hours 

TEPA-FeOx     1 week 2 hours 2 hours 

Gly-FeOx      2 weeks* 24 hours 

Ser-FeOx      2 weeks** 2 weeks 

ABA-FeOx      2 weeks* 2 weeks 

SAHBA-FeOx      2 weeks**
 

 

CMPVA-FeOx      2 weeks**  

*Small amount of precipitation may be due to cell medium sitting at room temperature 

**Very small amount of precipitation which may be due to cell medium sitting at room 

temperature 

 

 Visual inspection of nanoparticles in water revealed that even at 1 month time (Figure 

4.28) all surface functionalizations were clear and stable. This is important to note as stability in 

water does not necessarily indicate stability in the biological media of interest. PBS was 

investigated as it is a very commonly used biological buffer. All nanoparticles except APTS-

FeOx and APTES-FeOx were soluble in 1x PBS at 2 weeks. APTS-FeOx and APTES-FeOx 

showed initial aggregation at 2 hours and were completely precipitated out of solution at 24 

hours.  
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Figure 4.28. Time study of surface functionalized FeOx nanoparticle stability in water (H2O) 

and 1x phosphate buffered saline (PBS). Clear, cloudy, or aggregated precipitations indicate 

stable, partially stable, or complete instability respectively. 
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 Assessment of stability in 0.5x PBS and 0.9% NaCl (Figure 4.29) solutions were chosen 

to ascertain if the phosphate ions or concentration of sodium and chloride counter ions caused 

the instability in 1x PBS for APTS-FeOx and APTES-FeOx. Interestingly, APTS-FeOx and 

APTES-FeOx had the same stability in 0.5x PBS, but APTES-FeOx was instable in 0.9% NaCl. 

This suggests that the phosphate ions are causing instability in APTS-FeOx. Analysis of the DLS 

data (Table 4.5) shows that APTES-FeOx has a much larger hydrodynamic size (92.15±17.77 

nm (71.4%) and 332.5±58.37 nm (28.6%)) as compared to APTS-FeOx (17.83±7.628 nm 

(99.9%)). This difference in size and the inability to 0.2 μm sterile filter APTS-FeOx or APTES-

FeOx solutions after several days prompted further investigation. To further investigate the 

difference in stability the hydrodynamic size was analyzed in water at two time points. The data 

(Figure 4.30) shows a hydrodynamic diameter increase over time for both APTS-FeOx and 

APTES-FeOx, but the extent of increase suggests that APTES-FeOx aggregates at a much faster 

rate than APTS-FeOx. This suggests that the APTES-FeOx may not have completely formed a 

silane shell and may be reorienting and forming a silane shell around multiple nanoparticles. 

Alternatively, a re-hydrolyzation process leading to improper silane shell reforming could also 

be occurring leading to larger hydrodynamic sizes and instability. The APTES-FeOx is able to 

maintain stability in water even with changes in hydrodynamic size, but the addition of salts 

causes complete precipitation. These results suggests that APTS-FeOx and APTES-FeOx may 

appear clear and stable in some solutions, but are susceptible to re-hydrolysis and aggregation 

over time.  
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Figure 4.29. Time study of surface functionalized FeOx nanoparticle stability in 0.5x PBS and 

0.9% sodium chloride (saline). Clear, cloudy, or aggregated precipitations indicate stable, 

partially stable, or complete instability respectively. 
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Figure 4.30. DLS hydrodynamic size measurements of APTS-FeOx (A) or APTES-FeOx (B) 

after 1 (Top) and 12 days (Bottom). 
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 CSF stability is important to investigate for the application of FeOx nanoparticles for the 

treatment of glioblastoma multiforme (GBM). CSF is a close representation of the environment 

that the nanoparticles would be subjected to in treatment of brain tumors. In Figure 4.31 it can 

be seen that APTS-FeOx and APTES-FeOx first show signs of instability at 2 hours and at 24 

hours are completely crashed out of solution. TEPA-FeOx showed a small amount of 

precipitation at 1 week indicating partial instability. Instability at these short time periods limits 

their applicability in delivering time sensitive brachytherapy. Additionally, the instability could 

prohibit blood circulation and/or uptake. 

 

 
Figure 4.31. Time study of surface functionalized FeOx nanoparticle stability in artificial 

cerebral spinal fluid (CSF). Clear, cloudy, or aggregated precipitations indicate stable, partially 

stable, or complete instability respectively. 

 

 In vitro investigations of FeOx nanoparticles are often performed using complete cell 

medium containing FBS. Similarly, in vivo administered FeOx nanoparticles in humans will 
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have some degree of interaction with HS. The proteins contained in the respective serum can 

have varying degrees of interaction with the nanoparticles and therefore affect the stability. Thus, 

stability assessments in these media are imperative and are shown in Figure 4.32. Protein 

coronas can form around nanoparticles when introduced to media containing serum which will 

directly and substantially affect cellular interactions.241 Interestingly, EDA-FeOx and TEPA-

FeOx nanoparticles instantaneously became cloudy upon introduction to CM or HS and were 

approaching complete precipitation at 2 hours. The other positive zeta potential surface 

functionalizations, APTS-FeOx and APTES-FeOx, also displayed aggregation signs early. At 48 

hours for APTS-FeOx and 24 hours for APTES-FeOx aggregation and precipitation began. The 

negative surface functionalized nanoparticles showed small amounts of precipitation for Gly-

FeOx and Ser-FeOx and very small amounts of precipitation for ABA-FeOx, SAHBA-FeOx, and 

FeOx at 2 weeks.  Analyzing the HS stability revealed that only APTS-FeOx, SAHBA-FeOx, 

and CMPVA-FeOx retained stability at 2 weeks. The stability was very similar in CM and HS 

for APTES-FeOx, EDA-FeOx, TEPA-FeOx, and Ser-FeOx suggesting that the FBS in CM was 

the cause of instability. Gly-FeOx was instable at 24 hours in HS and only showed small 

amounts of instability at 2 weeks in CM suggesting that the higher concentration of serum in HS 

as compared to CM resulted in the different stabilities. 
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Figure 4.32. Time study of surface functionalized FeOx nanoparticle stability in cell medium 

(CM) and human serum (HS). Clear, cloudy, or aggregated precipitations indicate stable, 

partially stable, or complete instability respectively. 
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 Interesting stability information can be established when comparing the differences of 

stability in PBS, CM, and HS. With regards to APTS-FeOx the instability can be attributed to 

phosphate ions rather than serum proteins as the APTS-FeOx nanoparticles remained stable in 

HS at 2 weeks. The differences between positive and negative zeta potential surface 

functionalizations are striking. The larger degree of instability of positive surface 

functionalizations as compared to negative surface functionalizations seen in CM and HS offers 

some substantiation to claims of higher cellular uptake values recorded for cationic amine group 

functionalizations. However, the increased uptake recorded may be due to crashed cationic 

surface functionalizations and not true uptake or internalization. 

DLS investigation of APTS-FeOx, APTES-FeOx, EDA-FeOx, and TEPA-FeOx in water 

was assessed after 12 days to determine if any changes were occurring that were not visually 

seen. The hydrodynamic size after twelve days in water for APTS-FeOx and APTES-FeOx is 

shown in Figures 4.30; EDA-FeOx and TEPA-FeOx is shown in Figure 4.33 and 4.34. APTS-

FeOx nanoparticles increased from 17.83±7.628 nm (99.9%) to 122.1±37.45 nm (95.7%) and 

5326±699.2 nm (4.3%) where APTES increased to 674.7±85.2 nm (100%) (Figure 4.30). EDA-

FeOx and TEPA-FeOx surface functionalized nanoparticles measured hydrodynamic diameters 

were 35.56 ±11.09 nm (99.9%) and 38.12±9.959 nm (100%) respectively. After 12 days EDA-

FeOx and TEPA-FeOx surface functionalized nanoparticles measured hydrodynamic diameters 

were 27.82±11.01 nm (100%) and 29.52±9.047nm (100%). This is crucial as it clearly shows 

that the silane on the EDA-FeOx and TEPA-FeOx nanoparticles does not alter overtime whereas 

the APTS silane does alter over time resulting in larger hydrodynamic diameters. 
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Figure 4.33.  Dynamic light scattering hydrodynamic diameter measurement by volume for 

EDA-FeOx nanoparticles (A) and EDA-FeOx nanoparticles 12 days later (B). 

 

 

Figure 4.34.  Dynamic light scattering hydrodynamic diameter measurement by volume for 

TEPA-FeOx nanoparticles (A) and TEPA-FeOx nanoparticles 12 days later (B). 
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 The long term stability was analyzed at 3 weeks, 1 month and 5 months (Figure 4.35 and 

4.36). The stability at 1 month was deemed sufficient for initial stability assessment. The 5 

month time point may not be an accurate representation of long term stability as there was some 

volume changes observed in a few of the microcentrifuge tubes most likely due to evaporation. 

The volume changes do not seem to be related to media and are considered an effect of random 

inefficient sealing of microcentrifuge tubes which resulted in only some of the samples 

evaporating. Regardless, the 5 month analysis is helpful in visualizing instability that may have 

been present and unseen at earlier time points. For water the first signs of instability were seen at 

5 months for APTES-FeOx and very small amounts of precipitation in Gly-FeOx, and Ser-FeOx. 

There was some small amount of precipitation at 5 months in 1x PBS for Gly-FeOx, and Ser-

FeOx, but not 0.5x PBS. At 5 months the first and small signs of instability in CSF were 

observed for Gly-FeOx, Ser-FeOx, ABA-FeOx, and CMPVA-FeOx. 

In conclusion, CMPVA-FeOx, Ser-FeOx, ABA-FeOx, and SAHBA-FeOx demonstrated 

broad stability at 1 week. The CMPVA-FeOx and SAHBA-FeOx nanoparticles only had 

minimal precipitation in CM at 2 weeks, but were otherwise stable up to 5 months with the 

exception of some CMPVA-FeOx precipitation in CSF. Overall, SAHBA-FeOx had the best and 

broadest solution stability even at 5 months. It is thought that the longer carbon chain and the 

alcohol being in closer proximity to the carboxylate group in SAHBA provided the best 

electrosteric stability of the surface functionalizations tested. Furthermore, this investigation 

suggests that the presence of both hydroxyl and carboxyl groups appear to provide the best and 

broadest stability as seen in CMPVA-FeOx and SAHBA-FeOx. The different media revealed 

that the concentration of salt, sugar, and protein can have dramatic effects on the stability. More 

specifically, water or PBS stability is not indicative of stability in all biologically relevant media. 



 

144 
 

These two surface functionalizations have relatively large differences in hydrodynamic size, but 

similar broad stability and zeta potentials. They will potentially be very useful in determining 

differences in biological effects based on size. 

 

 

 

 

Figure 4.35. Time study of surface functionalized FeOx nanoparticle stability in water, 1x PBS, 

and 0.5x PBS at 3 weeks, 4 weeks, and 5 months. Clear, cloudy, or aggregated precipitations 

indicate stable, partially stable, or complete instability respectively. 
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Figure 4.36. Time study of surface functionalized FeOx nanoparticle stability in 0.9% NaCl, 

CSF, CM, and HS at 3 weeks, 4 weeks, and 5 months. Clear, cloudy, or aggregated precipitations 

indicate stable, partially stable, or complete instability respectively. 
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4.6 Iron Oxide Nanoplatform: Confirming Conjugation Potential 

with a Radiotherapeutic 

 The surface functionalizations were chosen not only to provide biological stability, but to 

also provide additional conjugation potential. To demonstrate their conjugation potential a metal 

chelate, DOTA, was conjugated to SAHBA-FeOx and CMPVA-FeOx nanoparticles. DOTA can 

chelate Lutetium-177 (
177

Lu), primarily a beta emitter that has been used to treat GBM in 

preclinical murine orthotopic xenograft models.48 It can also be easily monitored due to a 

relatively small amount of gamma emmision.48 Successful attachment of the DOTA chelate and 

radiolabeling with 
177

Lu will demonstrate these FeOx surface functionalized nanoparticles ability 

to act as a nanoplatform for additional radiotherapeutics. SAHBA-FeOx and CMPVA-FeOx 

were chosen as they showed the best stability results. 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) is a water soluble carbodiimide used for the coupling 

reaction of carboxyl and amine groups to form an amide bond.93 N-hydroxysulfosuccinimide (S-

NHS) is used to increase the efficiency of the carboxyl and primary amine coupling reaction.93  

 High-performance liquid chromatography (HPLC) was used to confirm successful EDC 

coupling of the DOTA chelate and determine the radiochemical purity of radiolabeled 
177

Lu-

DOTA-SAHBA-FeOx. The HPLC elution profiles of SAHBA-FeOx measured by UV-VIS 

absorbance at 254 nm and radioactivity detectors are shown in Figure 4.37. This was done to 

establish the time at which SAHBA-FeOx nanoparticles elute and confirm no radioactivity is 

present. Next, EDC coupling of the DOTA chelate to the SAHBA-FeOx was performed and then 

radiolabeled with 
177

Lu. HPLC was used after removal of free metal cations with an MCX 

column, specifically 
177

Lu. Dose calibrator measurements of 
177

Lu-DOTA-SAHBA-FeOx after 

MCX column indicated a 52.4% chelation yield. The absorbance results in Figure 4.38 show 
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additional peaks at approximately 12.05 and 21.9 mins corresponding to free 
177

Lu-DOTA, and 

ammonium hydroxide buffer, respectively. The radioactivity peak (Figure 4.38) centered at 

approximately 9.18 mins overlaps with the absorbance at 254 nm peak (~8.49 mins) indicating 

successful radiolabeling of DOTA-SAHBA-FeOx nanoparticles with 
177

Lu. It should be noted 

that the HPLC radioactivity elution time is slightly delayed due to the time required for the 

elution to reach the radioactivity counter. The radioactivity peak at 12.33 mins represents free 

177
Lu-DOTA.  

 

 

Figure 4.37.  HPLC elution profiles of SAHBA-FeOx nanoparticles. The absorbance at 254 nm 

(top) and radioactivity counts (bottom) are shown. 
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Figure 4.38.  HPLC elution profiles of 

177
Lu-DOTA-SAHBA-FeOx post MCX column elution. 

The normalized absorbance at 254 nm (top) and radioactivity counts (bottom) are shown.  

 

To remove the remaining free 
177

Lu-DOTA, and DOTA, a PD-10 size exclusion column was 

used. Dose calibrator measurements of 
177

Lu-DOTA-SAHBA-FeOx after PD-10 column 

indicated a 14.5% synthetic radiochemical yield. The absorbance at 254 nm in Figure 4.39 only 

contains one peak centered at approximately 8.6 mins confirming the successful removal of 
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remaining free 
177

Lu-DOTA, and DOTA chelate by the PD-10 column. Furthermore, the 

presence of only one radioactivity peak at 8.79 mins confirms the removal of free 
177

Lu-DOTA. 

 

 

 
Figure 4.39.  HPLC elution profiles of 

177
Lu-DOTA-SAHBA-FeOx post MCX and PD-10 

column elution. The absorbance at 254 nm (top) and radioactivity counts (bottom) are shown.  

 

 Next, an HPLC study was used to determine the radiochemical stability of the 

nanoplatform when subjected to RF hyperthermia. This investigation is essential in determining 
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the ability of the nanoparticles to deliver both hyperthermia and brachytherapy. The 

radiochemical stability was assessed for 
177

Lu-DOTA-SAHBA-FeOx after 0, 15, and 45 minutes 

of RF heating. If the 
177

Lu is released from the DOTA chelate or 
177

Lu-DOTA is released from 

the nanoparticle after RF heating there could be a reduction in the treatment dose in the region of 

interest and potential radiation damage to normal tissue in other regions. Additionally, free 
177

Lu 

has been shown to incorporate in bone which could limit the amount of activity that can be safely 

used in treatment, due to radiation sensitivity of bone marrow.242,243 The HPLC separated 

absorbance spectrum for 0, 10, and 15 minutes of RF heating is shown in Figure 4.40. The 

HPLC integrated peak areas at approximately 8.3-11.4 mins and 12.03-14.01 mins correspond to 

177
Lu-DOTA-SAHBA-FeOx and 

177
Lu-DOTA respectively. Changes in integrated peak areas 

were used to assess the heat stability after 15 and 45 minutes of RF heating (Figure 4.41). The 

integrated peak ratios of 
177

Lu-DOTA-SAHBA-FeOx to 
177

Lu-DOTA were 97.2% to 2.8%, 

97.2% to 2.8%, and 97.6% to 2.4% for 0, 10 and 15 minutes of RF heating.  No significant 

increases in integrated peak areas for radioactivity were observed after 15 or 45 minutes of RF 

heating, confirming the heat stability of 
177

Lu-DOTA-SAHBA-FeOx.  

Furthermore, gamma counting was used to determine if any 
177

Lu was released after 

heating. To accomplish this, the 
177

Lu-DOTA-SAHBA-FeOx nanoparticles were passed through 

a MCX column after RF heating and the MCX column was gamma counted after elution of the 

177
Lu-DOTA-SAHBA-FeOx. The gamma counts per minute of the MCX columns for RF heating 

177
Lu-DOTA-SAHBA-FeOx 0, 10, and 15 mins were 120,686 cpm, 117,373 cpm, and 118,275 

cpm respectively. The MCX column can remove 
177

Lu from the stable 
177

Lu-DOTA-SAHBA-

FeOx as the MCX column more strongly binds 
177

Lu. This result shows clearly that no 

significant amount of 
177

Lu was released upon RF heating.  
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Figure 4.40.  HPLC elution profiles absorbance at 245 nm of 

177
Lu-DOTA-SAHBA-FeOx final 

product after T0, T15, and T45 minutes of RF heating.  
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Figure 4.41.  HPLC elution profiles radioactivity counts of 
177

Lu-DOTA-SAHBA-FeOx final 

product after T0, T15, and T45 minutes of RF heating. 
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 HPLC absorbance and radioactivity analysis confirmed the successful conjugation of 

DOTA metal chelate and radiolabeling with 
177

Lu to SAHBA-FeOx and CMPVA-FeOx. Greater 

than 97% radiochemical purity was obtainable with the cleanup methods used. Additionally, no 

significant amount of 
177

Lu or 
177

Lu-DOTA was released from 
177

Lu-DOTA-SAHBA-FeOx 

nanoparticles after RF heating. These results demonstrate the possibility of expanding the 

conjugation to include combinations of other radiotherapeutics, chemotherapeutics, and/or 

diagnostic agents by utilizing EDC coupling. 

 In this chapter the synthesized nanoparticles were easily surface functionalized without 

the need for difficult phase transfer methods. For surface functionalization with CMPVA, an 

optimal 0.125% TMAOH concentration was determined. Furthermore, it was determined that for 

different nanoparticle sizes the methods are best modified by changing the amount of surface 

functionalization ligand relative to the number of nanoparticles. The CMPVA surface 

functionalization methods were successfully used to produce APTS-FeOx, APTES-FeOx, and 

GLYMO-FeOx. The GLYMO-FeOx nanoparticles proved to be very beneficial as the terminal 

epoxy ring could be modified with a variety of nucleophiles to provide different biological 

stability properties. FeOx nanoparticle surface functionalizations were verified through FTIR-

ATR, XPS, and/or DLS characterization. Stability investigations revealed that SAHBA-FeOx 

had the best and broadest stability in different biologically relevant media. The SAHBA-FeOx 

and CMPVA-FeOx demonstrated further conjugation potential via the EDC coupling of DOTA 

metal chelate and radiolabeling with 
177

Lu. This produces a theranostic FeOx nanoparticle that 

can potentially provide radiotherapy and hyperthermia, with MRI capability.      
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Chapter 5: Biological Testing of Surface Functionalized Iron 

Oxide Nanoparticles 

 

 

 

5.1 Experimental Section 

 5.1.1 Reagents, Materials, and Equipment 

T75 flask (Greiner Bio-One, CELLSTAR®, red filter cap, sterile), Dulbecco’s phosphate 

buffered saline (DPBS) (Corning, cellgro, without calcium and magnesium, sterile), 0.25% 

trypsin solution (Hyclone), handheld automated cell counter (Millipore, Scepter™), 6-well plate 

(Greiner Gio-One, Cellstar®), 96-well plates (Greiner Bio-One, Cellstar®), artificial cerebral 

spinal fluid (CSF) (Harvard Apparatus, artificial), human serum (HS) (Bioreclamation, LLC), 

modified DMEM/F-12 medium (Hyclone, 0.1 µm sterile filtered) containing 10% fetal bovine 

serum (FBS) (Seradigm, ultimate grade, triple 0.1 µm sterile filtered), 1% antibiotic/antimycotic 

solution (Hyclone, 10,000 U/mL Penicillin G, 10,000 µg/mL Streptomycin, 25 µg/mL 

Amphotericin B, 0.2 µm filtered), Cell Lytic
TM

 M lysis buffer (Sigma), cell proliferation reagent 

WST-1 (Roche) 
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5.1.2 Tissue Culture and Cellular Uptake Studies 

 For biological testing, M059K, GBM-6, or U87MG (AmericanType Culture Collection) 

cell lines were incubated at 37°C and 5% CO2 in either T75 or T25 flasks containing complete 

cell medium. Upon reaching ~80% confluence the cells were washed with Dulbecco’s phosphate 

buffered saline (DPBS) and trypsinised with 0.25% trypsin solution to passage or split the cells 

into additional culture flasks. A handheld automated cell counter was used to determine the 

concentration of cells. Cells were diluted to a concentration of 75,000 cells/mL of culture 

medium prior to plating 2 mL in each well of a 6-well plate. The cells were allowed to attach 

overnight (~16 hours). Cellular uptake was determined by adding 200 μL of surface 

functionalized nanoparticles (250 μg/mL). After 4 hours of uptake the cell medium was aliquoted 

(500 μL), followed by aspiration of the remaining medium. Next, cells were washed three times 

with DPBS. Cells were lifted in approximately 1.5 mL of DPBS and transferred to a 

microcentrifuge tube. Cells were centrifuged at 13,000 rpm for 7 minutes to pellet the cells. The 

supernatant was discarded and 30 μL of Cell Lytic
TM

 M lysis buffer was added and sonicated for 

15 minutes. To dissolve the nanoparticles and cells 2.14 μL of 70% nitric acid was added and 

heated in a heat block at 90°C for 1 hour. A 30 μL aliquot of the collected cell media with 2.14 

μL of 70% nitric acid was also heated at 90°C for 1 hour. Prussian blue assay was used to 

determine the amount of iron. The concentration of cells and amount of iron were used to 

calculate the cell uptake in units of iron per cell. 

 

5.1.3 WST-1 Cell Proliferation Assays 

Cytotoxicity was assessed by a WST-1 cell proliferation assay in a 96-well format. The 

cells were diluted to a concentration of 25,000 cells/mL of cell medium and 100 μL (2,500 cells) 
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were plated in each well (n=7). After attaching overnight, 10 μL of PBS control or surface 

functionalized nanoparticles (250 μg/mL) was added to each well on two 96-wells plates to 

assess proliferation at 24 and 48 hours. Cell medium was aspirated at 24 or 48 hours and 110 μL 

of cell proliferation reagent WST-1 in cell medium (500 μL in 5 mL of cell media) was added to 

each well. The cells were incubated at 37°C and 5% CO2. At 30, 60, 90, and 120 minutes the 96-

well plate was shaken for 60 seconds in a plate reader equipped with UV-VIS. UV-VIS was 

measured at 440 nm with a reference at 620 nm. 

A half maximal inhibitory concentration (IC50) was also determined using a WST-1 assay 

similar to the cytotoxicity methods above. A 10x DMEM-FBS solution was created by 

dissolving 1.56 g of DMEM powder (HyClone Laboratories Inc., DME/F -12 1:1+2.5 mM L 

glutamine, +15 mM HEPES buffer, -sodium bicarbonate) and 0.2438 g of sodium bicarbonate 

(NaHCO3) (Sigma, 99.5%) in 10 mL of Ultra H2O. This solution was 0.1 µm sterile filtered in a 

sterile biological laminar flow hood. Next, 9 mL of the 10x DMEM solution was mixed with 9 

mL of sterile 10x FBS to obtain a 5x DMEM-FBS solution. To 120 µL of the 5x DMEM-FBS 

solution a total of 540 µL of SAHBA-FeOx nanoparticles (~2,200 µg of Fe/mL) and water was 

added to create 81.81%, 75%, 65.909%, 50%,40%, 20%, 10%, and 0% (1769, 1555, 1179, 944, 

472, and 236 µg of Fe/mL) treatment concentrations. After plating 2,500 cells in 100 μL in each 

well of a 96-well plate the cells were allowed to attach overnight, the medium was then aspirated 

and then treated with 110 μL of SAHBA-FeOx DMEM-FBS solutions. After 24 hours of 

treatment, the WST-1 cell proliferation assay was completed as stated above. The resulting cell 

proliferation values were analyzed in Microsoft Excel with Solver add-in to fit a non-linear IC50 

curve. Solver was used to minimize the sum of squares of the predicted y-values from Equation 

19, where A, B, C and D constants are the maximum point, slope of the middle section of the 
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curve, point of inflection, and minimum point respectively. The IC50 was determined by 

rearranging Equation 19 to formulate Equation 20. 

 𝑦 = 𝐷 +  
(𝐴−𝐷)

1+(
𝑥

𝐶
)

𝐵         (19) 

 𝑥 = 𝐶 × [
(𝐴−𝑦)

(𝑦−𝐷)
]

(
1

𝐵
)

          (20) 

 

5.1.4 Colony Forming Cell Assay of RF Hyperthermia treated M059K Cells  

M059K cells were harvested from a T75 culture flask and counted. Next, 800,000 cells 

were transferred to a 15 mL conical tube and centrifuged at 1,500 rpm for 5 minutes to pellet the 

cells. The cells were re-dispersed in 1 mL of cell medium and added to 4 mL of cell medium in a 

T25 culture flask. Overnight incubation allowed time for the cells to attach. CMPVA 

nanoparticle treatment or PBS control (250 μL) was added to respective T25 flask and placed 

back in the incubator for 24 hours. After 24 hour incubation the cells were harvested with 1 mL 

of trypsin and quenching with 3 mL of cell medium. Next, three 500 μL aliquots of PBS control 

and six 500 μL CMPVA nanoparticle treatments were added to microcentrifuge tubes. For the 

PBS control an additional 150 μL of cell medium was added (no particle control group). Three of 

the CMPVA nanoparticle treatment aliquots received 150 μL of cell medium (particle group) and 

three received 150 μL of extra CMPVA nanoparticles (~325 µg of iron) in cell medium (extra 

particle group). Each treatment group was then heated in a water bath at 37°C for one minute 

prior to RF heating for 0, 10 or 15 minutes at 200.2 A, and 1287 W, in a coil tuned to ~270 kHz. 

The colony assay performed by diluting each treatment to 150 cells/mL and plating 300 cells (2 

mL) on 6-well plates in triplicate. Cell colonies were stained with crystal violet dye and counted 

at 2 weeks. 
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5.1.5 U87MG Glioblastoma Tumor Implantation  

The in vivo mice investigations were conducted according to protocols sanctioned by the 

McGuire VAMC institutional animal care and use committee (IACUC# 01748). For tumor 

implantation, female athymic nude-Foxn1nu mice (Harlan Laboratories) were first anesthetized 

with isoflurane (3% knockdown, 2% maintenance in oxygen). Next, the mice were positioned in 

a stereotactic frame (David Kopf Instruments). A drill was positioned after a midline incision to 

drill a 0.7 mm burr hole at a position 0.5 mm anterior to the bregma and 2 mm laterally to the 

right. Next, a microinjection pump (Bioanalytical Systems) equipped with a 25 µL Hamilton 

syringe and a 28 gauge removable needle was positioned at a depth of 4.0 mm into the brain 

(measured from the surface of the skull). The syringe was loaded with 5 µL of PBS containing 5 

x 10
4
 U87MG cells per µL. The cell suspension was infused at a constant rate of 0.2 µL per 

minute for a period of 10 minutes resulting in deposition of 1 x 10
5
 cells. After infusion, sterile 

bone wax was utilized to seal the burr hole and the midline incision was sutured. After sufficient 

recovery time, the animals were returned to the vivarium. 

  

 5.1.6 Radioactivity Dose Preparation and Survival Study 

 CMPVA-FeOx or SAHBA-FeOx were further conjugated to DOTA chelate via EDC 

coupling, radiolabeled with 
177

Lu, washed, purified, and sterilized as described in section 4.1.6. 

Additionally, DOTA chelate only was also radiolabeled to serve as a treatment group. The 

radioactivity was measured by gamma well counting and dose calibrator. The radioactivity was 

matched for 
177

Lu-DOTA, 
177

Lu-DOTA-SAHBA-FeOx, and 
177

Lu-DOTA-CMPVA-FeOx by 

dilution with PBS, SAHBA-FeOx, and CMPVA-FeOx respectively. SAHBA-FeOx and 

CMPVA-FeOx nanoparticles were used for dilution in order to retain a similar concentration of 



 

159 
 

nanoparticles to the SAHBA-FeOx treatment group. Additionally, three radioactivity 

concentrations were prepared for each treatment in sterile microcentrifgue tubes to account for 

177
Lu radioactive decay (half-life= 6.7 days) over the three days required for surgical procedures 

and infusion of 40 mice (15, 15, 10 mice for days 1, 2, and 3 respectively). More specifically, the 

three concentrations were required to allow for a constant infusion volume of 10 µL in order to 

deliver the same radioactive dosage to the mice. The U87MG survival study consisted of 40 mice 

randomized into five treatment groups (n=8) including PBS control, SAHBA FeOx, 
177

Lu-

DOTA, 
177

Lu-DOTA-SAHBA-FeOx, and 
177

Lu-DOTA-CMPVA-FeOx. All radiolabeled 

treatment groups were planned to receive approximately 10 µCi of 
177

Lu-DOTA, 
177

Lu-DOTA-

SAHBA-FeOx, or 
177

Lu-DOTA-CMPVA-FeOx.  For CED the mice were placed into a 

stereotactic frame and a midline incision was made to reveal the burr hole. After removal of bone 

wax the microinjection needle was centered stereotactically on the burr hole and lowered to a 

depth of 4 mm to hit the center of the tumor. Next, CED of the treatment groups was performed 

at 0.2 µL/min flow rate for 50 minutes to deliver a total volume of 10 µL.  A rodent study of 

CED with aqueous infusion using a 28-gauge needle was proven to provide effective CED.
244

 

For further verification a 0.6% agarose gel (1.5 mL in microcentrifuge tube) was also infused 

with 10 µL of each treatment to determine average activity delivered at time of infusion. 

Survival studies were conducted by weight measurements of mice daily in order to follow the 

disease progression. Mice were weighed on the day of infusion and a loss of body weight was 

used as a surrogate end point for death. Mice were euthanized when body weight was reduced to 

80% of maximum weight. Euthanasia was performed by CO2 asphyxiation. 
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 5.1.7 Statistical Analysis 

Where appropriate, values are mean ± standard error. Cell survival and cell uptake 

treatment groups are compared to the control group using analysis of variance (ANOVA) and 

Dunnett two-sided post hoc test with a 0.05 significance level. ANOVA Tukey honest significant 

difference (HSD) post hoc test with a 0.05 significance level was used to compare between 

individual treatment groups. The in vivo survival study data was analyzed using a Mantel-Cox 

log rank test for pair-wise comparisons. IBM SPSS Statistics 22 software was used to perform all 

statistical analysis. 

 

5.2 Cellular Uptake, Proliferation, and IC50 Investigations 

The cellular uptake of APTS-FeOx, APTES-FeOx, CMPVA-FeOx, and Gly-FeOx, Ser-

FeOx, EDA-FeOx, TEPA-FeOx, ABA-FeOx, and SAHBA-FeOx at 4 hours is shown in Figure 

5.1 as percent uptake and picograms (pg) of iron per cell. The cellular uptake method used in this 

study was not able to discern between internalized nanoparticles or surface adsorbed 

nanoparticles, but did allow for comparison between differences in surface functionalized 

nanoparticles. Upon first analysis the uptake of EDA-FeOx and TEPA-FeOx appear to have by 

far the best cellular uptake with uptake calculated to be 96.2 ± 8.8 pg of iron/cell and 71.7 ± 20.6 

% uptake for EDA-FeOx and 99.2 ± 32.7 pg of iron/cell and 41.3 ± 9.0 % uptake for TEPA-

FeOx. ANOVA Tukey HDC post-hoc test revealed that both EDA-FeOx and TEPA-FeOx were 

statistically different than the PBS control (p<0.001) (Appendix - Tables A1-5). Positive zeta 

charge may indeed increase interaction with the surface of the cells, but it was determined that 

the high cellular uptake is a false indication of the true cellular uptake for two reasons. First, 

there is a known cell medium instability that could lead to precipitation on the surface of cells. 
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Second, visual clumping of EDA-FeOx and TEPA-FeOx could be seen during incubation with 

cells in the cell uptake study. This result is important as it illustrates, rather dramatically, the 

potential for artificially high cellular uptake due to instability upon introduction into cell 

medium. Both of these GLYMO surface functionalizations appeared stable in water, 1x PBS, 

0.5x PBS, and 0.9% NaCl for more than 2 weeks, but were significantly precipitated after only 2 

hours in cell medium. Therefore, the stability of nanoparticles to be used in biological 

applications must be carefully evaluated and considered when reporting high cell uptake. The 

other positive zeta potential surface functionalizations, APTS-FeOx and APTES-FeOx, resulted 

in higher cell uptake values compared to the negative surface functionalizations. However, 

ANOVA Tukey HSD post hoc test revealed only significant differences between APTS-FeOx or 

APTES-FeOx and either EDA-FeOx or TEPA-FeOx.  

Cellular uptake studies with APTS-FeOx or APTES-FeOx that was not prepared 

immediately prior to testing resulted in larger cellular uptakes further corroborating the 

connection between instability/size and cellular uptake seen in EDA-FeOx and TEPA-FeOx 

uptake. More specifically given time the APTS-FeOx and APTES-FeOx formed larger 

aggregates due to rehydrolyzing or restructuring causing increased instability and cellular uptake. 

Examining the negative zeta potential surface functionalizations reveals similar uptake values 

within the range of 0.19-0.46% uptake or 0.65-1.41 pg of iron per cell. All five of the tested 

anionic surface functionalizations had strikingly similar stabilities. The similar stability and 

terminal group chemistry results in similar measured cellular uptake values. Remarkably, the 

SAHBA-FeOx nanoparticles, which were stable in a wide array of media, had the lowest uptake 

(0.65±0.06 pg of iron per cell, 0.19±0.03% uptake). However, ANOVA Tukey HSD post-hoc 

tests (Appendix – Tables 1-5) CMPVA-FeOx, Gly-FeOx, Ser-FeOx, ABA-FeOx, and SAHBA-
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FeOx SAHBA-FeOx were only statistically different when compared to EDA-FeOx or TEPA-

FeOx. More studies may reveal a significant link between better stability and lower cellular 

uptake. Future reports linking only positive zeta potential to higher cellular uptake may need to 

be reported as lower stability resulting in higher cell uptake.  

 

 

Figure 5.1. GBM-6 cellular uptake results for surface functionalized FeOx nanoparticles; 

reported in units of percent uptake (purple) or pg of iron/cell (blue). EDA-FeOx and TEPA-FeOx 

uptake values are included in the inset figure with a larger y-axis. 

 

Initial toxicity was investigated in terms of proliferation using a WST-1 cell proliferation 

assay at 24 and 48 hours. The results are shown in Figure 5.2. TEPA-FeOx had significant 
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(ANOVA Tukey HSD post-hoc test) difference in proliferation as compared to the control at 

both 24 and 48 hours (Appendix – Tables A6-12). This was expected due to the high degree of 

instability in cell medium at short time points and the large amount of cell uptake. Larger 

amounts of cell uptake may be preventing essential cellular processes leading to  the observed 

toxicity and decreased proliferation rates. Interestingly the EDA-FeOx only showed decreases in 

cell proliferation at 48 hours even though the nanoparticles were instable in cell medium and had 

large amounts of cell uptake. Further analysis of WST-1 with ANOVA Tukey and Dunnett two-

sided post-hoc tests (Appendix – Table A6-12) only indicated a significant reduction in cell 

proliferation, compared to the PBS control, at 24 hours for TEPA-FeOx nanoparticles and at 48 

hours for EDA-FeOx and TEPA-FeOx nanoparticles.  

 

 

Figure 5.2. Effect of surface functionalized nanoparticles on cell proliferation at 24 (blue) and 

48 (purple) hours. 
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  The half maximal inhibitory concentration (IC50) of SAHBA-FeOx was determined by 

WST-1 and cell titer blue cell proliferation assays at 24 hours using several concentrations of 

SAHBA-FeOx in U87 cells. The results from both assays are shown in Figure 5.3. The non-

linear curve was fitted using Microsoft Excel Solver add-in by minimizing the sum of squares of 

Equation 19 predicted y-values. Due to increased cell proliferation at the lowest concentration 

of SAHBA-FeOx the curve was solved without the 0 SAHBA-FeOx concentration data point. 

The A, B, C, and D constant values were found to be 120.0642, 5.838533, 53.19202, and 

24.84344 respectively when minimizing the sum of squares. The sum of squares was minimized 

to 12.59 or 112.77 for WST-1 and cell titer blue respectively. Using Equation 20 it was found 

that the IC50 at 24 hours of treatment with SAHBA-FeOx was 1495.91 or 1320.38 µg/mL for 

2,500 U87 cells plated 24 hours prior to treatment based on WST-1 and cell titer blue 

respectively. The difference in percent control of cell viability for the two cell proliferation 

assays is thought to be due to determination via absorbance (WST-1) or fluorescence (cell titer 

blue) measurements. Due to the color of the iron oxide solutions it is thought that there could be 

some overlap in the WST-1 UV-VIS absorbance measurements resulting in higher cell viability 

as compared to the PBS control. Therefore, the cell titer blue fluorescent based assay is more 

likely indicative of the true cell viability. However, we also see an increase in cell viability as 

compared to the PBS control for both assays at low concentrations suggesting that the FeOx 

nanoparticle treatment may be increasing cell viability. Further investigation is needed to 

comment further. 
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Figure 5.3. Effect of varying concentrations of SAHBA-FeOx on cell proliferation at 24 hours 

based on WST-1 (green) and cell titer blue (blue) assays used to determine IC50. The IC50 trend 

line is shown in black with open circles representing estimated y-values. 

 

5.3 Effect of Hyperthermia on Cell Proliferation 

WST-1 cell proliferation assay was also used to investigate potential differences of RF 

induced hyperthermia. M059K glioblastoma cells were selected for initial in vitro hyperthermia 

studies to verify the FeOx nanoparticles could be used to kill glioblastoma cells by delivering 

sufficient hyperthermia. The CMPVA surface functionalized A2-24_B2-24 nanoparticles were 

used due to their well-studied surface functionalization and low polydispersity. The cellular 

uptake (Figure 5.4) revealed that the M059K cells had an uptake value of 0.2 µg of Fe per 

100,000 cells when treated with 2.18 mg/mL iron concentration of CMPVA nanoparticles. Extra 

CMPVA nanoparticles were added after 24 hours of uptake prior to cell heating as a positive 

control and to ensure an adequate concentration of nanoparticles to demonstrate RF 

hyperthermia. An additional ~325 µg of iron was added for the extra nanoparticles group 
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resulting in 99.94% of ‘external’ and 0.06% ‘internal’ nanoparticles (0.2 µg/325.2 µg). With 

such a large excess of ‘external’ nanoparticles the extra nanoparticles group was considered a 

mixture with a dominant percent of ‘external’ heating and the particle group was considered only 

‘internal’ heating.
245,246

  

 

 

Figure 5.4. M059J cell uptake of CMPVA-FeOx (red) and PBS control (Blue) at 24 hours in 

terms of µg of iron (A), percent uptake (B), and pg of Fe/cell (C). 

 

 The results of the in vitro hyperthermia experiment are shown in Figure 5.5. Analysis of 

the ‘no heat’ treatment (Figure 5.5. top (blue)) for PBS control, nanoparticles, and extra 

nanoparticles, revealed no significant differences in cell proliferation further corroborating no 

significant toxicity of CMPVA nanoparticles (Appendix –Tables A13-16 statistical analysis 

results).  
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Figure 5.5. RF hyperthermia effect on M059K survival as determined by colony assay. (Top) No 

particle (blue), particle (red), and extra particle (green) treatment groups survival are shown at 0, 

10 and 15 minutes with a * indicating a significant difference determined by ANOVA and 

Dunnett two-sided post-hoc tests with a 0.05 significance level. (Bottom) The corresponding 

treatments measured RF hyperthermia over 15 minutes with dashed lines indicating 10 and 15 

minutes of heating. 

 

The PBS control showed no changes in cell proliferation after exposure to RF AC magnetic field 

for 10 and 15 minutes. The RF heating of the PBS control (Figure 5.5. bottom, blue line) was 

measured and did not have significant deviation from 37°C. The RF hyperthermia of the 
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nanoparticle and extra nanoparticle treatments had measurable and significant lowering of cell 

proliferation at 10 minutes. Interestingly, the decreases of cell proliferation were seen in both 

treatments with different temperature measurements (Figure 5.5, bottom). Even though the 

temperature only reached 38.5°C after ten minutes of RF heating (red line) it had similar cell 

killing as compared to the extra particle group (green line) with a temperature increase to 47.1°C. 

Analyzing the 15 minutes heating revealed that both nanoparticle and extra nanoparticle 

treatments had significant cell killing when compared to the PBS control treatment. At first 

glance, the extra nanoparticle group at 15 minutes appears to have additional cell killing, but was 

not found to be significant based on ANOVA Tukey HSD post hoc test (Appendix – Tables 

A13-16). At 15 minutes the extra nanoparticle group temperatures entered the thermal ablation 

range at 48.4°C, where the nanoparticle group only reached 39.1°C. It should be noted that 

repeating the experiment with additional replicates (higher N) could elucidate significant 

differences that is expected for the larger temperature differences. However, these results were 

sufficient to demonstrate glioblastoma cell killing via RF induced hyperthermia and revealed 

potential vast differences based on ‘internal’ and ‘external’ hyperthermia. 

 

5.4 Survival Study- Iron Oxide nanoparticle 
177

Lu Brachytherapy 

Investigation 

 The efficacy of FeOx nanoparticles in providing brachytherapy was investigated for 

177
Lu-DOTA-SAHBA-FeOx and 

177
Lu-DOTA-CMPVA-FeOx nanoparticles. These two surface 

functionalized nanoparticles were chosen due to their similar broad and long term stability 

characteristics, and differences in surface functionalization size. It was hypothesized that the 

smaller size of 
177

Lu-DOTA-SAHBA-FeOx could facilitate better distribution within the tumor. 
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In order to test this hypothesis an in vivo survival study using a murine orthotopic xenograft 

model of glioblastoma multiforme (U87MG) was used. Radiolabeling SAHBA-FeOx and 

CMPVA-FeOx nanoparticles with 
177

Lu was confirmed with HPLC absorbance and radioactivity 

measurements (Figures 5.6 and 5.7). The overlap of peaks in the 254 nm absorbance and 

radioactivity spectra at the same elution time confirms the successful radiolabel chelation 

product for both 
177

Lu-DOTA-SAHBA-FeOx and 
177

Lu-DOTA-CMPVA-FeOx nanoparticles. 

The radioactivity counts are shifted slightly to longer elution times due to delay in time required 

to travel from elution to the eSatin radioactivity counter. Dose calibrator measurements were 

used to determine the chelation yield, and synthetic radiochemical yield. After washing with the 

MCX column the chelation yield was estimated to be 64%, 54.9%, and 83.6% yield for 
177

Lu-

DOTA-SAHBA-FeOx, 
177

Lu-DOTA-CMPVA-FeOx, and 
177

Lu-DOTA respectively. The 

synthetic radiochemical yield, after PD-10 wash, was estimated to be 23.6% for 
177

Lu-DOTA-

SAHBA-FeOx and 14.2% for 
177

Lu-DOTA-CMPVA-FeOx. The 
177

Lu-DOTA was not run on the 

PD-10 column due to inability to visualize the progression through the PD-10 column and collect 

only the 
177

Lu-DOTA. 
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Figure 5.6.  HPLC of 
177

Lu-DOTA-SAHBA-FeOx final product. The absorbance at 254 nm 

(top) and radioactivity counts (bottom) are shown. 
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Figure 5.7.  HPLC of 
177

Lu-DOTA-CMPVA-FeOx final product. The absorbance at 254 nm 

(top) and radioactivity counts (bottom) are shown. 

 

Agarose gels were also infused with 
177

Lu-DOTA, 
177

Lu-DOTA-SAHBA-FeOx, or 
177

Lu-

DOTA-CMPVA-FeOx in order to determine the average infused 
177

Lu activity. Gamma well 

counting and back decaying of agarose gels revealed an average infused 
177

Lu activity of 9.72 ± 

0.03, 8.59 ± 0.20, and 9.10 ± 0.37 µCi for 
177

Lu-DOTA, 
177

Lu-DOTA-SAHBA-FeOx, or 
177

Lu-
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DOTA-CMPVA-FeOx respectively. The survival curves for PBS, SAHBA-FeOx, 
177

Lu-DOTA,
 

177
Lu-DOTA-SAHBA-FeOx and 

177
Lu-DOTA-CMPVA-FeOx in vivo treatments are shown in 

Figure 5.8. The pair-wise comparison of a log rank Mantel-Cox test revealed differences in 

survival between the five treatment groups (Appendix - Tables A17 and A18). The FeOx 

control treatment was significantly different than 
177

Lu-DOTA control (significance = 0.000), but 

was not significantly different from the PBS control (significance = 0.058). A larger survival 

study may elucidate a significant difference between the SAHBA-FeOx and PBS and 
177

Lu-

DOTA control groups. The difference between SAHBA-FeOx and 
177

Lu-DOTA is speculated to 

be a combination of two factors. First, there is evidence from WST-1 cell proliferation assays 

that SAHBA-FeOx may potentially increase cell proliferation which could translate to increased 

tumor growth rate and reduced survival time. Second, 
177

Lu-DOTA may possibly have a small 

positive effect on survival, however no significant difference was found between 
177

Lu-DOTA 

and PBS treatment at this dose level. A significant difference was revealed between the three 

controls and 
177

Lu-DOTA-SAHBA-FeOx (significance 0.000), as well as between the three 

controls and 
177

Lu-DOTA-CMPVA-FeOx (significance 0.000). These results confirm the 

effective brachytherapy deliver by 
177

Lu-DOTA-SAHBA-FeOx and 
177

Lu-DOTA-CMPVA-

FeOx. There was no significant difference between 
177

Lu-DOTA-SAHBA-FeOx and 
177

Lu-

DOTA-SAHBA-FeOx. This is not surprising as only one mouse in the 
177

Lu-DOTA-SAHBA-

FeOx lived 37 more days than the last surviving 
177

Lu-DOTA-CMPVA-FeOx mouse. Since one 

mouse is representative of 12.5% of the population, a larger study will be necessary to determine 

if this is a real effect on number of long term survivors between 
177

Lu-DOTA-SAHBA-FeOx and 

177
Lu-DOTA-CMPVA-FeOx nanoparticle treatments due to differences in hydrodynamic 

diameters or surface chemistry. Additionally, further studies such as biodistribution and retention 
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investigations are needed to confirm no biological differences between 
177

Lu-DOTA-SAHBA-

FeOx and 
177

Lu-DOTA-CMPVA-FeOx.  

 

 

Figure 5.8. Survival study using murine orthotopic xenograft model of glioblastoma multiforme 

(U87MG) treated with PBS (Black), FeOx (Blue), 
177

Lu-DOTA (Purple), 
177

Lu-DOTA-SAHBA-

FeOx (Red), and 
177

Lu-DOTA-CMPVA-FeOx (Green). Significantly different treatment groups 

from control are indicated by a * as determined by ANOVA and Dunnett two-sided post hoc test 

at a 0.05 significance level. 
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Chapter 6: Conclusion 

 

 

 

6.1 Conclusion 

 The first goal of this dissertation was to synthesize FeOx nanoparticles via an innovative 

and optimizable benzyl alcohol modified seed growth to obtain ideal nanoparticle properties for 

increased RF induced magnetic hyperthermia treatment of cancer. This was achieved by 

investigating reaction environment, precursor concentration, and temperature effects on resultant 

nanoparticle properties. 

1.  Carrying out the reaction in the presence of air instead of under nitrogen flow provided 

an additional mechanism of nucleation and growth besides the thermal decomposition. 

This added oxidation of benzyl alcohol to benzaldehyde mechanism allowed for 

reduction of Fe(acac)3 facilitating possible synthesis of magnetite and synthesizing 

nanoparticles with larger crystallite sizes by better separation of nucleation and growth. 

This was in accordance with reflux occurring just above benzaldehyde’s boiling point 

(178.1°C).  

2. Increasing the Fe(acac)3 concentration and/or temperature results were explained by the 

LaMer growth and Ostwald ripening methods. These increases result in increased 

monomer generation leading to faster burst nucleation events (reaching higher rates of 
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nucleation) and a better separation of nucleation and growth leading to larger crystallite 

sizes and smaller size distributions. The mixed reaction-diffusion limited growth 

processes and Ostwald ripening were used to explain the differences in amorphous vs. 

crystallite growth and increasing or decreasing size distributions respectively. There 

appears to be a limit of monomer generation based on increasing concentration and 

temperature that result in a prolonged nucleation event leading to larger size distributions, 

amorphous growth, and smaller crystallite sizes. 

3. The modified seed growth aided in obtaining larger crystallite sizes that were more 

crystalline and had a lower size distribution. Nanoparticles produced by the modified 

seed growth methods resulted in some of the largest RF heating values. 

4. The best RF magnetic heating values were obtained for reaction A2-24(205)_B2-24(205) 

which has a crystallite size of 19.5 ± 1.06 nm and a PDI of 0.265. The SAR and ILP 

values (SAR = 1,175.56 W/g and ILP = 3.113 
𝑛𝐻𝑚2

𝑘𝑔
) are comparable to some of the best 

commercially available ferrofluids.  

5. JMP software was able to model the nanoparticle properties effect on RF heating. The 

determined equation for predicting RF heating could reasonably predict the RF heating 

properties based on the significant nanoparticle properties of crystallite size, PDI, and 

volume CS/HS. 

 

 The second goal was to design a surface functionalization method that can provide true 

colloidal and biological stability and is easily conjugated with additional targeting ligands, 

chemotherapeutics, or radiotherapeutics.  
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1. The GLYMO surface functionalization process provided a simple method that could be 

tuned with a wide array of nucleophiles to obtain broad biological stability.  

2. SAHBA-FeOx and CMPVA-FeOx had the best and broadest stability of the surface 

functionalizations tested. Both surface functionalizations proved stable in water, PBS, 

saline, CSF, complete cell medium, and human serum. SAHBA-FeOx had the best 

overall stability even at 5 months. 

3. Further conjugation potential was proven by EDC coupling a DOTA chelate and 

radiolabeling with 
177

Lu. HPLC verified the EDC coupling and radiolabeling process was 

successful. The EDC coupling can be used to attach chemotherapeutics, 

radiotherapeutics, and/or diagnostics containing a primary amine or carboxyl group. 

 

The final goal was to initially investigate biological effects of iron oxide nanoparticles on cell 

proliferation and uptake, as well as investigate initial in vitro effect of hyperthermia and in vivo 

brachytherapy delivery.  

1. The surface functionalized iron oxide nanoparticles, with the exception of EDA-FeOx 

and TEPA-FeOx, were shown to not significantly affect the cell proliferation indicating 

no toxicity. 

2. Cellular uptake measurements revealed that proper stability in water or PBS and cell 

medium or other relevant medium is essential to measuring accurate cellular uptake. The 

EDA-FeOx and TEPA-FeOx nanoparticles were not stable in cell medium which resulted 

in false indication of high cellular uptake values. Furthermore, statistical analysis 

between positive (APTS-FeOx and APTES-FeOx) and negative (CMPVA-FeOx, Gly-

FeOx, Ser-FeOx, ABA-FeOx, and SAHBA-FeOx) nanoparticles revealed no statistically 
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significant differences in cellular uptake. This finding is not in agreement with literature 

reporting’s of increased cellular uptake for positive surface charged nanoparticles. 

3. Cell colony assay revealed that RF heating with surface functionalized FeOx 

nanoparticles could be used to effectively kill cells. Furthermore, there is evidence 

suggesting that cell killing can be obtained without large increases in solution 

temperature which would be highly beneficial for RF hyperthermia applications. 

4. Survival studies of murine orthotopic xenograft model of glioblastoma multiforme 

(U87MG) treated with PBS, FeOx, 
177

Lu-DOTA, 
177

Lu-DOTA-SAHBA-FeOx, and 

177
Lu-DOTA-CMPVA-FeOx showed that SAHBA-FeOx and CMPVA-FeOx 

nanoparticles can be effectively used to delivery brachytherapy via CED. 

 

The investigation into the benzyl alcohol modified seed growth synthetic parameters and 

JMP analysis revealed important nucleation and growth mechanism. This lead to the ability to 

optimize synthesis to produce optimal nanoparticle characteristics for RF induced magnetic 

hyperthermia. The GLYMO surface functionalization process proved to be a facile method with 

tunable colloidal/biological stability and is directly applicable to biomedical applications 

including hyperthermia and brachytherapy delivery. Researching the material synthesis, surface 

functionalization, and biological testing proved to be a more directly applicable approach to 

furthering iron oxide nanoparticles to the clinic for RF induced magnetic hyperthermia. 



 

178 
 

References 
  



 

179 
 

References 

1. Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, 

Occurences and Uses, Second Edition; Wiley-VCH: Weinhiem, 2004; .  

2. Ketteler, G.; Weiss, W.; Ranke, W.; Schlogl, R. Bulk and surface phases of iron oxides in an 

oxygen and water atmosphere at low pressure. Phys. Chem. Chem. Phys. 2001, 3, 1114-

1122.  

3. LaMer, V. K.; Dinegar, R. H. Theory, Production and Mechanism of Formation of 

Monodispersed Hydrosols. J. Am. Chem. Soc. 1950, 72, 4847-4854.  

4. Gilchrist, R. K.; Medal, R.; Shorey, W. D.; Hanselman, R. C.; Parrott, J. C.; Taylor, C. B. 

Selective Inductive Heating of Lymph Nodes. Ann. Surg. 1957, 146, 596-606.  

5. Gazeau, F.; Lévy, M.; Wilhelm, C. Optimizing magnetic nanoparticle design for 

nanothermotherapy. Nanomedicine 2008, 3, 831-844.  

6. Song, C.; Park, H.; Griffin, R. Improvement of tumor oxygenation by mild hyperthermia. 

Radiat. Res. 2001, 155, 515-528.  

7. Peer, A. J.; Grimm, M. J.; Zynda, E. R.; Repasky, E. A. Diverse immune mechanisms may 

contribute to the survival benefit seen in cancer patients receiving hyperthermia. Immunol. 

Res. 2010, 46, 137-154.  

8. Spiro, I.; McPherson, S.; Cook, J.; Ling, C.; DeGraff, W.; Mitchell, J. Sensitization of Low-

Dose-Rate Irradiation by Nonlethal Hyperthermia. Radiat. Res. 1991, 127, 111-114.  

9. Kumar, C. S. S. R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy 

and controlled drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 789-808.  

10. Goldstein, L.; Dewhirst, M.; Repacholi, M.; Kheifets, L. Summary, conclusions and 

recommendations: adverse temperature levels in the human body. Int. J. Hyperthermia  

2003, 19, 373-384.  

11. Beachy, S. H.; Repasky, E. A. Toward establishment of temperature thresholds for 

immunological impact of heat exposure in humans. Int. J. Hyperthermia  2011, 27, 344-352.  

12. Jordan, A.; Scholz, R.; Wust, P.; Fahling, H.; Felix, R. Magnetic fluid hyperthermia (MFH): 

Cancer treatment with AC magnetic field induced excitation of biocompatible 

superparamagnetic nanoparticles. J. Magn. Magn. Mater. 1999, 201, 413-419.  

13. Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical 

diagnosis and therapy. J. Mater. Chem. 2004, 14, 2161-2175.  



 

180 
 

14. Krishnan, S.; Diagaradjane, P.; Cho, S. H. Nanoparticle-mediated thermal therapy: Evolving 

strategies for prostate cancer therapy. Int. J. Hyperthermia  2010, 26, 775-789.  

15. van der Zee, J. Heating the patient: a promising approach? Annals of Oncology 2002, 13, 

1173-1184.  

16. Reinhold, H. S.; Endrich, B. Tumour microcirculation as a target for hyperthermia. Int. J. 

Hyperthermia 1986, 2, 111-137.  

17. Jordan, A.; Wust, P.; Fahling, H.; John, W.; Hinz, A.; Felix, R. Inductive Heating of 

Ferrimagnetic Particles and Magnetic Fluids - Physical Evaluation of their Potential for 

Hyperthermia. Int. J. Hyperthermia  1993, 9, 51-68.  

18. Rosensweig, R. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. 

Mater. 2002, 252, 370-374.  

19. Ma, M.; Wu, Y.; Zhou, H.; Sun, Y.; Zhang, Y.; Gu, N. Size dependence of specific power 

absorption of Fe3O4 particles in AC magnetic field. J. Magn. Magn. Mater. 2004, 268, 33-

39.  

20. Lee, J.; Jang, J.; Choi, J.; Moon, S. H.; Noh, S.; Kim, J.; Kim, J.; Kim, I.; Park, K. I.; Cheon, 

J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 

2011, 6, 418-422.  

21. Roschmann, P. Radiofrequency Penetration and Absorption in the Human-Body - 

Limitations to High-Field Whole-Body Nuclear-Magnetic-Resonance Imaging. Med. Phys. 

1987, 14, 922-931.  

22. Hergt, R.; Dutz, S. Magnetic particle hyperthermia—biophysical limitations of a visionary 

tumour therapy. J. Magn. Magn. Mater. 2007, 311, 187-192.  

23. Kallumadil, M.; Tada, M.; Nakagawa, T.; Abe, M.; Southern, P.; Pankhurst, Q. A. Suitability 

of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 2009, 321, 1509-

1513.  

24. Singh, D.; McMillan, J. M.; Kabanov, A. V.; Sokolsky-Papkov, M.; Gendelman, H. E. 

Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine 2014, 9, 501-516.  

25. Torres-Lugo, M.; Rinaldi, C. Thermal potentiation of chemotherapy by magnetic 

nanoparticles. Nanomedicine 2013, 8, 1689-1707.  

26. Jeyadevan, B. Present status and prospects of magnetite nanoparticles-based hyperthermia. J. 

Ceram. Soc. Jpn. 2010, 118, 391-401.  



 

181 
 

27. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Magnetic iron 

oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical 

characterizations, and biological applications. Chem. Rev. 2008, 108, 2064-2110.  

28. Issa, B.; Obaidat, I. M.; Albiss, B. A.; Haik, Y. Magnetic Nanoparticles: Surface Effects and 

Properties Related to Biomedicine Applications. Int. J. Mol. Sci. 2013, 14, 21266-21305.  

29. Deatsch, A. E.; Evans, B. A. Heating efficiency in magnetic nanoparticle hyperthermia. J. 

Magn. Magn. Mater. 2014, 354, 163-172.  

30. Huang, S.; Wang, S.; Gupta, A.; Borca-Tasciuc, D.; Salon, S. J. On the measurement 

technique for specific absorption rate of nanoparticles in an alternating electromagnetic 

field. Meas. Sci. Technol. 2012, 23, 035701.  

31. Suto, M.; Hirota, Y.; Mamiya, H.; Fujita, A.; Kasuya, R.; Tohji, K.; Jeyadevan, B. Heat 

dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J. Magn. 

Magn. Mater. 2009, 321, 1493-1496.  

32. Hanson, M. The Frequency-Dependence of the Complex Susceptibility of Magnetic Liquids. 

J. Magn. Magn. Mater. 1991, 96, 105-113.  

33. Shliomis, M. I.; Pshenichnikov, A. F.; Morozov, K. I.; Shurubor, I. Y. Magnetic properties of 

ferrocolloids. J. Magn. Magn. Mater. 1990, 85, 40-46.  

34. Brown, W. F. Thermal Fluctuations of a Single-Domain Particle. Phys. Rev. 1963, 130, 

1677-1686.  

35. Lemine, O. M.; Omri, K.; Iglesias, M.; Velasco, V.; Crespo, P.; de la Presa, P.; El Mir, L.; 

Bouzid, H.; Yousif, A.; Al-Hajry, A. gamma-Fe2O3 by sol-gel with large nanoparticles size 

for magnetic hyperthermia application. J. Alloys Compounds 2014, 607, 125-131.  

36. Yuan, Y.; Tasciuc, D. B. Comparison between experimental and predicted specific 

absorption rate of functionalized iron oxide nanoparticle suspensions. J. Magn. Magn. 

Mater. 2011, 323, 2463-2469.  

37. Hergt, R.; Dutz, S.; Mueller, R.; Zeisberger, M. Magnetic particle hyperthermia: nanoparticle 

magnetism and materials development for cancer therapy. J. Phys. Condens. Matter.   2006, 

18, S2919-S2934.  

38. Karimi, Z.; Karimi, L.; Shokrollahi, H. Nano-magnetic particles used in biomedicine: Core 

and coating materials. Materials Science & Engineering C-Materials for Biological 

Applications 2013, 33, 2465-2475.  

39. Shenoi, M. M.; Shah, N. B.; Griffin, R. J.; Vercellotti, G. M.; Bischof, J. C. Nanoparticle 

preconditioning for enhanced thermal therapies in cancer. Nanomedicine 2011, 6, 545-563.  



 

182 
 

40. Fillmore, H. L.; Shultz, M. D.; Henderson, S. C.; Cooper, P.; Broaddus, W. C.; Chen, Z. J.; 

Shu, C.; Zhang, J.; Ge, J.; Dorn, H. C.; Corwin, F.; Hirsch, J. I.; Wilson, J.; Fatouros, P. P. 

Conjugation of functionalized gadolinium metallofullerenes with IL-13 peptides for 

targeting and imaging glial tumors. Nanomedicine 2011, 6, 449-458.  

41. Hergt, R.; Hiergeist, R.; Hilger, I.; Kaiser, W.; Lapatnikov, Y.; Margel, S.; Richter, U. 

Maghemite nanoparticles with very high AC-losses for application in RF-magnetic 

hyperthermia. J. Magn. Magn. Mater. 2004, 270, 345-357.  

42. Creixell, M.; Bohorquez, A. C.; Torres-Lugo, M.; Rinaldi, C. EGFR-Targeted Magnetic 

Nanoparticle Heaters Kill Cancer Cells without a Perceptible Temperature Rise. ACS Nano 

2011, 5, 7124-7129.  

43. Domenech, M.; Marrero-Berrios, I.; Torres-Lugo, M.; Rinaldi, C. Lysosomal Membrane 

Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields. ACS 

Nano 2013, 7, 5091-5101.  

44. Sun, C.; Lee, J. S. H.; Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. 

Adv. Drug Deliv. Rev. 2008, 60, 1252-1265.  

45. Weissleder, R.; Stark, D.; Engelstad, B.; Bacon, B.; Compton, C.; White, D.; Jacobs, P.; 

Lewis, J. Superparamagnetic Iron-Oxide - Pharmacokinetics and Toxicity. Am. J. 

Roentgenol. 1989, 152, 167-173.  

46. Owens, D.; Peppas, N. Opsonization, biodistribution, and pharmacokinetics of polymeric 

nanoparticles. Int. J. Pharm. 2006, 307, 93-102.  

47. Shultz, M. D.; Wilson, J. D.; Fuller, C. E.; Zhang, J.; Dorn, H. C.; Fatouros, P. P. 

Metallofullerene-based Nanoplatform for Brain Tumor Brachytherapy and Longitudinal 

Imaging in a Murine Orthotopic Xenograft Model. Radiology 2011, 261, 136-143.  

48. Wilson, J. D.; Broaddus, W. C.; Dorn, H. C.; Fatouros, P. P.; Chalfant, C. E.; Shultz, M. D. 

Metallofullerene-Nanoplatform-Delivered Interstitial Brachytherapy Improved Survival in a 

Murine Model of Glioblastoma Multiforme. Bioconjug. Chem. 2012, 23, 1873-1880.  

49. Fatouros, P. P.; Shultz, M. D. Metallofullerenes: a new class of MRI agents and more? 

Nanomedicine 2013, 8, 1853-1864.  

50. Kelkar, S. S.; Reineke, T. M. Theranostics: Combining Imaging and Therapy. Bioconjug. 

Chem. 2011, 22, 1879-1903.  

51. Gupta, A.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for 

biomedical applications. Biomaterials 2005, 26, 3995-4021.  

52. Johannsen, M.; Gneveckow, U.; Taymoorian, K.; Thiesen, B.; Waldoefner, N.; Scholz, R.; 

Jung, K.; Jordan, A.; Wust, P.; Loening, S. A. Morbidity and quality of life during 



 

183 
 

thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a 

prospective phase I trial. Int. J. Hyperthermia  2007, 23, 315-323.  

53. Carroll, K. J.; Shultz, M. D.; Fatouros, P. P.; Carpenter, E. E. High magnetization aqueous 

ferrofluid: A simple one-pot synthesis. J. Appl. Phys. 2010, 107, 09B304.  

54. Reimer, P.; Balzer, T. Ferucarbotran (Resovist): a new clinically approved RES-specific 

contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and 

applications. Eur. Radiol. 2003, 13, 1266-1276.  

55. Singh, A.; Patel, T.; Hertel, J.; Bernardo, M.; Kausz, A.; Brenner, L. Safety of Ferumoxytol 

in Patients With Anemia and CKD. Am. J. Kidney Dis. 2008, 52, 907-915.  

56. Auerbach, M. Ferumoxytol as a New, Safer, Easier-to-Ad minister Intravenous Iron: Yes or 

No? Am. J. Kidney Dis. 2008, 52, 826-829.  

57. Spinowitz, B. S.; Kausz, A. T.; Baptista, J.; Noble, S. D.; Sothinathan, R.; Bernardo, M. V.; 

Brenner, L.; Pereira, B. J. G. Ferumoxytol for Treating Iron Deficiency Anemia in CKD. J. 

Am. Soc. Nephrol. 2008, 19, 1599-1605.  

58. Maier-Hauff, K.; Rothe, R.; Scholz, R.; Gneveckow, U.; Wust, P.; Thiesen, B.; Feussner, A.; 

von Deimling, A.; Waldoefner, N.; Felix, R.; Jordan, A. Intracranial thermotherapy using 

magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility 

study on patients with glioblastoma multiforme. J. Neurooncol. 2007, 81, 53-60.  

59. Pradhan, P.; Giri, J.; Samanta, G.; Sarma, H. D.; Mishra, K. P.; Bellare, J.; Banerjee, R.; 

Bahadur, D. Comparative evaluation of heating ability and biocompatibility of different 

ferrite-based magnetic fluids for hyperthermia application. J. Biomed. Mater. Res. Part B 

Appl. Biomater.  2007, 81B, 12-22.  

60. Pennacchioli, E.; Fiore, M.; Gronchi, A. Hyperthermia as an adjunctive treatment for soft-

tissue sarcoma. Expert Rev. Anticancer Ther. 2009, 9, 199-210.  

61. Emerich, D. F.; Thanos, C. G. The pinpoint promise of nanoparticle-based drug delivery and 

molecular diagnosis. Biomol. Eng. 2006, 23, 171-184.  

62. Hillyer, J.; Albrecht, R. Gastrointestinal persorption and tissue distribution of differently 

sized colloidal gold nanoparticles. J. Pharm. Sci. 2001, 90, 1927-1936.  

63. Thorley, A. J.; Tetley, T. D. New perspectives in nanomedicine. Pharmacol. Ther. 2013, 140, 

176-185.  

64. Weissleder, R.; Kelly, K.; Sun, E.; Shtatland, T.; Josephson, L. Cell-specific targeting of 

nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 2005, 23, 

1418-1423.  



 

184 
 

65. Silva, G. Neuroscience nanotechnology: Progress, opportunities and challenges. Nat. Rev. 

Neurosci.  2006, 7, 65-74.  

66. Ruenraroengsak, P.; Cook, J. M.; Florence, A. T. Nanosystem drug targeting: Facing up to 

complex realities. J. Controlled Release 2010, 141, 265-276.  

67. Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The 

key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001, 41, 

189-207.  

68. Lazzari, S.; Moscatelli, D.; Codari, F.; Salmona, M.; Morbidelli, M.; Diomede, L. Colloidal 

stability of polymeric nanoparticles in biological fluids. J. Nanopart. Res. 2012, 14, 920-

920.  

69. Kamiya, H.; Iijima, M. Surface modification and characterization for dispersion stability of 

inorganic nanometer-scaled particles in liquid media. Sci. Tech. Adv. Mater. 2010, 11, 

044304.  

70. Mout, R.; Moyano, D. F.; Rana, S.; Rotello, V. M. Surface functionalization of nanoparticles 

for nanomedicine. Chem. Soc. Rev. 2012, 41, 2539-2544.  

71. Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, 

diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759-1782.  

72. Zhao, W.; Brook, M. A.; Li, Y. Design of Gold Nanoparticle-Based Colorimetric Biosensing 

Assays. Chembiochem 2008, 9, 2363-2371.  

73. de Vasconcelos, C.; Pereira, M.; Fonseca, J. Polyelectrolytes in solution and the stabilization 

of colloids. J. Dispersion Sci. Technol. 2005, 26, 59-70.  

74. Yang, M.; Neubauer, C.; Jennings, H. Interparticle potential and sedimentation behavior of 

cement suspensions - Review and results from paste. Adv. Cem. Based Mater. 1997, 5, 1-7.  

75. Dupont, J.; Scholten, J. D. On the structural and surface properties of transition-metal 

nanoparticles in ionic liquids. Chem. Soc. Rev. 2010, 39, 1780-1804.  

76. Wang, Z.; Yi, X.; Li, G.; Guan, D.; Lou, A. A functional theoretical approach to the electrical 

double layer of a spherical colloid particle. Chem. Phys. 2001, 274, 57-69.  

77. Derjaguin, B. On the repulsive forces between charged colloid particles and on the theory of 

slow coagulation and stability of lyophobe sols. J. Chem. Soc. Faraday Trans. 1940, 35, 

0203-0214.  

78. Verwey, E. Theory of the Stability of Lyophobic Colloids. J. Phys. Colloid Chem. 1947, 51, 

631-636.  



 

185 
 

79. Quesada-Perez, M.; Callejas-Fernandez, J.; Hidalgo-Alvarez, R. Interaction potentials, 

structural ordering and effective charges in dispersions of charged colloidal particles. Adv. 

Colloid Interface Sci. 2002, 95, 295-315.  

80. HidalgoAlvarez, R.; Martin, A.; Fernandez, A.; Bastos, D.; Martinez, F.; delasNieves, F. 

Electrokinetic properties, colloidal stability and aggregation kinetics of polymer colloids. 

Adv. Colloid Interface Sci. 1996, 67, 1-118.  

81. Moghimi, S. M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: critical 

issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 

2003, 42, 463-478.  

82. Moghimi, S. M.; Muir, I. S.; Illum, L.; Davis, S. S.; Kolb-Bachofen, V. Coating particles 

with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity 

of dysopsonins in the serum. Biochim. Biophys. Acta 1993, 1179, 157-165.  

83. Lasic, D. D.; Martin, F. J.; Gabizon, A.; Huang, S. K.; Papahadjopoulos, D. Sterically 

stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. 

Biochimica et Biophysica Acta (BBA) - Biomembranes 1991, 1070, 187-192.  

84. de Gennes, P. G. Polymers at an interface; a simplified view. Adv. Colloid Interface Sci. 

1987, 27, 189-209.  

85. Koo, O. M.; Rubinstein, I.; Onyuksel, H. Role of nanotechnology in targeted drug delivery 

and imaging: a concise review. Nanomedicine 2005, 1, 193-212.  

86. Winter, P.; Caruthers, S.; Kassner, A.; Harris, T.; Chinen, L.; Allen, J.; Lacy, E.; Zhang, H.; 

Robertson, J.; Wickline, S.; Lanza, G. Molecular Imaging of angiogenesis in nascent vx-2 

rabbit tumors using a novel alpha(v)beta(3)-targeted nanoparticle and 1.5 tesla magnetic 

resonance imaging. Cancer Res. 2003, 63, 5838-5843.  

87. Moghimi, S. M. Modulation of lymphatic distribution of subcutaneously injected poloxamer 

407-coated nanospheres: the effect of the ethylene oxide chain configuration. FEBS Lett. 

2003, 540, 241-244.  

88. Labhasetwar, V. Nanotechnology for drug and gene therapy: the importance of 

understanding molecular mechanisms of delivery. Curr. Opin. Biotechnol. 2005, 16, 674-

680.  

89. Hashizume, H.; Baluk, P.; Morikawa, S.; McLean, J. W.; Thurston, G.; Roberge, S.; Jain, R. 

K.; McDonald, D. M. Openings between Defective Endothelial Cells Explain Tumor Vessel 

Leakiness. Am. J. Pathol. 2000, 156, 1363-1380.  

90. Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D.; Torchilin, V.; Jain, R. Vascular-

Permeability in a Human Tumor Xenograft - Molecular-Size Dependence and Cutoff Size. 

Cancer Res. 1995, 55, 3752-3756.  



 

186 
 

91. Bandyopadhyay, A.; Raghavan, S. Defining the Role of Integrin alpha v beta 6 in Cancer. 

Curr. Drug Targets 2009, 10, 645-652.  

92. Dai, W.; Yang, T.; Wang, Y.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. Peptide PHSCNK 

as an integrin α5β1 antagonist targets stealth liposomes to integrin-overexpressing 

melanoma. Nanomedicine 2012, 8, 1152-1161.  

93. Sehgal, D.; Vijay, I. A Method for the High-Efficiency of Water-Soluble Carbodiimide-

Mediated Amidation. Anal. Biochem. 1994, 218, 87-91.  

94. Gilliland, S. E.; Carpenter, E. E.; Shultz, M. D. Modified Seed Growth of Iron Oxide 

Nanoparticles in Benzyl Alcohol â€“ Optimization for Heating and Broad Stability in 

Biomedical Applications. Nanobiomedicine 2014, 1.  

95. Asati, A.; Santra, S.; Kaittanis, C.; Perez, J. M. Surface-Charge-Dependent Cell Localization 

and Cytotoxicity of Cerium Oxide Nanoparticles. ACS Nano 2010, 4, 5321-5331.  

96. Nagy, A.; Steinbrueck, A.; Gao, J.; Doggett, N.; Hollingsworth, J. A.; Iyer, R. 

Comprehensive Analysis of the Effects of CdSe Quantum Dot Size, Surface Charge, and 

Functionalization on Primary Human Lung Cells. ACS Nano 2012, 6, 4748-4762.  

97. Nasu, T.; Tokumitsu, K.; Konno, T.; Suzuki, K. Reduction of iron-oxide by ball-milling with 

hydrogen gas flow. Mater. Sci. Forum 2000, 343-3, 435-440.  

98. Tokumitsu, K.; Nasu, T.; Suzuki, K.; Greer, A. Deoxidation of iron oxide by ball-milling. 

Mater. Sci. Forum 1998, 269-2, 181-186.  

99. Suryanarayana, C. Mechanical alloying and milling. Prog. Mater Sci. 2001, 46, 1-184.  

100. Rishton, S.; Lu, Y.; Altman, R.; Marley, A.; Bian, X.; Jahnes, C.; Viswanathan, R.; Xiao, 

G.; Gallagher, W.; Parkin, S. Magnetic tunnel junctions fabricated at tenth-micron 

dimensions by electron beam lithography. Microelectron. Eng. 1997, 35, 249-252.  

101. Morjan, I.; Alexandrescu, R.; Dumitrache, F.; Birjega, R.; Fleaca, C.; Soare, I.; Luculescu, 

C. R.; Filoti, G.; Kuncer, V.; Vekas, L.; Popa, N. C.; Prodan, G.; Ciupina, V. Iron Oxide-

Based Nanoparticles with Different Mean Sizes Obtained by the Laser Pyrolysis: Structural 

and Magnetic Properties. J. Nanosci. Nanotechnol. 2010, 10, 1223-1234.  

102. Popovici, E.; Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Ciupina, V.; Prodan, G.; Vekas, 

L.; Bica, D.; Marinica, O.; Vasile, E. Iron/iron oxides core-shell nanoparticles by laser 

pyrolysis: Structural characterization and enhanced particle dispersion. Appl. Surf. Sci. 

2007, 254, 1048-1052.  

103. Alexandrescu, R.; Morjan, I.; Voicu, I.; Dumitrache, F.; Albu, L.; Soare, I.; Prodan, G. 

Combining resonant/non-resonant processes: Nanometer-scale iron-based material 

preparation via CO2 laser pyrolysis. Appl. Surf. Sci. 2005, 248, 138-146.  



 

187 
 

104. Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Ciupina, V.; Prodan, G.; Voicu, I.; Fleaca, C.; 

Albu, L.; Savoiu, M.; Sandu, I.; Popovici, E.; Soare, I. Iron-iron oxide core-shell 

nanoparticles synthesized by laser pyrolysis followed by superficial oxidation. Appl. Surf. 

Sci. 2005, 247, 25-31.  

105. Martelli, S.; Mancini, A.; Giorgi, R.; Alexandrescu, R.; Cojocaru, S.; Crunteanu, A.; Voicu, 

I.; Balu, M.; Morjan, I. Production of iron-oxide nanoparticles by laser-induced pyrolysis of 

gaseous precursors. Appl. Surf. Sci. 2000, 154, 353-359.  

106. Basak, S.; Chen, D.; Biswas, P. Electrospray of ionic precursor solutions to synthesize iron 

oxide nanoparticles: Modified scaling law. Chem. Eng. Sci.2007, 62, 1263-1268.  

107. Gurav, A.; Kodas, T.; Pluym, T.; Xiong, Y. Aerosol Processing of Materials. Aerosol Sci. 

Technol. 1993, 19, 411-452.  

108. Kaushika, A.; Khan, R.; Solanki, P. R.; Pandey, P.; Alam, J.; Ahmad, S.; Malhotra, B. D. 

Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens. Bioelectron. 

2008, 24, 676-683.  

109. Kim, D.; Zhang, Y.; Voit, W.; Rao, K.; Muhammed, M. Synthesis and characterization of 

surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. 

Magn. Mater. 2001, 225, 30-36.  

110. Massart, R.; Cabuil, V. Effect of some Parameters on the Formation of Colloidal Magnetite 

in Alkaline-Medium - Yield and Particle-Size Control. J. Chim. Phys. Phys. -Chim. Biol. 

1987, 84, 967-973.  

111. Lee, J.; Isobe, T.; Senna, M. Preparation of ultrafine Fe3O4 particles by precipitation in the 

presence of PVA at high pH. J. Colloid Interface Sci. 1996, 177, 490-494.  

112. Massart, R.; Dubois, E.; Cabuil, V.; Hasmonay, E. Preparation and Properties of 

Monodisperse Magnetic Fluids. J. Magn. Magn. Mater. 1995, 149, 1-5.  

113. Sugimoto, T.; Matijevic, E. Formation of Uniform Spherical Magnetite Particles by 

Crystallization from Ferrous Hydroxide Gels. J. Colloid Interface Sci. 1980, 74, 227-243.  

114. Albornoz, C.; Jacobo, S. Preparation of a biocompatible magnetic film from an aqueous 

ferrofluid. J. Magn. Magn. Mater. 2006, 305, 12-15.  

115. Wan, J.; Chen, X.; Wang, Z.; Yang, X.; Qian, Y. A soft-template-assisted hydrothermal 

approach to single-crystal Fe3O4 nanorods. J. Cryst. Growth 2005, 276, 571-576.  

116. Salazar-Alvarez, G.; Muhammed, M.; Zagorodni, A. Novel flow injection synthesis of iron 

oxide nanoparticles with narrow size distribution. Chem. Eng. Sci.2006, 61, 4625-4633.  



 

188 
 

117. Chin, A. B.; Yaacob, I. I. Synthesis and characterization of magnetic iron oxide 

nanoparticles via w/o microemulsion and Massart's procedure. J. Mater. Process. Technol. 

2007, 191, 235-237.  

118. Lim, B.; Rahtu, A.; Gordon, R. Atomic layer deposition of transition metals. Nat. Mater. 

2003, 2, 749-754.  

119. Teja, A. S.; Koh, P. Synthesis, properties, and applications of magnetic iron oxide 

nanoparticles. Progress in Crystal Growth and Characterization of Materials 2009, 55, 22-

45.  

120. Carroll, K. J.; Reveles, J. U.; Shultz, M. D.; Khanna, S. N.; Carpenter, E. E. Preparation of 

Elemental Cu and Ni Nanoparticles by the Polyol Method: An Experimental and Theoretical 

Approach. J. Phys. Chem. C 2011, 115, 2656-2664.  

121. Miguel-Sancho, N.; Bomati-Miguel, O.; Roca, A. G.; Martinez, G.; Arruebo, M.; 

Santamaria, J. Synthesis of Magnetic Nanocrystals by Thermal Decomposition in Glycol 

Media: Effect of Process Variables and Mechanistic Study. Ind. Eng. Chem. Res. 2012, 51, 

8348-8357.  

122. Fievet, F.; Fievet-Vincent, F.; Lagier, J.; Dumont, B.; Figlarz, M. Controlled Nucleation and 

Growth of Micrometer-Size Copper Particles Prepared by the Polyol Process. J. Mater. 

Chem. 1993, 3, 627-632.  

123. Kim, E.; Lee, H.; Kwak, B.; Kim, B. Synthesis of ferrofluid with magnetic nanoparticles by 

sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 2005, 289, 328-330.  

124. Lu, A.; Salabas, E. L.; Schueth, F. Magnetic nanoparticles: Synthesis, protection, 

functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244.  

125. Kharisov, B. I.; Dias, H. V. R.; Kharissova, O. V.; Manuel Jimenez-Perez, V.; Olvera Perez, 

B.; Munoz Flores, B. Iron-containing nanomaterials: synthesis, properties, and 

environmental applications. RSC Advances 2012, 2, 9325-9358.  

126. Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S. Synthesis, Functionalization, and 

Biomedical Applications of Multifunctional Magnetic Nanoparticles. Adv. Mater. 2010, 22, 

2729-2742.  

127. Sato, S.; Murakata, T.; Yanagi, H.; Miyasaka, F.; Iwaya, S. Hydrothermal Synthesis of Fine 

Perovskite Pbtio3 Powders with a Simple Mode of Size Distribution. J. Mater. Sci. 1994, 

29, 5657-5663.  

128. Zhang, L.; He, R.; Gu, H. Oleic acid coating on the monodisperse magnetite nanoparticles. 

Appl. Surf. Sci. 2006, 253, 2611-2617.  



 

189 
 

129. Sun, S.; Zeng, H.; Robinson, D.; Raoux, S.; Rice, P.; Wang, S.; Li, G. Monodisperse 

MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273-279.  

130. Liong, M.; Shao, H.; Haun, J. B.; Lee, H.; Weissleder, R. Carboxymethylated Polyvinyl 

Alcohol Stabilizes Doped Ferrofluids for Biological Applications. Adv. Mater. 2010, 22, 

5168-+.  

131. Qiao, R.; Yang, C.; Gao, M. Superparamagnetic iron oxide nanoparticles: from preparations 

to in vivo MRI applications. J. Mater. Chem. 2009, 19, 6274-6293.  

132. Niederberger, M.; Bartl, M.; Stucky, G. Benzyl alcohol and titanium tetrachloride - A 

versatile reaction system for the nonaqueous and low-temperature preparation of crystalline 

and luminescent titania nanoparticles. Chem. Mater. 2002, 14, 4364-4370.  

133. Niederberger, M.; Bartl, M. H.; Stucky, G. D. Benzyl Alcohol and Transition Metal 

Chlorides as a Versatile Reaction System for the Nonaqueous and Low-Temperature 

Synthesis of Crystalline Nano-Objects with Controlled Dimensionality. J. Am. Chem. Soc. 

2002, 124, 13642-13643.  

134. Sudareva, N.; Chubarova, E. Time-dependent conversion of benzyl alcohol to benzaldehyde 

and benzoic acid in aqueous solutions. J. Pharm. Biomed. Anal. 2006, 41, 1380-1385.  

135. Cosmetic Ingredient Review Expert Final report on the safety assessment of Benzyl 

Alcohol, Benzoic Acid, and Sodium Benzoate. Int. J. Toxicol. 2001, 20, 23-50.  

136. Scognamiglio, J.; Jones, L.; Vitale, D.; Letizia, C. S.; Api, A. M. Fragrance material review 

on benzyl alcohol. Food Chem. Toxicol.  2012, 50, S140-S160.  

137. Belsito, D.; Bickers, D.; Bruze, M.; Calow, P.; Dagli, M. L.; Fryer, A. D.; Greim, H.; 

Miyachi, Y.; Saurath, J. H.; Sipes, I. G.; RIFM Expert Panel A toxicological and 

dermatological assessment of aryl alkyl alcohols when used as fragrance ingredients. Food 

Chem. Toxicol.  2012, 50, S52-S99.  

138. Pinna, N.; Niederberger, M. Surfactant-free nonaqueous synthesis of metal oxide 

nanostructures. Angew. Chem. Int. Ed. 2008, 47, 5292-5304.  

139. Bilecka, I.; Djerdj, I.; Niederberger, M. One-minute synthesis of crystalline binary and 

ternary metal oxide nanoparticles. Chem. Commun. 2008, 886-888.  

140. Garnweitner, G.; Niederberger, M. Nonaqueous and Surfactant-Free Synthesis Routes to 

Metal Oxide Nanoparticles. J. Am. Ceram. Soc. 2006, 89, 1801-1808.  

141. Zhou, S.; Garnweitner, G.; Niederberger, M.; Antonietti, M. Dispersion Behavior of 

Zirconia Nanocrystals and Their Surface Functionalization with Vinyl Group-Containing 

Ligands. Langmuir 2007, 23, 9178-9187.  



 

190 
 

142. Garnweitner, G.; Goldenberg, L.; Sakhno, O.; Antonietti, M.; Niederberger, M.; Stumpe, J. 

Large-Scale Synthesis of Organophilic Zirconia Nanoparticles and their Application in 

Organic?Inorganic Nanocomposites for Efficient Volume Holography. Small 2007, 3, 1626-

1632.  

143. Pinna, N.; Grancharov, S.; Beato, P.; Bonville, P.; Antonietti, M.; Niederberger, M. 

Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. 

Mater. 2005, 17, 3044-3049.  

144. Sun, S.; Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 

2002, 124, 8204-8205.  

145. Shultz, M.; Wilson, J.,; Fuller, C.; Zhang, J.; Dorn, H.; Fatouros, P. Metallofullerene-based 

Nanoplatform for Brain Tumor Brachytherapy and Longitudinal Imaging in a Murine 

Orthotopic Xenograft Model. Radiology 2011, 261, 136.  

146. De Palma, R.; Peeters, S.; Van Bael, M. J.; Van den Rul, H.; Bonroy, K.; Laureyn, W.; 

Mullens, J.; Borghs, G.; Maes, G. Silane ligand exchange to make hydrophobic 

superparamagnetic nanoparticles water-dispersible. Chem. Mater. 2007, 19, 1821-1831.  

147. Mohapatra, S.; Pal, D.; Ghosh, S. K.; Pramanik, P. Design of superparamagnetic iron oxide 

nanoparticle for purification of recombinant proteins. J. Nanosci. Nanotechnol. 2007, 7, 

3193-3199.  

148. van de Waterbeemd, M.; Sen, T.; Biagini, S.; Bruce, I. J. Surface functionalisation of 

magnetic nanoparticles: quantification of surface to bulk amine density. Micro & Nano 

Letters 2010, 5, 282-285.  

149. Mohapatra, S.; Pramanik, N.; Mukherjee, S.; Ghosh, S. K.; Pramanik, P. A simple synthesis 

of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications. J. 

Mater. Sci. 2007, 42, 7566-7574.  

150. Salon, M. B.; Belgacem, M. N. Hydrolysis-Condensation Kinetics of Different Silane 

Coupling Agents. Phosphorus Sulfur 2011, 186, 240-254.  

151. Ninjbadgar, T.; Brougham, D. F. Epoxy Ring Opening Phase Transfer as a General Route to 

Water Dispersible Superparamagnetic Fe3O4 Nanoparticles and Their Application as 

Positive MRI Contrast Agents. Adv. Funct. Mater. 2011, 21, 4769-4775.  

152. Pal, S.; Alocilja, E. C. Electrically active polyaniline coated magnetic (EAPM) nanoparticle 

as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. 

Biosens. Bioelectron. 2009, 24, 1437-1444.  

153. Wang, Y.; Dostalek, J.; Knoll, W. Magnetic Nanoparticle-Enhanced Biosensor Based on 

Grating-Coupled Surface Plasmon Resonance. Anal. Chem. 2011, 83, 6202-6207.  



 

191 
 

154. Kamikawa, T. L.; Mikolajczyk, M. G.; Kennedy, M.; Zhang, P.; Wang, W.; Scott, D. E.; 

Alocilja, E. C. Nanoparticle-based biosensor for the detection of emerging pandemic 

influenza strains. Biosens. Bioelectron. 2010, 26, 1346-1352.  

155. Mukherjee, A.; Castanares, M.; Hedayati, M.; Wabler, M.; Trock, B.; Kulkarni, P.; 

Rodriguez, R.; Getzenberg, R. H.; DeWeese, T. L.; Ivkov, R.; Lupold, S. E. Monitoring 

nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor. 

Nanomedicine 2014, 9, 2729-2743.  

156. Haun, J. B.; Yoon, T.; Lee, H.; Weissleder, R. Magnetic nanoparticle biosensors. Wiley 

Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 2010, 2, 291-304.  

157. Tartaj, P.; Morales, M. P.; Gonzalez‐carreño, T.; Veintemillas‐verdaguer, S.; Serna, C. J. 

The Iron Oxides Strike Back: From Biomedical Applications to Energy Storage Devices and 

Photoelectrochemical Water Splitting. Adv. Mater. 2011, 23, 5243-5249.  

158. Haberl, J. M.; Sanchez-Ferrer, A.; Mihut, A. M.; Dietsch, H.; Hirt, A. M.; Mezzenga, R. 

Liquid-Crystalline Elastomer-Nanoparticle Hybrids with Reversible Switch of Magnetic 

Memory. Adv. Mater. 2013, 25, 1787-1791.  

159. Batlle, X.; Labarta, A. Finite-size effects in fine particles: magnetic and transport properties. 

J. Phys. D: Appl. Phys. 2002, 35, R15-R42.  

160. LesliePelecky, D.; Rieke, R. Magnetic properties of nanostructured materials. Chem. Mater. 

1996, 8, 1770-1783.  

161. Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Bassett, J. Magnetically 

Recoverable Nanocatalysts. Chem. Rev. 2011, 111, 3036-3075.  

162. Yang, H.; Zhang, S.; Chen, X.; Zhuang, Z.; Xu, J.; Wang, X. Magnetite-containing 

spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem. 2004, 76, 

1316-1321.  

163. Yi, D. K.; Lee, S. S.; Ying, J. Y. Synthesis and applications of magnetic nanocomposite 

catalysts. Chem. Mater. 2006, 18, 2459-2461.  

164. Li, L.; Mak, K. Y.; Leung, C. W.; Ng, S. M.; Lei, Z. Q.; Pong, P. W. T. Detection of 10-nm 

Superparamagnetic Iron Oxide Nanoparticles Using Exchange-Biased GMR Sensors in 

Wheatstone Bridge. IEEE Trans. Magn. 2013, 49, 4056-4059.  

165. Li, L.; Leung, C. W.; Pong, P. W. T. Magnetism of Iron Oxide Nanoparticles and Magnetic 

Biodetection. Journal of Nanoelectronics and Optoelectronics 2013, 8, 397-414.  

166. Wang, J.; Zhu, Z.; Munir, A.; Zhou, H. S. Fe(3)O(4) nanoparticles-enhanced SPR sensing 

for ultrasensitive sandwich bio-assay. Talanta 2011, 84, 783-788.  



 

192 
 

167. Blanc-Beguin, F.; Nabily, S.; Gieraltowski, J.; Turzo, A.; Querellou, S.; Salaun, P. Y. 

Cytotoxicity and GMI bio-sensor detection of maghemite nanoparticles internalized into 

cells. J. Magn. Magn. Mater. 2009, 321, 192-197.  

168. Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. Magnetic nanoparticles: synthesis, 

functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. 

Rev. 2009, 38, 2532-2542.  

169. Coffey, W. T.; Kalmykov, Y. P. Thermal fluctuations of magnetic nanoparticles: Fifty years 

after Brown. J. Appl. Phys. 2012, 112, 121301.  

170. Wabler, M.; Zhu, W.; Hedayati, M.; Attaluri, A.; Zhou, H.; Mihalic, J.; Geyh, A.; DeWeese, 

T. L.; Ivkov, R.; Artemov, D. Magnetic resonance imaging contrast of iron oxide 

nanoparticles developed for hyperthermia is dominated by iron content. Int. J. Hyperthermia  

2014, 30, 192-200.  

171. Park, J. Y.; Choi, H. J.; Nam, G.; Cho, K.; Son, J. In Vivo Dual-Modality 

Terahertz/Magnetic Resonance Imaging Using Superparamagnetic Iron Oxide Nanoparticles 

as a Dual Contrast Agent. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 93-98.  

172. Simeonidis, K.; Martinez-Boubeta, C.; Balcells, L.; Monty, C.; Stavropoulos, G.; Mitrakas, 

M.; Matsakidou, A.; Vourlias, G.; Angelakeris, M. Fe-based nanoparticles as tunable 

magnetic particle hyperthermia agents. J. Appl. Phys. 2013, 114, 103904.  

173. Neuberger, T.; Schopf, B.; Hofmann, H.; Hofmann, M.; von Rechenberg, B. 

Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations 

of a new drug delivery system. J. Magn. Magn. Mater. 2005, 293, 483-496.  

174. Vallejo-Fernandez, G.; O'Grady, K. Effect of the distribution of anisotropy constants on 

hysteresis losses for magnetic hyperthermia applications. Appl. Phys. Lett. 2013, 103, 

142417.  

175. Weiss, W.; Ranke, W. Surface chemistry and catalysis on well-defined epitaxial iron-oxide 

layers. Prog. Surf. Sci. 2002, 70, 1-151.  

176. Li, X.; Elliott, D. W.; Zhang, W. Zero-valent iron nanoparticles for abatement of 

environmental pollutants: Materials and engineering aspects. Crit. Rev. Solid State  2006, 

31, 111-122.  

177. Zhang, Z.; Satpathy, S. Electron-States, Magnetism, and the Verwey Transition in 

Magnetite. Phys. Rev. B 1991, 44, 13319-13331.  

178. Walz, F. The Verwey transition - a topical review. J. Phys. Condens. Matter.  2002, 14, 

R285-R340.  



 

193 
 

179. Cornell, R. M. The iron oxides : structure, properties, reactions, occurrences, and uses; 

Weinheim : Wiley-VCH: Weinheim, 2003; .  

180. Zboril, R.; Mashlan, M.; Petridis, D. Iron(III) oxides from thermal processes-synthesis, 

structural and magnetic properties, Mossbauer spectroscopy characterization, and 

applications. Chem. Mater. 2002, 14, 969-982.  

181. Makie, P.; Westin, G.; Persson, P.; Osterlund, L. Adsorption of Trimethyl Phosphate on 

Maghemite, Hematite, and Goethite Nanoparticles. J. Phys. Chem. A 2011, 115, 8948-8959.  

182. Darken, L. S.; Gurry, R. W. The System Iron-Oxygen. I. The WÃ¼stite Field and Related 

Equilibria. J. Am. Chem. Soc. 1945, 67, 1398-1412.  

183. Pankhurst, Q.; Connolly, J.; Jones, S.; Dobson, J. Applications of magnetic nanoparticles in 

biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167-R181.  

184. Baumgartner, J.; Bertinetti, L.; Widdrat, M.; Hirt, A. M.; Faivre, D. Formation of Magnetite 

Nanoparticles at Low Temperature: From Superparamagnetic to Stable Single Domain 

Particles. Plos One 2013, 8, e57070.  

185. Butler, R.; Banerjee, S. Theoretical Single-Domain Grain-Size Range in Magnetite and 

Titanomagnetite. J. Geophys. Res. 1975, 80, 4049-4058.  

186. Langford, J.; Louer, D. Powder diffraction. Rep. Prog. Phys. 1996, 59, 131-234.  

187. Harris, K.; Tremayne, M. Crystal structure determination from powder diffraction data. 

Chem. Mater. 1996, 8, 2554-2570.  

188. Vickerman, J.; Gilmore, I. Surface analysis the principal techniques; Chichester, U.K. : 

Wiley: Chichester, U.K., 2009; .  

189. Kasap, S. O. (. Principles of electronic materials and devices; Boston : McGraw-Hill: 

Boston, 2006; .  

190. Lin, P.; Lin, S.; Wang, P. C.; Sridhar, R. Techniques for physicochemical characterization 

of nanomaterials. Biotechnol. Adv. 2014, 32, 711-726.  

191. Lim, J.; Yeap, S. P.; Che, H. X.; Low, S. C. Characterization of magnetic nanoparticle by 

dynamic light scattering. Nanoscale Res. Lett. 2013, 8, 381.  

192. Hiemenz, P. C., 1936- Principles of colloid and surface chemistry; New York : Marcel 

Dekker: New York, 1997; .  

193. Wang, Z. Transmission electron microscopy of shape-controlled nanocrystals and their 

assemblies. J. Phys. Chem. B 2000, 104, 1153-1175.  



 

194 
 

194. Zhang, Z.; Miao, C.; Guo, W. Nano-solenoid: helicoid carbon-boron nitride hetero-

nanotube. Nanoscale 2013, 5, 11902-11909.  

195. Florini, N.; Barrera, G.; Tiberto, P.; Allia, P.; Bondioli, F. Nonaqueous Sol-Gel Synthesis of 

Magnetic Iron Oxides Nanocrystals. J. Am. Ceram. Soc. 2013, 96, 3169-3175.  

196. Tu, Z.; Zhang, B.; Yang, G.; Wang, M.; Zhao, F.; Sheng, D.; Wang, J. Synthesis of 

poly(ethylene glycol) and poly(vinyl pyrrolidone) co-coated superparamagnetic iron oxide 

nanoparticle as a pH-sensitive release drug carrier. Colloids Surf., A 2013, 436, 854-861.  

197. Yu, W.; Falkner, J.; Yavuz, C.; Colvin, V. Synthesis of monodisperse iron oxide 

nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 2004, 

2306-2307.  

198. Sangermano, M.; Allia, P.; Tiberto, P.; Barrera, G.; Bondioli, F.; Florini, N.; Messori, M. 

Photo-Cured Epoxy Networks Functionalized With Fe3O4 Generated by Non-hydrolytic 

SolGel Process. Macromol. Chem. Phys. 2013, 214, 508-516.  

199. Fievet, F.; Lagier, J.; Blin, B.; Beaudoin, B.; Figlarz, M. Homogeneous and Heterogeneous 

Nucleations in the Polyol Process for the Preparation of Micron and Sub-Micron Size Metal 

Particles. Solid State Ionics 1989, 32-3, 198-205.  

200. Katritzky, A.; Mu, L.; Lobanov, V.; Karelson, M. Correlation of boiling points with 

molecular structure .1. A training set of 298 diverse organics and a test set of 9 simple 

inorganics. J. Phys. Chem. 1996, 100, 10400-10407.  

201. Nandwana, V.; Elkins, K.; Liu, J. Magnetic hardening in ultrafine FePt nanoparticle 

assembled films. Nanotechnology 2005, 16, 2823-2826.  

202. Roca, A. G.; Morales, M. P.; O'Grady, K.; Serna, C. J. Structural and magnetic properties of 

uniform magnetite nanoparticles prepared by high temperature decomposition of organic 

precursors. Nanotechnology 2006, 17, 2783-2788.  

203. Goss, C. Saturation Magnetization, Coercivity and Lattice-Parameter Changes in the 

System Fe3o4-Gamma-Fe2o3, and their Relationship to Structure. Phys. Chem. Miner. 

1988, 16, 164-171.  

204. Shultz, M. D.; Braxton, W.; Taylor, C.; Carpenter, E. E. One parameter control of the size 

of iron oxide nanoparticles synthesized in reverse micelles. J. Appl. Phys. 2009, 105, 

07A522.  

205. Finney, E. E.; Finke, R. G. Nanocluster nucleation and growth kinetic and mechanistic 

studies: A review emphasizing transition-metal nanoclusters. J. Colloid Interface Sci. 2008, 

317, 351-374.  



 

195 
 

206. Wang, H.; Nann, T. Monodisperse Upconverting Nanocrystals by Microwave-Assisted 

Synthesis. ACS Nano 2009, 3, 3804-3808.  

207. Rao, C. N. R.; Müller, A.; Cheetham, A. K. Nanomaterials chemistry : recent developments 

and new directions; Weinheim : Wiley-VCH ; Chichester : John Wiley, distributor: 

Weinheim : Chichester, 2007; .  

208. Murray, C.; Norris, D.; Bawendi, M. Synthesis and Characterization of nearly 

Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 

115, 8706-8715.  

209. Symposium on Particle Growth in Suspensions (1972,: Brunel University Particle growth in 

suspensions; proceedings; London, New York, Academic Press: London, New York, 1973; 

.  

210. Figuerola, A.; Fiore, A.; Di Corato, R.; Falqui, A.; Giannini, C.; Micotti, E.; Lascialfari, A.; 

Corti, M.; Cingolani, R.; Pellegrino, T.; Cozzoli, P. D.; Manna, L. One-pot synthesis and 

characterization of size-controlled bimagnetic FePt-iron oxide heterodimer nanocrystals. J. 

Am. Chem. Soc. 2008, 130, 1477-1487.  

211. Tao, A. R.; Habas, S.; Yang, P. Shape control of colloidal metal nanocrystals. Small 2008, 

4, 310-325.  

212. Chen, Y.; Johnson, E.; Peng, X. Formation of monodisperse and shape-controlled MnO 

nanocrystals in non-injection synthesis: Self-focusing via. J. Am. Chem. Soc. 2007, 129, 

10937-10947.  

213. Huang, J.; Parab, H. J.; Liu, R.; Lai, T.; Hsiao, M.; Chen, C.; Sheu, H.; Chen, J.; Tsai, D.; 

Hwu, Y. Investigation of the growth mechanism of iron oxide nanoparticles via a seed-

mediated method and its cytotoxicity studies. J. Phys. Chem. C 2008, 112, 15684-15690.  

214. Hind, A. R.; Bhargava, S. K.; McKinnon, A. At the solid/liquid interface: FTIR/ATR - the 

tool of choice. Adv. Colloid Interface Sci. 2001, 93, 91-114.  

215. Silverstein, R. M. (. M., 1916-2007 Spectrometric identification of organic compounds; 

New York, Wiley: New York, 1967; .  

216. Motte, C.; Poelman, M.; Roobroeck, A.; Fedel, M.; Deflorian, F.; Olivier, M. -. 

Improvement of corrosion protection offered to galvanized steel by incorporation of 

lanthanide modified nanoclays in silane layer. Prog. Org. Chem. 2012, 74, 326-333.  

217. Yue, Y.; Liu, Z.; Wan, T.; Wang, P. Effect of phosphate-silane pretreatment on the 

corrosion resistance and adhesive-bonded performance of the AZ31 magnesium alloys. 

Prog. Org. Chem. 2013, 76, 835-843.  



 

196 
 

218. Hu, J.; Liu, L.; Zhang, J.; Cao, C. Electrodeposition of silane films on aluminum alloys for 

corrosion protection. Prog. Org. Chem. 2007, 58, 265-271.  

219. Chen, M.; Xie, X.; Zhang, X. Interactions of BTESPT silane and maleic anhydride grafted 

polypropylene with epoxy and application to improve adhesive durability between epoxy 

and aluminium sheet. Prog. Org. Chem. 2009, 66, 40-51.  

220. Kim, C.; Wang, Z.; Choi, H.; Ha, Y.; Facchetti, A.; Marks, T. J. Printable cross-linked 

polymer blend dielectrics. Design strategies, synthesis, microstructures, and electrical 

properties, with organic field-effect transistors as testbeds. J. Am. Chem. Soc. 2008, 130, 

6867-6878.  

221. Mascher, P.; Boudreau, M.; Wallace, S.; Murugkar, S.; Balcaitis, G.; Wettlaufer, C.; 

Haugen, H. Optical coatings for improved semiconductor diode laser performance; 

Electrochemical Society Series; 1998; Vol. 98, pp 67.  

222. Kim, W.; Ryu, J. Physical properties of epoxy molding compound for semiconductor 

encapsulation according to the coupling treatment process change of silica. J. Appl. Polym. 

Sci. 1997, 65, 1975-1982.  

223. Kobayashi, Y.; Misawa, K.; Takeda, M.; Kobayashi, M.; Satake, M.; Kawazoe, Y.; Ohuchi, 

N.; Kasuya, A.; Konno, M. Silica-coating of AgI semiconductor nanoparticles. Colloids 

Surf., A 2004, 251, 197-201.  

224. De Graeve, I.; Tourwe, E.; Biesemans, M.; Willem, R.; Terryn, H. Silane solution stability 

and film morphology of water-based bis-1,2-(triethoxysilyl)ethane for thin-film deposition 

on aluminium. Prog. Org. Chem. 2008, 63, 38-42.  

225. Cao, H.; He, J.; Deng, L.; Gao, X. Fabrication of cyclodextrin-functionalized 

superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. 

Appl. Surf. Sci. 2009, 255, 7974-7980.  

226. Sundar, S.; Mariappan, R.; Piraman, S. Synthesis and characterization of amine modified 

magnetite nanoparticles as carriers of curcumin-anticancer drug. Powder Technol. 2014, 

266, 321-328.  

227. Yamaura, M.; Camilo, R.; Sampaio, L.; Macedo, M.; Nakamura, M.; Toma, H. Preparation 

and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J 

Magn. Magn. Mater. 2004, 279, 210-217.  

228. White, L. D.; Tripp, C. P. Reaction of (3-Aminopropyl)dimethylethoxysilane with Amine 

Catalysts on Silica Surfaces. J. Colloid Interface Sci. 2000, 232, 400-407.  

229. Xu, Z.; Liu, Q.; Finch, J. A. Silanation and stability of 3-aminopropyl triethoxy silane on 

nanosized superparamagnetic particles: I. Direct silanation. Appl. Surf. Sci. 1997, 120, 269-

278.  



 

197 
 

230. MORROW, B.; MCFARLAN, A. Surface Vibrational-Modes of Silanol Groups on Silica. 

J. Phys. Chem. 1992, 96, 1395-1400.  

231. Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. 

Appl. Surf. Sci. 2008, 254, 2441-2449.  

232. McIntyre, N.; Zetaruk, D. X-Ray Photoelectron Spectroscopic Studies of Iron-Oxides. Anal. 

Chem. 1977, 49, 1521-1529.  

233. Sahoo, B.; Devi, K. S. P.; Dutta, S.; Maiti, T. K.; Pramanik, P.; Dhara, D. Biocompatible 

mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted 

drug delivery and MR imaging applications. J. Colloid Interface Sci. 2014, 431, 31-41.  

234. Acres, R. G.; Ellis, A. V.; Alvino, J.; Lenahan, C. E.; Khodakov, D. A.; Metha, G. F.; 

Andersson, G. G. Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on 

Silanol-Terminated Silicon Surfaces. Journal of Physical Chemistry C 2012, 116, 6289-

6297.  

235. Odio, O. F.; Lartundo-Rojas, L.; Santiago-Jacinto, P.; Martinez, R.; Reguera, E. Sorption of 

Gold by Naked and Thiol-Capped Magnetite Nanoparticles: An XPS Approach. J. Phys. 

Chem. C 2014, 118, 2776-2791.  

236. Briggs, D.; Beamson, G. XPS Studies of the Oxygen-1s and Oxygen-2s Levels in a Wide-

Range of Functional Polymers. Anal. Chem. 1993, 65, 1517-1523.  

237. Stevens, J. S.; Byard, S. J.; Schroeder, S. L. M. Characterization of Proton Transfer in Co-

Crystals by X-ray Photoelectron Spectroscopy (XPS). Cryst. Growth Des.2010, 10, 1435-

1442.  

238. Stevens, J. S.; de Luca, A. C.; Pelendritis, M.; Terenghi, G.; Downes, S.; Schroeder, S. L. 

M. Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron 

spectroscopy (XPS). Surf. Interface Anal. 2013, 45, 1238-1246.  

239. Stropoli, S. J.; Elrod, M. J. Assessing the Potential for the Reactions of Epoxides with 

Amines on Secondary Organic Aerosol Particles. J. Phys. Chem. A 2015.  

240. Chan, N.; Li, P.; Oh, J. K. Chain Length Effect of the Multidentate Block Copolymer 

Strategy to Stabilize Ultrasmall Fe3O4 Nanoparticles. Chempluschem 2014, 79, 1342-1351.  

241. Tenzer, S.; Docter, D.; Rosfa, S.; Wlodarski, A.; Kuharev, J.; Rekik, A.; Knauer, S. K.; 

Bantz, C.; Nawroth, T.; Bier, C.; Sirirattanapan, J.; Mann, W.; Treuel, L.; Zellner, R.; 

Maskos, M.; Schild, H.; Stauber, R. H. Nanoparticle Size Is a Critical Physicochemical 

Determinant of the Human Blood Plasma Corona: A Comprehensive Quantitative Proteomic 

Analysis. ACS Nano 2011, 5, 7155-7167.  



 

198 
 

242. Paganelli, G.; Sansovini, M.; Ambrosetti, A.; Severi, S.; Monti, M.; Scarpi, E.; Donati, C.; 

Ianniello, A.; Matteucci, F.; Amadori, D. 177 Lu-Dota-octreotate radionuclide therapy of 

advanced gastrointestinal neuroendocrine tumors: results from a phase II study. Eur. J. Nucl. 

Med. Mol. Imaging 2014, 41, 1845-1851.  

243. Piccin, A.; Grana, C. M.; Negri, G.; Pusceddu, I.; Paganelli, G.; Cortelazzo, S. Secondary 

acute myeloid leukaemia after peptide receptor radionuclide therapy. Ann. Hematol. 2012, 

91, 299-300.  

244. Pasha, S.; Gupta, K. Various drug delivery approaches to the central nervous system. Expert 

Opin. Drug Deliv. 2010, 7, 113-135.  

245. Zhang, Y.; Kohler, N.; Zhang, M. Surface modification of superparamagnetic magnetite 

nanoparticles and their intracellular uptake. Biomaterials 2002, 23, 1553-1561.  

246. Xu, Z.; Zeng, Q.; Lu, G.; Yu, A. Inorganic nanoparticles as carriers for efficient cellular 

delivery. Chem. Eng. Sci. 2006, 61, 1027-1040.  



 

199 
 

 

 

 

Appendix 

 

 

 

 

Table A1. Descriptives for cell uptake study based on pg of Fe per cell values. 

 N Mean Std. 

Deviation 

Std. Error 95% Confidence Interval for 

Mean 

Minimum Maximum 

Lower Bound Upper Bound 

Gly-FeOx 9 1.2770 .67894 .22631 .7551 1.7989 .55 2.50 

Ser-FeOx 9 1.3263 .23690 .07897 1.1442 1.5084 .92 1.66 

EDA-FeOx 9 96.1587 10.06934 3.35645 88.4187 103.8987 79.92 107.98 

TEPA-FeOx 9 99.2303 35.11813 11.70604 72.2361 126.2245 62.38 153.77 

ABA-FeOx 9 1.4106 .53743 .17914 .9975 1.8237 .83 2.50 

SAHBA-FeOx 9 .6539 .12100 .04033 .5609 .7469 .52 .88 

CMPVA-FeOx 9 1.3357 1.09110 .36370 .4970 2.1744 .34 3.05 

APTS-FeOx 9 3.4168 .87460 .29153 2.7445 4.0891 2.10 4.60 

APTES-FeOx 9 2.3539 .54045 .18015 1.9385 2.7694 1.45 3.05 

Total 81 23.0181 41.81012 4.64557 13.7732 32.2631 .34 153.77 

 

Table A2. Descriptives for cell uptake study based on percent uptake values. 

 N Mean Std. 

Deviation 

Std. Error 95% Confidence Interval for 

Mean 

Minimum Maximum 

Lower Bound Upper Bound 

Gly-FeOx 9 .4615 .14989 .04996 .3463 .5767 .24 .67 

Ser-FeOx 9 .3511 .06166 .02055 .3037 .3985 .25 .44 

EDA-FeOx 9 71.7294 21.95533 7.31844 54.8531 88.6058 42.23 95.81 

TEPA-FeOx 9 41.2559 9.61316 3.20439 33.8666 48.6452 33.31 55.85 

ABA-FeOx 9 .4271 .14410 .04803 .3164 .5379 .28 .70 

SAHBA-FeOx 9 .1937 .04216 .01405 .1613 .2261 .14 .27 

CMPVA-FeOx 9 .4079 .32337 .10779 .1593 .6565 .11 .91 

APTS-FeOx 9 .9150 .16723 .05574 .7865 1.0436 .63 1.08 

APTES-FeOx 9 .5237 .13339 .04446 .4212 .6263 .38 .79 

Total 81 12.9184 25.67111 2.85235 7.2420 18.5947 .11 95.81 
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Table A3. ANOVA values for cell uptake studies.  

 Sum of Squares df Mean Square F Sig. 

pg 

Between Groups 129144.970 8 16143.121 108.607 .000 

Within Groups 10701.945 72 148.638   

Total 139846.915 80    

Percent 

Between Groups 48123.297 8 6015.412 94.212 .000 

Within Groups 4597.189 72 63.850   

Total 52720.486 80    

 

Table A4. Tukey HSD post-hoc tests results for cell uptake study based on pg of Fe per cell 

values. 

(I) Treatment (J) Treatment Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Gly-FeOx 

Ser-FeOx -.04928 5.74723 1.000 -18.4292 18.3306 

EDA-FeOx -94.88166* 5.74723 .000 -113.2615 -76.5018 

TEPA-FeOx -97.95332* 5.74723 .000 -116.3332 -79.5734 

ABA-FeOx -.13355 5.74723 1.000 -18.5134 18.2463 

SAHBA-FeOx .62308 5.74723 1.000 -17.7568 19.0030 

CMPVA-FeOx -.05872 5.74723 1.000 -18.4386 18.3212 

APTS-FeOx -2.13980 5.74723 1.000 -20.5197 16.2401 

APTES-FeOx -1.07693 5.74723 1.000 -19.4568 17.3030 

Ser-FeOx 

Gly-FeOx .04928 5.74723 1.000 -18.3306 18.4292 

EDA-FeOx -94.83238* 5.74723 .000 -113.2123 -76.4525 

TEPA-FeOx -97.90404* 5.74723 .000 -116.2839 -79.5242 

ABA-FeOx -.08427 5.74723 1.000 -18.4642 18.2956 

SAHBA-FeOx .67236 5.74723 1.000 -17.7075 19.0522 

CMPVA-FeOx -.00944 5.74723 1.000 -18.3893 18.3704 

APTS-FeOx -2.09053 5.74723 1.000 -20.4704 16.2894 

APTES-FeOx -1.02765 5.74723 1.000 -19.4075 17.3522 

EDA-FeOx 

Gly-FeOx 94.88166* 5.74723 .000 76.5018 113.2615 

Ser-FeOx 94.83238* 5.74723 .000 76.4525 113.2123 

TEPA-FeOx -3.07166 5.74723 1.000 -21.4516 15.3082 

ABA-FeOx 94.74811* 5.74723 .000 76.3682 113.1280 

SAHBA-FeOx 95.50474* 5.74723 .000 77.1248 113.8846 

CMPVA-FeOx 94.82294* 5.74723 .000 76.4430 113.2028 

APTS-FeOx 92.74185* 5.74723 .000 74.3620 111.1217 

APTES-FeOx 93.80473* 5.74723 .000 75.4248 112.1846 

TEPA-FeOx 

Gly-FeOx 97.95332* 5.74723 .000 79.5734 116.3332 

Ser-FeOx 97.90404* 5.74723 .000 79.5242 116.2839 

EDA-FeOx 3.07166 5.74723 1.000 -15.3082 21.4516 

ABA-FeOx 97.81977* 5.74723 .000 79.4399 116.1997 

SAHBA-FeOx 98.57640* 5.74723 .000 80.1965 116.9563 

CMPVA-FeOx 97.89460* 5.74723 .000 79.5147 116.2745 

APTS-FeOx 95.81351* 5.74723 .000 77.4336 114.1934 

APTES-FeOx 96.87639* 5.74723 .000 78.4965 115.2563 

ABA-FeOx 
Gly-FeOx .13355 5.74723 1.000 -18.2463 18.5134 

Ser-FeOx .08427 5.74723 1.000 -18.2956 18.4642 
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EDA-FeOx -94.74811* 5.74723 .000 -113.1280 -76.3682 

TEPA-FeOx -97.81977* 5.74723 .000 -116.1997 -79.4399 

SAHBA-FeOx .75663 5.74723 1.000 -17.6233 19.1365 

CMPVA-FeOx .07483 5.74723 1.000 -18.3051 18.4547 

APTS-FeOx -2.00625 5.74723 1.000 -20.3861 16.3736 

APTES-FeOx -.94338 5.74723 1.000 -19.3233 17.4365 

SAHBA-FeOx 

Gly-FeOx -.62308 5.74723 1.000 -19.0030 17.7568 

Ser-FeOx -.67236 5.74723 1.000 -19.0522 17.7075 

EDA-FeOx -95.50474* 5.74723 .000 -113.8846 -77.1248 

TEPA-FeOx -98.57640* 5.74723 .000 -116.9563 -80.1965 

ABA-FeOx -.75663 5.74723 1.000 -19.1365 17.6233 

CMPVA-FeOx -.68180 5.74723 1.000 -19.0617 17.6981 

APTS-FeOx -2.76289 5.74723 1.000 -21.1428 15.6170 

APTES-FeOx -1.70001 5.74723 1.000 -20.0799 16.6799 

CMPVA-FeOx 

Gly-FeOx .05872 5.74723 1.000 -18.3212 18.4386 

Ser-FeOx .00944 5.74723 1.000 -18.3704 18.3893 

EDA-FeOx -94.82294* 5.74723 .000 -113.2028 -76.4430 

TEPA-FeOx -97.89460* 5.74723 .000 -116.2745 -79.5147 

ABA-FeOx -.07483 5.74723 1.000 -18.4547 18.3051 

SAHBA-FeOx .68180 5.74723 1.000 -17.6981 19.0617 

APTS-FeOx -2.08109 5.74723 1.000 -20.4610 16.2988 

APTES-FeOx -1.01821 5.74723 1.000 -19.3981 17.3617 

APTS-FeOx 

Gly-FeOx 2.13980 5.74723 1.000 -16.2401 20.5197 

Ser-FeOx 2.09053 5.74723 1.000 -16.2894 20.4704 

EDA-FeOx -92.74185* 5.74723 .000 -111.1217 -74.3620 

TEPA-FeOx -95.81351* 5.74723 .000 -114.1934 -77.4336 

ABA-FeOx 2.00625 5.74723 1.000 -16.3736 20.3861 

SAHBA-FeOx 2.76289 5.74723 1.000 -15.6170 21.1428 

CMPVA-FeOx 2.08109 5.74723 1.000 -16.2988 20.4610 

APTES-FeOx 1.06288 5.74723 1.000 -17.3170 19.4428 

APTES-FeOx 

Gly-FeOx 1.07693 5.74723 1.000 -17.3030 19.4568 

Ser-FeOx 1.02765 5.74723 1.000 -17.3522 19.4075 

EDA-FeOx -93.80473* 5.74723 .000 -112.1846 -75.4248 

TEPA-FeOx -96.87639* 5.74723 .000 -115.2563 -78.4965 

ABA-FeOx .94338 5.74723 1.000 -17.4365 19.3233 

SAHBA-FeOx 1.70001 5.74723 1.000 -16.6799 20.0799 

CMPVA-FeOx 1.01821 5.74723 1.000 -17.3617 19.3981 

APTS-FeOx -1.06288 5.74723 1.000 -19.4428 17.3170 

*. The mean difference is significant at the 0.05 level. 

 

Table A5. Tukey HSD post-hoc tests results for cell uptake study based on percent uptake 

values. 

(I) Treatment (J) Treatment Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Gly-FeOx 

Ser-FeOx .11041 3.76681 1.000 -11.9360 12.1568 

EDA-FeOx -71.26792* 3.76681 .000 -83.3143 -59.2215 

TEPA-FeOx -40.79442* 3.76681 .000 -52.8408 -28.7480 

ABA-FeOx .03437 3.76681 1.000 -12.0120 12.0808 

SAHBA-FeOx .26779 3.76681 1.000 -11.7786 12.3142 

CMPVA-FeOx .05358 3.76681 1.000 -11.9928 12.1000 
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APTS-FeOx -.45355 3.76681 1.000 -12.5000 11.5929 

APTES-FeOx -.06224 3.76681 1.000 -12.1086 11.9842 

Ser-FeOx 

Gly-FeOx -.11041 3.76681 1.000 -12.1568 11.9360 

EDA-FeOx -71.37834* 3.76681 .000 -83.4247 -59.3319 

TEPA-FeOx -40.90483* 3.76681 .000 -52.9512 -28.8584 

ABA-FeOx -.07604 3.76681 1.000 -12.1225 11.9704 

SAHBA-FeOx .15738 3.76681 1.000 -11.8890 12.2038 

CMPVA-FeOx -.05683 3.76681 1.000 -12.1032 11.9896 

APTS-FeOx -.56396 3.76681 1.000 -12.6104 11.4825 

APTES-FeOx -.17265 3.76681 1.000 -12.2191 11.8738 

EDA-FeOx 

Gly-FeOx 71.26792* 3.76681 .000 59.2215 83.3143 

Ser-FeOx 71.37834* 3.76681 .000 59.3319 83.4247 

TEPA-FeOx 30.47351* 3.76681 .000 18.4271 42.5199 

ABA-FeOx 71.30229* 3.76681 .000 59.2559 83.3487 

SAHBA-FeOx 71.53571* 3.76681 .000 59.4893 83.5821 

CMPVA-FeOx 71.32151* 3.76681 .000 59.2751 83.3679 

APTS-FeOx 70.81438* 3.76681 .000 58.7680 82.8608 

APTES-FeOx 71.20569* 3.76681 .000 59.1593 83.2521 

TEPA-FeOx 

Gly-FeOx 40.79442* 3.76681 .000 28.7480 52.8408 

Ser-FeOx 40.90483* 3.76681 .000 28.8584 52.9512 

EDA-FeOx -30.47351* 3.76681 .000 -42.5199 -18.4271 

ABA-FeOx 40.82879* 3.76681 .000 28.7824 52.8752 

SAHBA-FeOx 41.06220* 3.76681 .000 29.0158 53.1086 

CMPVA-FeOx 40.84800* 3.76681 .000 28.8016 52.8944 

APTS-FeOx 40.34087* 3.76681 .000 28.2945 52.3873 

APTES-FeOx 40.73218* 3.76681 .000 28.6858 52.7786 

ABA-FeOx 

Gly-FeOx -.03437 3.76681 1.000 -12.0808 12.0120 

Ser-FeOx .07604 3.76681 1.000 -11.9704 12.1225 

EDA-FeOx -71.30229* 3.76681 .000 -83.3487 -59.2559 

TEPA-FeOx -40.82879* 3.76681 .000 -52.8752 -28.7824 

SAHBA-FeOx .23342 3.76681 1.000 -11.8130 12.2798 

CMPVA-FeOx .01921 3.76681 1.000 -12.0272 12.0656 

APTS-FeOx -.48792 3.76681 1.000 -12.5343 11.5585 

APTES-FeOx -.09661 3.76681 1.000 -12.1430 11.9498 

SAHBA-FeOx 

Gly-FeOx -.26779 3.76681 1.000 -12.3142 11.7786 

Ser-FeOx -.15738 3.76681 1.000 -12.2038 11.8890 

EDA-FeOx -71.53571* 3.76681 .000 -83.5821 -59.4893 

TEPA-FeOx -41.06220* 3.76681 .000 -53.1086 -29.0158 

ABA-FeOx -.23342 3.76681 1.000 -12.2798 11.8130 

CMPVA-FeOx -.21420 3.76681 1.000 -12.2606 11.8322 

APTS-FeOx -.72133 3.76681 1.000 -12.7677 11.3251 

APTES-FeOx -.33002 3.76681 1.000 -12.3764 11.7164 

CMPVA-FeOx 

Gly-FeOx -.05358 3.76681 1.000 -12.1000 11.9928 

Ser-FeOx .05683 3.76681 1.000 -11.9896 12.1032 

EDA-FeOx -71.32151* 3.76681 .000 -83.3679 -59.2751 

TEPA-FeOx -40.84800* 3.76681 .000 -52.8944 -28.8016 

ABA-FeOx -.01921 3.76681 1.000 -12.0656 12.0272 

SAHBA-FeOx .21420 3.76681 1.000 -11.8322 12.2606 

APTS-FeOx -.50713 3.76681 1.000 -12.5535 11.5393 

APTES-FeOx -.11582 3.76681 1.000 -12.1622 11.9306 

APTS-FeOx 

Gly-FeOx .45355 3.76681 1.000 -11.5929 12.5000 

Ser-FeOx .56396 3.76681 1.000 -11.4825 12.6104 

EDA-FeOx -70.81438* 3.76681 .000 -82.8608 -58.7680 

TEPA-FeOx -40.34087* 3.76681 .000 -52.3873 -28.2945 

ABA-FeOx .48792 3.76681 1.000 -11.5585 12.5343 

SAHBA-FeOx .72133 3.76681 1.000 -11.3251 12.7677 



 

203 
 

CMPVA-FeOx .50713 3.76681 1.000 -11.5393 12.5535 

APTES-FeOx .39131 3.76681 1.000 -11.6551 12.4377 

APTES-FeOx 

Gly-FeOx .06224 3.76681 1.000 -11.9842 12.1086 

Ser-FeOx .17265 3.76681 1.000 -11.8738 12.2191 

EDA-FeOx -71.20569* 3.76681 .000 -83.2521 -59.1593 

TEPA-FeOx -40.73218* 3.76681 .000 -52.7786 -28.6858 

ABA-FeOx .09661 3.76681 1.000 -11.9498 12.1430 

SAHBA-FeOx .33002 3.76681 1.000 -11.7164 12.3764 

CMPVA-FeOx .11582 3.76681 1.000 -11.9306 12.1622 

APTS-FeOx -.39131 3.76681 1.000 -12.4377 11.6551 

*. The mean difference is significant at the 0.05 level. 

 

Table A6. Descriptives for WST-1 cell proliferation assay at 24 hours. 

 N Mean Std. 

Deviation 

Std. Error 95% Confidence Interval for 

Mean 

Minimum Maximum 

Lower Bound Upper Bound 

PBS 6 100.0000 3.11791 1.27288 96.7280 103.2720 95.67 104.30 

Gly-FeOx 6 103.9668 2.43660 .99474 101.4097 106.5238 100.27 107.10 

Ser-FeOx 6 103.6124 4.09556 1.67200 99.3143 107.9104 98.29 109.01 

EDA-FeOx 6 104.1469 4.57737 1.86870 99.3432 108.9505 98.71 112.01 

TEPA-FeOx 6 7.4513 1.03709 .42339 6.3629 8.5397 6.27 9.16 

ABA-FeOx 6 102.0611 2.10804 .86061 99.8488 104.2733 98.78 104.45 

SAHBA-FeOx 5 109.1063 3.50315 1.56666 104.7565 113.4560 103.93 111.86 

CMPVA-FeOx 6 97.3286 3.54828 1.44858 93.6049 101.0523 92.98 102.38 

APTS-FeOx 4 96.1010 17.67964 8.83982 67.9688 124.2333 69.67 106.72 

APTES-FeOx 4 99.5506 35.46892 17.73446 43.1117 155.9896 47.06 122.74 

Total 55 91.6280 31.46880 4.24325 83.1208 100.1352 6.27 122.74 

 

Table A7. Descriptives for WST-1 cell proliferation assay at 48 hours. 

 N Mean Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 

Lower Bound Upper Bound 

PBS 4 100.0000 17.95642 8.97821 71.4273 128.5727 74.86 114.99 

Gly-FeOx 4 101.8516 18.16914 9.08457 72.9404 130.7627 79.07 118.77 

Ser-FeOx 5 97.7795 20.18831 9.02849 72.7124 122.8466 67.57 123.76 

EDA-FeOx 6 65.8497 9.11565 3.72145 56.2834 75.4160 56.20 82.92 

TEPA-FeOx 6 8.4482 .97988 .40003 7.4198 9.4765 7.34 10.16 

ABA-FeOx 5 90.8483 18.15668 8.11991 68.3038 113.3928 73.24 114.86 

SAHBA-FeOx 4 94.9261 9.50615 4.75308 79.7997 110.0525 84.81 107.05 

CMPVA-FeOx 6 98.2567 3.55627 1.45184 94.5246 101.9888 92.62 102.96 

APTS-FeOx 6 108.2573 6.61101 2.69893 101.3194 115.1951 100.92 118.97 

APTES-FeOx 6 96.7339 8.62068 3.51938 87.6871 105.7808 80.71 103.41 

Total 52 84.5293 31.97574 4.43424 75.6272 93.4314 7.34 123.76 

 

Table A8. ANOVA values for cell proliferation WST-1 assay at 24 and 48 hours.  

 Sum of Squares df Mean Square F Sig. 
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Proliferation24 

Between Groups 48357.024 9 5373.003 47.238 .000 

Within Groups 5118.400 45 113.742   

Total 53475.424 54    

Proliferation48 

Between Groups 45893.541 9 5099.282 34.260 .000 

Within Groups 6251.304 42 148.841   

Total 52144.845 51    

 

Table A9. Tukey HSD post-hoc tests results for WST-1 cell proliferation assay at 24 hours. 

(I) Treatment (J) Treatment Mean 

Difference 

(I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

PBS 

Gly-FeOx -3.96677 6.15744 1.000 -24.4520 16.5185 

Ser-FeOx -3.61236 6.15744 1.000 -24.0976 16.8729 

EDA-FeOx -4.14688 6.15744 1.000 -24.6321 16.3384 

TEPA-FeOx 92.54869* 6.15744 .000 72.0635 113.0339 

ABA-FeOx -2.06109 6.15744 1.000 -22.5463 18.4241 

SAHBA-FeOx -9.10628 6.45798 .918 -30.5914 12.3788 

CMPVA-FeOx 2.67141 6.15744 1.000 -17.8138 23.1567 

APTS-FeOx 3.89897 6.88423 1.000 -19.0042 26.8022 

APTES-FeOx .44937 6.88423 1.000 -22.4538 23.3526 

Gly-FeOx 

PBS 3.96677 6.15744 1.000 -16.5185 24.4520 

Ser-FeOx .35441 6.15744 1.000 -20.1308 20.8396 

EDA-FeOx -.18011 6.15744 1.000 -20.6653 20.3051 

TEPA-FeOx 96.51546* 6.15744 .000 76.0302 117.0007 

ABA-FeOx 1.90567 6.15744 1.000 -18.5796 22.3909 

SAHBA-FeOx -5.13951 6.45798 .998 -26.6246 16.3456 

CMPVA-FeOx 6.63818 6.15744 .984 -13.8471 27.1234 

APTS-FeOx 7.86573 6.88423 .977 -15.0375 30.7689 

APTES-FeOx 4.41613 6.88423 1.000 -18.4871 27.3193 

Ser-FeOx 

PBS 3.61236 6.15744 1.000 -16.8729 24.0976 

Gly-FeOx -.35441 6.15744 1.000 -20.8396 20.1308 

EDA-FeOx -.53452 6.15744 1.000 -21.0198 19.9507 

TEPA-FeOx 96.16105* 6.15744 .000 75.6758 116.6463 

ABA-FeOx 1.55127 6.15744 1.000 -18.9340 22.0365 

SAHBA-FeOx -5.49392 6.45798 .997 -26.9790 15.9912 

CMPVA-FeOx 6.28377 6.15744 .989 -14.2015 26.7690 

APTS-FeOx 7.51133 6.88423 .983 -15.3919 30.4145 

APTES-FeOx 4.06172 6.88423 1.000 -18.8415 26.9649 

EDA-FeOx 

PBS 4.14688 6.15744 1.000 -16.3384 24.6321 

Gly-FeOx .18011 6.15744 1.000 -20.3051 20.6653 

Ser-FeOx .53452 6.15744 1.000 -19.9507 21.0198 

TEPA-FeOx 96.69557* 6.15744 .000 76.2103 117.1808 

ABA-FeOx 2.08578 6.15744 1.000 -18.3995 22.5710 

SAHBA-FeOx -4.95940 6.45798 .999 -26.4445 16.5257 

CMPVA-FeOx 6.81829 6.15744 .981 -13.6670 27.3035 

APTS-FeOx 8.04584 6.88423 .973 -14.8573 30.9490 

APTES-FeOx 4.59624 6.88423 1.000 -18.3069 27.4994 

TEPA-FeOx 
PBS -92.54869* 6.15744 .000 -113.0339 -72.0635 

Gly-FeOx -96.51546* 6.15744 .000 -117.0007 -76.0302 
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Ser-FeOx -96.16105* 6.15744 .000 -116.6463 -75.6758 

EDA-FeOx -96.69557* 6.15744 .000 -117.1808 -76.2103 

ABA-FeOx -94.60979* 6.15744 .000 -115.0950 -74.1245 

SAHBA-FeOx -101.65497* 6.45798 .000 -123.1401 -80.1699 

CMPVA-FeOx -89.87728* 6.15744 .000 -110.3625 -69.3920 

APTS-FeOx -88.64973* 6.88423 .000 -111.5529 -65.7465 

APTES-FeOx -92.09933* 6.88423 .000 -115.0025 -69.1961 

ABA-FeOx 

PBS 2.06109 6.15744 1.000 -18.4241 22.5463 

Gly-FeOx -1.90567 6.15744 1.000 -22.3909 18.5796 

Ser-FeOx -1.55127 6.15744 1.000 -22.0365 18.9340 

EDA-FeOx -2.08578 6.15744 1.000 -22.5710 18.3995 

TEPA-FeOx 94.60979* 6.15744 .000 74.1245 115.0950 

SAHBA-FeOx -7.04519 6.45798 .983 -28.5303 14.4399 

CMPVA-FeOx 4.73250 6.15744 .999 -15.7527 25.2177 

APTS-FeOx 5.96006 6.88423 .997 -16.9431 28.8633 

APTES-FeOx 2.51046 6.88423 1.000 -20.3927 25.4137 

SAHBA-FeOx 

PBS 9.10628 6.45798 .918 -12.3788 30.5914 

Gly-FeOx 5.13951 6.45798 .998 -16.3456 26.6246 

Ser-FeOx 5.49392 6.45798 .997 -15.9912 26.9790 

EDA-FeOx 4.95940 6.45798 .999 -16.5257 26.4445 

TEPA-FeOx 101.65497* 6.45798 .000 80.1699 123.1401 

ABA-FeOx 7.04519 6.45798 .983 -14.4399 28.5303 

CMPVA-FeOx 11.77769 6.45798 .717 -9.7074 33.2628 

APTS-FeOx 13.00525 7.15430 .721 -10.7964 36.8069 

APTES-FeOx 9.55565 7.15430 .940 -14.2461 33.3573 

CMPVA-FeOx 

PBS -2.67141 6.15744 1.000 -23.1567 17.8138 

Gly-FeOx -6.63818 6.15744 .984 -27.1234 13.8471 

Ser-FeOx -6.28377 6.15744 .989 -26.7690 14.2015 

EDA-FeOx -6.81829 6.15744 .981 -27.3035 13.6670 

TEPA-FeOx 89.87728* 6.15744 .000 69.3920 110.3625 

ABA-FeOx -4.73250 6.15744 .999 -25.2177 15.7527 

SAHBA-FeOx -11.77769 6.45798 .717 -33.2628 9.7074 

APTS-FeOx 1.22756 6.88423 1.000 -21.6756 24.1307 

APTES-FeOx -2.22204 6.88423 1.000 -25.1252 20.6811 

APTS-FeOx 

PBS -3.89897 6.88423 1.000 -26.8022 19.0042 

Gly-FeOx -7.86573 6.88423 .977 -30.7689 15.0375 

Ser-FeOx -7.51133 6.88423 .983 -30.4145 15.3919 

EDA-FeOx -8.04584 6.88423 .973 -30.9490 14.8573 

TEPA-FeOx 88.64973* 6.88423 .000 65.7465 111.5529 

ABA-FeOx -5.96006 6.88423 .997 -28.8633 16.9431 

SAHBA-FeOx -13.00525 7.15430 .721 -36.8069 10.7964 

CMPVA-FeOx -1.22756 6.88423 1.000 -24.1307 21.6756 

APTES-FeOx -3.44960 7.54129 1.000 -28.5388 21.6396 

APTES-FeOx 

PBS -.44937 6.88423 1.000 -23.3526 22.4538 

Gly-FeOx -4.41613 6.88423 1.000 -27.3193 18.4871 

Ser-FeOx -4.06172 6.88423 1.000 -26.9649 18.8415 

EDA-FeOx -4.59624 6.88423 1.000 -27.4994 18.3069 

TEPA-FeOx 92.09933* 6.88423 .000 69.1961 115.0025 

ABA-FeOx -2.51046 6.88423 1.000 -25.4137 20.3927 

SAHBA-FeOx -9.55565 7.15430 .940 -33.3573 14.2461 

CMPVA-FeOx 2.22204 6.88423 1.000 -20.6811 25.1252 

APTS-FeOx 3.44960 7.54129 1.000 -21.6396 28.5388 

*. The mean difference is significant at the 0.05 level. 
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Table A10. Dunnett two-sided post-hoc tests results for WST-1 cell proliferation assay at 24 

hours. 

(I) Treatment (J) 

Treatment 

Mean 

Difference 

(I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Gly-FeOx PBS 3.96677 6.15744 .994 -13.3274 21.2609 

Ser-FeOx PBS 3.61236 6.15744 .997 -13.6818 20.9065 

EDA-FeOx PBS 4.14688 6.15744 .991 -13.1473 21.4410 

TEPA-FeOx PBS -92.54869* 6.15744 .000 -109.8428 -75.2546 

ABA-FeOx PBS 2.06109 6.15744 1.000 -15.2331 19.3552 

SAHBA-FeOx PBS 9.10628 6.45798 .658 -9.0320 27.2445 

CMPVA-FeOx PBS -2.67141 6.15744 1.000 -19.9656 14.6227 

APTS-FeOx PBS -3.89897 6.88423 .997 -23.2344 15.4365 

APTES-FeOx PBS -.44937 6.88423 1.000 -19.7848 18.8861 

b. Dunnett t-tests treat one group as a control, and compare all other groups against it. 

 

Table A11. Tukey HSD post-hoc tests results for WST-1 cell proliferation assay at 48 hours. 

(I) Treatment (J) Treatment Mean 

Difference (I-

J) 

Std. Error Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

PBS 

Gly-FeOx -1.85159 8.62672 1.000 -30.6548 26.9516 

Ser-FeOx 2.22047 8.18402 1.000 -25.1046 29.5456 

EDA-FeOx 34.15028* 7.87508 .003 7.8567 60.4439 

TEPA-FeOx 91.55184* 7.87508 .000 65.2582 117.8454 

ABA-FeOx 9.15172 8.18402 .980 -18.1734 36.4768 

SAHBA-FeOx 5.07392 8.62672 1.000 -23.7293 33.8771 

CMPVA-FeOx 1.74330 7.87508 1.000 -24.5503 28.0369 

APTS-FeOx -8.25726 7.87508 .987 -34.5509 18.0363 

APTES-FeOx 3.26608 7.87508 1.000 -23.0275 29.5597 

Gly-FeOx 

PBS 1.85159 8.62672 1.000 -26.9516 30.6548 

Ser-FeOx 4.07205 8.18402 1.000 -23.2531 31.3972 

EDA-FeOx 36.00187* 7.87508 .002 9.7083 62.2955 

TEPA-FeOx 93.40343* 7.87508 .000 67.1098 119.6970 

ABA-FeOx 11.00330 8.18402 .937 -16.3218 38.3284 

SAHBA-FeOx 6.92551 8.62672 .998 -21.8777 35.7287 

CMPVA-FeOx 3.59489 7.87508 1.000 -22.6987 29.8885 

APTS-FeOx -6.40567 7.87508 .998 -32.6993 19.8879 

APTES-FeOx 5.11766 7.87508 1.000 -21.1759 31.4113 

Ser-FeOx 

PBS -2.22047 8.18402 1.000 -29.5456 25.1046 

Gly-FeOx -4.07205 8.18402 1.000 -31.3972 23.2531 

EDA-FeOx 31.92981* 7.38748 .003 7.2642 56.5954 

TEPA-FeOx 89.33137* 7.38748 .000 64.6658 113.9970 

ABA-FeOx 6.93125 7.71597 .996 -18.8311 32.6936 

SAHBA-FeOx 2.85345 8.18402 1.000 -24.4717 30.1786 

CMPVA-FeOx -.47716 7.38748 1.000 -25.1428 24.1884 

APTS-FeOx -10.47773 7.38748 .915 -35.1433 14.1879 

APTES-FeOx 1.04561 7.38748 1.000 -23.6200 25.7112 

EDA-FeOx PBS -34.15028* 7.87508 .003 -60.4439 -7.8567 
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Gly-FeOx -36.00187* 7.87508 .002 -62.2955 -9.7083 

Ser-FeOx -31.92981* 7.38748 .003 -56.5954 -7.2642 

TEPA-FeOx 57.40156* 7.04369 .000 33.8838 80.9193 

ABA-FeOx -24.99856* 7.38748 .045 -49.6642 -.3330 

SAHBA-FeOx -29.07636* 7.87508 .020 -55.3700 -2.7828 

CMPVA-FeOx -32.40698* 7.04369 .001 -55.9247 -8.8893 

APTS-FeOx -42.40754* 7.04369 .000 -65.9253 -18.8898 

APTES-FeOx -30.88420* 7.04369 .003 -54.4019 -7.3665 

TEPA-FeOx 

PBS -91.55184* 7.87508 .000 -117.8454 -65.2582 

Gly-FeOx -93.40343* 7.87508 .000 -119.6970 -67.1098 

Ser-FeOx -89.33137* 7.38748 .000 -113.9970 -64.6658 

EDA-FeOx -57.40156* 7.04369 .000 -80.9193 -33.8838 

ABA-FeOx -82.40012* 7.38748 .000 -107.0657 -57.7345 

SAHBA-FeOx -86.47792* 7.87508 .000 -112.7715 -60.1843 

CMPVA-FeOx -89.80854* 7.04369 .000 -113.3263 -66.2908 

APTS-FeOx -99.80910* 7.04369 .000 -123.3268 -76.2914 

APTES-FeOx -88.28576* 7.04369 .000 -111.8035 -64.7680 

ABA-FeOx 

PBS -9.15172 8.18402 .980 -36.4768 18.1734 

Gly-FeOx -11.00330 8.18402 .937 -38.3284 16.3218 

Ser-FeOx -6.93125 7.71597 .996 -32.6936 18.8311 

EDA-FeOx 24.99856* 7.38748 .045 .3330 49.6642 

TEPA-FeOx 82.40012* 7.38748 .000 57.7345 107.0657 

SAHBA-FeOx -4.07780 8.18402 1.000 -31.4029 23.2473 

CMPVA-FeOx -7.40841 7.38748 .990 -32.0740 17.2572 

APTS-FeOx -17.40898 7.38748 .376 -42.0746 7.2566 

APTES-FeOx -5.88564 7.38748 .998 -30.5512 18.7799 

SAHBA-FeOx 

PBS -5.07392 8.62672 1.000 -33.8771 23.7293 

Gly-FeOx -6.92551 8.62672 .998 -35.7287 21.8777 

Ser-FeOx -2.85345 8.18402 1.000 -30.1786 24.4717 

EDA-FeOx 29.07636* 7.87508 .020 2.7828 55.3700 

TEPA-FeOx 86.47792* 7.87508 .000 60.1843 112.7715 

ABA-FeOx 4.07780 8.18402 1.000 -23.2473 31.4029 

CMPVA-FeOx -3.33062 7.87508 1.000 -29.6242 22.9630 

APTS-FeOx -13.33118 7.87508 .793 -39.6248 12.9624 

APTES-FeOx -1.80784 7.87508 1.000 -28.1014 24.4858 

CMPVA-FeOx 

PBS -1.74330 7.87508 1.000 -28.0369 24.5503 

Gly-FeOx -3.59489 7.87508 1.000 -29.8885 22.6987 

Ser-FeOx .47716 7.38748 1.000 -24.1884 25.1428 

EDA-FeOx 32.40698* 7.04369 .001 8.8893 55.9247 

TEPA-FeOx 89.80854* 7.04369 .000 66.2908 113.3263 

ABA-FeOx 7.40841 7.38748 .990 -17.2572 32.0740 

SAHBA-FeOx 3.33062 7.87508 1.000 -22.9630 29.6242 

APTS-FeOx -10.00056 7.04369 .914 -33.5183 13.5172 

APTES-FeOx 1.52277 7.04369 1.000 -21.9949 25.0405 

APTS-FeOx 

PBS 8.25726 7.87508 .987 -18.0363 34.5509 

Gly-FeOx 6.40567 7.87508 .998 -19.8879 32.6993 

Ser-FeOx 10.47773 7.38748 .915 -14.1879 35.1433 

EDA-FeOx 42.40754* 7.04369 .000 18.8898 65.9253 

TEPA-FeOx 99.80910* 7.04369 .000 76.2914 123.3268 

ABA-FeOx 17.40898 7.38748 .376 -7.2566 42.0746 

SAHBA-FeOx 13.33118 7.87508 .793 -12.9624 39.6248 

CMPVA-FeOx 10.00056 7.04369 .914 -13.5172 33.5183 

APTES-FeOx 11.52334 7.04369 .823 -11.9944 35.0411 

APTES-FeOx 

PBS -3.26608 7.87508 1.000 -29.5597 23.0275 

Gly-FeOx -5.11766 7.87508 1.000 -31.4113 21.1759 

Ser-FeOx -1.04561 7.38748 1.000 -25.7112 23.6200 
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EDA-FeOx 30.88420* 7.04369 .003 7.3665 54.4019 

TEPA-FeOx 88.28576* 7.04369 .000 64.7680 111.8035 

ABA-FeOx 5.88564 7.38748 .998 -18.7799 30.5512 

SAHBA-FeOx 1.80784 7.87508 1.000 -24.4858 28.1014 

CMPVA-FeOx -1.52277 7.04369 1.000 -25.0405 21.9949 

APTS-FeOx -11.52334 7.04369 .823 -35.0411 11.9944 

*. The mean difference is significant at the 0.05 level. 

 

Table A12. Dunnett two-sided post-hoc tests results for WST-1 cell proliferation assay at 48 

hours. 

(I) Treatment (J) 

Treatment 

Mean 

Difference 

(I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Gly-FeOx PBS 1.85159 8.62672 1.000 -22.0678 25.7710 

Ser-FeOx PBS -2.22047 8.18402 1.000 -24.9124 20.4715 

EDA-FeOx PBS -34.15028* 7.87508 .001 -55.9856 -12.3150 

TEPA-FeOx PBS -91.55184* 7.87508 .000 -113.3871 -69.7165 

ABA-FeOx PBS -9.15172 8.18402 .811 -31.8436 13.5402 

SAHBA-

FeOx 
PBS 

-5.07392 8.62672 .994 -28.9933 18.8455 

CMPVA-

FeOx 
PBS 

-1.74330 7.87508 1.000 -23.5786 20.0920 

APTS-FeOx PBS 8.25726 7.87508 .853 -13.5780 30.0926 

APTES-

FeOx 
PBS 

-3.26608 7.87508 1.000 -25.1014 18.5692 

b. Dunnett t-tests treat one group as a control, and compare all other groups against it. 

 

Table A13.  Colony Assay Descriptive Statistics. 

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum 

Lower 

Bound Upper Bound 

No Particle - 0 

min 
6 100.017 26.4299 10.7899 72.280 127.753 66.1 137.6 

Particle - 0 min 6 87.167 14.2152 5.8033 72.249 102.085 68.8 110.1 

Extra Particle - 0 

min 
6 89.900 12.6366 5.1589 76.639 103.161 74.3 110.1 

No Particle - 10 

min 
6 100.450 19.2761 7.8694 80.221 120.679 77.1 132.1 

Particle - 10 min 6 62.850 13.4213 5.4792 48.765 76.935 44.0 85.3 

Extra Particle - 

10 min 
6 55.033 10.8971 4.4487 43.598 66.469 44.0 71.6 

No Particle - 15 

min 
6 107.333 22.4136 9.1503 83.812 130.855 71.6 137.6 

Particle - 15 min 6 53.667 9.9631 4.0674 43.211 64.122 35.8 63.3 
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Extra Particle - 

15 min 
6 26.600 7.0798 2.8903 19.170 34.030 13.8 33.0 

Total 54 75.891 30.1153 4.0982 67.671 84.111 13.8 137.6 

 

 

 

Table A14.  Colony Assay ANOVA Results. 

 Sum of Squares df Mean Square F Sig. 

Between Groups 36155.034 8 4519.379 17.072 .000 

Within Groups 11912.472 45 264.722   
Total 48067.505 53    

 

Table A15.  Colony Assay Dunnett (2-sided) Post Hoc Test Results. 

Multiple Comparisons 

Dependent Variable:   Survival   

Dunnett t (2-sided)
a
   

(I) Group (J) Group 

Mean Difference (I-

J) 

Std. 

Error Sig. 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Particle - 0 min No Particle - 0 

min 
-12.8500 9.3936 .644 -38.778 13.078 

Extra Particle - 0 

min 

No Particle - 0 

min 
-10.1167 9.3936 .841 -36.045 15.811 

No Particle - 10 min No Particle - 0 

min 
.4333 9.3936 1.000 -25.495 26.361 

Particle - 10 min No Particle - 0 

min 
-37.1667

*
 9.3936 .002 -63.095 -11.239 

Extra Particle - 10 

min 

No Particle - 0 

min 
-44.9833

*
 9.3936 .000 -70.911 -19.055 

No Particle - 15 min No Particle - 0 

min 
7.3167 9.3936 .965 -18.611 33.245 

Particle - 15 min No Particle - 0 

min 
-46.3500

*
 9.3936 .000 -72.278 -20.422 

Extra Particle - 15 

min 

No Particle - 0 

min 
-73.4167

*
 9.3936 .000 -99.345 -47.489 

*. The mean difference is significant at the 0.05 level. 

a. Dunnett t-tests treat one group as a control, and compare all other groups against it. 
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Table A16.  Colony Assay Tukey HSD Post Hoc Test Results. 

Multiple Comparisons 

Dependent Variable:   Survival   

(I) Group (J) Group 

Mean Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

No Particle - 

0 min 

Particle - 0 min 12.8500 9.3936 .904 -17.746 43.446 

Extra Particle - 0 min 10.1167 9.3936 .975 -20.480 40.713 

No Particle - 10 min -.4333 9.3936 1.000 -31.030 30.163 

Particle - 10 min 37.1667
*
 9.3936 .007 6.570 67.763 

Extra Particle - 10 min 44.9833
*
 9.3936 .001 14.387 75.580 

No Particle - 15 min -7.3167 9.3936 .997 -37.913 23.280 

Particle - 15 min 46.3500
*
 9.3936 .000 15.754 76.946 

Extra Particle - 15 min 73.4167
*
 9.3936 .000 42.820 104.013 

Particle - 0 

min 

No Particle - 0 min -12.8500 9.3936 .904 -43.446 17.746 

Extra Particle - 0 min -2.7333 9.3936 1.000 -33.330 27.863 

No Particle - 10 min -13.2833 9.3936 .886 -43.880 17.313 

Particle - 10 min 24.3167 9.3936 .220 -6.280 54.913 

Extra Particle - 10 min 32.1333
*
 9.3936 .033 1.537 62.730 

No Particle - 15 min -20.1667 9.3936 .456 -50.763 10.430 

Particle - 15 min 33.5000
*
 9.3936 .022 2.904 64.096 

Extra Particle - 15 min 60.5667
*
 9.3936 .000 29.970 91.163 

Extra Particle 

- 0 min 

No Particle - 0 min -10.1167 9.3936 .975 -40.713 20.480 

Particle - 0 min 2.7333 9.3936 1.000 -27.863 33.330 

No Particle - 10 min -10.5500 9.3936 .967 -41.146 20.046 

Particle - 10 min 27.0500 9.3936 .121 -3.546 57.646 

Extra Particle - 10 min 34.8667
*
 9.3936 .015 4.270 65.463 

No Particle - 15 min -17.4333 9.3936 .646 -48.030 13.163 

Particle - 15 min 36.2333
*
 9.3936 .010 5.637 66.830 

Extra Particle - 15 min 63.3000
*
 9.3936 .000 32.704 93.896 

No Particle - 

10 min 

No Particle - 0 min .4333 9.3936 1.000 -30.163 31.030 

Particle - 0 min 13.2833 9.3936 .886 -17.313 43.880 

Extra Particle - 0 min 10.5500 9.3936 .967 -20.046 41.146 

Particle - 10 min 37.6000
*
 9.3936 .007 7.004 68.196 

Extra Particle - 10 min 45.4167
*
 9.3936 .001 14.820 76.013 

No Particle - 15 min -6.8833 9.3936 .998 -37.480 23.713 

Particle - 15 min 46.7833
*
 9.3936 .000 16.187 77.380 

Extra Particle - 15 min 73.8500
*
 9.3936 .000 43.254 104.446 

Particle - 10 

min 

No Particle - 0 min -37.1667
*
 9.3936 .007 -67.763 -6.570 

Particle - 0 min -24.3167 9.3936 .220 -54.913 6.280 

Extra Particle - 0 min -27.0500 9.3936 .121 -57.646 3.546 

No Particle - 10 min -37.6000
*
 9.3936 .007 -68.196 -7.004 

Extra Particle - 10 min 7.8167 9.3936 .995 -22.780 38.413 

No Particle - 15 min -44.4833
*
 9.3936 .001 -75.080 -13.887 



 

212 
 

Particle - 15 min 9.1833 9.3936 .986 -21.413 39.780 

Extra Particle - 15 min 36.2500
*
 9.3936 .010 5.654 66.846 

Extra Particle 

- 10 min 

No Particle - 0 min -44.9833
*
 9.3936 .001 -75.580 -14.387 

Particle - 0 min -32.1333
*
 9.3936 .033 -62.730 -1.537 

Extra Particle - 0 min -34.8667
*
 9.3936 .015 -65.463 -4.270 

No Particle - 10 min -45.4167
*
 9.3936 .001 -76.013 -14.820 

Particle - 10 min -7.8167 9.3936 .995 -38.413 22.780 

No Particle - 15 min -52.3000
*
 9.3936 .000 -82.896 -21.704 

Particle - 15 min 1.3667 9.3936 1.000 -29.230 31.963 

Extra Particle - 15 min 28.4333 9.3936 .087 -2.163 59.030 

No Particle - 

15 min 

No Particle - 0 min 7.3167 9.3936 .997 -23.280 37.913 

Particle - 0 min 20.1667 9.3936 .456 -10.430 50.763 

Extra Particle - 0 min 17.4333 9.3936 .646 -13.163 48.030 

No Particle - 10 min 6.8833 9.3936 .998 -23.713 37.480 

Particle - 10 min 44.4833
*
 9.3936 .001 13.887 75.080 

Extra Particle - 10 min 52.3000
*
 9.3936 .000 21.704 82.896 

Particle - 15 min 53.6667
*
 9.3936 .000 23.070 84.263 

Extra Particle - 15 min 80.7333
*
 9.3936 .000 50.137 111.330 

Particle - 15 

min 

No Particle - 0 min -46.3500
*
 9.3936 .000 -76.946 -15.754 

Particle - 0 min -33.5000
*
 9.3936 .022 -64.096 -2.904 

Extra Particle - 0 min -36.2333
*
 9.3936 .010 -66.830 -5.637 

No Particle - 10 min -46.7833
*
 9.3936 .000 -77.380 -16.187 

Particle - 10 min -9.1833 9.3936 .986 -39.780 21.413 

Extra Particle - 10 min -1.3667 9.3936 1.000 -31.963 29.230 

No Particle - 15 min -53.6667
*
 9.3936 .000 -84.263 -23.070 

Extra Particle - 15 min 27.0667 9.3936 .121 -3.530 57.663 

Extra Particle 

- 15 min 

No Particle - 0 min -73.4167
*
 9.3936 .000 -104.013 -42.820 

Particle - 0 min -60.5667
*
 9.3936 .000 -91.163 -29.970 

Extra Particle - 0 min -63.3000
*
 9.3936 .000 -93.896 -32.704 

No Particle - 10 min -73.8500
*
 9.3936 .000 -104.446 -43.254 

Particle - 10 min -36.2500
*
 9.3936 .010 -66.846 -5.654 

Extra Particle - 10 min -28.4333 9.3936 .087 -59.030 2.163 

No Particle - 15 min -80.7333
*
 9.3936 .000 -111.330 -50.137 

Particle - 15 min -27.0667 9.3936 .121 -57.663 3.530 

*. The mean difference is significant at the 0.05 level. 

 

Table A17. The means and medians for survival time of each treatment group. 

Treatment 

 

Mean
a
 Median 

Estimate Std. 

Error 

95% Confidence 

Interval 

Estimate Std. 

Error 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

PBS 29.375 1.085 27.249 31.501 28.000 .943 26.152 29.848 

FeOx 26.625 .844 24.971 28.279 26.000 1.414 23.228 28.772 
177Lu-DOTA 31.375 .905 29.601 33.149 31.000 .306 30.400 31.600 
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177Lu-D-SAHBA-FeOx 46.625 7.486 31.953 61.297 40.000 3.423 33.290 46.710 

177Lu-D-CMPVA-FeOx 43.250 2.724 37.911 48.589 42.000 1.369 39.316 44.684 

Overall 35.450 2.000 31.529 39.371 31.000 1.054 28.934 33.066 

a. Estimation is limited to the largest survival time if it is censored. 

 

Table A18. Results of pairwise comparison of log rank (Mantel-Cox) test for each treatment in 

the survival study. 

Treatment PBS FeOx 177Lu-DOTA 177Lu-D-

SAHBA-FeOx 

177Lu-D-

CMPVA-FeOx 

Chi-

Square 

Sig. Chi-

Square 

Sig. Chi-

Square 

Sig. Chi-

Square 

Sig. Chi-

Square 

Sig. 

PBS   3.586 .058 1.079 .299 12.479 .000 16.964 .000 

FeOx 3.586 .058   12.494 .000 16.897 .000 16.897 .000 

177Lu-DOTA 1.079 .299 12.494 .000   11.396 .001 13.327 .000 

177Lu-D-SAHBA-

FeOx 

12.479 .000 16.897 .000 11.396 .001   .007 .933 

177Lu-D-

CMPVA-FeOx 

16.964 .000 16.897 .000 13.327 .000 .007 .933   
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