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Our studies examine the role of nitric oxide synthase (NOS) in tumor vasculature.  

NOS is “uncoupled” in tumor cells, resulting in peroxynitrite (ONOO-) formation in lieu of 

nitric oxide (NO). NO signaling is critical for vascular function, thus uncoupling of eNOS 

in endothelial cells may partly explain the poor vasculature found within tumors. NOS 

can be “recoupled” through Sepiapterin (SP) treatment of tumor cells. We examined 

whether SP could normalize tumor vasculature, promoting radiosensitivity. Optoacoustic 



 

tomography of flank xenografts and spontaneous tumor models demonstrate that SP 

significantly enhances percent oxyhemoglobin in tumors.  Immunohistochemical 

analysis of SP-treated tumors showed significant reduction in CD31 staining and 

significant increases in smooth muscle actin (SMA), both hallmarks of vascular 

normalization. SP resulted in over a two-fold increase in apoptosis with irradiation. 

These data demonstrate potential for SP as an adjuvant in cancer treatment. Future 

studies will examine drug uptake and mechanisms behind vascular normalization. 
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INTRODUCTION 

 

Tumor Vasculature 

 Unlike the vessels in normal tissues, the vasculature in tumors is 

abnormal [1]. Normal vessels are highly organized, evenly distributed, and well-

differentiated. In contrast tumor vessels are convoluted, chaotic, and irregular [2]. 

Tumor vessels are not only structurally abnormal, but are functionally abnormal as well. 

The basement membrane of tumor vessels tends to be unusually thick or thin and have 

loosely attached pericytes, or vascular smooth muscle cells. The endothelial cells of the 

basement membrane are also sporadically dispersed throughout these vessels [1]. The 

aberrant nature of the vasculature results in uneven, heterogeneous blood flow and 

leaky, hemorrhagic blood vessels. The leakiness of the vessels increases interstitial 

fluid pressure and may lead to swelling. When tumor cells have outgrown their blood 

supply, pockets of hypoxia can develop due to poor perfusion, promoting tumor 

metastasis and progression [3]. Poor perfusion also limits the access and efficient 

delivery of therapeutic drugs.   

While neovascularization refers to the formation of completely new blood 

vessels, the development of blood vessels from existing vasculature is known as 

angiogenesis [4]. An expanded vasculature can increase the nutrient and oxygen supply 

to tumors [1]. Angiogenesis is therefore vital for the growth, invasion, and metastasis of 

tumors [5, 6, 7]. In tumors the balance between proangiogenic and antiangiogenic 

pathways is disrupted, favoring angiogenesis.  
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Angiogenic switch is the initiation of angiogenesis by a previously dormant tumor. 

The switch is typically triggered by hypoxia or nutrient deprivation, causing the tumor to 

secrete cytokines and growth factors that induce the migration of endothelial cells 

towards the tumor mass [8]. The endothelial cells form hollow tubes that eventually 

become a network of mature blood vessels. Hypoxia within the inner mass of the tumor 

promotes the nuclear translocation of hypoxia-inducible factor 1 (HIF-1). This 

subsequently activates numerous proangiogenic genes, including vascular endothelial 

growth factor (VEGF) [9].  

The binding of VEGF to its receptor leads to angiogenesis by mediating 

proliferation, vascular permeability, cell migration, and cell survival [9]. VEGF can signal 

via the mitogen-activated protein kinase/ extracellular signal-regulated kinase 

(MAP/ERK) pathway to activate gene expression and cause cell proliferation. VEGF 

activates phospholipase C-γ by producing diacylglycerol and inositol triphosphate (IP3), 

raising intracellular Ca2+ concentration [10]. Endothelial NOS is activated and generates 

NO due to increased intracellular Ca2+. Increased intracellular Ca2+ also activates 

cytosolic phospholipase A and prostaglandin production. Production of NO and 

prostaglandins induces vascular permeability [9].  

Stimulation of VEGF signaling has also been demonstrated to upregulate focal 

adhesion kinase [11]. The activation of this pathway leads to focal adhesion turnover 

and cell migration. Heat shock protein 27 is induced by VEGF signaling through p38 

and results in actin reorganization and cell migration [12, 13]. VEGF activation of 

phosphoinositide-3-kinase (PI3K) converts phosphatidylinositol (4, 5)-bisphosphate to 

phosphatidylinositol (3, 4, 5)-triphosphate (PIP3) [9]. Akt is then recruited to the cell 
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membrane by PIP3 and is phosphorylated. Akt can not only activate NOS, but also 

inhibit proapoptotic proteins caspase 9 and Bcl-2 associated death promoter (BAD) [14]. 

Inhibition of these proteins leads to cell survival [15].  

Matrix metalloproteinases (MMPs), which are also induced by HIF-1, break down 

the extracellular matrix to aid endothelial cell migration and the release of associated 

growth factors [9]. Tumor-associated macrophages (TAMs) are activated by factors 

secreted into the tumor microenvironment. TAMS produce VEGF, MMPS, and other 

angiogenic factors [16]. During tumor angiogenesis endothelial cells recruit pericytes for 

structural support promoting tumor survival [17]. Endothelial cells secrete platelet-

derived growth factor (PDGF) which binds to its receptor on the pericyte membrane. 

The binding of PDGF to PDGF receptors results in the production and secretion of 

VEGF by pericytes. VEGF then signals through the endothelial VEGF receptor, further 

promoting angiogenesis [16]. Initiation of blood vessel growth not only requires up-

regulation of angiogenic factors, but down-regulation of antiangiogenic factors as well. 

Angiogenesis can be detected by measuring CD31, a platelet-endothelial 

adhesion molecule, as an endothelial cell marker. Hvingel showed that CD31 staining 

intensity is significantly stronger in cancer microvessels compared to benign 

endometrial polyp microvessels [18]. While CD31 is a useful molecular marker for 

endothelial cells, α-smooth muscle actin (α-SMA) is commonly used to identify 

pericytes. One of six isoforms of actin, α-SMA is typically reserved to cells derived from 

smooth muscle lineages. Tonino and Abreu showed that α-SMA expression is greater in 

the periphery of gastrointestinal cancer cells than in the center and metastatic regions, 

suggesting the blood vessels in these regions are delicate and immature [19].  



4 
 

 

The Role of Nitric Oxide in Tumor Vasculature 

Nitric oxide (NO) is crucial in vasoregulation, signaling within the central nervous 

system, and immune responses [20]. Under normal, physiologic conditions nitric oxide 

synthases (NOS) produce nitric oxide [21]. There are three isoforms of NOS: nNOS 

(NOSI), iNOS (NOSII), and eNOS (NOSIII) [22]. Depending on the tumor type, tumor 

cells may express one or multiple isoforms [23]. With tetrahydrobiopterin (BH4) as a 

cofactor, NOS transfers electrons from its reductase domain to its oxidase domain. The 

electrons are then used to oxidize L-arginine to produce NO and L-citrulline in the 

presence of oxygen. NO has a dual role in cancer, and exhibits both pro- and anti- 

tumor effects [23].   

NO can either promote or inhibit angiogenesis. The ultimate effect of NO 

depends on NO concentration, duration of exposure, activity, distribution, and cell 

sensitivity to NO. NO mediates numerous angiogenic effectors through complex 

mechanisms and various pathways. Growth factors, cytokines, metabolic stress, and 

shear stress stimulate the release of NO by upregulating NOS. NO activates multiple 

signaling pathways through S-nitrosylation and cyclic guanosine monophosphate 

(cGMP). NO can form S-nitrosothiols through three different pathways: a direct reaction, 

auto-oxidation of NO, or catalysis at metal centers and these nitrosothiols are important 

determinants of cell fate. S-nitrosylation of the cysteine in position 163 of caspase 3 

inhibits its activity. When cysteine-188 of p21Ras is S-nitrosylated, however, its activity 

is stimulated. Caspase 3 inhibition causes decreased apoptosis and Ras activation 

causes increased proliferation and migration of endothelial cells. NO also increases 
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endothelial cell proliferation and migration by activating protein kinase C  (PKC ) and 

inhibiting PKCδ [23].  

Another pathway that plays an important role in NO-mediated angiogenesis is the 

soluble guanylyl cyclase (sGC)–cGMP pathway. NO induces a conformational change 

in sGC by binding to the sixth coordinating position of its heme iron. Binding results in a 

200-fold activation of the enzyme and enhanced synthesis of cGMP from guanosine 

triphosphate (GTP) [24]. cGMP then activates the MAPK/ERK pathway by upregulating 

Ras and cGMP-dependent protein kinase (PKG), which interacts with Raf. Ultimately, 

the DNA binding activity of activator protein 1 (AP1) is increased, resulting in increased 

cell proliferation and migration. PKG appears to mediate cell migration by producing 

matrix metalloproteinase 13 (MMP13) via ERK and by Akt activation through PI3K [25]. 

Human and experimental tumors provide a positive correlation between NO and 

tumor progression. The degree of malignancy for tumors of the central nervous system, 

reproductive tract, and breast have been shown to be related to NOS protein 

concentration and activity. The idea that NO plays a direct role in tumor growth and 

metastasis is supported by experimental tumor models [26, 27]. Tumor growth and 

vascularity in nude mice was stimulated by upregulation of NOS in a human colonic 

adenocarcinoma cell line. This effect can be blocked by a selective inhibitor, 1400W 

[26]. In ovarian cancer studies, exogenous NO increased VEGF and angiogenesis. 

When inhibited with NG-nitro-L-arginine methyl ester (L-NAME), VEGF expression in 

the ovarian cell lines was significantly reduced and angiogenesis was inhibited [27]. 

Studies on endogenous inhibitors of NOS, including asymmetric dimethyl 

arginine, further suggest that tumor growth and angiogenesis is associated with the 
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increased availability of NO [28]. Despite evidence implicating NO as an inducer of 

tumor progression, reports suggest that it may also inhibit progression. Elevated NO 

levels have a cytotoxic effect on tumor cells. Endogenous NO has also been shown to 

induce apoptosis in pancreatic, breast, and colon cancer [23]. 

 

Tumor Vasculature and Therapeutic Efficacy 

 Jain proposed that restoring the balance between pro- and anti-angiogenic 

pathways would remodel tumor vasculature and normalize it, increasing perfusion and 

oxygenation of tumors [1]. Anti-angiogenic treatment generally involves either 

intracellular inhibition of receptor tyrosine kinases, or inhibition of angiogenic factors and 

their receptors. Bevacizumab, a VEGF inhibitor, was approved for breast cancer 

treatment and management of advanced colon cancer in 2004 [4]. Tumor blood vessels 

have also been shown to be normalized by reestablishing NO gradients around vessels 

in human glioma cells. Kashiwagi showed that elimination of nonvascular NO production 

and establishment of the perivascular NO gradient alters the morphology and function of 

tumor vasculature and increases oxygenation [29]. 

 One drawback of normalization using antiangiogenic therapy is that the 

improved blood supply may also lead to more efficient delivery of nutrients to the tumor 

cells [30]. The benefits of anti-angiogenic therapy also appear to be transient in 

preclinical and clinical settings [31]. In recent years, there has been debate over 

whether a pro-angiogenic or anti-angiogenic approach is more effective for tumor 

treatment [32]. A novel strategy known as “vascular promotion therapy” has been 

proposed to treat tumors by stimulating, rather than preventing, vascular formation [33].  
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A factor that limits the effectiveness of radiation therapy in various cancers is 

radioresistance [34]. The hypoxic nature of tumors helps contribute to radioresistance 

[22]. The damage caused by free radicals in the DNA as a result of radiation can be 

repaired under hypoxic conditions, but cannot be repaired when molecular oxygen is 

available [35]. Oxygen acts as a source of free radicals which can further damage 

tumors. In 90% of solid tumors, the median concentration of oxygen in tissues is below 

the normal 40-60 mm Hg. In 50% of solid tumors, the median oxygen concentration is 

below 10 mm Hg [36]. When compared to normal cells, hypoxic tumors are two- to 

three-fold less sensitive to radiation [37].  

One mechanism by which tumors grow back after radiotherapy is repopulation 

[38]. It has been shown that cell death by radiation is an important signal for 

repopulation after radiotherapy. Irradiation (IR) of tumor cells can lead to proliferation of 

cells that were not irradiated, both in vivo and in vitro. Activation of caspase 3 in dying 

cells is integral for proliferation signals [39]. Another limitation of radiotherapy is tumor 

stem cells. These cells can regenerate the tumor [37]. Tumor stem cells are also 

implicated in resistance to chemotherapeutic agents [40].  

It has been suggested that NO donors may inhibit EMT, metastasis, and reverse 

drug resistance [41]. In one study, DETANONOate was shown to inhibit epithelial-

mesenchymal transition (EMT) in metastatic human prostate cells. NO donors, like 

DETANONOate, mimic endogenous NO production [42]. Gao demonstrated that 

DETANONOate radiosensitizes HT-29 colorectal cancer cells and xenografts. HT-29 

cells and xenografts had previously been shown to be highly radioresistant [43]. In the 

xenograft model, human tumor cells are either subcutaneously injected or transplanted 
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into an organ of mice. The mice are immunocompromised and do not reject human cells 

[44]. Hypoxic murine mammary adenocarcinoma EMT-6 cells also showed 

radiosensitization with the NO donors SNAP and PAPA/NO. NOS inhibitors reversed 

radiosensitization, suggesting that the radiosensitizing effects are due to the production 

of NO [45]. 

In addition to NO, NOSs are also a source of reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) [46]. Under normal physiological conditions, when there 

is sufficient BH4, NOS is said to be “coupled.” Under conditions of oxidative stress and 

chronic inflammation, BH4 is oxidized to dihydrobiopterin (BH2). Given that NOS has an 

equal affinity for both BH4 and BH2, when more BH2 is present than BH4, NOS is 

“uncoupled” and molecular oxygen is oxidized, producing superoxide and peroxynitrite 

[47]. Since BH4 levels are higher than BH2 levels when NOS is coupled and the reverse 

is true when NOS is uncoupled, the ratio of BH4 to BH2 can be used to determine 

whether NOS is in the coupled or uncoupled state. The BH4:BH2 ratio is high in normal 

tissues and low under inflammatory conditions. Our laboratory has previously shown 

that the BH4:BH2 ratio is lower in various cancer cells lines than in normal tissue [48]. 

Our laboratory has also shown that treatment of the cancer cell lines with sepiapterin, a 

precursor of BH4, increases the BH4:BH2 ratio [48].  

 

 In this thesis, I intend to determine the effects of sepiapterin on tumor 

vasculature in A549 xenograft and MMTV spontaneous tumor models. I expect 

sepiapterin to recouple NOS and increase NO production in the tumors. This will lead to 

increased perfusion and oxygenation of the tumor, resulting in radiosensitization. 
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Ultimately, this will allow for more efficient delivery of therapeutic drugs and better 

response to radiation therapy.  
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MATERIALS AND METHODS 

 

Chemicals and Reagents 

 L-Sepiapterin (#11.225) was from Schircks Laboratories (Jona, Switzerland). 

Ascorbic Acid (A5960), Potassium Iodide (P-4286), Iodine (20,777-2), Trypsin (T9201), 

Collagenase (C0130), DNase (D4527), Goat Serum (G9023-10ML), and Hoechst 33342 

(B2261-25MG) were from Sigma Aldrich. Hydrochloric Acid (A144-212), Sodium 

Hydroxide (SS255-1), HPLC grade Methanol (A452-4), HPLC grade Water (W5-4), 

HPLC grade Acetonitrile (26827-0040), Perchloric Acid (A229), and Bovine Serum 

Albumin (BP1600-1) were purchased from Fisher Scientific. The cGMP EIA kit (581021) 

was purchased from Cayman Chemical. PBS (10010-023), Dulbecco’s Modified Eagle 

Medium Nutrient Mixture F-12 (11330-032), Penicillin Streptomycin (15240-062), Alexa 

Fluor® 488 Donkey anti-Rat IgG Secondary Antibody (A-21208), and Alexa Fluor® 488 

Goat anti-Mouse IgG Secondary Antibody (A-11001) were purchased from Invitrogen.  

Anti-Actin Antibody (CBL171) and ApopTag® Plus Fluorescein In Situ Apoptosis 

Detection Kit (S7111) were purchased from Millipore. Purified Rat Anti-Mouse CD31 

Antibody (550274) was purchased from BD Biosciences and Triton X-100 (789 704) 

was purchased from Roche Diagnostics. M.O.M.™ Mouse IgG Blocking Reagent was 

purchased from Vector Laboratories as part of the Vector® M.O.M.™ Basic 

Immunodetection kit (BMK-2202). Nu/Nu mice were purchased from NCI.  

 For animal studies involving treatment with SP, stock solutions of 0.8 mg/ml in 

H2O were frozen at -20˚C. When ready for use, they were thawed and 1 ml was diluted 

to 40ml in animal drinking H2O. For tissue culture studies involving SP I used tissue 
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culture medium as the solvent to make a 1 mM stock solution which could then be 

diluted as necessary. This solution was made fresh each time cells were to be treated. 

 

Cell Culture 

 A549 cells were from ATCC. All cell lines were grown as monolayers in 

Dulbecco’s Modified Eagle Medium Nutrient Mixture F-12 (Ham) supplemented with 

10% FBS and 50 units/ml penicillin and streptomycin. Cells were incubated at 37˚C in 

5% CO2. Cells were passaged as necessary. 

 

Mouse Tumor Xenografts 

A549 cells were trypsinized and counted. 1.5 x 106 cells in 50 µl PBS were 

injected into each flank of 8 week old Nu- / Nu- mice from NCI.  

MMTV neu mice that developed spontaneous mammary tumors were provided 

by Dr. Jolene Windle (VCU Dept. of Human and Molecular Genetics). 

 

BH4 and BH2 measurements 

To analyze biopterin levels in tumors animals were euthanized. Once the animal 

was sacrificed, the tumor was harvested and snap frozen in liquid nitrogen. The tissue 

was either placed in the -80˚C freezer or immediately homogenized in 10 volumes of 

0.1N HCl with a pestle and mortar kept on ice. The resulting tissue homogenate was 

centrifuged for 20 min at max speed and the supernatant would be stored in aliquots at  

-80˚C.  
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The protocol for HPLC analysis was adapted from Woolfe et al (1983). Three 

solutions were needed in order to perform the acid/alkaline oxidation: 2% I2 /3% KI in 

0.1N HCl, 2% I2 /3% KI in 0.2N NaOH, and 2.5% Ascorbate in 0.4 N HClO4
-. 100 µl of 

sample was incubated with 62.5 µl of the HCl solution in one tube while another 100 µl 

of sample was incubated with the NaOH solution for 1 h at room temperature in the 

dark. After 1 h, 0.5 volumes of the ascorbate solution were added to each tube and the 

samples were centrifuged at 12,000 RPM for 10 min. 50 µl of the resulting supernatant 

from each sample was separated by HPLC on a Whatman RTF partisphere column 

using 5% methanol as the mobile phase at a flow rate of 1.0 ml/min and fluorescent 

detection at 350/450 nm.  

To determine the BH4:BH2 ratio, the acidic and alkaline chromatograms for each 

sample were compared. Under acidic conditions both BH4 and BH2 were converted to 

biopterin and eluted in one peak, while under alkaline conditions BH4 was converted to 

pterin and now eluted in a different peak. The BH4:BH2 ratio was obtained by 

comparing the areas under the curve. 

 

Determination of cellular cGMP content 

Some of the supernatant aliquots from the samples harvested in 0.1 N HCl for 

BH4:BH2 analysis were used to make these measurements. A cGMP EIA kit from 

Cayman Chemical was purchased and the directions were followed as described in the 

manual. The samples were not acetylated. 
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Optoacoustic Imaging 

 In multispectral optoacoustic tomography (MSOT), tissues are excited by 

multiple-wavelength illumination, and in response to light absorption, thermoelastic 

materials (like hemoglobin) produce ultrasonic waves. Since oxyhemoglobin absorbs 

light at a lower wavelength than deoxyhemoglobin, MSOT was used to compare the 

oxygenation of hemoglobin in SP-treated animals to control animals. 

 MSOT imaging was performed using an MSOT inVision 256-TF small animal 

scanner (iThera Medical GmbH, Munich, Germany). It is a commercially available 

implementation of the imaging system, featuring a 256 element transducer array. It also 

uses a specifically developed, proprietary laser system (InnoLas Laser GmbH, Krailling, 

Germany) of equal energetic characteristics and pulse width, with fast wavelength 

tuning in between laser pulses. It also features an integrated laser pulse energy 

correction that enables the correction of each laser pulse with its measured energy, 

inherently compensating for the laser's wavelength-dependent energy profile. The laser 

system provides excitation pulses with a duration of 9 ns at wavelengths from 680 nm to 

980 nm at a repetition rate of 10 Hz. For defining the oxy- and deoxyhemoglobin 

signals, a minimum of the following wavelengths were used in all acquisitions: 700 nm, 

730 nm, 760 nm, 800 nm, 860 nm, 900 nm. A light strip of about 8 mm width on the 

mouse is evenly illuminated from 10 arms of a fiber bundle arranged at an angle of 13 

degrees to the imaging plane. The laser delivers a radiant exposure well below the 

maximum permissible exposure (MPE) in living subjects. In order to correct the acquired 

multispectral data, the laser's energy profile was measured at the wavelengths used for 

the acquisition of MSOT data. A cylindrically focused 256 element ultrasound 
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transducer array at a center frequency of 5 MHz covers an angle of 270 degrees around 

the sample to create cross-sectional images. The photoacoustic signals in the μV range 

captured by all transducer elements are digitized simultaneously using specialized 

acquisition electronics (Falkenstein Microsysteme GmbH, Taufkirchen, Germany) at a 

sampling rate of 40 megasamples/s. Mice are submerged in a water tank in a horizontal 

position in a holder and are wrapped in a thin polyethylene membrane to prohibit direct 

contact between water and mouse but still allow for acoustic coupling. Anesthesia and 

oxygen are supplied through a breathing mask. The mouse and holder can be 

translated using a linear stage (IAI Industrieroboter GmbH, Schwalbach, Germany) to 

enable imaging of multiple transverse slices. The resolution of the translational stage 

was 0.5 mm. 

 In order to create an image at one wavelength, signals from 20 subsequent 

excitation pulses were averaged in order to compensate for laser pulse fluctuations and 

animal motion as well as to improve signal-to-noise ratio (SNR). Images were 

reconstructed using a standard back-projection algorithm, and three-dimensional 

images were reconstructed using the interpolated model-matrix inversion. Both were 

applied from within the ViewMSOT software suite supplied with the iThera Medical 

system. After image reconstruction, linear spectral unmixing was applied to detect and 

separate oxy- and deoxy-hemoglobin signals from other photo-absorbing tissue 

elements. For each pixel in the image, the method fits the total measured optoacoustic 

spectrum to the known absorption spectra of oxy- and deoxy-hemoglobin and that of the 

agent to be detected. This produces individual component images, each visualizing the 

bio-distribution of the respective absorber. The oxy- and deoxy-hemoglobin signal 
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intensities in the tumors were calculated by drawing regions of interest (ROI) over the 

tumors and measuring the respective signal intensities within those ROIs. (Method from 

Dr. Sundaresan Gobalakrishnan, VCU Center for Molecular Imaging.)  

 

Immunohistochemistry 

 For CD31 endothelial cell and smooth muscle actin staining, frozen tumors 

embedded in OCT were sectioned at 6 µm. Tumor sections were fixed in -20˚C acetone 

for 10 min at 4˚C. The sections were first washed for 5 minutes with 1X PBS before 

being washed with deionized water. After serum (10% goat serum, 1% bovine serum 

albumin, and 0.1% triton X-100 in PBS) blocking for 1 h, the sections were washed 

twice with 1X PBS for 3 minutes and then washed again with deionized water. For 

smooth muscle actin staining, the blocking serum also included 3.6% M.O.M.™ Mouse 

IgG Blocking Reagent.  

The sections were then stained with appropriate primary antibody overnight at 

4˚C, followed by three washes for 5 minutes with 1X PBS and one wash with deionized 

water. The sections were incubated with Alexa488-labeled secondary IgG (Invitrogen) 

at room temperature for 1 hour. Sections were again washed thrice for 5 minutes with 

1X PBS and washed once with deionized water. For four minutes, sections were 

incubated with Hoechst for nuclear staining and subsequently washed one final time 

with deionized water. Images were captured using the Ariol Digital Pathology Platform 

and quantified using ImageJ.  

 ApopTag® Plus Fluorescein In Situ Apoptosis Detection Kit from Millipore was 

purchased and used to detection apoptotic cells in the frozen sections. 
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Ex-vivo Clonogenic Cell Survival Assay  

Tumors were harvested and minced into small pieces with a scalpel in medium 

without serum. The pieces were washed twice in medium and then the pieces were 

agitated in medium containing 0.08% collagenase and 0.5% Trypsin for 40 min at 37˚C. 

DNase to 0.06% was added to the medium and the cells were strained through a 0.70 

µM cell strainer. The resulting single cell suspension was counted, excluding RBC’s, 

and plated at different concentrations. The plating efficiency of this type of experiment is 

very poor so more cells were plated than I plated for the tissue culture assay. I plated 

500 and 1k cells per 100 mm dish. The dishes were fixed in -20ºC methanol, stained 

with 0.5% crystal violet, and counted when colonies reached approximately 100 cells. 
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RESULTS 

 

SP increases the BH4:BH2 ratio in A549 xenograft tumors. 

The BH4:BH2 ratio was determined using xenograft tumors from athymic nude 

mice that were treated with 1 mg/kg/ml SP daily for six days via drinking water. Our lab 

has previously shown that SP treatment increases the BH4:BH2 ratio in various cancer 

cell lines. To determine if this held true for the A549 cell line, the BH4:BH2 ratio was 

assayed in control and SP-treated xenograft tumors (Table 1). Using HPLC as 

described, BH4 and BH2 levels were measured by acidic or alkaline oxidation to either 

biopterin or pterin. Untreated A549 tumors had a BH4:BH2 ratio of 3.92:1, while SP-

treated tumors had a ratio of 6.10:1. This supports the previous finding that tumors, like 

other inflammatory conditions, exhibit low BH4:BH2 ratios that can be increased to more 

normal tissue levels using SP.    

The coupling of NOS by SP and the production of NO can upregulate the 

cGMP/PKG pathway. This may subsequently lead to pro-apoptotic and anti-proliferative 

pathways. The results of the cGMP assay were inconclusive. One reason for this may 

be due to potentially high levels of phosphodiesterases (PDEs) that are expressed in 

tumor cells. My studies were not performed using PDE inhibitors.  
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   BH4:BH2 

A549 3.92 ± 0.933 

A549 + 1 mg/kg/ml SP 6.10 ± 0.69 

  

Table 1. BH4:BH2 ratio. BH4:BH2 ratio was measured by HPLC in 

A549 flank tumor xenografts from untreated and SP-treated mice. N=5 

for each group and data is reported as the mean +/- SEM. 
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SP increases the HbO2 percentage in flank tumor xenografts. 

 Athymic nude mice were treated with 1 mg/kg/ml SP daily via drinking water for 

six days. The animals were imaged as described at three time points: prior to the first 

SP treatment, day 3 after the first SP treatment, and day 6 after the first SP treatment. 

MSOT data demonstrated that SP treatment increased the percentage of oxygenated 

hemoglobin in xenograft tumors when compared to control tumors (Figure 1). The 

percentage of oxygenated hemoglobin in the control tumors decreased over time. This 

was expected, since hypoxia increases as tumors grow. There is a significantly higher 

percentage of oxygenated hemoglobin in the SP-treated tumors versus control tumors 

after six days of SP treatment. The SP curve remains relatively constant – suggesting 

that the SP-treated tumors are not outgrowing their vasculature like the control tumors. 

 

SP increases CD31 endothelial cell staining in A549 xenograft tumors. 

Sections for CD31 staining were obtained from xenograft tumors from athymic 

nude mice treated with 1 mg/kg/ml SP via drinking water for two days. In the A549 

xenograft model, CD31 staining was greater in tumors from mice treated with SP than in 

tumors from untreated mice (Figure 2). Staining was quantified by dividing the CD31 

endothelial cell staining pixel intensity by the Hoechst nuclear staining pixel intensity. 

After only 2 days of SP treatment, there is a 26% increase in endothelial cell staining in 

SP-treated tumors compared to control tumors. This suggests that SP improves tumor 

vasculature in the xenograft tumors. Most of the staining is limited to the periphery of 

the tumors, a consequence of the xenograft tumor model. 
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Figure 1. The effect of SP treatment on oxygenated hemoglobin 

levels in xenograft tumors. Mice were treated with 1 mg/kg/ml SP 

daily per mice via drinking water. The level of oxygenated hemoglobin 

decreased in vehicle treated mice, but remained steady in SP-treated 

mice. *p<0.01, n = 8 tumors.    
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Figure 2. Increased CD31 staining in SP-treated A549 tumors.        

Top: Images A - D are Hoechst stained A549 tumor sections with 

images E - H the corresponding CD31 stained sections with the blue 

Hoechst fluorescence turned off. Images A + E (no primary anti-CD31) 

and B + F (+ primary anti-CD31) are adjacent cryostat sections from the 

tumors of untreated animals; C + G (no primary anti-CD31) and D + H (+ 

primary anti-CD31) are adjacent cryostat sections from tumors of 

animals treated with SP.                                                                  

Bottom: Quantification of staining. *p < 0.05, n = 6 tumors. 
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SP increases the percent of HbO2 in MMTV spontaneous tumors. 

 Unlike the nude mice, the MMTV-neu mice were treated with SP by oral gavage 

in order to minimize variability from mouse to mouse. The mice were given 1 mg/kg/ml 

SP daily for six days. The animals were imaged as described at four time points: prior to 

the first SP treatment, day 5 after the first SP treatment, day 8 after the first SP 

treatment, and day 16 after the first SP treatment. MMTV tumors displayed an 

increased percentage of oxygenated hemoglobin, with a significant increase after eight 

days of SP treatment (Figure 3). There was also a decrease in hemoglobin oxygenation 

in control MMTV tumors. These results from the spontaneous tumor model provide 

additional evidence that SP treated tumors are not outgrowing their vasculature the way 

control tumors are, and are better oxygenated than untreated tumors.  

 

SP decreases CD31 endothelial cell staining in MMTV spontaneous tumors.  

Tumor sections for CD31 staining were obtained from the MMTV-neu mice used 

in MSOT imaging. After the mice were imaged on day 16, they were sacrificed. Tumors 

were subsequently extracted and stained as described. In the MMTV spontaneous 

tumor model, SP treatment resulted in less CD31 staining compared to control tumors 

(Figure 4). Spontaneous tumors displayed more staining in the central regions of the 

tumor than xenograft tumors, which have more peripheral staining.   
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Figure 3. Effect of SP treatment on oxygenated hemoglobin levels 

in MMTV spontaneous tumors. Mice were treated with 1 mg/kg/ml SP 

daily per mouse by oral gavage. The level of oxygenated hemoglobin 

decreased in vehicle treated mice, but increased in SP-treated mice. 

*p<0.05, n = 7 tumors.      
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Figure 4. MMTV CD31 staining decreased with SP treatment. CD31 

staining in MMTV tumors treated with SP was about 30% less than 

CD31 staining in control tumors. N=3 for each group.  
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Spontaneous tumors treated with SP have increased SMA staining. 

 SMA staining is useful for evaluating the relative pericyte content. Tumor 

sections for SMA staining were also obtained from the MMTV-neu mice used in MSOT 

imaging. After the mice were imaged on day 16, they were sacrificed. Tumors were 

subsequently extracted and stained as described. There is more than a two-fold 

increase in SMA staining 16 days post treatment (Figure 5). Increased SMA staining 

further suggests that the SP-treated tumors have a more improved vasculature than 

untreated control tumors. 

 

Radiation response of xenograft tumors is variable in a cell survival assay.  

Athymic nude mice with xenograft tumors were treated with 1 mg/kg/ml SP via 

drinking water for six days. The mice were then sacrificed and an ex vivo clonogenic 

assay was conducted as described. The survival of cells from mice that were both 

irradiated and treated with SP was variable (Figure 6). In the ex vivo clonogenic assay 

SP alone did not cause cell death. Irradiation, however, also did not cause significant 

death. This is because A549 cells do not show a significant radiation response at 2 Gy. 

The cell survival curve of A549 cells has a huge shoulder at 2 Gy, probably due to 

hypoxia. Panel B of Figure 6 splits the SP+IR bar to show the per cent survival for each 

tumor contributing to the SP+IR bar. The effects range from a 40% decrease to a 50% 

increase in cell survival. The variability observed may be due to variations among mice 

and their response to treatment.  
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Figure 5. Quantification of SMA staining in MMTV tumors. Mice 
treated with 1mg/kg sepiapterin orally for 6 days had a more than 
two-fold increase in SMA staining at 16 days post the beginning of 
treatment. N=4 for each group. p<.005 by student’s t test.    
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Figure 6. In vivo analysis of SP treatment and irradiation on A549 

cell survival. Irradiated mice were treated at 2 Gy and SP-treated mice 

were given 1 mg/kg/ml SP daily via drinking water. Panel A illustrates 

the mean per cent survival for each of the four groups. A549 cells do not 

have a significant radiation response at 2 Gy, and the effect of SP 

treatment with IR is highly variable. Panel B illustrates the per cent 

survival of each SP plus IR treated tumor along with the mean survival 

for control and IR. The effect of SP with IR ranges from a 40% decrease 

in cell survival to a 50% increase in cell survival. Data is reported as the 

mean ± SD. 
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Xenograft tumors treated with SP and IR exhibit significant apoptosis. 

 Apoptosis was studied in xenograft tumors from mice treated with 1 mg/kg/ml SP 

daily for six days. Apoptag staining is used to visualize and identify apoptotic cells. The 

Apoptag kit was purchased from Millipore and staining was conducted as instructed in 

the manual. SP treatment of xenograft tumors with irradiation results in significantly 

more cell death than either vehicle or irradiation alone (Figure 7). This suggests that SP 

radiosensitizes A549 tumor cells.   
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Figure 7. Apoptag staining in A549 xenografts.              

1 mg/kg/ml SP given orally, once daily, significantly 
increases the level of apoptosis post 4Gy IR. A: untreated 
control,  
B: SP-treated, C: IR alone, D: SP+IR. N=3 for each group.  

* p<.01 
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DISCUSSION 

 

 SP treatment raised the BH4:BH2 ratio in A549 xenograft tumors and increased 

the percentage of oxygenated hemoglobin in both MMTV spontaneous and A549 

xenograft tumor models. MMTV spontaneous tumors treated with SP exhibited less 

CD31 staining than untreated tumors, while A549 xenograft tumors had increased 

staining compared to control tumors. When SMA staining and hemoglobin oxygenation 

percentages are taken into account, these results do not appear so paradoxical. 

Xenograft models are more highly vascularized at the periphery of the tumors. 

Normalization in this model is likely to result in improved perfusion in more central 

regions of the tumor, resulting in more endothelial cell staining. In contrast, MMTV 

spontaneous tumors tend to be vascularized throughout the tumor, not simply the 

periphery. Normalization in this case may involve vascular reconstruction which may not 

necessarily involve a significant increase in endothelial cell expression but rather 

enhanced function especially with recruitment of vascular smooth muscle cells. The 

latter mechanism is supported by the SMA staining results in SP treated spontaneous 

tumors. Spontaneous tumor models also exhibit vasculature that is more typical of 

human tumors and thus are more useful in studies on the role of tumor vasculature in 

the response of tumors to chemotherapeutic drugs and radiation.  

 The precise mechanism by which SP normalizes tumor vasculature and 

improves oxygenation and perfusion was not investigated in this study. As stated 

before, angiogenesis and vascularization are complex processes that involve multiple 

pathways. However, our lab has previously demonstrated that SP reduces infiltration of 
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inflammatory macrophages and reduces inflammatory responses. Tumor associated 

macrophages are known to be important players in tumor progression. SP may 

influence the function of these macrophages in normalizing vasculature.  Vessel 

normalization occurs during a transient window. Tumors exhibit a normalized vascular 

phenotype during this window of SP treatment, but the effects are lost after a few days. 

This is similar to what is observed with other agents that normalize tumor vasulature, 

such as avastin. In our studies the greatest effect on cell death, CD31 staining, and 

SMA staining was observed at 8 days. 

 Irradiation following SP treatment produced variable results in tumors when 

analyzed by an ex-vivo clonogenic assay, but Apoptag analysis indicated significant 

apoptosis in SP-treated tumors compared to tumors from mice that were only irradiated. 

The variability in the clonogenic assay may be attributed to the method of SP delivery; 

mice were treated with SP via drinking water. The mice may have ingested varying 

amounts of SP depending on how much water was consumed by each mouse each 

day. The significant apoptosis visualized in Apoptag analysis suggests SP treatment 

reinforces the effects of radiation and induces radiosensitization. 

Besides vascular remodeling, there may be other underlying molecular pathways 

that help confer radiosensitivity upon tumors. Our lab has previously demonstrated that 

SP has significant effects on downstream signaling. SP upregulates cGMP-dependent 

PKG activity, reduces NF-κB promotor activity, and downregulates β-catenin and TCF4 

promoter activity [49]. To study the potential involvement of molecular pathways in SP 

treatment independent of vascular changes, tumor cells were studied in vitro. An in vitro 

clonogenic assay was conducted using A549 tumor cells. Cells were treated with 
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sepiapterin 24, 48, or 72 hours prior to 2 Gy irradiation. The SP-containing media was 

removed and replaced with fresh media 24 hours prior to irradiation in all dishes except 

for the dishes that were treated with SP 24 hours prior to irradiation. SP was not kept on 

board during irradiation because it has previously been shown to be radioprotective 

when kept on board. SP significantly decreased cell survival in cells treated 48 hours 

prior to irradiation compared to cells that were irradiated alone (Figure 8). This indicates 

that SP also works directly on epithelial cells, since in vitro models lack vasculature. 

One potential mechanism may involve STAT3, which is involved in pro-survival 

pathways, and the overexpression of which has been observed in numerous cancers 

[50, 5]. Oxygenation has been shown to downregulate expression of STAT3 and cyclin-

D1, inhibiting tumor growth in ovarian cancer [51]. Inhibition of STAT3 has also been 

shown to reverse radioresistance in human lung cancer [52]. SP potentially 

downregulates STAT3 post radiation therapy. Our lab has previously shown that STAT3 

is phosphorylated following irradiation in the A549 cells. This cell line in particular is 

known to exhibit radioresistance. SP may potentially downregulate STAT3 post-

radiation to radiosensitize tumor cells. 
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Figure 8. In vitro analysis of SP and irradiation cell survival. Dishes 

were treated with 20 µM SP. Tue SP/IR dishes were treated with SP 24 

hours prior to irradiation. Wed SP/IR dishes were treated with SP 48 

hours prior to irradiation. Thur SP/IR dishes were treated with SP 72 

hours prior to irradiation. Treatment of cells with SP 48 hours prior to 

irradiation significantly decreased cell survival. Data is reported as the 

mean ± SD. * p<0.05 by student’s t-test, n=3 for each group. 
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 Sepiapterin normalizes tumor vasculature, radiosensitizes tumors, and 

oxygenates tumors. This suggests that the increased perfusion will also improve 

delivery of vital therapeutic drugs. Sepiapterin is already used in the treatment of some 

forms of phenylketonuria. For a number of vascular diseases, SP is also in clinical trials 

for treatment of endothelial dysfunction. SP is potentially a safe alternative to other 

normalizing agents, such as avastin, which are associated with considerable toxicity 

[53]. In addition to low toxicity, SP demonstrates anti-proliferative properties in MMTV 

and other breast tumor models, alleviating concerns that it may be pro-tumorigenic [54]. 

In future studies, the efficiency of drugs like doxorubicin may be studied following SP 

treatment to investigate how SP will affect drug delivery. Radioresistance and inefficient 

drug delivery hinder cancer treatment, but SP appears promising in combating these 

obstacles to therapy.  
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